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LINEAR SUBSETS OF NONLINEAR SETS

IN TOPOLOGICAL VECTOR SPACES

LUIS BERNAL-GONZÁLEZ, DANIEL PELLEGRINO, AND JUAN B. SEOANE-SEPÚLVEDA

Abstract. For the last decade there has been a generalized trend in mathe-
matics on the search for large algebraic structures (linear spaces, closed sub-
spaces, or infinitely generated algebras) composed of mathematical objects
enjoying certain special properties. This trend has caught the eye of many
researchers and has also had a remarkable influence in real and complex anal-
ysis, operator theory, summability theory, polynomials in Banach spaces, hy-
percyclicity and chaos, and general functional analysis. This expository paper
is devoted to providing an account on the advances and on the state of the art
of this trend, nowadays known as lineability and spaceability.

Contents

1. Introduction. “Strange” mathematical objects throughout history 72
2. Special subsets of real and complex functions 75
2.1. Continuous nowhere differentiable functions (Weierstrass’ Monsters) 75
2.2. Differentiable functions and related properties 76
2.3. Continuous (and nowhere continuous) functions 79
2.4. Measurability and integration 85
2.5. Series and summability 89
2.6. Nonextendable holomorphic functions 91
2.7. Miscellaneous 95
3. Hypercyclic manifolds 97
3.1. Hypercyclicity and universality: examples and genericity 97
3.2. Hypercyclicity and lineability 99
3.3. Other kinds of linear chaos 105
4. Zeros of polynomials in Banach spaces 109
5. Some remarks and conclusions. General techniques 113
About the authors 117
Acknowledgments 118
References 118

Received by the editors November 26, 2012, and, in revised form, April 2, 2013.
2010 Mathematics Subject Classification. Primary 15A03, 46E10, 46E15; Secondary 26B05,

28A20, 47A16, 47L05.
Key words and phrases. Lineability, spaceability, algebrability, real and complex analysis,

special functions, operator theory, Baire category theorem, hypercyclic manifolds, zeros of
polynomials.

The first author was partially supported by Ministerio de Economı́a y Competitividad Grant
MTM2012-34847-C02-01.

The second author was supported by INCT-Matemática, CAPES-NF, CNPq Grants
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1. Introduction.

“Strange” mathematical objects throughout history

Throughout history there have always been mathematical objects that have con-
tradicted the intuition of the working mathematician. To cite some of these objects,
let us recall the famous Weierstrass’ Monster, Sierpiński’s carpet, discontinuous ad-
ditive functions (or Jones’ functions), Peano curves, Cantor functions, or even the
more modern differentiable nowhere monotone functions.

One may think that, once such an object is found, not many more like it can
possibly exist. History has proven this last statement wrong. It is actually so wrong
that, at the present time, the appearance of these exotic mathematical objects no
longer comes as a surprise to mathematicians. (For a quite complete account of some
of these so-called strange objects we refer the interested reader to the monographs
[161–163,198, 263, 273].)

A classical, famous, and very powerful technique that one can use to obtain some
kinds of unexpected objects is the very famous Baire category theorem. One version
of this theorem states that, in any complete metric space E, the complement of a
first category subset of E is everywhere dense in E. It usually happens that this
complement consists exactly of strange (in certain sense) elements; for instance,
the Baire category theorem can be applied to show that “most” real valued C∞-
functions are nowhere analytic, as seen in Section 2.2.2. Unfortunately, the Baire
category theorem does not apply to many cases, and sometimes one needs to employ
a constructive approach when tackling certain problems.

For the last decade there has been a generalized trend in mathematics toward
the search for large algebraic structures of special objects (and sometimes called
“pathological” in the literature [156, 253]). Let us introduce some terminology be-
fore carrying on. A subset M of a topological vector space X is called lineable
(resp. spaceable) in X if there exists an infinite dimensional linear space (resp.
an infinite dimensional closed linear space) Y ⊂ M ∪ {0}. These notions of lin-
eable and spaceable were originally coined by Vladimir I. Gurariy, and they first
appeared in [22, 181, 253]. Prior to the publication of these previous works, some
authors, when working with infinite dimensional spaces, already found large lin-
ear structures enjoying these types of special properties, even though they did not
explicitly use terms like lineability or spaceability; see, e.g., [19]. One of the first
results illustrating this was due to Levine and Milman.

Theorem 1.1 (Levine and Milman, 1940 [211]). The subset of C[0, 1] of all con-
tinuous functions on [0, 1] of bounded variation is not spaceable.

As usual, by C[0, 1] we have denoted the Banach space of continuous functions
[0, 1] → R endowed with the supremum norm. Later, the following famous result
on the set of continuous nowhere differentiable functions was proved by Gurariy.

Theorem 1.2 (Gurariy, 1966 [178]). The set of continuous nowhere differentiable
functions on [0, 1] is lineable.

Let us also recall that, although the set of everywhere differentiable functions in
R is, in itself, an infinite dimensional vector space, in 1966 Gurariy obtained the
following analogue of Theorem 1.1.
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LINEAR SUBSETS OF NONLINEAR SETS IN TOPOLOGICAL VECTOR SPACES 73

Theorem 1.3 (Gurariy, 1966 [178]). The set of everywhere differentiable functions
on [0, 1] is not spaceable in C[0, 1]. Also, there exist closed infinite dimensional
subspaces of C[0, 1] all of whose members are differentiable on (0, 1).

Somehow, what we are seeing is that what one could expect to be an isolated
phenomenon can actually even have a nice algebraic structure (in the form of infinite
dimensional subspaces). Unfortunately, and as we mentioned above, the Baire
category theorem cannot be employed in the search for large subspaces such as the
ones mentioned in the previous results. Let us now provide a more formal and
complete definition for the above concepts and some other ones.

Definition 1.4 (Lineability and spaceability [22,181,253]). Let X be a topological
vector space and M a subset of X. Let μ be a cardinal number.

(1) M is said to be μ-lineable (μ-spaceable) if M ∪ {0} contains a vector space
(resp. a closed vector space) of dimension μ. At times, we shall refer to
the set M as simply lineable or spaceable if the existing subspace is infinite
dimensional.

(2) We also let λ(M) be the maximum cardinality (if it exists) of such a vector
space.1

(3) When the above linear space can be chosen to be dense in X, we shall say
that M is μ-dense-lineable.

Moreover, Bernal introduced in [69] the notion of maximal-lineable (and those
of maximal-dense-lineable and maximal-spaceable), meaning that, when keeping the
above notation, the dimension of the existing linear space equals dim(X). Besides
asking for linear spaces, one could also study other structures, such as algebrability
and some related ones, which were presented in [25, 27, 253].

Definition 1.5. Given a Banach algebra A, a subset B ⊂ A, and two cardinal
numbers α and β, we say that:

(1) B is algebrable if there is a subalgebra C of A such that C ⊂ B ∪ {0} and
the cardinality of any system of generators of C is infinite.

(2) B is dense-algebrable if, in addition, C can be taken dense in A.
(3) B is (α, β)-algebrable if there is an algebra B1 such that B1 ⊂ B ∪ {0},

dim(B1) = α, card (S) = β, and S is a minimal system of generators of
B1.

2

(4) At times we shall say that B is, simply, κ-algebrable if there exists a κ-
generated subalgebra C of A with C ⊂ B ∪ {0}.

1Indeed, this λ(M) might not exist. It is not difficult to provide natural examples of sets
which are n-lineable for every n ∈ N but which are not infinitely lineable. For instance, let

j1 ≤ k1 < j2 ≤ · · · ≤ km < jm+1 ≤ · · · be integers, and let M =
⋃

m{
∑km

i=jm
aix

i : ai ∈ R}.
Since the sets {

∑km
i=jm

aixi : ai ∈ R} (m ∈ N) are pairwise disjoint, M is finitely, but not

infinitely, lineable in C[0, 1]. Depending on the choice of the sequence (jn), M may even be closed

in C[0, 1]. For instance, it is shown in [180] that if (jn) is a lacunary sequence, then {xjn
n }n≥1 is

a basic sequence in C[0, 1]. On the other hand, no matter what sequence j1 ≤ k1 < j2 ≤ · · · we

take, the corresponding set of complex polynomials M =
⋃

n{
∑kn

�=jn
a�z

� : a� ∈ C} is always

closed in H∞, the Banach space of holomorphic functions in the open unit disc of C endowed with
the supremum norm.

2Here, by “S is a minimal set of generators of an algebra D” we mean that D = A(S) is the
algebra generated by S, and for every x0 ∈ S, x0 /∈ A(S \ {x0}).
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We also say that a subset M of a linear algebra L is strongly κ-algebrable if there
exists a κ-generated free algebra A contained in M ∪ {0} (see [39]). Other types
of structures have also been considered, such as cones3 or modules.4 The links
between the previous concepts are as follows:

(strong) algebrability

��
spaceability

�����
����

����
����

���
moduleability

��

coneability

lineability

�������������������

All the implications in the previous diagram are strict. Specifically, examples
of sets that are lineable but not spaceable, coneable but not lineable, lineable but
not moduleable, moduleable but not algebrable, and algebrable but not strongly
algebrable, can be found, respectively, in [178], [2], [157], and [40].

In this survey paper, we will mainly focus on subspaces and subalgebras in
topological vector spaces. The paper is arranged in four main sections, dealing
with lineability, spaceability, and algebrability within many different frameworks.
The text is organized as follows:

Section 2. In this part, we focus on real and complex valued functions. In connec-
tion with the existence of strange objects, classical mathematical analysis
in real and complex variables is certainly the largest existing source.

Section 3. The theory of hypercyclic operators has experienced an exponential de-
velopment since its birth at the end of the twentieth century, and it deserves
a separate section itself. The construction of infinite algebraic structures of
hypercyclic vectors is still an ongoing problem nowadays studied by many
authors.

Section 4. The topic of polynomials in Banach spaces and their sets of zeros also
deserves a special place in this survey since it has recently been linked
to this theory of lineability and spaceability. This topic has just recently
started to expand, it has rapidly attracted the interest of many researchers
in the area, and there are still several ongoing works on it.

Section 5. In the last part we shall make some remarks on lineability and several
open problems in functional analysis. Moreover, we provide an account
on all the existing techniques that can be applied to general situations in
different frameworks in order to achieve lineability or even dense-lineability,
and spaceability.

Throughout this survey, open problems will be given and directions will be also
indicated to tackle new problems in this theory. We believe that the questions and
open problems found here are of interest in many areas of mathematics, and their
answers (either in the positive or in the negative) would certainly help to develop
the recently coined theories of lineability and spaceability.

3A set of functions in RR (or CC) is said to be coneable if it possesses a positive (or negative)
cone containing an infinite linearly independent set; see [2, Definition 1.1].

4Let L be a subset of a Banach algebra (or a topological algebra) X. We say that L is module-
able if there exists an infinitely generated subalgebra M of X and an infinitely generated additive
subgroup G of X such that G is an (M,K)-bimodule, G is K infinite dimensional, and L∪{0} ⊃ G.
For more information on this notion, we refer to [157, Definition 1.2].
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LINEAR SUBSETS OF NONLINEAR SETS IN TOPOLOGICAL VECTOR SPACES 75

Standard symbols and notation that will be used throughout the paper include
the following. The symbols, N, N0, Z, Q, R, and C denote, respectively, the set of
positive integers, the set N∪{0}, the ring of integers, the field of rational numbers,
the real line, and the complex plane. The symbols ℵ0 and c stand for the cardinality
of N and the cardinality of the continuum, respectively. A subset A of a topological
space X is called Gδ (resp. Fσ) if A is a countable intersection of dense open subsets
(resp. a countable union of closed subsets each of them with empty interior). Hence
A is a Gδ set if and only if its complement is an Fσ set. Moreover, a subset A ⊂ X
is said to be residual provided that its complement X \ A is of the first category;
that is, X \A can be written as a countable union of sets whose closures have empty
interiors. Therefore, by Baire’s category theorem, residual subsets are topologically
large in a complete metric space.

2. Special subsets of real and complex functions

2.1. Continuous nowhere differentiable functions (Weierstrass’ Mon-
sters). It came as a general shock when, in 1872 and during a presentation before
the Berlin Academy, K. Weierstrass provided a classical example of a function that
was continuous everywhere but differentiable nowhere. The particular example was
defined as

f(x) =

∞∑
k=0

ak cos(bkπx),

where 0 < a < 1, b is any odd integer, and ab > 1 + 3π/2.
The apparent shock was a consequence of the general thought that most mathe-

maticians shared: that a continuous function must have derivatives at a significant
set of points; even A. M. Ampère attempted to give a theoretical justification for
this. Although the first published example is certainly due to Weierstrass, already
in 1830 the Czech mathematician B. Bolzano exhibited a continuous nowhere dif-
ferentiable function. Let us give a brief overview of the appearance throughout
history of “Weierstrass’ Monsters” (see, e.g., [264] for a thorough study of the ci-
tations below):

Discoverer Year
B. Bolzano ≈1830
M. Ch. Cellérier ≈1830
B. Riemann 1861
H. Hankel 1870
K. Weierstrass 1872

After 1872 many other mathematicians also constructed similar functions. Just
to cite a partial list of these, we have: H. A. Schwarz (1873), M. G. Darboux (1874),
U. Dini (1877), K. Hertz (1879), G. Peano (1890), D. Hilbert (1891), T. Takagi
(1903), H. von Koch (1904), W. Sierpiński (1912), G. H. Hardy (1916), A. S. Besi-
covitch (1924), B. van der Waerden (1930), S. Mazurkiewicz (1931), S. Banach
(1931), S. Saks (1932), and W. Orlicz (1947). We would also like to refer the inter-
ested reader to [7, 191] for some recent results on this class of continuous nowhere
differentiable functions.
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As a nice application of the Baire category theorem, Banach obtained in 1931
that most continuous functions are nowhere differentiable; see, e.g., [235]. Specifi-
cally, the set of all continuous but nowhere differentiable functions on R is residual
in C(R), when endowed with the topology of uniform convergence in compacta.

Later, at the end of the twentieth century and nowadays, there are also au-
thors who have, as well, constructed Weierstrass’ Monsters with even additional
“pathologies”. The lineability of this type of functions has been thoroughly studied
in recent years. The very first result in this direction was due to V. I. Gurariy in
1966 ([178,179] and Theorem 1.2 in Section 1), who showed that the set of continu-
ous nowhere differentiable functions on [0, 1] is lineable. The lineability of this class
of functions has been studied in depth, as we summarize next. V. Fonf, V. Gurariy,
and V. Kadeč in 1999 [144] showed that the set of nowhere differentiable functions
on [0, 1] is spaceable. But much more is true: L. Rodŕıguez-Piazza showed that the
X in [144] can be chosen to be isometrically isomorphic to any separable Banach
space [245]. Several authors have invested plenty of time on the study of this special
set of functions since the ending of the twentieth century. For instance, S. Hencl
[184] showed in 2000 that any separable Banach space is isometrically isomorphic
to a subspace of C[0, 1] whose nonzero elements are nowhere approximately differ-
entiable (recall that if I ⊂ R is an interval and x0 ∈ R, then a function f : I → R

is called approximately differentiable at x0 provided that there is α ∈ R such that,

for each ε > 0, the set {x ∈ E : | f(x)−f(x0)
x−x0

− α| < ε} has x0 as a density point)
and nowhere Hölder. Bayart and Quarta produced the following result, which is
related to the algebraic structure of this special set.

Theorem 2.1 (Bayart and Quarta, 2007 [54]). The set of continuous nowhere
Hölder functions on [0, 1] contains (except for the null function) an infinitely gen-
erated algebra. Moreover, this algebra can be chosen to be dense in C[0, 1]. In
other words, the set of continuous nowhere Hölder functions on [0, 1] is ℵ0-dense-
algebrable.

From this last assertion one can infer that the set of continuous nowhere dif-
ferentiable functions on [0, 1] is dense-lineable and, in particular, ℵ0-lineable. Just
recently, the authors of [191] provided the first constructive proof of the c-lineability
of this set.

