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Abstract .  A keystream generator known as RC4 is analyzed by the lin- 
ear model approach. It is shown that the second binary derivative of the 
least significant bit output sequence is correlated to 1 with the corre- 
lation coefficient close to 15 ' 2-3" where n is the variable word size of 
RC4. The output sequence length required for the linear statistical weak- 
ness detection may be realistic in high speed applications if n < 8. The 
result can be used to distinguish RC4 from other keystream generators 
and to determine the unknown parameter n, as well as for the plaintext 
uncertainty reduction if n is small. 

1 Introduction 

Any keystream generator for practical stream cipher applications can generally 
be represented as an  aiit,onomous finite-state machine whose initial state and 
possibly the next-state and output functions as well are secret key dependent. A 
common type of keystream generators consists of a number of possibly irregularly 
clocked linear feedback shift registers (LFSRs) that are combined by a function 
with or without memory. Standard cryptographic criteria such as a large period, 
a high linear complexity, and good statistical properties are thus relatively easily 
satisfied, see [16], [17], but such a generator may in principle be vulnerable to  
various divide-and-conquer attacks in the known plaintext (or ciphertext-only) 
scenario, where the objective is to  reconstruct, the secret key controlled LFSR 
initial states from the known keystream sequence, for a survey see [17] and [6]. 
Most the attacks require an exhaustive search over the initial states of a subset 
of the LFSRs, with the exception of a small number of faster cryptanalytic 
attacks which may work for long LFSRs as well, such as fast correlation attacks 
[13] based on iterative probabilistic decoding, the conditional correlation attack 
[14] based on information set, decoding, and the inversion attack [lo], all on 
regularly clocked LFSRs, and a specific fast correlation attack on irregularly 
clocked LFSRs whose theoretical framework is developed in [8]. In practice, 
the initial state is for resynchronization purposes also made dependent on a 
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randomizing key, which is typically sent in the clear before every new message 
to  be encrypted. This may open new possibilities for cryptanalytic attacks, see 

In the open literature, there is a very small number of proposed keystream 
generators that are not based on shift registers. For example, an interesting 
design approach, which may have originated from the table-shuffling principle 
[12], is t o  use a relatively big table that slowly varies in time under the con- 
trol of itself. A keystream generator [15] publicized in [18] and known as RC4 
(although a public confirmation is still missing) is such an example, which is 
according to  [18] widely used in many commercial products, including Lotus 
Notes, Apple Computer's AOCE, Oracle Secure SQL, and the Cellular Digital 
Packet Data specification [l]. Another, somewhat similar example is a keystream 
generator called ISAAC [ll]. Of course, one may also use a set of tables con- 
trolling each other, but this may lead to some divide-and-conquer attacks. The 
resulting schemes are hardly analyzable, and about the only known theoretical 
argument [4] concerns the period of the internal state sequence, but has prob- 
abilistic rather than deterministic nature. Namely, if the int,ernal memory size 
is M and if the next-state function is randomly chosen according to  the uni- 
form distribution, then the average cycle and tail lengths are both around 2 M / 2 ,  
whereas if the next-state function is in addition required to be invertible, then 
the internal state period (cycle length) is uniformly distributed between 1 and 
2 M ,  with the average value 2M-'. 

The statistical properties of the keystream sequence are typically measured 
by standard statistical tests, and for some sequences, including the LFSR ones, 
theoretical results can be derived as well. For keystream generators like RC4 
such theoretical results are difficult to  establish. The results typically deal with 
the relative frequency of occurrence of blocks of successive symbols within a 
period, where the block size is assumed to  be smaller than the internal memory 
size. However, it is shown in [7], [9] that for block sizes bigger than M ,  a linear 
statistical weakness or a so-called linear model always exists and can be efficiently 
determined by the linear sequential circuit approximation (LSCA) method [ 5 ] .  
The linear statistical weakness is a linear relation among the keystream bits 
that holds with probability different from one half. It turns out [9] that for 
many practical schemes, including the clock-controlled LFSRs, the keystream 
sequence length needed to  detect the weakness is considerably shorter than the 
period. Although the weakness may not lead to a significant plaintext uncertainty 
reduction, it is structure dependent and can be used as such to  distinguish 
between different types of keystream generators and for secret key reconstruction 
as well. As well, linear models of individual components of a keystream generator 
can be utilized in correlation attacks, whereas multiple linear models can also 
be used to  mount fast correlation attacks [8] on clock-controlled LFSRs. 