Finally, and in the vein of Theorem 1.3 by Gurariy, we mention that, if C∞(I)
denotes the space of infinitely differentiable real functions on an interval I ⊂ R,
then obviously, C∞([0, 1]) is not spaceable in C[0, 1]. In spite of this fact, the class
C∞((0, 1)) is spaceable in C((0, 1)). For this, see [68], where, in addition, the use
of Müntz sequences allow us to prove that the family of continuous functions on
[0, 1] which are analytic in (0, 1) is spaceable in C[0, 1]. Hence C[0, 1] ∩ C∞((0, 1))
is spaceable as well.

2.2. Differentiable functions and related properties. Clearly, the set of ev-
erywhere differentiable functions on R is linear and, thus, c-lineable since it is itself
a vector space. Gurariy showed in [178] that this cannot be improved: the set of
everywhere differentiable functions on [0, 1] is not spaceable. In this section we
shall discuss some special subsets of differentiable functions.

2.2.1. Differentiable nowhere monotone functions. The existence of differentiable
functions on R that are nowhere monotone (denoted DNM(R) from now on) is a
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LINEAR SUBSETS OF NONLINEAR SETS IN TOPOLOGICAL VECTOR SPACES 77

well-known fact since the appearance of the example by Katznelson and Stromberg
in 1974 [196]. Several more examples and constructions have followed since. One
of the most recent constructions, if not the most recent, of such a function can be
found in [22], where the authors make use of several technical lemmas in order to
achieve two main goals. First, the construction of one such function and, second,
the following result.

Theorem 2.2 (Aron, Gurariy, and Seoane-Sepúlveda, 2005 [22]). The set DNM(R)
of differentiable functions on R which are nowhere monotone is ℵ0-lineable in C(R).

The previous result was improved in [20], where the authors proved that the
set of differentiable nowhere monotone function on any compact interval of R is
actually dense-lineable, so showing that the vector space in [22] can be chosen to
be dense.

Recall that dim(C[0, 1]) and dim(C(R)) are both equal to c. Thus we could also
wonder whether the set DNM(R) is c-lineable. The answer is yes, and it was
obtained in [149], where the authors use approximately continuous functions and
the properties of density topology5 to obtain the above statement by means of the
following statement. Recall that if I ⊂ R is an interval, then a function f : I → R

is said to be approximately continuous whenever, for every open set U ⊂ R, the set
f−1(U) is Lebesgue measurable and has Lebesgue density one at each of its points.

Theorem 2.3 (Gámez-Merino, Muñoz-Fernández, Sánchez, and Seoane-Sepúlveda,
2010 [149]). The set of bounded approximately continuous functions on R that are
positive in a dense subset of R and negative in another dense subset of R is c-
lineable.

Next, since every bounded approximately continuous mapping is the derivative
of a differentiable function (see [117, Theorem 5.5(a), p. 21]), the authors obtain as
an easy consequence of Theorem 2.3 the following assertion.

Theorem 2.4 (Gámez-Merino, Muñoz-Fernández, Sánchez, Seoane-Sepúlveda,
2010 [149]). The set DNM(R) of differentiable functions on R that are nowhere
monotone is c-lineable.

Due to the previously discussed result by Gurariy ([178] and Theorem 1.3 in
Section 1), the set DNM[0, 1] cannot be spaceable.

2.2.2. Nowhere analytic functions. As is standard, a real function is said to be real
analytic if it possesses derivatives of all orders and agrees with its Taylor series in
a neighborhood of every point. There exist C∞ functions that are not analytic, as
the following well-known function shows:

f(x) =

{
e−1/x2

if x 	= 0,
0 if x = 0.

Since f (n) = 0 (n ≥ 0), the above function only agrees with its Taylor series
expansion at x = 0. Hence f belongs to C∞(R) but is not analytic at 0. But more
is true: in 1876 [95], du Bois-Reymond constructed a function belonging to S(R),
the family of all everywhere singular functions, that is, the class of C∞-functions

5Density topology can be defined as the initial topology for approximately continuous functions.
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on R that are analytic at no point of R. A nice example is the following one due
to Lerch [210]:

f(x) =
∞∑

n=1

cos (anx)

n!
,

where a is an odd positive integer. Other explicit examples can be seen in [188,200].
Again, this phenomenon is topologically generic: in 1955, Salzmann and Zeller

[252] established the residuality of the family S(I) of everywhere singular functions
on I in the space C∞(I), endowed with the topology of uniform converge in com-
pacta of functions and the derivatives of all orders, where I ⊂ R is an interval. We
would also like to refer the reader to the nice work of Bastin, Esser, and Nikolay
[42], where the authors study the genericity of functions which are nowhere analytic
in a measure-theoretic sense.

Concerning lineability, Garćıa-Pacheco, Palmberg, and Seoane-Sepúlveda [156]
demonstrated that there actually exists an uncountably infinitely generated algebra,
every nonzero element of which is in C∞(R) and nonanalytic at x = 0. Cater [121]
showed in 1984 that, although the set of nowhere analytic functions on [0, 1] is
clearly not a linear space, there exists a vector space in S([0, 1])∪{0} of dimension
c. Recently, Bernal [68] proved that there is a dense linear subspace in C∞[0, 1],
every nonzero element of which is nowhere analytic. Moreover, he showed [68,
Theorem 3.2] that if PS stands for the set of all smooth functions with a Pringsheim
singularity at every point of [0, 1] (which is nonempty due to a classical result of
Zahorski [274]), then PS is dense-lineable. Recall that a function f ∈ C∞(I) is
said to have a Pringsheim singularity at a point x0 ∈ I whenever the radius of
convergence of the Taylor series of f at x0 is zero. Obviously, PS ⊂ S([0, 1]), the
inclusion being strict. In fact, Salzmann and Zeller had shown in [252] that PS is
residual. In [68] it is also proved that S([0, 1]) is maximal-dense-lineable and that
if the arrival space is C, then PS is maximal-lineable.

If an entire function has infinitely many zeros with an accumulation point, then
by the Identity Theorem it must be the zero function (see, e.g., [118], for a very ac-
cessible work on uniqueness theorems for analytic functions). For real differentiable
functions this no longer holds. For instance, the differentiable function g : R → R

given by

g(x) =

{
x2 sin(π/x) if x 	= 0,

0 if x = 0,

has the infinite set Z =
{

1
n : n ∈ N

}
∪{0} as its set of zeros, Z has an accumulation

point (0) but, obviously, g 	= 0. This raises the following natural questions:

Are there real valued C∞-functions with infinitely many zeros, and
which in addition are nowhere analytic? And, how big is this set of
functions? What algebraic/linear structure does this set possess?

In [128, Theorem 2.3] the authors provide answers to the above questions by
constructing an algebra A of real valued functions enjoying, simultaneously, each
of the following properties:

(i) A is uncountably infinitely generated (that is, the cardinality of a minimal
system of generators of A is uncountable).

(ii) Every nonzero element of A is nowhere analytic.
(iii) A ⊂ C∞(R).
(iv) Every element of A has infinitely many zeros in R.
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(v) For every f ∈ A and n ∈ N, the nth derivative f (n) also possesses infinitely
many zeros in R.

Functions with infinitely many zeros in a closed finite interval are known as
annulling functions ; see [137, Definition 2.1]. Very recently, Enflo, Gurariy, and
Seoane-Supúlveda [137, Corollary 3.8] proved that for every infinite dimensional
subspace X of C[0, 1] the subset of its annulling functions contains an infinite di-
mensional closed subspace; see also Section 2.7.1. The question of the existence of
an algebra of such functions inside of C[0, 1] is also solved in [128]. The following
problems come naturally.

Problems 2.5.

1. Is the class PS c-algebrable in C∞([0, 1])?

2. Can we replace the words “is nowhere analytic” in the property (ii) above
by the condition “belongs to PS”?

Remark 2.6. Within the framework of vector-valued analytic functions, we refer the
interested reader to the paper [213] by López-Salazar, where large vector spaces of
entire functions of unbounded type are constructed.

2.3. Continuous (and nowhere continuous) functions.

2.3.1. Maxima and minima of functions in R. In [240] it was proved that there
exists a continuous function on R with a proper local maximum at each point of
a dense subset of R. One could ask whether the set of all functions enjoying this
property, denoted CM(R), is lineable. Apparently this is not true, the problem
being that the proper local maxima become proper local minima for any negative
multiple of f , with f ∈ CM(R). If f also had a dense set of proper local minima,
then this problem would not arise. Let us denote by CMm(R) the nonempty (see
[135]) set of continuous functions such that both of their sets of proper local minima
and maxima are dense in R.

Theorem 2.7 (Garćıa, Grecu, Maestre, and Seoane-Sepúlveda, 2010, [154]). There
exists an infinite dimensional Banach space of continuous functions on R all of
whose nonzero members have the property that their sets of proper local minima
and maxima, respectively, are dense subsets of R. In other words, CMm(R) is
spaceable. Moreover, λ(CMm(R)) = c and CMm(R) is (c, c)-algebrable.

One of the first results in the topic of lineability was due to Gurariy and Quarta
[181]. They considered subsets of continuous functions attaining their maximum
at exactly one point. To our surprise, sometimes one cannot achieve lineability for
certain nontrivial sets, as the following result shows.

Theorem 2.8 (Gurariy and Quarta, 2004 [181]). Let M = {f ∈ C[0, 1] : f attains
its maximum at exactly one point of [0, 1]}.

(1) M is a dense Gδ set in C[0, 1]. In particular, M is residual.
(2) If V ⊂ M∪ {0} is a vector space, then dim(V ) ≤ 1.

In [181], the authors provided a number of partial extensions of Theorem 2.8.
For instance, for both C(R) and C0(R) (continuous functions R → R vanishing at
±∞), there is a 2-dimensional subspace, every nonzero element of which attains its
maximum at exactly one point of R. In the case of C0(R), there is no 3-dimensional
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subspace having this property ([181]). After all the effort invested in this class of
functions, the following problem still remains open (see also [13]).

Problem 2.9. Is there an n-dimensional vector subspace of C(R), with n > 2,
every nonzero element of which attains its maximum at exactly one point of R?

2.3.2. Sierpiński–Zygmund functions. As a consequence of the classic Luzin’s The-
orem, we have that for every measurable function f : R → R, there is a measurable
set S ⊂ R, of infinite measure, such that f |S is continuous. A natural question
would be whether similar results could be obtained for arbitrary functions (not
necessarily measurable). In other words, given any arbitrary function f : R → R,
can we find a “large” subset S ⊂ R for which f |S is continuous? In 1922, Blumberg
[94] provided an affirmative answer to this question.

Theorem 2.10 (Blumberg, 1922 [94]). Let f : R → R be an arbitrary function.
There exists a dense subset S ⊂ R such that the function f |S is continuous.

Blumberg’s proof of his theorem (see, e.g., [198, p. 154]) shows that the set
S above is countable. We could wonder whether we can choose the subset S in
Blumberg’s theorem to be uncountable. A (partial) negative answer was given in
[261] by Sierpiński and Zygmund.

Theorem 2.11 (Sierpiński and Zygmund, 1923 [261]). There exists a function
f : R → R such that, for any set Z ⊂ R of cardinality c, the restriction f |Z is not
a Borel map (and, in particular, not continuous).

From now on, we shall say that a function f : R → R is a Sierpiński–Zygmund
function if it satisfies the condition in Sierpiński–Zygmund’s Theorem, and we
denote

SZ = { f : R → R : f is a Sierpiński–Zygmund function }.
Let us recall some known results about the class SZ. It is known that if the

Continuum Hypothesis (CH) holds, then the restriction of a function in SZ to any
uncountable set cannot be continuous (see, e.g., [198, pp. 165, 166]). Also, CH is
necessary in this frame. Shinoda proved in 1973 [257] that if Martin’s Axiom and
the negation of CH hold, then, for every f : R → R there exists an uncountable set
Z ⊂ R such that f |Z is continuous. The functions in SZ are never measurable and,
although it is possible to construct them being injective, they are nowhere monotone
in a very strong way: their restriction to any set of cardinality c is not monotone.
In 1997, Balcerzak, Ciesielski, and Natkaniec showed in [32] that, assuming the
set-theoretical condition cov(M) = c (which is true under Martin’s Axiom or CH),
there exists a Darboux function that is in SZ as well. They prove also that there
exists a model of the ZFC (Zermelo–Fraenkel Axiom of Choice) in which there are no
such functions (see also [125, 126, 239]). Later, Gámez-Merino, Muñoz-Fernández,
Sánchez, and Seoane-Sepúlveda (2010) proved in [149, Theorems 5.6 and 5.10] that
the set SZ is c+-lineable and also c-algebrable. As a consequence, assuming that
c+ = 2c (which follows, for instance, from the Generalized Continuum Hypothesis or
GCH), SZ would be 2c-lineable. Also, in 2010 [150, Corollary 2.11], Gámez-Merino,
Muñoz, and Seoane-Sepúlveda proved that SZ is actually dc-lineable, where dc is
a cardinal invariant defined as

dc = min{cardF : F ⊂ RR, (∀ϕ ∈ RR) (∃f ∈ F ) (card(f ∩ ϕ) = c) }.
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This cardinal can take as value any regular cardinal between c+ and 2c, depending
of the set-theoretical axioms assumed. Later, in [40, Theorem 2.6], Bartoszewicz,
G�la̧b, Pellegrino, and Seoane-Sepúlveda showed that SZ is actually κ-strongly al-
gebrable for some c+ ≤ κ ≤ 2c if there is in c an almost disjoint family of cardinality
κ (see Definition 2.12 below). Assuming either Martin’s Axiom, CH, or 2<c = c,
this κ can be chosen to be 2c, so we would have that SZ is 2c-strongly algebrable.

Definition 2.12. Let S a be set of cardinality κ. We say that a family F ⊂ P(S)
is an almost disjoint family in S if the following conditions hold:

(1) If A ∈ F , then cardA = κ.
(2) If A,B ∈ F , A 	= B, then card(A ∩B) < κ.

Until very recently, it was not known whether any additional set-theoretical
assumptions were needed or not in order to show the 2c-strong algebrability (and
the 2c-lineability) of SZ. Nevertheless, in [152] the authors showed the following:

Theorem 2.13 (Gámez-Merino and Seoane-Sepúlveda 2012 [152]). Let κ be a
cardinal number such that c+ ≤ κ ≤ 2c. The following are equivalent:

(a) SZ is κ-strongly algebrable.
(b) SZ is κ-algebrable.
(c) SZ is κ-lineable.
(d) There exists an additive group G ⊂ SZ ∪{0} of size (i.e., cardinality) κ.
(e) There exists in c an almost disjoint family of cardinality κ.

Now, we review a series of results on almost disjoint families, all of which can
be found in [205]. On the one hand, recall that under ZFC there is an almost
disjoint family of cardinality c = 2ℵ0 in ℵ0. On the other hand, the existence of
an almost disjoint family of cardinality 2ℵ1 in ℵ1 is undecidable. Also, and under
the set-theoretical assumption 2<c = c, there exists an almost disjoint family of
cardinality 2c in c.

Let us point out that, from these previous results, we infer that it is consistent
with ZFC that SZ ∪{0} contains a vector space of dimension 2c. By means of the
forcing technique, in [152] the authors proved that the contrary is also consistent;
that is:

Theorem 2.14 (Gámez-Merino and Seoane-Sepúlveda 2012, [152]). The 2c-line-
ability (maximal lineability) of the set of Sierpiński–Zygmund functions is undecid-
able.

This would be the first time in which one encounters a (highly nontrivial!) un-
decidable proposition in this theory of lineability and spaceability.

2.3.3. Surjections, Darboux functions, and related properties. The following con-
cepts, although well known in real analysis, can be found in [145, 193].

Definition 2.15. Let f ∈ RR. We say that:

(1) f ∈ ES(R) (f is everywhere surjective) if f(I) = R for every nontrivial
interval I.

(2) f ∈ SES(R) (f is strongly everywhere surjective) if f takes all values c

times on any interval.
(3) f ∈ PES(R) (f is perfectly everywhere surjective) if for every perfect set

P , f(P ) = R.
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(4) f ∈ AC(R) (f is almost continuous, in the sense of J. Stallings [262]) if
every open set containing the graph of f contains also the graph of some
continuous function.

(5) If h : X → R, where X is a topological space, h ∈ Conn(X) (h is a con-
nectivity function) if the graph of h|C is connected for every connected set
C ⊂ X. (If h ∈ RR, it is equivalent to say that its graph is connected.)

(6) f ∈ Ext(R) (f is extendable) if there is a connectivity function g : R2 →
[0, 1] such that f(x) = g(x, 0) for every x ∈ R.

(7) f ∈ PR(R) (f is a perfect road function) if for every x ∈ R there is a perfect
set P ⊂ R such that x is a bilateral limit point of P and f |P is continuous
at x.

(8) f ∈ PC(R) (f is peripherally continuous) if for every x ∈ R and pair of open
sets U, V ⊂ R such that x ∈ U and f(x) ∈ V there is an open neighborhood
W of x with W ⊂ U and f(∂W ) ⊂ V .

(9) f ∈ J(R) (f is a Jones function) if its graph intersects every closed subset
of R2 with uncountable projection on the x-axis (see [192]).

(10) f ∈ Q(R) if f is a Q-linear function on R.
(11) f ∈ Gr(R) (f is a dense-graph function) if its graph {(x, f(x)) : x ∈ R} is

dense in R2.
(12) f ∈ D(R) (f is a Darboux function) if it has the “intermediate value prop-

erty”; that is, for any two values a and b in the domain of f , and any y
between f(a) and f(b), there is some c between a and b with f(c) = y.

In order to make all the above definitions clearer to the reader, we can picture
some of them in the following diagram, which links most of the above classes (the
proofs of the implications below are either trivial, or can be found in [145,149,150,
193]). In what follows, A → B means that the class A is a subset of B.6

J(R) ��

����
���

���
��

��

PES(R) �� SES(R) ��

������

��
��

��
��

��
��

��
ES(R)

��

RR \ SZ AC(R) �� Conn(R) �� D(R)

��

���
��

��
��

��
��

��
��

�

�	
Sacks’ model / Iterated Perfect Set Model

�����������������

Ext(R)

		����������





�� PR(R) �� PC(R)

Lebesgue [161, 163, 206] was probably the first to show a somewhat surprising
example of a function in ES(R). In [22] the authors proved that the set of such
everywhere surjective functions is 2c-lineable, which is the best possible result in
terms of dimension. One could think that, in terms of surjectivity, these everywhere

6Due to the highly technical set-theoretical background that it would require, we refer the
interested reader to [127] for a complete and modern study of the so-called Iterated Perfect Set
Model.
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Table 1

class λ Ref. class λ Ref.
AC(R) 2c [150] PC(R) 2c [22]
Conn(R) 2c [150] DNM(R) c [22, 149]
Ext(R) ≥ c+ [150] PES(R) \J(R) 2c [149]

AC(R) \ Ext(R) 2c [150] SES(R) \PES(R) 2c [149]
PR(R) ≥ c+ [150] ES(R) \ SES(R) 2c [149]
SZ dc (“2c”) [150, 152] D(R) \ES(R) 2c [149]
J(R) 2c [148] PC(R) \D(R) 2c [149]

PES(R) 2c [149] ES(R)∩Q(R) 2c [159]
SES(R) 2c [149] Gr(R) ∩ Q(R) \ ES(R) 2c [159]
ES(R) 2c [22] ES(R) \Q(R) 2c [159]
D(R) 2c [22] Gr(R) \ (ES(R)∪Q(R)) 2c [159]

surjective functions are in some sense the most exotic. As the previous diagram
shows, this is very far from being true.

For the sake of completeness and for the beauty of the construction, we provide
here a proof of the existence of a function f ∈ ES(R).

Example 2.16 (An everywhere surjective function, [149, Example 2.2]). Let
(In)n∈N be the collection of all open intervals with rational endpoints. The in-
terval I1 contains a Cantor type set, call it C1. Now, I2 \C1 also contains a Cantor
type set, call it C2. Next, I3 \ (C1 ∪ C2) contains, as well, a Cantor type set, C3.
Inductively, we construct a family of pairwise disjoint Cantor type sets, (Cn)n∈N,

such that for every n ∈ N, In \ (
⋃n−1

k=1 Ck) ⊃ Cn. Now, for every n ∈ N, take any
bijection φn : Cn → R, and define f : R → R as

f(x) =

{
φn(x) if x ∈ Cn,

0 otherwise.

Then f is clearly everywhere surjective (and also zero almost everywhere!) Indeed,
let I be any interval in R. There exists k ∈ N such that Ik ⊂ I. Thus f(I) ⊃
f(Ik) ⊃ f(Ck) = φk(Ck) = R.

Let us now provide an account of the known lineability and algebrability results
of some of the above classes (under ZFC). In Table 1, the letter λ stands for the
maximal (known) dimension of lineability of the given class.

The quotation marks above (“2c”, next to the class SZ) refer to Theorem 2.14.
Some of the results above follow from a result involving the concept of additivity
[150, 193], which will be presented in detail in Part 5 of this survey.

Notice that some of the above classes are themselves subsets of the set of sur-
jective functions from R to R, and all of these subsets are 2c-lineable. One could
think that a similar result would hold for one-to-one functions. In [253] a negative
answer was given to this question.

Theorem 2.17 (Seoane-Sepúlveda, 2006 [149,253]). The set of injective functions
is not lineable. Moreover, if V is a vector space, every nonzero element of which
is an injective function on R, then dim(V ) = 1.

The algebrability of the above classes (or modifications of them) have also been
considered by many authors. As we mentioned already, to obtain algebrability is
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Table 2

class algebrability dimension Ref.
ES(C), PES(C) 2c [18, 27], [40]
SES(C) \ PES(C) 2c [37]

EDD(R) 2c [37, 40]
EDF(R) 2c [37]
EDC(R) 2c [37]

highly more complex than to obtain lineability. For instance, it is out of place
to consider algebras of functions in ES(R), since given any f ∈ RR we have that
f2 /∈ ES(R). The same happens for the classes PES(R), SES(R), J(R), and many
others. But sometimes a dual of the previous classes can be certainly constructed
in CC. For instance, and just to cite very recent results on algebrability, let us
consider Table 2.

In Table 2 the classes EDD(R), EDF(R), and EDC(R) denote, respectively, the
set of everywhere discontinuous Darboux functions, the set of nowhere continuous
functions having finitely many values, and the set of nowhere continuous functions
mapping compact sets to compact sets. These last two classes were also thoroughly
studied in [151] (see Theorem 2.19 from Section 2.3.4 in this survey).

Remark 2.18. Turning to surjectivity, but this time in the setting of families of
functions defined on complex domains, a simple Baire-category argument shows
that if X is an infinite dimensional Banach space and f : D → X is continuous
(D := {z ∈ C : |z| < 1}, the open unit disc), then f cannot be surjective. Let
H(D, X) := {f : D → X : f is holomorphic on D}. In 1976, Glovebnik [166]
and independently Rudin [248] proved that the set D := {f ∈ H(D, X) : f(D)
is dense in X} is not empty. Very recently, López-Salazar [214] has been able to
demonstrate the lineability of D.

2.3.4. Other properties related to the lack of continuity. It is standard that continu-
ous functions transform compact or connected sets into compact or connected sets,
respectively. It is interesting to ask whether this characterizes continuity or not.
In other words, if a function f : R → R transforms compact sets into compact sets
and connected sets into connected sets, can we expect f to be continuous? This
question was positively answered in the late 1960s by Hamlett [182] and White
[271] (see also Velleman [268, Theorem 2]). Thus, the fact that f satisfies only one
of the following two conditions,

(1) f transforms compact sets into compact sets, or
(2) f transforms connected sets into connected sets,

might be very far away from making f continuous, which is what the authors proved
in [151]:

Theorem 2.19 (Gámez-Merino, Muñoz-Fernández and Seoane-Sepúlveda, 2011
[151]). There exist 2c-dimensional linear spaces U and V of RR such that:

(a) Every nonzero element of U is nowhere continuous and transforms con-
nected sets into connected sets.

(b) Every nonzero element of V is nowhere continuous and transforms any set
into a compact set.
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Next, one could also study noncontinuous functions focusing on the structure of
their sets of discontinuities. To start with, the set of points at which a function is
continuous is always a Gδ set, so the set of discontinuities is an Fσ set. Moreover,
the set of discontinuities of a monotonic function is at most countable (Froda’s
theorem). In this direction, several results have been obtained in recent years.
Recall that a point x0 ∈ R is called a removable discontinuity of a function f : R →
R whenever there exists limx→x0

f(x) and is finite.

Theorem 2.20 (Garćıa-Pacheco, Palmberg, and Seoane-Sepúlveda, 2007 [156]).
The set M of functions on R with a dense set of points of removable discontinuity
is (c, c)-algebrable and λ(M) ≥ c.

In this same direction, the following battery of results is also related to the set
of discontinuities of functions in R (see [2, 156]).

Theorem 2.21. (1) Given a closed set F ⊂ R, the set H of all functions
R → R, whose set of points of discontinuity is F , is lineable with λ (H) ≥ c.
Moreover, if the interior F ◦ 	= ∅, then λ (H) = 2c.

(2) Given any nonclosed Fσ set F , the set of functions whose set of points of
discontinuity is F , is coneable.

(3) Given a closed set F of measure zero contained in an interval [a, b], the set
of all Riemann integrable functions whose set of points of discontinuity is
F , is lineable.

(4) Given any nonclosed Fσ set F of measure zero contained in an interval
[a, b], the set of all Riemann-integrable functions whose set of points of
discontinuity is exactly F , is coneable.

(5) Let I be any nontrivial interval, and consider a point a ∈ I. Let K denote
the set of all functions from I to R having a removable discontinuity at a.
Then, λ (K) = 1. If L denotes the set of all functions from I to R having
a jump discontinuity at a, then λ (L) = 1. Also, if H denotes the set of
all functions from I to R having either a removable or jump discontinuity
at a, then λ (H) = 2.

2.4. Measurability and integration.

2.4.1. Nonmeasurable functions. The existence of nonmeasurable functions is a di-
rect consequence of the famous Vitali’s set V , for whose construction the Axiom
of Choice is used. Recall that V is defined by choosing one point in each class
corresponding to the equivalence relation in [0, 1] given by x ∼ y if and only if
x − y ∈ Q. Then χV is “our” example of a nonmeasurable function. Let us now
move to the search for Banach spaces of nonmeasurable functions. If K stands for
either R or C, then for a given a measurable space (Ω,Σ), N(Ω,K) will denote the
set of nonmeasurable functions from Ω to K. By the Axiom of Choice, we know
that N(Ω,K) is not empty.

In 2006, the authors of [160] obtained the best possible result—in terms of di-
mension and topological structure—when they provided maximal spaceability of
the above set. In particular, we have the following theorem. Recall that if X is a
topological space and γ is a cardinal, then X is said to have density character γ if
γ is the minimum cardinality of a dense subset of X.

Theorem 2.22 (Garćıa-Pacheco and Seoane-Sepúlveda, 2006 [160]). For any car-
dinal γ there is a Hausdorff topological space Ω with Borel σ-algebra B such that
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N(Ω,K) ∪ {0} contains a subspace isometric to �∞(γ). In particular, N(Ω,K) is
spaceable, and any Banach space with density character γ is isometric to a space
consisting, except for zero, of nonmeasurable functions.

2.4.2. Lp and �p spaces. The search of algebraic structures inside certain subsets
of spaces of either Lp or �p probably started when H. Rosenthal [247] showed in
1978 that c0 is quasi-complemented in �∞ (a closed subspace Y of a Banach space
X is said to be quasi-complemented if there is a closed subspace Z of X such
that Y ∩ Z = {0} and Y + Z is dense in X). This clearly implies that �∞ \ c0
is spaceable. Later, Garćıa-Pacheco, Mart́ın and Seoane-Sepúlveda proved (2009
[155]) that �∞(Γ)\c0(Γ) is spaceable for every infinite set Γ, although it is interesting
to recall that J. Lindenstrauss (1968 [212]) proved that if Γ is uncountable, then
c0(Γ) is not quasi-complemented in �∞(Γ).

In 2008, Muñoz-Fernández, Palmberg, Puglisi, and Seoane-Sepúlveda [231]
proved that if I is a bounded interval and q > p ≥ 1, then Lp(I) \ Lq(I) is c-
lineable. In this same paper it is proved that both, �p \ �q and Lp(J) \ Lq(J),
are c-lineable for any unbounded interval J and for p > q ≥ 1. One year later,
Aron, Garćıa-Pacheco, Pérez-Garćıa, and Seoane-Sepúlveda [20] showed that the
linear subspaces constructed in [231] can be chosen to be dense. In 2010, Bernal
[69] provided a series of conditions from which one can obtain (maximal) lineability
(and dense-lineability) of the set of functions in Lp(X,μ) that are not in Lq(X,μ),
where 1 ≤ q 	= p < ∞ and μ denotes a regular Borel measure on a topological
space X. And Garćıa-Pacheco, Pérez-Eslava, and Seoane-Sepúlveda [157, Theorem
2.6] proved that if (Ω,Σ, μ) is a measure space such that there exists ε > 0 and an
infinite family (An)n∈N

⊂ Σ of pairwise disjoint measurable sets with μ (An) ≥ ε

for all n ∈ N, then
⋂∞

p=1 (L∞(Ω) \ Lp(Ω)) is spaceable in L∞(Ω).
These previous results kept evolving and, in 2011, Botelho, Diniz, Fávaro, and

Pellegrino [109] proved that if X is a fixed Banach space, then for large classes
of Banach (and even quasi-Banach) spaces E of X-valued sequences, the sets
E \

⋃
q∈Γ �q(X) (where Γ ⊂ [0,∞)) and E \ c0(X) are both spaceable in E. Next,

and as a consequence of a lecture delivered by V. Fávaro at an international con-
ference held in Valencia, Spain, in 2010, R. Aron asked whether the result above
[109, Corollary 1.7] would hold for Lp-spaces. This question was answered in the
positive (and independently) in [84, 111]. More precisely, in [84] Bernal-González
and Ordóñez-Cabrera provided a series of conditions on a measure space (Ω,Σ, μ)
to ensure the spaceability of the sets Lp(Ω)\

⋃
q∈[1,p) Lq(Ω), Lp(Ω)\

⋃
q∈[p,∞) Lq(Ω),

and Lp(Ω) \
⋃

q∈[1,∞)\{p} Lq(μ,X) (for p ≥ 1); whereas in [111] Botelho, Fávaro,

Pellegrino, and Seoane-Sepúlveda obtained a quasi-Banach version of this result by
proving that Lp[0, 1] \

⋃
q>p Lq[0, 1] is spaceable for every p > 0. In this direction it

is also crucial to mention a recent paper [201], where Kitson and Timoney provided
a general result from which some of the above results (for the normed case) can
be inferred. On the opposite side, a celebrated old theorem due to Grothendieck
(see [250, Chap. 6]) asserts that if 0 < p < +∞ and μ is finite, then L∞(Ω) is not
spaceable in Lp(Ω).

At this point, and after all the invested effort for the past years in looking for
the “optimal” results on the spaceability of the sets of the form Lp(Ω) \ Lq(Ω)
with p > q and Lp(Ω) \

⋃
1≤q<p Lq(Ω), this ongoing work continued, and rather

conclusive contributions in the form of maximal-spaceability have been obtained.
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Let again (Ω,Σ, μ) denote a measure space and 0 < p < +∞. Let us recall the
following definitions, some of which can be found in [108].

Definition 2.23. (i) Σfin := {A ∈ Σ : μ(A) < +∞}.
(ii) Two sets A,B ∈ Σfin are equivalent, denoted A ∼ B, if μ((A\B)∪(B\A)) =

0.
The elements of the quotient set Σfin/∼ are denoted by [B], for B ∈ Σfin.

(iii) The cardinal number #Σfin/∼ is called the entropy of the measure space
(Ω,Σ, μ) and is denoted by ent(Ω).

(iv) Given a cardinal number ζ, the measure space (Ω,Σ, μ) is said to be ζ-
bounded if, for every A ∈ Σfin with positive measure, there are at most ζ
subsets of A with positive measure belonging to different classes of Σfin/∼.