The main objective of this paper is to derive linear models for RC4 by using 
the LSCA method [5], [9]. The LSCA method consists in determining and solving 
a linear sequential circuit that approximattes a given keystream generator and 
yields linear models with comparatively large correlation coefficient c, where 

PI. 
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the probability of the corresponding linear relation among the keystream bits is 
(1 + c) /2 .  It also gives an estimate of c, but sometimes, as in the case of RC4, 
special techniques have to be developed to obtain more accurate estimates of C. 

Given a parameter n, the internal state of RC4 consists of a balanced table 
(permutation) of 2n binary words of dimension n and two pointer binary words 
of the same dimension, n, which, at each time, define the positions of two words 
in the table to  be swapped to produce the table at the next time. The internal 
memory size1 is thus practically given as M = nZn + 2n. One of the pointers is 
updated by using the table content at the position defined by the other, which 
is in turn updated in a known way by a counter. Initially, the two pointer words 
are set t o  zero and the table content is defined by the secret key in a specified 
way. At each time, the output of RC4 is a binary word of dimension n which is 
taken from an appropriate position in the table. The output word is then bitwise 
added to  the plaintext word to give the ciphertext word. 

Let z = ( z t )E l  denote the least significant bit output sequence of RC4 
and let 2 = (it = zt + zt+1)& and 2 = (& = zt + zt+2)& denote its first 
and second binary derivatives, respectively. Our main results are to  show that 
i is correlated neither t o  1 nor to 0 and that 2 is correlated to  1 with the 
correlation coefficient close to 15 . Z - 3 n  for large 2n. Since the output sequence 
length needed to  detect a statistical weakness with the correlation coefficient 
c is O(c-'), the required length is around 64n/225. For example, if n = 8, as 
recommended in most applications, the required length is close to 2"' = 10". 
Experimental results agree well with the above theoretical predictions. As the 
resulting correlation coefficient is significantly bigger than Z M l Z ,  A4 = n2"' -t Zn, 
the determined linear model should be regarded as a statistical weakness, at 
least on a theoretical level. Moreover, the output sequence length required for 
the detection may even be realistic in high speed applications if n 5 8. Also 
notme that the second binary derivative weakness involves only three successive 
least significant, output bits which is much smaller than the memory size. The 
weakness is a consequence of a very simple next-state function of RC4. It is also 
shown that similar linear relations hold for other output bits as well, but the 
correlation coefficients are smaller. 

In Section 2, a more detailed description of the RC4 keystream generator is 
presented. In Section 3, some relevant correlation properties of random boolean 
functions are derived, while the linear models of RC4 and the corresponding 
correlation coefficients are determined in Section 4. A summary and conclusions 
are given in Section 5 .  Central moments of an underlying discrete probability 
distribution needed for estimating the correlation coefficients are evaluated in 
the Appendix. 

The effective internal memory size is slightly smaller and is according to Stirling's ap- 
proximation given as log 27L! + 2n N 2" (n  - log e )  + 5n/2 +log 6. All the logarithms 
are to  the base 2 throughout. 
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2 Description of RC4 

We will follow the description given in [MI. RC4 is in fact a family of algorithms 
indexed by a parameter n, which is a positive integer typically recommended 
to be equal to 8. The internal state of RC4 at  time t consists of a table St = 
(St(Z));:,' of 2" n-bit words and of two pointer n-bit words it and j t .  SO, the 
internal memory size' is M = n2" + 2n. Let the output n-bit word of RC4 at 
time t be denoted by Zt. As usual, we keep the same notation for the binary and 
integer representations of n-bit words, where, for example, the least significant 
bit is the leftmost one. Let initially io = j o  = 0. Then the next-state and output 
functions of RC4 are for every t 2 1 defined by 

i t  = itPl + 1 (1) 

Zt = St (S t ( i t )  + S t ( j t ) )  (4) 

where all the additions are modulo 2". It is assumed that all the words except for 
the swapped ones remain the same (swapping itself is effective only if it # j t ) .  
The output n-bit word sequence is 2 = (Z,)z",l. 

The initial table SO is defined in terms of the key string K = (Kl);Zc1 by 
using the same next-state function starting from the table (identity permutation) 
( l ) l=o . More precisely, set j O  = 0 and for every 1 5 t 5 2",  compute j t  = 
( j t -1+St - l ( t - l )$Kt-1)  mod2" and then swap S t - l ( t - l )  with St - l ( j t ) .  The 
last produced table represents So. The key string K is composed of the secret 
key, possibly repeated, and of the randomizing key which is sent in the clear for 
resynchronization purposes. 

There are no published results regarding RC4. The known pointer sequence 
{it}Eo ensures that every element in the table is affected by swapping at least 
once in any 2" successive times and, also, that the next-state function is invert- 
ible (one-to-one). Accordingly, the state diagram consists of cycles only, which, 
according to [4], can he expected to have average length close to Z'-' and are 
very unlikely t3 be short if n 2 5. Of course, since the next-state function of 
RC4 is not randomly chosen, this remains to be proved, if possible at  all. 

2"-1 

3 Correlation Properties of Random Boolean Functions 

The correlation coefficients of the linear models of RC4 to be determined in 
the next, section are related to certain correlation properties of random boolean 
functions. These properties provide insight into the linear statistical weaknesses 
of RC4 and are as such pointed out in this section. Note that the correlation 
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properties of boolean functions for cryptographic applications are first intro- 
duced in [19]. Let f denote an arbitrary boolean function of n variables and let 
f (X)  denote the value of f at a point X = (zo,. . . , x,-~) E (0, l},. We will 
use the same notation, X,  for the integer representation of X too, that is, for 
Cyzi s i 2 i ,  A boolean function f is called balanced if it has the same number 
of zeros and ones in its truth table. In the probabilistic analysis to follow, we 
will, for simplicity, keep the same notation for random variables and their values. 
As usual, the correlation coefficient between any two binary random variables z 
and y is defined as c = Pr{z = y }  - Pr{x # y } .  The correlation coefficient of a 
single binary random variable x is defined as the correlation coefficient between 
x and the constant zero variable. Accordingly, let for any two boolean functions 
f and g, c( f ,  g) denote the correlation coefficient between f (X) and g ( X ) ,  and 
let c ( f )  stand for c(f ,  O ) ,  where X is uniformly distributed. A basic result to bc 
used is that the correlation coefficient of a sum of independent binary random 
variables is equal to the product of their individual correlation coefficients, see 
[9] (addition of binary variables is modulo 2 throughout). 

Proposition 1. Let  X and Y be two independent uni formly distributed n - d i m e n -  
sional binary random variables and let f be a uni formly random boolean function. 
of n variables. Let  1 be a n  arbitrary linear boolean func t ion  of n variables (zn- 
cluding the constant zero func t ion) .  T h e n  the correlation coefficient c between 
f(X) + f ( Y )  and 1 ( X )  + Z(Y) is equal t o  112.. (Instead of being linear, 1 m a y  
be a n y  boolean function of n variables.) 

Proof. Let c f  denote the correlation coefficient between f (X) +E(X) and f ( Y )  + 
1(Y) for any fixed f .  The correlation coefficient c is then equal to the expected 
value of cf over uniformly random f. The correlation coefficient c f  is clearly 
equal to the correlation coefficient of f ( X )  + 1 ( X )  + f ( Y )  + l(Y) which is in 
turn equal to the product of the correlation coefficients of f ( X )  + 1 ( X )  and 
f ( Y )  + 1(Y), as X and Y are independent. Since the two are equal, we get that 
c f  = c(f,l)'. Since 1 is fixed, c is then equal to the expected value E(c ( f ) ' ) ) ,  
where c(f)  is itself given as 21-n(k - 2n-1) with k being the number of zeros 

in the truth table of f .  As k has the binomial distribution { ( 2 ~ ) 2 - 2 " } p L o '  it 

follows that E(c ( f ) ' )  = 2Z(1-n)Var(k) = 2 - n ,  because the variance Var(k) is 

2" 

equal to  2 " ~ ~ .  0 

Proposition 2. Let  X and Y be two independent uni formly distributed n - d i m e n -  
sional binary random variables and let f be a uniformly random balanced boolean 
f u n c t i o n  of n variables. Le t  1 be a n  arbitrary nonzero linear boolean func t ion  of  
n variables. T h e n  the correlation coefficient of f  ( X )  + f ( Y )  is equal to zero and 
the correlation coeficient c between f ( X )  + f ( Y )  and Z(X)  + Z(Y) is equal t o  
1/(2. - 1). (Instead of being linear, 1 m a y  be a n y  balanced boolean func t ion  of n 
variables.) 