Theorem 2.24 (Botelho, Cariello, Fávaro, Pellegrino, and Seoane-Sepúlveda, 2012
[108]). Let p > 1. The set Lp(Ω) \

⋃
1≤q<p Lq(Ω) is maximal-spaceable if at least

one of the following conditions holds:

(a) either Lp(Ω) \ Lr(Ω) 	= ∅ for some 1 ≤ r < p and ℵ0 ≤ ent(Ω) ≤ c,
(b) or the measure space (Ω,Σ, μ) is ζ-bounded for some cardinal number ζ

with c ≤ ζ < ent(Ω).

However, the authors also showed that Lp(Ω) \ Lq(Ω) may fail to be maximal-
spaceable for p > q; see [108, Theorem 4.4]. They were able to show that that
there exist (quite exotic) infinite measure spaces (Ω,Σ, μ) such that Lp(Ω) \Lq(Ω),
q < p, fails to be maximal-spaceable. They did this by developing a hybridization
technique allowing them to prove much more: given 1 ≤ q < p and cardinal numbers
κ > ζ ≥ c, the authors constructed an infinite measure space (Ω,Σ, μ) such that:

(i) dim(Lp(Ω)) = κ;
(ii) ζ is the maximal dimension of a closed subspace of Lp(Ω) contained (except

for the null vector) in Lp(Ω) \ Lq(Ω).

Before finishing this section, let us point out that (very recently) some results
related to the problems treated in this section have been obtained by Barroso,
Botelho, Fávaro, and Pellegrino in [36], and by G�la̧b, Kaufmann, and Pellegrini
[164, 165]. Within the framework of Orlicz spaces, we also refer the reader to the
very recent work by Akbarbaglu and Maghsoudi [4].

2.4.3. Riemann versus Lebesgue. Given an interval I (bounded or not), we shall
denote by R(I) to the set of Riemann-integrable functions on I and by L(I) the
set of Lebesgue-integrable functions on I. The well known theorem by Lebesgue
about Riemann-integrability states that if I is a bounded interval and f : I −→ R

is a bounded function, then f is Riemann-integrable if and only if f is almost
everywhere continuous. The proof can be easily adapted to show that a Riemann-
integrable function on any arbitrary interval (bounded or not) is always almost
everywhere continuous.

One of the key points that led Lebesgue to his theory of integration was the
existence of two examples, one given by Volterra in 1881 and another by Brodén
in 1896 which showed that, at least from the point of view of Riemann integration,
the process of obtaining antiderivatives of a function and integration theory were
not equivalent. In 1881 Volterra gave an example of a differentiable function on R

whose derivative is bounded but not Riemann-integrable (see [154] for a detailed
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construction of this function). Also, in 1896, Brodén gave an example of a real val-
ued function f being continuous, nonconstant, differentiable, and with f ′ bounded
and zero in a dense subset of R.

Theorem 2.25 (Garćıa, Grecu, Maestre, and Seoane-Sepúlveda, 2010 [154]). There
exists an infinite dimensional Banach algebra of (except for 0) Brodén-type func-
tions. In particular, the set of Brodén-type functions is spaceable and algebrable.

Notice that the derivative of any Brodén-type function is bounded but not
Riemann-integrable. We say that a bounded function f has property (�) if there
exists a function F such that F ′(x) = f(x) for all x ∈ R but f is not Riemann-
integrable on any compact interval of R. In particular, any function enjoying (�)
does not satisfy the Fundamental Theorem of Calculus. In [154] the authors showed
the following.

Theorem 2.26 (Garćıa, Grecu, Maestre, and Seoane-Sepúlveda, 2010 [154]). Given
an interval [a, b], a < b, there exists an infinite dimensional Banach space of
bounded functions which are Lebesgue-integrable, have antiderivatives at every point
of [a, b] but (except for 0 ) are not Riemann-integrable on [a, b].

Following this direction of results on Lebesgue and Riemann integration, the
following results were also recently obtained [155].

Theorem 2.27 (Garćıa-Pacheco, Mart́ın, and Seoane-Sepúlveda, 2009 [155]). Let
I be any arbitrary unbounded interval. Then:

(a) The set of all almost everywhere continuous bounded functions on I which
are not Riemann-integrable contains an infinitely generated closed subalge-
bra (in particular this set is spaceable and algebrable) in the Banach space
B(I) of bounded functions I −→ R, endowed with the supremum norm.

(b) The set of all continuous bounded functions on I which are not Riemann-
integrable is spaceable in B(I).

Recall that if I is an unbounded interval, then R(I) 	⊆ L(I); a representative
and classical example is given by the function f(x) = sinx

x for every x ∈ R. This
function satisfies that∫

R

f(x) dx = π and

∫
R

|f(x)| dx = +∞.

Conversely, on any interval I (bounded or unbounded), there is a bounded
Lebesgue-integrable function which is not equivalent (in the sense of the Lebesgue
measure) to any Riemann-integrable function. An easy example of this type can
be found in [163, Example 8.31]. Indeed, in any interval I, take a Cantor set A ⊂ I
with positive and finite measure (see, e.g., [163, Example 8.4]); then, the function
f = χA is bounded, Lebesgue-integrable, but it is not equivalent to any Riemann-
integrable function, since we can observe that f = 0 in I \ A, which is dense in I
and, moreover, if we change f in a null-set B of I, then f = 0 in the still dense
subset I \ (A ∪B), and f = 1 in the set of positive measure A \B.

Within the framework of Lebesgue integration in R, we have the following.

Theorem 2.28 (Garćıa-Pacheco, Mart́ın, and Seoane-Sepúlveda, 2009 [155]). Giv-
en any unbounded interval I, the set of Riemann-integrable functions on I that are
not Lebesgue-integrable is lineable. Also, given any interval I, the set of Lebesgue-
integrable functions that are not Riemann-integrable is spaceable.
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Observe that the second part of the previous theorem—that is, the spaceability
of L(I) \ R(I)—is a consequence of a stronger result ([154, §4], Theorem 2.26
above). Also, notice that it is not possible to obtain any kind of algebrability of
R(I) \L(I). Indeed, for every f ∈ R(I), either f2 /∈ R(I) or f2 = |f2| ∈ R(I) and,
therefore, f2 ∈ L(I).

2.4.4. The composite function. Most of the examples existing (and presented in
this survey) provide positive cases of high dimension in lineability but, sometimes,
nice properties (such as continuity or Riemann-integrability) can be lost in a linear
fashion via composition of functions. It is well known that, if f is a continuous
function on the interval [a, b], g is Riemann-integrable (resp. Lebesgue-measurable)
on the interval [α, β], and g([α, β]) ⊂ [a, b], then f ◦ g is Riemann-integrable (resp.
measurable) on [α, β]. A well-known fact, on the other hand, states that f ◦g might
be not Riemann-integrable (resp. measurable) when f is Riemann-integrable (resp.
measurable) and g is continuous.

In [29] the authors proved that there exists a 2c-dimensional space V and a c-
dimensional space W of, respectively, Riemann-integrable functions and continuous
functions such that, for every f ∈ V \ {0} and g ∈ W \ {0}, f ◦ g is not Riemann-
integrable. They also proved that there exists a c-dimensional space W of continu-
ous functions such that for each g ∈ W \{0} there exists a c-dimensional space V of
measurable functions such that f ◦ g is not measurable for all f ∈ V \{0}. It would
be interesting to prove an analogue of their first result for measurable functions,
that is:

Problem 2.29. Can one construct vector spaces (or even algebras! ) V and W
of measurable and continuous functions, respectively, such that dim(V ) = 2c,
dim(W ) = c and f ◦ g is nonmeasurable for every f ∈ V \ {0} and every
g ∈ W \ {0}?

2.5. Series and summability.

2.5.1. Fourier series. The convergence of Fourier series has been deeply studied
in the past. It came as a considerable surprise when du Bois-Reymond produced
an example of a continuous function f : T → C whose Fourier series is divergent
at one point of the unit circle T := {eiθ : θ ∈ [0, 2π]} (see [203, pp. 67–73] for a
modern reference). This statement can be improved by means of an example of
a continuous function whose Fourier series expansion diverges on a set of measure
zero ([195, p. 58]). This last result is the best possible since, by a remarkable result
due to Carleson (see, e.g., [203, p. 75]), the Fourier expansion of every continuous
function converges almost everywhere. Moreover, by means of Baire’s theorem, this
exotic behavior can be shown to be generic: there exists a Gδ dense subset E ⊂ T

such that the set of continuous functions whose Fourier expansion diverges on this
set is a Gδ dense subset of C(T); see [249, p. 102]. F. Bayart [44] showed in 2005
that, if FE ⊂ C(T) is the set of continuous functions whose Fourier series expansion
diverges on a prescribed set E of measure zero, then FE is dense-lineable. Later,
in [25], the authors showed that this set FE is actually dense-algebrable. There
are functions in L1(T) with nowhere convergent Fourier series. In 2005, Bayart
[43, Theorem 3] proved that FE is, in addition, spaceable. Lineability properties in
C(T) for Fourier series exhibiting universality phenomena have been recently shown;
see [70] and Section 3.2.
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2.5.2. Dirichlet series. Another classical family of series is that of Dirichlet series,
H∞. These series are defined as

f(s) =
∑
n∈N

ann
−s,

with convergence and boundedness of f in the half-plane C+ = {s ∈ C : �(s) > 0};
H∞ is a Banach space with the sup norm over C+. It is known (see [50]) that there
exists Dirichlet series f(s) such that∑

n∈N

ann
−it

diverges for every t ∈ R. In [43] it was proved that the set of these Dirichlet series
f(s) such that f(it) diverges for every t ∈ R is spaceable (for further studies on
this type of series we refer the interested reader to [116, 138]).

2.5.3. General summability. Sequence spaces. For some of the results in summabil-
ity in sequence spaces of the �p-type, we refer to Section 2.4.2. Let us now review
some recent results surrounding subsets of scalar series. Let K = R or C. Also,
let CC(K) denote the set of conditionally convergent series (clearly, CC(K) ∪ {0}
is not a vector space in CS(K), the set of convergent series). Aizpuru, Pérez-
Eslava, Seoane-Sepúlveda (2006 [3]) showed that CS(K) contains a vector space E
satisfying the following properties:

(i) every x ∈ E \ {0} is a conditionally convergent series,
(ii) dim(E)= c, and
(iii) span{E ∪ c00} is an algebra, and its elements are either elements of c00 or

conditionally convergent series.

Here, the symbol c00 denotes the set of sequences, each of which has only finitely
many nonzero terms. In the same work, the authors also showed that there exists
a vector space E ⊂ BS(K) (the set of all series with bounded partial sums) such
that

(a) every x ∈ E \ {0} is a divergent series,
(b) dim(E) = c and E is nonseparable, and
(c) span{E ∪ c00} is an algebra and every element of it is either a divergent

series or is an element of c00.

In the same line of results, it is also proved in [3] that there exists a vector space
E ⊂ �∞ such that

(1) dim(E) = c,
(2) every x ∈ E \ {0} is a divergent sequence,
(3) E ⊕ c0 is an algebra,
(4) every element in E + c0 is either a divergent sequence or a c0-sequence,

where E is the closure of E in �∞.

Recall that if X is a Banach space and
∑

i xi is a series in X, then it is said that∑
i xi is unconditionally convergent (UC) provided that, for every permutation π of

N, the series
∑∞

i=1 xπ(i) converges. And we say that
∑

i xi is weakly unconditionally

Cauchy (WUC) if
∑∞

i=1 |f(xi)| < ∞ for every f ∈ X∗, the dual space of X. It is
known [91, 133] that if X is a Banach space, then there exists a WUC series in X
which is convergent but is unconditionally convergent if and only if X contains a
copy of c0. It is a also a well-known fact that every infinite dimensional Banach
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space has a series
∑

i xi which is unconditionally convergent and so that
∑

i ‖xi‖ =
∞; see [136]. By lω1 (c0) we will denote the space of all weakly unconditionally
Cauchy series in c0.

Theorem 2.30 (Aizpuru, Pérez-Eslava, Seoane-Sepúlveda, 2006 [3]). There exists
a vector space E ⊂ lω1 (c0) enjoying the following properties:

(a) dim(E) = c, and
(b) if x ∈ E \ {0}, then

∑
i xi is not weakly convergent.

The authors also showed in [3] that, given any Banach space X, there exists a
vector subspace E of the space UC(X) of unconditionally convergent series in X
such that dim(E) = c, and if x ∈ E \ {0}, then

∑
i ‖xi‖ = ∞. Notice that, from

Theorem 2.30, it follows that X has a copy of c0 if and only if there exists a vector
subspace E of �ω1 (X) with dim(E) = c, so that every nonzero element of E is a
nonweakly convergent series.

Recently, in [38] the authors showed that the set of conditionally convergent real
series considered with the Cauchy product is actually (ℵ0, 1)-algebrable by means
of a classical result due to Pringsheim (1883 [241]). We also refer the interested
reader to the recent work by Bartoszewicz, G�la̧b, and Poreda [41], in which they
study the algebrability of some of the above mentioned classes.

2.6. Nonextendable holomorphic functions. In 1884 Mittag-Leffler proved
that each domain in C supports a holomorphic function that is not holomorphically
continuable to any larger domain. This surprising phenomenon can be studied from
the generic point of view, in both topological and algebraic aspects. We start with
the precise definitions.

2.6.1. Definitions and topological genericity. Let N ∈ N and consider the space
CN = C × · · · × C (N -fold), which is a metric space under the distance d(z, w) =(∑N

k=1 |zk − wk|2
)1/2

, where z = (z1, . . . , zN ) and w = (w1, . . . , wN ). With re-
spect to d, B(z, r) will denote the open unit ball with center z ∈ C and radius
r. Assume that G is a domain in CN ; that is, G is a nonempty connected open
subset of CN . By H(G) it is denoted, as usual, the family of all holomorphic, or
analytic, functions on G. The space H(G) is a Fréchet space under the topology
of uniform convergence on compact subsets of G. If f ∈ H(G) and ξ0 ∈ ∂G, then
we say that f is holomorphically extendable through ξ0 whenever there are r > 0,
g ∈ H(B(ξ0, r)) and a connected component A of G ∩ B(ξ0, r) such that f = g in
A. Throughout the pertinent literature, the fact that an f ∈ H(G) is not holo-
morphically extendable through any ξ ∈ ∂G is phrased with several synonymous
sentences: f is holomorphically nonextendable beyond ∂G; f is holomorphic exactly
on G; G is the domain of holomorphy of f ; ∂G is the natural boundary of f . The
set of these functions will be denoted by He(G).

If N = 1 and f ∈ H(G), one has that f ∈ He(G) if and only if R(f, a) =
dist (a, ∂G) for all z ∈ G, where R(f, z) stands for the radius of convergence of
the Taylor series of f at z. If f ∈ He(G), then f has no holomorphic extension
to any domain containing G strictly, but the converse is not true (consider, for
instance, G := C \ (−∞, 0] and f := the principal branch of log z). For N = 1,
both properties are equivalent if G is a Jordan domain, in particular if G = D. If
N > 1, we may have He(G) = ∅. In fact, the Cartan–Thullen theorem asserts that
He(G) 	= ∅ if and only if G is holomorphically convex (see for instance [197]).
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In 1933, Kierst and Szpilrajn [199] showed that He(G) is residual in H(G) for
every domain G ⊂ C. In 2000, Kahane [194] was able to extend this result to
subspaces of H(G). In fact, the same proof given in [194] allows us to weaken the
hypotheses on the subspace X, so as to obtain (see [64]) the following assertion.

Theorem 2.31 (Kahane, 2000 [194]). Let G ⊂ C be a domain, and let X be a
Baire topological vector space with X ⊂ H(G) such that the next conditions hold:

(a) All evaluation functionals f ∈ X �→ f (k)(a) ∈ C (a ∈ G; k ∈ N0) are
continuous.

(b) For every a ∈ G and every r > dist(a, ∂G) there exists f ∈ X such that
R(f, a) < r.

Then X ∩He(G) is residual in X.

For instance, let G = D = {z ∈ C : |z| < 1}, the open unit disc. For 0 < p < ∞
the Hardy space Hp and the Bergman space Bp are defined as the set {f ∈ H(D) :

‖f‖p < ∞}, where ‖f‖p := sup0<r<1

( ∫ 2π

0
|f(reiθ)|p dθ

2π

)1/p
for f ∈ Hp, ‖f‖p :=( ∫ ∫

D
|f(z)|p dA(z)

π

)1/p
for f ∈ Bp, and dA(z) denotes the normalized area measure

on D. They become F-spaces (i.e., completely metrizable topological vector spaces)

with the distance d(f, g) = ‖f − g‖α(p)p , where α(p) = 1 if p ≥ 1 (= p if p < 1). In
fact, they are Banach spaces if p ≥ 1. If G ⊂ C is a domain, consider the space
A∞(G) of holomorphic functions on G having highly boundary-regular behavior;
that is, A∞(G) := {f ∈ H(G) : f (k) extends continuously to G for all k ≥ 0}. It
is also an F-space when it is endowed with the topology of uniform convergence of
functions and all their derivatives on each compact set K ⊂ G. Then X ∩ He(D)
is residual in X if X = Hp, Bp or A∞(D) (see [64], where further subspaces of
H(D) are studied in this respect). An explicit example of a nonextendable, very
well-behaved function in the boundary is given in [249, Chap. 16]: the function

f(z) :=
∞∑

n=0

anexp(−
√
n)zn, where an =

{
1 if n is a power of 2
0 otherwise,

belongs to A∞(D) ∩He(D). More generally, let G ⊂ C be a regular domain, that

is, it satisfies G = G
0
. In 1980, Chmielowski [123] discovered—as a consequence of

an N -dimensional result (see also [260])—that A∞(G)∩He(D) 	= ∅ for every such
domain. By applying Theorem 2.31, one obtains the residuality of A∞(G)∩He(G)
in A∞(G) in this case; see [75].

2.6.2. Vector spaces of nonextendable functions. Plainly, the set He(G) is not a lin-
ear space, so the study of its lineability makes sense. By using a clever, surprisingly
easy approach, Aron, Garćıa and Maestre settled the problem for any space H(G).

Theorem 2.32 (Aron, Garćıa, and Maestre, 2000 [19]). Let G ⊂ CN be a domain
of holomorphy, that is, He(G) 	= ∅. Then He(G) is dense-lineable, spaceable, and
algebrable in H(G).

In fact, the closed infinite dimensional subspace Y ⊂ He(G) ∪ {0} obtained
in [19] is Y = {f ∈ H(G) : f(zn) = 0 for all n ∈ N}, where (zn) ⊂ G is an
adequate sequence. Hence Y is also a closed infinitely generated algebra. Valdivia
[266] shows that the dense subspace contained in He(G) can be chosen to be nearly
Baire. Recall that a locally convex space E is called nearly Baire if, given a sequence
(Aj) of sum-absorbing balanced closed subsets covering E, there is j0 such that Aj0
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is a neighborhood of 0; and a subset A ⊂ E is said to be sum-absorbing whenever
there is λ > 0 such that λ(A+A) ⊂ A.

In [19] Aron et al. also considered the nonseparable Banach space H∞ := {f ∈
H(D) : f is bounded on D}, endowed with the supremum norm. Then, with a
similar idea, the authors of [19] proved that (H∞∩He(D))∪{0} contains an infinitely
generated algebra that is nonseparable and closed in H∞. Hence H∞ ∩ He(D) is
spaceable and algebrable. In this special domain D, a number of additional results
have recently been obtained. For this, we consider properties (a)–(b) of Theorem
2.31 (for G = D), as well as the following ones, where X is a (topological) vector
space:

(c) For every f(z) =
∑∞

n=0 anz
n ∈ X, the function

∑
n∈Q anz

n ∈ X for every
Q ⊂ N0.

(d) Some denumerable subset of H(D) is a dense subset of X.
(e) X 	⊂ H(D).

HereH(D) stands for the space of functions f ∈ H(D) having holomorphic extension
to some open set Ωf ⊃ D. Observe that properties (c) and (e) do not require any
topological or algebraic structure on X.

Theorem 2.33 (Bernal, 2005 [64]). Assume that X is a topological vector space
with X ⊂ H(D). We have:

(1) If X is Baire metrizable and satisfies (a), (b), (c), and (d), then X ∩He(D)
is dense-lineable in X.

(2) If X is metrizable, X satisfies (d), and there is a subset of X for which (c)
and (e) hold, then X ∩He(D) is dense-lineable in X.

(3) If X is Baire and satisfies (a), (b), and (c), then X ∩He(D) is spaceable in
X.

(4) If X satisfies (a) and there is a subset of X for which (c) and (e) hold, then
X ∩He(D) is spaceable in X.

Theorem 2.33, in whose proof Hadamard’s lacunary theorem (see, e.g., [249,
Chap. 16]) happens to be a main ingredient, applies successfully to the spaces
Hp, Bp, and A∞(D), among others. Turning to general domains in C, the use
of the Arakelian approximation theorem (see, e.g., [146]) leads us to an extension
of Theorem 2.32 in which the growth of f near each boundary point is as fast as
prescribed.

Theorem 2.34 (Bernal, 2006 [66]). Let G ⊂ C be a domain and ϕ : G → (0,+∞)
a function. Then the set{

f ∈ He(G) : lim sup
z→ξ

|f(z)|
ϕ(z)

= +∞ for all ξ ∈ ∂G

}

is spaceable and maximal-dense-lineable in H(G).

Note that, in particular, He(G) is always maximal-dense-lineable. Concerning
subspaces of H(G), it is easy to get lineability if not much more than mere non-
vacuousness is assumed; in addition, the use of the Faber transform allowed the
authors of [75] to obtain large closed manifolds of nonextendable boundary-regular
function if ∂G enjoys a soft structure.

Theorem 2.35 (Bernal, Calderón, and Luh, 2008 [75]). (a) Let G ⊂ C be a
domain whose boundary does not contain isolated points, and let X be a
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vector space over C with X ⊂ H(G) satisfying X ∩He(G) 	= ∅ and {ϕf :
f ∈ X} ⊂ X for some nonconstant function ϕ ∈ H(G). Then X ∩He(G)
is lineable.

(b) Assume that G ⊂ C is a Jordan domain with analytic boundary. Then
A∞(G) ∩He(G) is spaceable in A∞(G).

In particular, A∞(G)∩He(G) is lineable if G is regular. In [75] it is shown that
if, in addition, C \ G is connected and there is M ∈ (0,+∞) such that for any
a, b ∈ G there exists a curve γ ⊂ G joining a to b for which length (γ) ≤ M , then
A∞(G)∩He(G) is dense-lineable. But, as shown in [267], the latter conditions are
not at all necessary.

Theorem 2.36 (Valdivia, 2009 [267]). If G ⊂ C is a regular domain, then A∞(G)∩
He(G) is dense-lineable. In fact, there is a dense vector subspace E in A∞(G) such
that E \ {0} ⊂ He(G), and E is nearly Baire.

In [267] the problem is posed as to whether “nearly Baire” can be replaced by
“Baire”.

2.6.3. A special case: strongly annular functions. Here we will deal with the special
domain G = D. One way of being nonextendable is to grow fast near the boundary.
In this vein, an interesting family in H(D) is SA, formed by the so-called strongly
annular functions. By definition, a function f ∈ H(D) belongs to SA provided that

lim sup
r→1

min{|f(z)| : |z| = r} = +∞.

Note that SA ⊂ He(D). In 1975, Bonar and Carroll [96] established the residuality
of SA. A lineability result is available.

Theorem 2.37 (Bernal and Bonilla, 2012 [71]). SA is algebrable and maximal
dense-lineable in H(D).

In fact, weights can be imposed on the growth of functions; see [71]. Turning
to subspaces X of H(D), recall that some criteria for lineability properties of X ∩
He(D) have been shown in the previous subsection. This raises the question of the
lineability of the smaller setX∩SA. But note that SA∩X = ∅ for important spaces
X ⊂ H(D). For instance, it is evident that no f ∈ SA has a continuous extension to
∂D; and SA∩Hp = ∅ (p > 0), thanks to the Fatou theorem asserting the existence
of finite radial limit almost everywhere on ∂D for every f ∈ Hp. Nevertheless, the
following positive result was provided by Redett [244]: Bp

α ∩ SA 	= ∅ for every
p ∈ (0,+∞) and every α ∈ (−1,+∞), where Bp

α denotes the α-weighted Bergman
space, that is, the class of functions f ∈ H(D) for which

‖f‖p,α :=

(∫ ∫
D

|f(z)|p(1− |z|)α dA(z)

π

)min{1,1/p}
< +∞.

It becomes a separable F-space under the F-norm ‖ · ‖p,α. Note that Bp
0 = Bp,

the classical Bergman space. By exploiting Redett’s approach in [244], a lineability
assertion can be obtained.

Theorem 2.38 (Bernal and Bonilla, 2012 [71]). The set SA∩Bp
α is dense-lineable

in Bp
α.

Problem 2.39. Is X ∩SA spaceable/maximal dense-lineable for X = Bp
α (or even

for other spaces X ⊂ H(D))?
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2.7. Miscellaneous.

2.7.1. Annulling functions and sequences with finitely many zeros. A function f ∈
C[0, 1] is said to be an “annulling function” on [a, b] ⊂ [0, 1] if f has infinitely
many zeros in [a, b] (see [137, Definition 2.1]). As we mentioned in Section 2.2.2,
this set of annulling functions is spaceable (Enflo, Gurariy, and Seoane-Sepúlveda,
[137, Corollary 3.8]). On a totally different framework, but related to the study
of the amount of zeros of functions on a given interval, let us recall a question
originally posed by Aron and Gurariy in 2003, where they asked whether there
exists an infinite dimensional subspace of �∞, every nonzero element of which has
only a finite number of zero coordinates. If we denote by P the set of odd prime

numbers and we call xp =
(

1
p ,

1
p2 ,

1
p3 ,

1
p4 , . . .

)
∈ �∞ (p ∈ P ), then it is easy to see

that any nontrivial finite linear combination of {xp : p ∈ P} satisfies the desired
property. Some partial answers to the original problem were recently given (for
other sequence spaces) in [157] where the authors proved, among other results in
this direction, the following:

Theorem 2.40 (Garćıa-Pacheco, Pérez-Eslava, and Seoane-Sepúlveda, 2010 [157]).
Let X be an infinite dimensional Banach space with a normalized Schauder basis
(en)n∈N

. There exists a linear space V ⊂ X such that:

(a) If a =
∑∞

n=1 a [n] en ∈ V \ {0}, then card {n ∈ N : a [n] = 0} < ∞.
(b) If a, b ∈ V , then

∑∞
n=1 a [n] b [n] en ∈ V .

(c) V is dense and not barrelled.

However, the question originally posed by Aron and Gurariy concerning space-
ability for the �∞-case remains open.

2.7.2. The Denjoy–Clarkson property. It is well known that derivatives of functions
of one real variable satisfy the Denjoy–Clarkson property: if u : R → R is every-
where differentiable, then the counterimage through u′ of any open subset of R is
either empty or has positive Lebesgue measure. Extending this result to several
real variables is known as the Weil Gradient Problem [269] and, after being an
open problem for almost 40 years, was finally solved (in the negative) for R2 by
Buczolich in 2002 [119]. His example was later simplified by Deville and Math-
eron [131]. They constructed an everywhere differentiable function on Q = [0, 1]n

and extended it through Zn-periodicity to the whole of Rn, obtaining a bounded,
everywhere differentiable function f : Rn → R such that

(1) f and ∇f vanish on the boundary of Q,
(2) ‖∇f‖ = 1 almost everywhere in Rn and ‖∇f(x)‖ ≤ 1 for all x ∈ Rn.

Thus it is clear that f fails the Denjoy–Clarkson property, since (∇f)−1(B(0, 1)) is
a nonempty set of zero Lebesgue measure. In [154] the authors proved that for every
n ≥ 2 there exists an infinite dimensional Banach space of differentiable functions
on Rn which (except for 0) fail the Denjoy–Clarkson property.

2.7.3. Non-Lipschitz functions with bounded gradient. A standard result from real
analysis states that, for any interval I, a differentiable function f : I −→ R is
Lipschitz if and only if it has bounded derivative. One could think if the result
still holds under weaker conditions. In [273] an example is provided of a continuous
non-Lipschitz function, which is differentiable almost everywhere and has bounded
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96 L. BERNAL-GONZÁLEZ, D. PELLEGRINO, AND J. B. SEOANE-SEPÚLVEDA

derivative almost everywhere. Recently, J́ımenez-Rodŕıguez, Muñoz, and Seoane-
Sepúlveda [190, Theorem 2.1, 3.1] proved the following results.

(a) The set of continuous functions on [0, 1] which are almost everywhere dif-
ferentiable, with almost everywhere bounded derivative and not Lipschitz
is c-lineable.

(b) The set of differentiable functions f : R −→ R2 that do not enjoy the
classical Mean Value Theorem is c-lineable.

(c) The set of differentiable functions f : D → R with bounded gradient, non-
Lipschitz, and therefore not satisfying the classical Mean Value Theorem is
c-lineable ([190, Theorem 3.1]), where

D = {(x, y) ∈ R2 : x2 + y2 < 1} \ {(x, y) ∈ R2 : x = 0 and y > 0},
which is a path-connected, nonconvex set.

We remark that the above results can be improved to dense-lineability by means
of [20, Theorem 2.2 and Remark 2.5]. Also, just recently [189], item (a) above
has been improved by showing that c0 is isometrically isomorphic to a subspace of
Cantor–Lebesgue functions, that is, continuous non-Lipschitz functions f : [0, 1] →
R with f ′ = 0 almost everywhere. This, in particular, gives spaceability in C[0, 1]
of the set defined in (a). Furthermore, Balcerzak et al. [31] have shown the dense
strongly c-algebrability in C[0, 1] of the smaller set of strongly singular functions.
Recall that a function f : [0, 1] → R is called strongly singular if f ∈ CBV [0, 1]
(the space of bounded variation continuous functions on [0, 1]), f ′ = 0 almost
everywhere and f is not constant on any subinterval of [0, 1]. The spaceability of
the last set (with nonseparable subspace) in the space CBV [0, 1] (endowed with
the norm ‖f‖ = sup[0,1] +Variation[0,1]f) is also shown in [31].

Problem 2.41. Are any of the above sets from (b) or (c) algebrable?

2.7.4. Tamed entire functions and wild behavior near the boundary. In 1924,
K. Grandjot [170] modified Mittag-Leffler’s function to get an entire function C → C

receding to 0 along any algebraic curve, so along any (straight) line. This surprising
result has been improved in several ways, for instance, adding boundedness to all
derivatives or imposing integrability on every line; see, e.g., [9, 275]. The question
naturally arises as to whether this kind of “tamed” entire functions enjoys some
sort of lineability. This task was started in the papers [58, 59], whose statements
were improved by Armitage (2000 [11]) and Bonilla (2002 [101]). The main result
can be summarized as follows.

Theorem 2.42. Let α ∈ (0,+∞), and let ϕ : [0,+∞) → (0,+∞) be an increasing
function. There exists a vector subspace M which is dense in H(C) such that
limz→∞, z∈S exp(|z|α)f(z) = 0 for every strip or unbounded algebraic curve S and
every f ∈ M , and

lim
r→+∞

max{|f(z)| : |z| = r}
ϕ(r)

= +∞

for every f ∈ M \ {0}.
Notice that one obtains entire functions being small and big simultaneously.

Additional properties enjoying lineability as well can be found in the cited works
[11, 58, 59, 101]. A harmonic version is discussed in [100], where, in addition, they
prove the dense-lineability in H(B) of the family of harmonic functions f on the
Euclidean unit ball B of RN having zero nontangential limit at every point of ∂B.
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Concerning domains different from C, Bernal, Calderón, and Prado-Bassas [77]
gave in 2004 a linear version of an old theorem due to Kierst and Szpilrajn [199]
asserting the residuality of a family of functions holomorphic in G having wild
behavior near the boundary. Here G is a Jordan domain in C. Specifically, it is
shown in [77] the dense-lineability in H(G) of the set of holomorphic functions f in
G satisfying that the cluster set C(f, γ, ξ) of f along γ at each ξ ∈ ∂G equals C∞
for every f ∈ M \ {0}, every ξ ∈ ∂G and every curve γ ⊂ G tending to ∂G whose
closure does not contain ∂G. Recall that if A ⊂ G, then C(f,A, ξ) is defined as
the set {w ∈ C∞ : ∃(zn) ⊂ A such that zn → ∂G and f(zn) → w}. An extension
of this assertion to L-analytic functions on domains in RN , where L is an elliptic
operator can be found in [72].