Proof. First note that for any balanced f ,  the correlation coefficient of f (X)  is 
equal to zero. Then the correlation coefficient of f ( X )  + f(Y) is equal to  zero 
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since, for any fixed f ,  it is the product of two zero correlation coefficients. Second, 
proceeding along similar lines as in the proof of Proposition 1, we get that 
c = E ( ~ ( f , l ) ~ ) .  Since 1 is balanced and fixed, c ( f , l )  is given as 22-n(lc - 2n-2) 
where lc is the number of zeros in the half of the truth table off  where 1 ( X )  = 0. 

The probability distribution of k is { (2ni1)2/(22Tl)} with the variance 

Var(k) = 22(n-2)/(2n - I). Hence E ( c ( f , 1 ) 2 )  = 22(2-n)Var(k) = 1/(2n - 1). 0 

. , . - I  2 

k=O 

Proposition 3. Let  1 be a n  arbitrary nonzero linear boolean func t ion  of n vari- 
ables and let f be a uni formly random balanced boolean func t ion  of n variables 
such that  c( f , 1 )  = c where c is  a given constant. T h e n  the correlation coefficient 
o f f  ( X )  + 1 ( X )  is  equal to  c f o r  any  fixed X .  (Instead of being linear, 1 m a y  be 
any  balanced boolean func t ion  of n variables.) 

Proposition 4. Let  X be a uni formly distributed n-dimensional  binary random 
variable and let f be a uni formly random balanced boolean func t ion  of n variables. 
Let X + 1 denote the integer addition modulo 2" of X and 1. T h e n  the correlation 
coefficient o f f  ( X )  + f ( X  + 1) + 1 is  equal to  1/(2" - 1). Furthermore, let 1 be a 
linear func t ion  defined as 1 ( X )  = xO and let f be in addition such that c( f ,  I )  = c 
where c is a given constant. T h e n  the correlation coef ic ient  of f ( X )  + f ( X  + 1) + 1 
i s  equal to c2 for any fixed X .  (Instead of X + 1, one m a y  take any  permutat ion 
P ( X )  such that P ( X )  # X ,  X E {0,1}", but then a balanced func t ion  I has t o  
be defined appropriately.) 

4 Linear Models 

The essence of the linear sequential circuit approximation (LSCA) method [5] , 
[9] applied to binary keystream generators is in finding good linear approxi- 
mations to the output and the component next-state functions and in solving 
the resulting linear sequential circuit. Its objective is to obtain feedforward lin- 
ear transforms (i.e., linear sequential transforms with finite input memory) of 
the output sequence that are correlated to linear transforms of the initial state 
variables (to be used in correlation attacks) and, in particular, to the constant 
zero sequence, in which case the output linear transform defines a linear relation 
among the output bits that holds with probability different from one half. The 
resulting probabilistic linear recursion is called a linear model [9]. Estimating the 
correlation coefficients can be a problem on its own. In the underlying probabilis- 
tic model, the initial state is assumed to be random and uniformly distributed, 
and if the next-state function is one-to-one, then the internal state at any time is 
also uniformly distributed, so that the resulting correlation coefficients are time 
independent, see [9]. 

In the case of RC4, the next-state function is one-to-one and the balanced 
initial table SO (each n-bit word appears exactly once) can be assumed to be 
uniformly random, but the initial pointer words i.0 and j, are both fixed to zero. 
It follows that for every t 2 0, the table St is uniformly random and balanced, 
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whereas i t  is deterministic and known and j t  is uniformly distributed for t 2 1, 
but dependent on St. As a consequence, while the dependence between j t  and 
St is insignificant, the deterministic nature of it may in principle lead to linear 
models with time dependent correlation coefficients. A related approach is to 
fix the initial state and to consider the sane  linear relation a t  random times, in 
which case the average value of the correlation coefficient over time is relevant. If 
the tail and cycle lengths combined are big (as one should expect for RC4), then 
the obtained correlation coefficient should be close to the value corresponding 
to a fixed time and a random initial state. 