Some of the assertions above can be completed so as to include universality
properties (see Section 3.2).

3. Hypercyclic manifolds

In this section, we deal with a class of operators presenting chaotic dynamical
behavior. The topic has been systematically studied during the last three decades.

3.1. Hypercyclicity and universality: examples and genericity. Tradition-
ally, chaotic processes had been associated to nonlinear settings. Surprisingly, in
1929 Birkhoff [92] showed the existence of an entire function C → C whose sequence
of translates {f( · +an) : n ≥ 1} (a ∈ C\{0}) approximates uniformly in compacta
any prescribed entire function. This entails a rather wild dynamics for such a func-
tion f under the action of a continuous linear self-mapping of H(C), namely, the
translation map τag := g( · + a). In 1952, MacLane [218] demonstrated the same
denseness property for the orbit {f (n) : n ≥ 1} of some entire function f under
the action of the derivative operator Dg := g′. From these prominent examples,
and others that do not necessarily come from iterates of one self-mapping, many
analysts have invested much effort in studying these kinds of phenomena, mostly
during the last thirty years. The adequate abstract framework for these results is
given in the next paragraph.

Let X and Y be two (Hausdorff) topological spaces and Tn : X → Y (n ∈ N :=
{1, 2, . . .}) be a sequence of continuous mappings. Then (Tn) is said to be universal
provided that there exists an element x0 ∈ X, called universal for (Tn), such that
the orbit {Tnx0 : n ∈ N} of x0 under (Tn) is dense in Y . We denote

U((Tn)) := {x ∈ X : x is universal for (Tn)}.

It is evident that the universality of some (Tn) implies that Y is separable. If X and
Y are topological vector spaces and (Tn) ⊂ L(X,Y ) := {continuous linear mappings
X → Y }, then the words “universal” and “hypercyclic” are synonymous, although
the term “hypercyclic” (coined by Beauzamy [55]) is mainly used to designate an
operator (i.e., a continuous linear self-mapping T ∈ L(X) := L(X,X)) such that
the sequence (Tn) of its iterates is universal. We denote HC(T ) := {hypercyclic
vectors for T} = U((Tn)). Excellent surveys for the theory of hypercyclicity and
universality are [52], [97], [173], [174], [176], and [202].

Under the last terminology, the previously mentioned theorems by Birkhoff and
MacLane can be reformulated as follows: both translation and derivation operators
are hypercyclic on the space H(C) endowed with compact-open topology. In 1941,
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Seidel and Walsh gave a non-Euclidean version of Birkhoff’s theorem by showing
that, if H(D) is endowed with the compact-open topology, and

Cϕ : f ∈ H(D) �→ f ◦ ϕ ∈ H(D)

denotes the composition operator generated by a non-Euclidean translation ϕ(z) =
z+a
1+az (a ∈ D\{0}), then Cϕ is hypercyclic. And in 1991, Godefroy and Shapiro [167]
unified and strengthened the theorems by Birkhoff and MacLane in the following
way: any T ∈ L(H(C)) that is not a scalar multiple of the identity I and that
commutes with the derivative operator D is hypercyclic. In particular, P (D) is
hypercyclic on H(C) for every nonconstant polynomial P with complex coefficients.
In fact (see for instance [167]), an operator T ∈ L(H(C)) commutes with D if and
only if it commutes with translations, and if and only if T = Φ(D) for some entire
function Φ with exponential type, meaning that there are positive constants A,B
such that |Φ(z)| ≤ AeB|z| for all z ∈ C. Recall that if Φ(z) =

∑∞
n=0 anz

n in C,

then Φ(D)f :=
∑∞

n=0 anf
(n) for all f ∈ H(C).

In 1969, Rolewicz [246] provided the first example of a hypercyclic operator on
a Banach space: if X = c0 or �p (1 ≤ p < ∞) and

B : (x1, x2, x3, . . . ) �→ (x2, x3, x4, . . . )

is the backward shift on X, then any scalar multiple λB (|λ| > 1) is hypercyclic. In
the same paper he proves that in order that a topological vector space X supports a
hypercyclic operator, X must be infinite dimensional. Rolewicz posed the problem
of whether every separable infinite dimensional Banach space supports a hypercyclic
operator. This was answered in the affirmative by Ansari [8], Bernal [60], and Bonet
and Peris [99]. In [99] the authors even proved that this result was valid for Fréchet
spaces. Recall that an F-space is a completely metrizable topological vector space,
while a Fréchet space is a locally convex F-space. Recently, Shkarin [259] has shown
that every normed space of countable algebraic dimension supports a hypercyclic
operator.

Another remarkable example in the setting of Banach spaces is the following.
For p ∈ [1,+∞) consider the Hardy space Hp on the open unit disc D. The
automorphisms (i.e., the bijective holomorphic self-mappings) of D are exactly the
fractional linear mappings of the form ϕ(z) = k z−a

1−az . In Shapiro’s book [255]
it is proved that Cϕ is hypercyclic on Hp if and only if ϕ lacks fixed points in
D; see [115] and [147] for extensions. Turning to sequences of operators, Bernal
and Montes [82] showed that the sequence (Cϕn

) generated by a sequence (ϕn)
of automorphisms of D is universal on H(D) if and only if supn≥1 |ϕn(0)| = 1;
moreover, if {ψn(z) = anz + bn}n≥1 is a sequence of automorphisms of C, then
(Cψn

) is universal on H(C) if and only if the sequence {min{|bn|, |bn/an|}n≥1 is
unbounded. The reader can find extensions of these results to other domains and
to other kinds of self-mappings in [82], [224], and [175]. Moreover, if (Φn(D))
is a sequence of differential operators, such that each Φn is an entire function
with exponential type and there exist subsets A,B ⊂ C each of them with at
least one finite accumulation point, and satisfying limn→∞ Φn(z) = 0 (z ∈ A) and
limn→∞ Φn(z) = ∞ (z ∈ B), then (Φn(D)) is hypercyclic on H(C) [62].

Let us now consider the topological size of the set of universal vectors. From
now on, X and Y will stand for topological vector spaces on the same field K (= R

or C), and Tn, T will be linear and continuous. Firstly, for a single hypercyclic
operator T ∈ L(X), since each member Tmx0 of the orbit of a hypercyclic vector
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x0 ∈ X is also hypercyclic (because T has dense range), one obtains that HC(T )
is dense in X. Now, a sequence (Tn) ⊂ L(X,Y ) is said to be densely universal if
U((Tn)) is dense in X. If Y is metrizable and separable and (Uk) is a basis for the
topology of Y , then

U((Tn)) =
⋂
k≥1

⋃
n≥1

T−1
n (Uk),

showing that U((Tn)) is a Gδ subset. Thus, if in addition X is a Baire space, we get
that (Tn) is densely universal if and only if U((Tn)) is residual. Hence U((Tn)) has
large size in a topological sense. In particular, the property of being a hypercyclic
vector is topologically generic as soon as T is a hypercyclic operator on an F-space.
The sequences of composition operators (Cϕn

), (Cψn
) and of differential operators

(Φn(D)) considered in the preceding paragraph (under the conditions specified
there) are examples of densely universal sequences.

Several criteria guaranteeing large topological size for the family of universal
vectors for (Tn)—and even for subsequences of (Tn)—are known; see [176]. By (nk)
we will denote a strictly increasing subsequence of N. A sequence (Tn) ⊂ L(X,Y )
is said to be hereditarily universal if (Tnk

) is universal for every (nk) ⊂ N, and
hereditarily densely universal if (Tnk

) is densely universal for every (nk) ⊂ N.
Assume now that X is an F-space and Y is metrizable and separable. Then a
sequence (Tn) ⊂ L(X,Y ) is said to satisfy the universality criterion (UC) provided
that there are respective dense sets X0 ⊂ X, Y0 ⊂ Y and a sequence (nk) ⊂ N such
that Tnk

x → 0 for all x ∈ X0 and, for every y ∈ Y0, there is a sequence (uk) ⊂ X
with uk → 0 and Tnk

uk → y. It can be proved (see [81] and [90]) that, for
separable F-spaces X and Y , the sequence (Tn) satisfies the UC if and only if some
subsequence of it is hereditarily densely universal. An operator L ∈ L(X) is said to
satisfy the hypercyclicity criterion (HCC) if the sequence of iterates (Tn) satisfies
the UC. It is elementary that T is hypercyclic if T is weakly mixing, meaning that
T ⊕ T : (x, y) ∈ X ×X �→ (Tx, Ty) ∈ X ×X is hypercyclic. In 1992, Herrero [186]
posed the problem of whether the reciprocal is true, and some years later León and
Montes [208] raised the question of whether every hypercyclic operator satisfies the
HCC. In 1999, Bès and Peris [90] proved that both problems are in fact equivalent.
This question has been the “great open problem in hypercyclicity” for a long time,
and it has served as a primary motivation for a decade-long development of the
theory. Finally, de la Rosa and Read [130] settled the problem in the negative, and
several examples of hypercyclic operators T defined on classical spaces X and not
satisfying the HCC have been provided by Bayart and Matheron in [51].

For instance, if (Cϕn
), (Cψn

), (Φn(D)) are the sequences of operators considered
in the fifth paragraph of this section, one has that each of the first two of them
is hereditarily universal if and only if it is hereditarily densely universal, and this
happens if and only if limn→∞ |ϕn(0)| = 1 and limn→∞ min{|bn|, |bn/an|} = +∞,
respectively. And (Φn(D)) is hereditarily densely universal if there are subsets A, B
satisfying the conditions specified above.

3.2. Hypercyclicity and lineability. After topological genericity has been an-
alyzed, we study under what conditions the family of universal vectors enjoys al-
gebraic genericity. It is evident that the set of universal vectors is never a vector
space.
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3.2.1. Hypercyclity and dense-lineability. An extreme case of lineability is that in
which HC(T ) = X \ {0}. Observe that this happens if and only if X admits
no nontrivial proper closed T -invariant subset. If fact, C. Read [243] solved the
invariant subset problem (analogous to the invariant subspace problem, connected
with cyclic operators) for Banach spaces (it remains unsolved for Hilbert spaces) by
exhibiting an operator T on the sequence space �1 for which any nonzero vector is
hypercyclic. (Incidentally, in the recent paper [168] Goliński has given examples of
operators S without nontrivial proper invariant subspaces on classical non-Banach
spaces X; hence the set of S-cyclic vectors is X \ {0}.)

But the last one is a very special operator. Let us go to a more general situation.
In a chain of successive improvements, Herrero [185], Bourdon [114], Bès [87], and
Wengenroth [270] demonstrated that if T is a hypercyclic operator on an arbitrary
topological vector space X, then HC(T ) is dense-lineable. In fact, they proved
much more, and their results are contained in the following theorem.

Theorem 3.1. If T is a hypercyclic operator on a topological vector space X, P is
the family of all polynomials with coefficients in K, and x0 is a hypercyclic vector
for T , then M := {P (T )x0 : P ∈ P} is a dense T -invariant vector subspace of X
such that M \ {0} ⊂ HC(T ).

If X is Banach, then HC(T ) is even maximal-dense-lineable [63], and the T -
invariance is kept for the corresponding vector subspace. At this time, the maximal-
dense-lineability of HC(T ) for more general topological vector spaces seems to
be unknown. It is also worth mentioning an important result by Grivaux [171]
asserts that if X is a Banach space and (Tj)j∈N is a countable family of hypercyclic
operators on X, then

⋂∞
j=1 HC(Tj) is dense-lineable. She also proved in [171]

that if (Tλ)λ∈Λ is a family of operators on a separable Fréchet space such that
some Tλ0

commutes with each Tλ (λ ∈ Λ), then the set of common hypercyclic
vectors

⋂
λ∈Λ HC(Tλ) is either empty or dense-lineable. As Bayart [44] showed,

ven commutativity is not needed under adequate conditions.
As for sequences of linear mappings, it should be said that the mere residuality

of the set of universal vectors does not entail lineability. For instance, let α =
(ak) ∈ CN0 be a sequence with lim supk→∞ |ak|1/k < +∞, and define the associated
diagonal operator Δα as

Δα :
∞∑
k=0

fkz
k ∈ H(C) �→

∞∑
k=0

akfkz
k ∈ H(C).

Consider a sequence {Δαn
}n≥1 of diagonal operators on H(C), where αn =

(ak,n)k≥0. Then (see [78]) (Δαn
) is universal if and only if {(ak,n)k≥0 : n ∈ N} is

dense in CN0 , in which case U((Δαn
)) is residual; but no linear manifold contained

in U((Δαn
)) ∪ {0} has dimension ≥ 2.

Fortunately, lineability properties hold for the families of universal vectors of
sequences of mappings under not too strong restrictions on the spaces and the
mappings. In the following theorem a number of related results, starting from
1999, due to Bernal, Calderón, and Prado-Tendero [61, 74, 85] are collected.

Theorem 3.2. Assume that X, Y and Yj (j ∈ N) are topological vector spaces.
We have the following:
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(a) If Y is metrizable and (Tn) ⊂ L(X,Y ) is hereditarily universal, then
U((Tn)) is lineable. If, in addition, X is metrizable and separable and
(Tn) is hereditarily densely universal, then U((Tn)) is dense-lineable.

(b) Suppose that X and the Yj’s are metrizable and separable, X is Baire,
(Tj,n)n≥1 ⊂ L(X,Yj) for each j ∈ N, and each sequence (Tj,n)n≥1 is hered-
itarily densely universal. Then the set

⋂∞
j=1 U((Tj,n)n≥1) of common uni-

versal vectors is dense-lineable.

Observe that the conclusions of Theorem 3.2(a) hold if there is a subsequence
of (Tn) that is hereditarily (densely) universal. Analogously, the conclusion of
Theorem 3.2(b) remains valid if each (Tj,n)n≥1 admits a subsequence (which may
depend on j) being hereditarily densely universal.

For instance, the sets of functions which are respectively universal for the se-
quences (Cϕn

), (Cψn
), (Φn(D)) considered in Section 3.1—under the restrictions

imposed there—are dense-lineable (see also [85] for combinations of composition
operators with other kinds of operators). In particular, U((τan

)) is dense-lineable
provided that (an) is an unbounded sequence in C. With more sophisticated tech-
niques it can be proved that for a fixed large set A ⊂ C (belonging to a wide class)
the family of Birkhoff-universal entire functions presenting rapid decay along A is
dense-lineable; see [76] for details. In turn, the results of [76] complete some re-
sults due to Calderón [120] about universality and vanishing on strips. Hence rapid
decay (see Subsection 2.7.4) is compatible with Birkhoff universality in order to
generate lineability. Armitage [10] gives a direct proof of the existence of a dense
vector subspace M in the space HN of all harmonic functions on RN—endowed
with the compact-open topology—such that each function f ∈ M satisfies a pre-
scribed growth condition and, if f 	= 0, it is universal with respect to the sequence
of partial derivations of all orders. An explicit construction of a common dense vec-
tor space of hypercyclic vectors for a countable family of weighted backward shifts
acting on a Banach space supporting a Schauder basis is given by Seoane-Sepúlveda
in [254]. As an application of Theorem 3.2(b) we have (see [74]) that the family
of holomorphic monsters created by Luh [217] in 1985 and investigated by Grosse-
Erdmann (who proved its residuality, see [172]) is dense-lineable. If G ⊂ C is a
domain, then a function f ∈ H(G) is said to be a holomorphic monster whenever,
for each derivative or antiderivative F of f of any order, each g ∈ H(D) and each
ξ ∈ ∂G there exists a sequence (τn) of affine linear transformations with τn(z) → ξ
uniformly on D such that τn(D) ⊂ G (n ∈ N) and f(τn(z)) → g(z) compactly in D.

Another outstanding example to which methods close to Theorem 3.2 can be
applied is that of universal series. During the 1970s, Chui and Parnes [124] and
Luh [216] provided a holomorphic function in the unit disc which is universal with
respect to overconvergence. More precisely, they constructed a function f(z) =∑∞

n=0 anz
n ∈ H(D) satisfying that, given a compact set K with connected comple-

ment and K ∩D = ∅, a function g continuous on K and holomorphic in its interior
K◦, and ε > 0, there is n ∈ N such that∣∣∣∣∣

n∑
k=0

akz
k − g(z)

∣∣∣∣∣ < ε for all z ∈ K.

The topological generic nature of this property was shown in 1996 by Nestoridis
[234] who, in fact, proved that K can be allowed to meet ∂D (i.e., K ∩D = ∅). In
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2005, Bayart [44] established the dense-lineability in H(D) of the class of these func-
tions f , which are known as universal Taylor series. Since 1996, many extensions
of these results, for other domains and more restrictive classes of functions, have
been performed (see the recent papers [30, 49, 53, 132, 228] and references therein).
They can be put into a more general context. Let X be a metrizable topologi-
cal vector space over the field K = R or C, {xn}n≥0 ⊂ X be a fixed sequence,
{en}n≥0 be the canonical basis of KN0 , and A be a subspace of KN0 carrying
a complete metrizable vector space topology. Assume that the coordinate pro-
jections a = (an) ∈ A �→ am ∈ K are continuous for any m and that the set
{a = (an) ∈ KN0 : {n : an 	= 0} is finite} is a dense subset of A. Then a sequence
a ∈ A is said to belong to the set UA of restricted universal series in A with respect
to (xn) provided that, for every x ∈ X, there exists a sequence (kn) ⊂ N0 such that

kn∑
j=0

ajxj → x and

kn∑
j=0

ajej → a as n → ∞.

In [49], Bayart, Grosse-Erdmann, Nestoridis, and Papadimitropoulos characterized
(and applied to a great deal of function spaces) the nonemptyness of UA, and proved
that this is equivalent to its dense-lineability. Koumandos, Nestoridis, Smyrlis,
and Stefanopoulos [204] have recently investigated under what conditions dense-
lineability holds when A =

⋂
p>1 �p, �q (1 < q < ∞), c0 or KN0 , endowed with their

natural topologies; applications to trigonometric series in RN and Dirichlet series
are furnished.

One can obtain dense-lineable sets of universal Taylor series satisfying, simul-
taneously, other universality properties. In particular, some kind of wild behavior
near the boundary (see Subsection 2.7.4) is compatible with the property of being a
universal Taylor series. For instance, Bernal, Bonilla, Calderón, and Prado-Bassas
[73] showed in 2009 that the family of universal Taylor series f having maximal
(i.e., equal to C∞) cluster set C(f, γ, ξ) at each ξ ∈ ∂D along any curve γ ⊂ D

tending to ∂D whose closure does not contain ∂D is dense-lineable in H(D). In-
cidentally, in [80] it has been shown the maximal-dense-lineability in H(G) of the
class of functions f ∈ U ((Cϕn

)) satisfying that boundary property, where G is a
Jordan domain and (Cϕn

), is the sequence of composition operators generated by
adequate holomorphic self-mappings ϕn : G → G.

3.2.2. Hypercyclicity and spaceability. Regarding large closed subspaces, the follow-
ing assertion (see [83]) seems to be the first result in the setting of universality (if
one disregards the aforementioned “extreme” example by Read [243]). Assume that
G ⊂ C is a domain that is not conformally equivalent to C \ {0}. Suppose also that
(ϕn) is a sequence of automorphisms of G that is runaway, in the sense that, given
a compact subset K ⊂ G, there exists n ∈ N such that K ∩ ϕn(K) = ∅. Then, if
the space of holomorphic functions H(G) is endowed with the compact-open topol-
ogy, the sequence (Cϕn

) of composition operators defined on H(G) satisfies that
HC((Cϕn

)) is spaceable.
Montes stated the following criterium on existence of closed subspaces within the

set of hypercyclic vectors. The proof is based on the construction of appropriate
basic sequences. He proved his result in the setting of Banach spaces. For the
universality criterion (UC), we refer the reader to the end of Section 3.1.
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Theorem 3.3 (Montes, 1996 [223]). If X is a separable Banach space, T is an
operator on X such that (Tn) satisfies the UC for some (nk) ⊂ N, and there is an
infinite dimensional closed vector subspace M of X for which

Tnkx → 0 for all x ∈ M,

then HC(T ) is spaceable.

For instance, if 1 ≤ p < ∞ and ϕ is an automorphism of D without fixed points,
then H(Cϕ) is spaceable in Hp [223]. Also, consider a weight, that is, a bounded
sequence w = (wn) ⊂ K \ {0}, as well as its associated weighted backward shift
Bw : x = (xn) ∈ �p �→ (wnxn+1) ∈ �p. Then HC(Bw) is spaceable provided
that supn≥1

∏n
k=1 |wk| = ∞ and supn≥1 limk→∞

∏n
ν=1 |wν+k| < ∞ [176, Chap. 10].

As a negative result, in [223] it is shown that the set HC(T ) for the Rolewicz
operator T = λB (|λ| > 1) is not spaceable, although (Tn) satisfies the UC.
León and Montes [207] studied the spaceability of HC(Bw) on �2, and recently
Menet [222] has characterized it on �p and c0: HC(Bw) is spaceable if and only if
supn≥1 infk≥1

∏n
ν=1 |wν+k| < ∞.

González, León, and Montes characterized the spaceability of HC(T ) for Banach
space operators satisfying the UC. Their findings can be summarized as follows.
Recall that an operator S is called Fredholm provided that S has finite dimensional
kernel and cofinite dimensional closed range.

Theorem 3.4 (González, León, and Montes, 2000 [169]). Let X be a complex
separable Banach space, and let T be an operator on X such that (Tn) satisfies the
UC. Then the following are equivalent:

(a) HC(T ) is spaceable.
(b) There exists an increasing sequence (nk) ⊂ N and an infinite dimensional

closed subspace M0 of X such that Tnkx → 0 for all x ∈ M0.
(c) There exists an increasing sequence (mk) ⊂ N and an infinite dimensional

closed subspace M1 of X such that supk≥1 ‖Tmk |M1
‖ < +∞.

(d) The essential spectrum σe(T ) := {λ ∈ C : λI − T is not Fredholm} meets
the closed unit disc D.

Complementary criteria of spaceability and nonspaceability of HC(T ) and
HC((Tn)) were provided by León and Müller [209] in 2006 for Banach spaces,
and recently by Ménet [222] in the setting of Fréchet spaces. Once it has been
proved that a given topological vector space supports hypercyclic operators, the
question of whether HC(T ) is spaceable for some T among them arises naturally.
In 1997, León and Montes [207] gave a positive answer for every (separable, infinite
dimensional) Banach space. In 2006, Petersson [237] and Bernal [65] independently
solved the question in the affirmative for Fréchet spaces admitting a continuous
norm. But nonexistence of continuous norms may be allowed: Bès and Conejero
[89] constructed an operator T on ω := KN for which HC(T ) is spaceable. Finally,
Menet [221] has been able to prove that the assertion holds for every separable
infinite dimensional Fréchet space.

Theorem 3.3 has been improved and extended in several directions, for instance:

• The sequence of powers (Tn) is replaced by a sequence of continuous linear
mappings (Tn).

• The arrival space is allowed to be different from X, that is, (Tn) ⊂ L(X,Y ).
• The space X may be a Fréchet space, or even just an F-space.
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• It is possible to obtain spaceability for the set of common universal vectors
of a countable family {(Tj,n)n≥1 : j ∈ N} of sequences of continuous linear
mappings.

• The condition Tnk
→ 0 pointwise on M can be replaced by the mere

convergence.

These extensions can be found in the papers by Bonet, Mart́ınez-Giménez, and
Peris [98], Aron, Bès, León, and Peris [14], León and Müller [209], Petersson [237],
Bernal [65], and Bonilla and Grosse-Erdmann [105]. Specifically, by combining the
results and the approaches of the proofs in these papers (for this action, Sections
10.1, 10.2, 10.5 and 11.4 of the book [176], as well of the mentioned equivalence
for (Tn) of satisfying the UC and of being densely hereditarily hypercyclic for some
(nk) ⊂ N, will reveal very useful insights), we obtain the following assertion. Note
that for sequences (Tn) there is no need to introduce a subsequence (nk) since one
may always pass to subsequences.

Theorem 3.5. Let X be a separable F-space with a continuous norm, let Yj (j ∈
N) be separable metrizable topological vector spaces, and let (Tj,n)n≥1 ⊂ L(X,Yj)
(j ∈ N). Suppose that the following holds:

(i) For every j ∈ N, (Tj,n)n≥1 is hereditarily densely universal.
(ii) There exists an infinite dimensional closed vector subspace M of X such

that the sequence (Tj,nx)n≥1 converges in Yj for every x ∈ M and every
j ∈ N.

Then
⋂∞

j=1 U((Tj,n)n≥1) is spaceable.

We furnish some examples, which may be interesting even in the case of a single
operator or of one sequence of operators. In 2010, Shkarin [258] proved for the
derivative operator D that HC(D) is spaceable in H(D) (he also notes that the
spectrum σ(D) = ∅, so Theorem 3.4 breaks down for Fréchet spaces). His proof
does not rely on Theorem 3.5, but it can be extracted from this theorem (see
[176, Example 10.13]). By the first result given in this subsection, the Birkhoff
operator τa (a 	= 0) also enjoys spaceability for its family of hypercyclic functions;
see [102] for a corresponding assertion in the space of harmonic functions on RN .
More generally, Petersson [237] showed in 2006 the spaceability of HC(Φ(D)) in
H(C), where Φ is an entire function of exponential type that is not a polynomial.
Recently, Menet [222] has completed the Shkarin–Petersson results by proving that
HC(P (D)) is also spaceable if P is a nonconstant polynomial. If Ω is a domain in
C and ϕ, ψ are two automorphisms of Ω such that Cϕ, Cψ are hypercyclic on H(Ω),
then HC(Cϕ) ∩ HC(ψ) is spaceable [176, Chap. 11]. By using Theorem 3.5, it is
demonstrated in [70] the following result, which complements the corresponding
“generic” one stated by Müller [227] in 2009: given a countable set E ⊂ ∂D, the
set of continuous functions f on ∂D whose sequence {Snf |E}n≥1 of partial Fourier
sums restricted to E is dense in CE is spaceable in the space C(∂D) of complex
continuous functions on the unit circle; its maximal-dense-lineability is also shown.

There exist pairs of operators with spaceable sets of hypercyclic vectors, such that
the set of their common hypercyclic vectors is not spaceable. For instance, consider
the weights w = (n+1

n ) and v = (2, 2, . . .), the associated weighted backward shifts
Bw, Bv, and the product maps T1 := Bw⊕Bv : (x, y) ∈ �2⊕�2 �→ (Bwx,Bvy) ∈ �2⊕
�2, T2 := Bv ⊕Bw. In [14] it is shown that HC(T1) and HC(T2) are spaceable, but
HC(T1)∩HC(T2) is not. In the opposite side, Bayart [45] (see also [176, Chap. 11])
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furnished in 2005 some criteria guaranteeing the spaceability of the set of common
hypercyclic vectors of an uncountable family of operators on a Fréchet space. A
corresponding result for dense-lineability of an uncountable family of sequences of
operators on a Banach space, under rather strong assumptions, was obtained by
the same author in [44].

Turning to the universal Taylor series described at the end of the preceding sub-
section, Bayart [43] established that the set of universal Taylor series (as described
at the end of the preceding section) is spaceable in H(D). A generalization of this
result to simply connected domains was stated by Charpentier [122] in 2010. In
fact, in [122] the Bayart et al. result [49] asserted the dense-lineability of UA as
soon as UA 	= ∅ is completed by showing that if X is a Banach space, then UA

is spaceable as soon as UA 	= ∅. In 2011, Menet [220] has proved the assertion if
X is a Fréchet space admitting a continuous norm, and the same author [221] has
recently shown the same result for Fréchet spaces admitting a continuous seminorm
p with codim(ker p) = ∞. In [73] and [80], respectively, the combined properties
of maximality of cluster sets in each boundary point with either universality of
Taylor series or compositional universality in H(G) considered there (where G is
a Jordan domain in C) are proved to give spaceability. As a related result, in [79]
the authors provided a large family of classical operators (for instance, differen-
tial or composition operators) T : H(G) → H(G) (with G a domain in C) which
satisfied that, for any subset A ⊂ G that is not relatively compact in G, the set
{f ∈ H(G) : (Tf)(A) = C} is spaceable. Nevertheless, nothing seems to be known
about the spaceability of the family of holomorphic monsters in G considered in
the preceding subsection.

3.2.3. Hypercyclicity and algebrability. In contrast with dense-lineability or space-
ability, not much is known about algebrability in the framework of hypercyclicity.
The derivative operator belongs to the short list of lucky operators.

Theorem 3.6 (Aron, Conejero, Peris, and Seoane-Sepúlveda, 2007 [16] and [17]).
Consider the derivative operator D : H(C) → H(C). Then there is a residual
subset M of H(C) such that, for each f ∈ M , the algebra generated by f is
contained in HC(D) ∪ {0}.

Nevertheless, the algebrability of HC(D) is still unknown. For composition op-
erators, the situation is even worse: the translation operator τa does not admit
algebras contained, except for zero, in HC(τa) [17]: In fact, the same argument
given in [17] shows that, for any domain G ⊂ C and any sequence (ϕn) of holomor-
phic self-mappings of G, the set HC((Cϕn

)) ∪ {0} does not contain any algebra.
On the positive side, Bayart and Matheron [52, Chap. 8] made the following

observation, which is extracted from the approach of [17]: Let X be an F-algebra
and T ∈ L(X). Assume that, for every pair (U, V ) of nonempty open sets in X,
any open neighborhood W of 0 in X and any m ∈ N, one can find u ∈ U and
q ∈ N such that T q(uj) ∈ W for all j < m and T q(um) ∈ V . Then there is a
residual subset M of X such that, for each f ∈ M , the algebra generated by f
is contained in HC(T ) ∪ {0}. This can be applied, for instance, to the Rolewicz
operator T := 2B acting on X := �1 if X is endowed with the convolution product
(an) ∗ (bn) = {

∑n
k=0 akbn−k}n≥1.

3.3. Other kinds of linear chaos. Here we briefly focus our attention on weaker
and stronger kinds of hypercyclicity, as well as on a related form of chaos.
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3.3.1. Supercyclicity and frequent hypercyclicity. In 1974, Hilden and Wallen [187]
introduced the notion of supercyclicity. Let X be a Hausdorff topological vector
space over K = R or C. An operator T ∈ L(X) is said to be supercyclic provided
that there is a vector x0 ∈ X, called supercyclic for T , such that the projective orbit
{λTnx0 : n ≥ 0, λ ∈ K} of x0 under T is dense in X. Again, the separability of
X is necessary for supercyclicity. It is plain that every hypercyclic operator is also
supercyclic. The backward shift B on �2 is an example of a supercyclic operator
that is not hypercyclic. As in the hypercyclic case, it is immediate that the set
SC(T ) of supercyclic vectors for T is dense as soon as T is supercyclic. If X is a
separable F-space and (Uk) is an open basis for X, then

SC(T ) =
⋂
k≥1

⋃
n≥1

λ∈K\{0}

(Tn)−1(λUk),

showing that if T is supercyclic then SC(T ) is a dense Gδ subset. Hence we have
topological genericity in this case and the question of the algebraic size of SC(T )
arises naturally. In contrast to the hypercyclic case, dense invariant supercyclic
linear manifolds are not always available.

Theorem 3.7 (Herrero, 1991 [185]). Let X be a complex Banach space, and let T
be a supercyclic operator on X. Then SC(T ) ∪ {0} contains a T -invariant dense
vector subspace if and only if the set of isolated points in σ(T ) that are not in σe(T )
is empty.

Moreover, with the same approach of [114] it can be proved that if T is supercyclic
and the adjoint T ∗ lacks eigenvalues then SC(T )∪{0} contains a T -invariant dense
vector subspace. As for large closed subspaces within SC(T ), there have been
remarkable contributions due to Salas [251] and Montes and Salas [225] (see also
[226]). The next two results show some similarity to Theorem 3.3.