Since RC4 has n binary outputs, one should first decide on a linear com- 
bination of these outputs to be linearly approximated. To maximize the cor- 

(k) relation coefficients, we will consider the individual binary outputs. Let Zt , 
2 t  jjk), and Sjk) denote the kth components of Zt, i t ,  jt, and St ,  respectively, 
0 5 k 5 n - 1, where k = 0 corresponds to the least significant bit of the 
corresponding n-bit words. Note that St defines a uniformly random balanced 
vectorial boolean function (0, l}'rl --+ (0, l}", so that Sik) is a uniformly ran- 
dom balanced boolean function of n variables. As the linearization of Zt and j t  
necessarily involves finding linear approximations to  St, the problem is to find 
such approximations leading to the correlation coefficients that do not vanish 
for a random St. The main point of the LSCA method applied to RC4 is that 
St can be approximated by St-1, because of the slow change of the table due 
to swapping. Another point is that Sf!)l can be approximated by any linear 
function of its inputs, but to maximize the overall correlation coefficient, S{!)l is 
approximated by its kth binary input. As before, all the additions of 1-bit words 
are integer additions modulo 2l (usually, 1 = 1 or 1 = n.). 

AS a result, we get z , ( ~ )  M s,'!\(it_, + 1) + ~ j ! \ ( j ~ - ~  + st-l(it-l + 1)) = 
-(k) j t P 1 ,  where SL!\ is linearized exactly twice. It then follows that Z!k) + Zit\ M 
ji!)l + j j k )  M at .(k) , where iik) is known for every t 2 1. The total number of linear 
approximations needed is five. In order for the overall correlation coefficient, 
not to vanish, the total number of linear approximations to Sj!), should be even, 
because positive and negative correlation coefficients would otherwise cancel out. 
More precisely, Proposition 2 can be extended to deal with an arbitrary number 
of linear approximations, in which case the resulting correlation coefficient is 
related to  the central moments of the probability distribution considered in the 
Appendix, and the odd central moments are necessarily equal to zero. So, the first 
binary derivative of any binary component of the n-dimensional output sequence 
does not represent a linear model with a nonzero correlation coefficient. 

Further, by adding two successive bits of the first binary derivative sequence 
we get that Zjk) + 2,':; sz i j k )  + iit)l, which is further equal to 1 if k = 0 and can 
be approximated as 0 if 1 5 k 5 n-1. The total number of linear approximations 
needed for this is at most ten and will be shown be equal to six. Accordingly, 
the second binary derivative of any binary component of the output sequence 
defines a linear model with a nonzero correlation correlation coefficient, to be 
determined in the sequel. The most significant correlation coefficient is obtained 
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for the least significant bit, that is, for k = 0. Other linear models for RC4 should 
have smaller or much smaller correlation coefficients. 

Our objective now is to estimate the correlation coefficient between the sec- 
ond binary derivative 2:') = Z,(O) + ZjtL and 1, for any t 2 1. Letting F = St,  
F' = &+I,  F" = St+2, X = it, and Y = j , ,  we have 

2j0) = F'O'(F(X) + F ( Y ) )  + 
F"(')(F"(X + 2 )  + F"(Y + F ( X  + 1) + F ' ( X  + 2))) ( 5 )  

where Y is uniformly distributed, F is a uniformly random balanced vectorial 
boolean function, and F' and F" are obtained from F by one and two random 
swappings of two n-bit words, respectively, whereas X is fixed for any particular 
t and is uniformly distributed for a random t. 

The direct computation of the correlation coefficient by using ( 5 )  is not pos- 
sible since the functions F ,  F ' ,  and F" are random. The starting point of our 
approach is forming the following series of linear approximations: 

2jO) M F(O)(X)  + F(O)(Y)  + 

M F ( O ) ( X )  + F ( O ) ( Y )  + 
F'@)(F"(X + 2)  + F"(Y + F ( X  + 1) + F ' ( X  + 2))) (6) 

F ' y X  + 2) + F ' y Y  + F ( X  + 1) + F ' ( X  + 2 ) )  (7) 

Y(O) + F(O) ( X  + 1) + F'(0) (X + 2 )  (8) 
M F ( O ) ( X )  + Y ( O )  + F"(O) ( X  + 2 )  + 

Y ( O )  + F(O)(X + 1) + F'(O)(X + 2)  (9) 
M F ( O ) ( X )  + F(O)(X + 1) (10) 

M 1. (11) 

M F ( ' ) ( X )  + F ( " ) ( Y )  + F"(')(X + 2) + 

The next point is to observe that the correlation coefficients of the individ- 
ual linear approximations can be computed if conditioned on the random func- 
tions in an appropriate way. Let cf = c(F(O), X(O)) ,  " I f  = c(F'(O), X (O) ) ,  and 
c'; = C ( F " ( ~ ) , X ( ~ ) )  be the correlation coefficients between F(O) and X(O), F'(O) 
and X(O), and F"(O) and X(O),  respectively, where the subscript f indicates the 
dependence upon a particular balanced boolean function f (here f = F( ' ) ) .  
Then the linear approximations (6 ) ,  (7), (8), and (9) hold with the correlation 
coefficients cf , c';, c';, and c f  , respectively, where F(O), F'(O), and F"(O) are fixed 
and X is either uniformly distributed or fixed. The linear approximation (10) 
holds for any fixed X with the correlation coefficient &A, = 1 - m'21-n (condi- 
tioned on m') if F'(O) is a uniformly random balanced boolean function and if 

is produced from F'(O) by a random effective change, due to swapping, of 
m' bits, where, as before, m' takes values 0 and 2 ,  each with probability 1/2. The 
linear approximation (11) holds for any fixed X with correlation coefficient c; if 
F(O) is a uniformly random balanced boolean function with a, fixed correlation 
coefficient cf to ~ ( ' 1 ,  see Proposition 4. 
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Now, let m denote the number of bits where F(O) and F"(') are effectively dif- 
ferent. Under the independence as sumpt ion  that the individual linear approxima- 
tions are independent when conditioned on cf, m', and m,  the correlation coefi- 
cient between 2;') and 1 is given as c ~ ~ c ; ~ ~ E L , ,  where c'; = cfEm, E~ = 1 -mm2lpn, 
if F(O) is a uniformly random balanced boolean function with a fixed correla- 
tion coefficient cf to  X(O),  where X is either uniformly distributed or fixed. The 
resulting correlation coefficient conditioned on cf, m', and m is thus equal to 
C?E;E~, . Note that the independence assumption seems to be the only tractable 
way of combining the individual linear approximations. 

Consequently, the overall correlation coefficient is then given as 

c = E(C7) . E(&Z,). E(E&<) 

where the expectations are over random cf , m, and m', respectively (for simplic- 
ity, it is assumed that the random variables m' and m are independent). From the 
proof of Proposition 2, recall that cf can be expressed as 22-"(k - 2 n - 2 )  where 
k (standing for the number of zeros in the half of the truth table of f = F(O) 
where X(O) = 0) has the probability distribution 

n - I  2 

Pr{k} = ___ ('' ) , 0 5  k < 2 n - 1 .  (13) 
(2n2:1) 

The random variable m' takes values 0 and 2 each with probability 1/2, so that 

which tends to 1 as 2n increases. 

combinatorial analysis, one can prove the following result. 

Lemma5. Le t  f be a un i formly  random balanced boolean f u n c t i o n  of n vari-  
ables and  let  f" be a boolean f u n c t i o n  obtained f r o m  f f irs t  by swapping t h e  bits 
defined by i n p u t  variables X and  Y and,  t h e n ,  by additional swapping t h e  bits 
defined by  X + 1 and Y ' ,  where X is fixed or random and Y and Y' are inde-  
penden t  un i fo rmly  distributed n-dimensional  binary random variables. L e t  m be 
the  n u m b e r  of bits where f and f "  are dif ferent and let N = 2*. T h e n  m is a 
r a n d o m  variable wi th  the  following probability distribution 

The probability distribution of m is not straightforward to derive. By careful 

N 2 - N + 2  
Pr{m=O) = 

4 N ( N  - 1) 

2 N 2 + N - 6  
Pr(m = 2) = 

4 N ( N  - 1) 

(N - 2)2 Pr{m=4}  = 
4 N ( N  - 1)' 
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The expected value of m is given b y  

4 N 2  - 7N + 2  
E ( m )  = 

2 N ( N  - 1) 

Note that E(m) < 2 since effective changes in t,wo successive swappings can 
cancel out, but as N increases, we have that Pr{m = 0) - 1/4, P r { m  = 2} - 
1/2, Pr{m = 4) N 1/4, and E(m)  N 2, as should be expected. Accordingly, we 
get 

(191 
N4 - 9N3 + 38N2 - 64N + 40 

N3(N - 1) E(&) = 

which, of course, tends to 1 as N = 2" increases. 

According to (13), we then have 
Finally, it remains to compute the main product factor in (12), that is, E(c6f). 

where 116 is the 6th central moment of the probability distribution (13), that is, 

see the Appendix. It is crucial to observe that the exponent, 6, is even, SO that 
pLg is necessarily different from zero. 

The equation (12) together with (20), (21), (19), and (14) then determines 
the overall correlation coefficient c which can be easily computed for any n of 
interest, and, as 2" increases we have 

c N 15-2-". (22) 

The necessary sequence length to detect with high probability the second binary 
derivative statistical weakness is 0(cp2)  [9], that is, neglecting a small constant 
less than 10, 

(23) L 26~~1225 26n-7.814 101.8n-2.35 

As the memory size of RC4 is M = n2" + 2n, we get L M (Ml(2.466 log M))'. 
For example, for n = 4,6,8,  we computed the following values for p6 and c: 

116 z 16.1716 and c z 2 . 2 4 - 3 ,  z 975.762 and c z 4.97.10-5, ,u6 M 61682.916 
and c FZ 8.67 + respectively. In fact, for rt 2 4, the approximation to h g  
included in (21) is also very good. The estimates of c obtained by computer 
simulations for n = 4 and n = 6 are E = 1.34 + lop3  and C = 1.95 lop5 ,  
respectively. The first estimate is an average value for 5 output, sequences each 
of length 10" and the second one is an average value for 10 output sequences 
each of length lo l l ,  where each sequence is produced from a randomly chosen 
initial state. One may observe that the estimates are roughly by 50% smaller 
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that the values predicted by theory. This shows that the influence of the utilized 
linear approximations being dependent is relatively small. The difference may 
also be due to the fact t,hat the correlation coefficient estimates are essentially 
obtained by averaging over time rather than over random initial states. 

5 Conclusions 

The linear model approach aiming at finding linear relations among the keystream 
bits that hold with probability different from one half is applied to  the RC4 
keystream generator. It is first shown by the linear sequential circuit approx- 
imation method that the first and the second binary derivative of the least 
significant bit output sequence may yield such linear relations. A specific tech- 
niquc involving correlation properties of raridorri balanced boolean functions is 
then developed to study the corresponding correlation coefficients. It is thus 
proven that the correlation coefficient for the first binary derivative is equal to  
zero and, more importantly, that the correlation coefficient between the second 
binary derivative and 1 is around 1 5 .  2-3n where n is the word size of RC4. The 
theoretical result derived agrees well with the experimental results obtained by 
computer simulations. 

The output sequence length needed to detect the corresponding linear statis- 
tical weakness is then around 64n/225, which is significantly smaller than 2M, 
where M = T L ~ ' ~  + 2n is the memory size, and may even be realistic in high speed 
applications. Although the resulting plaintext uncertainty reduction may not be 
practically important unless n is small, the determined linear model can be used 
to distinguish RC4 from other keystream generators and, also, to recover the 
unknown parameter n. Whether the linear model indicates that the initial state 
reconstruction from the known output sequence is also possible remains to be 
further investigated. 

Appendix 

Consider a discrete probability distribution { ( 2 ~ ' 2 / ( ~ ~ ) } k L 0  where v is a posi- 
tive integer. For any positive integer T ,  the central moment p r  of this probability 
distribution is defined as 

2v 

Our objective here is to  study the asymptotics of pT as v increases. First note 
that pr = 0 if T is odd. Assume then that T is even. By using the well-known 
normal approximation to the binomial coefficients, obtained by Stirling's formula 
n! - f i , r ~ ~ + + e - ~ ,  along with a uniform convergence argument regarding this 
approximation (e.g., see [3, pp. 179-1861), it is easy to see that 
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as v + a. For T even, this reduces to 

where r ( z )  = J o m ~ z - l e - + d ~  is the  well-known gamma function. Finally, we 
obtain 

y1 . /2  
- (T  - l)!! pr - 27' 

where ( r  - l)!! = 1 . 3 . .  . (T  - 1). 
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