Theorem 3.8 (Salas, 1999 [251]). Let T be an operator on a complex separable
Banach space X satisfying the following:

(i) There exist an increasing sequence (nk) ⊂ N, dense subsets Y, Z of X, and
a mapping S : Z → Z such that TS = identity on Z in such a way that
‖Tnky‖ ‖Snkz‖ → 0 for each (y, z) ∈ Y × Z.

(ii) 0 ∈ σe(T ).

Then SC(T ) is spaceable.

Theorem 3.9 (Montes and Salas, 2001 [225]). Let T be an operator on a complex
separable Banach space X satisfying the following:

(i) There exist a strictly increasing sequence (nk) ⊂ N, a sequence (λk) ⊂
C \ {0}, dense subsets Y, Z of X, and a mapping S : Z → Z such that
TS = identity on Z in such a way that λkT

nky → 0 for every y ∈ Y and
λ−1
k Snkz → 0 for every z ∈ Z.

(ii) The sequence (λkα
nk) is bounded for some α ∈ σe(T ).

Then SC(T ) is spaceable.

As a prominent example, a characterization of spaceability of SC(Bw) in �p
(1 ≤ p < ∞) in terms of the weights wn is provided in [225]: SC(Bw) is spaceable
if and only if there exist a strictly increasing sequence (mj) ⊂ N and a sequence
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(q(n)) ⊂ N such that

lim inf
n→∞

(
lim sup
mj>n

∏n
i=1 wmj−n+i

minq≤q(n)

∏n
i=1 wq+i

)
= 0.

In particular, for the unweighted backward shift B, the set SC(B) is not spaceable.
The last property is also true on c0 (see the survey [226], in which one can find
further examples).

In 2006, Bayart and Grivaux [47] introduced the following notion as a quantified,
stronger form of hypercyclicity, connected to ergodic theory. An operator T on a
topological vector space X is said to be frequently hypercyclic provided there exists
a vector x0 ∈ X such that

dens {n ∈ N : Tnx0 ∈ U} > 0 for every nonempty open subset U of X.

In this case, x0 is called a frequently hypercyclic vector for T , and the set
of these vectors will be denoted by FHC(T ). Recall that if A ⊂ N, then the
lower density and the upper density of A are defined respectively, as

dens (A) = lim inf
n→∞

(1/n) card(A ∩ {1, . . . , n})

and

dens (A) = lim sup
n→∞

(1/n) card(A ∩ {1, . . . , n}),

where card (B) denotes the cardinality of the set B. It turns out that wide families
of operators that were hypercyclic (including, as seen in Section 3.1, composition
operators Cϕ on H(D) with ϕ an automorphism without fixed points, nonscalar
differential operators Φ(D) on H(C), and the Rolewicz operator λB with |λ| > 1
on c0 or �p, 1 ≤ p < ∞, among others) are also frequently hypercyclic; see [47],
[48], [103], and [104]. But there are hypercyclic operators that are not frequently
hyperyclic. An example of this is the weighted backward shift Bw on �2 with
w = ((1 + n−1)1/2); see [47].

Let us consider now the topological size of FHC(T ). Even on F-spaces, there is
not a result analogous to the hypercyclic case. In fact, the more popular operators
(derivative operators, weighted backward shifts, composition operators) satisfy that
their respective sets of frequent hypercyclic vectors are not residual; see [47] and
[104]. Nevertheless, by following the approach of Bourdon [114], we get that dense-
lineability is kept for FHC(T ).

Theorem 3.10 (Bayart and Grivaux, 2006 [47]). Let T be a frequently hypercyclic
operator on a separable F-space X. There is a dense T -invariant linear manifold
M of X, every nonzero vector of which is frequently hypercyclic for T .

In [47] the question was raised of whether—analogously to the case of simple
hypercyclicity—the set

⋂
k FHC(Tk) is dense-lineable, where all Tk (k ∈ N) are

frequently hypercyclic operators on the same Banach space X.
Similar to mere hypercyclicity, the existence of large closed subspaces of fre-

quently hypercyclic vectors calls for additional assumptions. According to Bayart
and Grivaux [47]—and introducing a modified version due to Bonilla and Grosse-
Erdmann [104]—we say that an operator T on a separable F-space X satisfies
the frequent hypercyclicity criterion (FHCC) if there is a dense subset X0 of X
and a map S : X0 → X0 such that, for any x ∈ X0, TSx = x and both series∑∞

n=1 T
nx,

∑∞
n=1 S

nx converge unconditionally. Recall that a series
∑∞

n=1 xn in
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an F-space X converges unconditionally if for every ε > 0 there is some N ∈ N

such that
∥∥∑

n∈F xn

∥∥ < ε for every finite subset F ⊂ {N + 1, N + 2, . . .}. Here
‖ · ‖ is an F-norm on X. If T satisfies the FHCC, then T is frequently hypercyclic,
and in fact the FHCC is a powerful tool to check the property for the main kinds
of operators.

Theorem 3.11 (Bonilla and Grosse-Erdmann, 2012 [105]). Let T ∈ L(X), where
X is a separable F-space with a continuous norm. Suppose that

(i) T satisfies the FHCC, and
(ii) there exists an infinite dimensional closed subspace M0 of X such that

Tnx → 0 for all x ∈ M0.

Then the set FHC(T ) is spaceable.

As a nice application, Bès [88] has proved that, if G ⊂ C is a simply connected
domain and ϕ : G → G is a univalent holomorphic function without fixed points,
then the set FHC(Cϕ) is spaceable.

3.3.2. Distributional chaos. Finally, we deal with a related notion of chaos present-
ing some similarities with that of hypercyclicity, but revealing deep differences at the
same time. The notion was introduced in 1994 by Schweizer and Smı́tal [256]. Ac-
cording to [256], ifX is a metric space with distance d, a continuous map T : X → X
is said to be distributionally chaotic if there exist an uncountable set Γ ⊂ X and
ε > 0 such that for every τ > 0 and each pair of distinct points x, y ∈ Γ, we have
that dens {n ∈ N : d(Tnx, Tny) < τ} = 1 and dens {n ∈ N : d(Tnx, Tny) < ε} = 0.
Inspired by this concept and by the notion of irregular vector coined by Beauzamy
[56] (if X is a Banach space and x0 ∈ X, an operator T ∈ L(X) is called irregular,
provided that the sequence (Tnx0) is unbounded but it has a subsequence tending
to 0), the authors of [57] presented the following concept. If X is a Banach space
and T ∈ L(X), then a vector x0 ∈ X is said to be distributionally irregular if there
are increasing sequences A = (nk), B = (mk) ⊂ N such that

dens (A) = dens(B) = 1, lim
k

‖Tnkx0‖ = 0, and lim
k

‖Tmkx0‖ = ∞.

We denote by DI(T ) the set of distributionally irregular vectors for T . If DI(T ) 	=
∅, then T is distributionally chaotic [57], but the truth of the converse is unknown
at this time. A number of lineability results have been obtained in [57]. The next
theorem gathers a selection of them.

Theorem 3.12 (Bermúdez, Bonilla, Mart́ınez-Giménez, and Peris, 2011 [57]).

(a) Assume that X is a Banach space, that T ∈ L(X), and that there exists a
dense subset X0 ⊂ X such that limn→∞ Tnx = 0. Then DI(T ) is dense-
lineable if at least one of the following conditions hold:
(i) DI(T ) 	= ∅.
(ii) There exist an increasing sequence A = (nk) ⊂ N and a vector y ∈ X

satisfying dens (A) = 1 and limk→∞ ‖Tnky‖ = ∞.
(iii) There exists an increasing sequence A = (nk) ⊂ N with dens (A) = 1

and
∑∞

n=1
1

‖Tn‖ < ∞.

(b) If X is infinite dimensional and separable, there exists a hypercyclic and
distributionally chaotic operator T such that DI(T ) is dense-lineable.
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Recently, the authors of [219] have constructed a hypercyclic operator T and a
nonhyperyciclic operator S such that every nonzero vector is distributionally irreg-
ular for each of them. Concerning Beauzamy’s irregular vectors, in [86] Bernardes
et al. have proved, among other results, that if X is a Fréchet space, T ∈ L(X),
and T admits an irregular vector, then the set of irregular vectors is dense-lineable.

Several corresponding results for strongly continuous semigroups (also called C0-
semigroups) (Tt)t≥0—to which the notions of distributionally irregular vectors and
distributional chaos can be extended in a natural way, as well as the notions of
hypercyclicity and frequent hypercyclicity—are provided in [6] by Albanese, Bar-
rachina, Mangino, and Peris. The study of lineability for the set of hypercyclic
vectors for a C0-semigroup is virtually closed since Conejero, Müller, and Peris
[129] proved in 2007 that if X is an F-space, then (Tt)t≥0 is hypercyclic if and only
if each Tt0 (t0 > 0) is hypercyclic, and if and only if some Tt0 (t0 > 0) is hypercyclic.
In this case, the set of hypercyclic vectors for (Tt) equals HC(Tt0) for any t0 > 0.
The assertion holds if one replaces hypercyclicity by frequent hypercyclicity. Turn-
ing to distributional chaos, it seems that reasonable criteria for the spaceability of
DI(T ) have not been furnished up to the time of this writing.

4. Zeros of polynomials in Banach spaces

First of all, let us recall the definition of polynomial on a Banach space X. By
BX we denote the open unit ball of X.

Definition 4.1. Let n ∈ N. A function P : X → K is said to be an n-homogeneous
polynomial if there is a continuous n-linear mapping A : X×· · ·×X → K such that
P (x) = A(x, . . . , x) for all x ∈ X. A polynomial on X is a finite sum of homogeneous
polynomials.

Note that we will only deal with continuous n-homogeneous polynomials. The
usual notation for the space of n-homogeneous polynomials on X is P(nX), while
L(nX) denotes the space of continuous n-linear functionals on X. Both spaces are
Banach spaces when endowed with the respective natural norms,

‖P‖ = sup
x∈BX

|P (x)|, ‖A‖ = sup
x1,...,xn∈BX

|A(x1, . . . , xn)|.

To each n-homogeneous polynomial P there corresponds a unique symmetric n-
linear mapping A. Let Ls(

nX) denote the space of such symmetric n-linear func-
tionals. By the polarization formula, given an n-homogeneous polynomial P, one
can recover the associated A ∈ Ls(

nX),

A(x1, . . . , xn) =
1

n!2n

∑
εj=±1,j=1,...,n

ε1 · · · εnP (ε1x1 + · · ·+ εnxn).

Moreover, ‖P‖ ≤ ‖A‖ ≤ nn

n! ‖P‖. We refer the interested reader to [12,134,229,230]
for a full explanation of these results, as well as many others on polynomials defined
on infinite dimensional spaces.

The study of the zeros of polynomials on complex spaces, due its fundamental
nature, has an old origin dating at least from the 1950s (see, e.g., [24] for some ref-
erences to earlier work). Nowadays, this investigation can be approached with tools
of algebraic geometry, complex analysis, and functional analysis ([177, 183, 238]).
The case of polynomials on Cn has been widely investigated, but the case of poly-
nomials on infinite dimensional Banach spaces seems to be an even richer source of
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challenging questions. The following well-known result of Plichko and Zagorodnyuk
can be viewed as a starting point for in the infinite dimensional setting:

Theorem 4.2 (Plichko and Zagorodnyuk, 1998 [238]). If X is an infinite dimen-
sional complex Banach space and P is an n-homogeneous polynomial on X, then
P−1(0) contains an infinite dimensional subspace Y .

However for real scalars the situation is radically different as the polynomial
P : �2 → R given by

P (x) =

∞∑
j=1

x2
j

shows. Even in the finite dimensional case, the field, R or C, makes a big difference.
Indeed, for the 2-homogeneous polynomial P : Cn → C, P (z) = z21 + · · · + z2n,
we have that P−1(0) contains a vector space of dimension [n2 ], since the span of

{e1 + ie2, e3 + ie4, . . .} ⊂ P−1(0), where e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, 0, . . . , 0)
and so on. The reader can observe that nothing interesting can be said for P−1(0)
when K = R. As the following theorem reveals, this example is, in fact, illustrative
of the general situation in the case K = C. For works related to the study of zeros
of real polynomials, we refer to [15, 21, 142, 143] and the references therein.

Theorem 4.3 (Plichko and Zagorodnyuk, 1998 [238]). Let X be a complex Banach
space. Given positive integers n and k, there is an integer m(n, k) ∈ N such that,
whenever dim(X) = k and P : X → C is an n-homogeneous polynomial, the set
P−1(0) contains a subspace of dimension at least m(n, k). Moreover, m(n, k) → ∞
as k → ∞.

To give an idea of how things work in the subject of polynomials in Banach
spaces, we shall now provide a proof (obtained from [26] and from its generalization
by Lourenço and Tocha in [215]) that follows exactly the same lines as that of
[238], and which is done by induction on the homogeneity n. We shall exhibit the
situation for n = 1, 2, and 3. Clearly, m(1, k) = k − 1. The general case, on the
other hand, will require the following well-known fact from the theory of several
complex variables: if f : Ck → C is a holomorphic (complex analytic) function in
k ≥ 2 variables, then f−1(0) is either empty or an unbounded set.

n = 2 Let us now focus on 2-homogeneous polynomials. Let P : X → C be
a 2-homogeneous polynomial, with corresponding symmetric bilinear form
A : X × X → C. As we saw previously, there exists x1 	= 0 such that
P (x1) = 0. Consider S = {x ∈ X : A(x, x1) = 0}. Then S is a subspace of
X having dimension at least k−1. Since x1 ∈ S, we can write S = S1

⊕
[x1].

Provided that dim(S1) ≥ 2, we can find x2 ∈ S1 \ {0} with P (x2) = 0. For
any x ∈ span{x1, x2},

P (x) = P (a1x1 + a2x2) = A(a1x1 + a2x2, a1x1 + a2x2)

= a21P (x1) + 2a1a2A(x1, x2) + a22P (x2) = 0,

using the fact that A is symmetric and that x2 ∈ S1 ⊂ S. Thus, provided
dim(X) ≥ 4, every complex-valued 2-homogeneous polynomial on X van-
ishes on a 2 dimensional subspace. It is clear that the argument continues,
giving that every 2-homogeneous polynomial vanishes on a �k

2 � dimensional
subspace of X.
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n = 3 For the case of 3-homogeneous polynomials P , first take x1 ∈ X \ {0} such
that P (x1) = 0. Let A : X × X × X → C be the associated symmetric
3-linear form. Thus, we can write X = [x1]

⊕
Yk−1, where dim(Yk−1) =

k − 1. Now, consider the subspace S(x1, x1) = {x ∈ Yk−1 : A(x1, x1, x) =
0}, which is a (k − 2) dimensional subspace. We can now write X =
[x1]

⊕
S(x1, x1)

⊕
[y1], where y1 ∈ Yk−1\S(x1, x1). By the above n = 2

case, there is an �k−2
2 � dimensional subspace S(x1) of S(x1, x1) on which

the 2-homogeneous polynomial x �→ A(x1, x, x) vanishes. If it happens
that �k−2

2 � ≥ 2 (i.e., if k ≥ 6), then dim(S(x1)) ≥ 2, and so there is a
nonzero vector x2 ∈ S(x1) such that P (x2) = 0. It is a routine verification
that [x1, x2] is then contained in P−1(0). By now, the method of proof
should be reasonably evident, and in fact one gets m(3, k) ≥ max{n : k ≥
2n−1(n+ 1)}.

n > 3 Clearly, the same argument can be applied in order to extend the above
constructions to all homogeneities n of P .

Corollary 4.4. Let P : Ck → C be an arbitrary (not necessarily homogeneous)
polynomial of degree n. Then there is a subspace V ⊂ Ck whose dimension depends
only on k, such that dim(V ) → ∞ as k → ∞, satisfying the condition P |V ≡ P (0).

Having in mind the polynomials of the form
∑

x2
j , the case of real polyno-

mials needs a special approach where odd homogeneous polynomials and even-
homogeneous polynomials are investigated by different fronts.

For the case of odd homogeneous polynomials we present here a result by R. Aron
and P. Hájek.

Theorem 4.5 (Aron and Hájek 2006 [24]). Let P : RN → R be an n-homogeneous
polynomial, where n is odd. Let k ∈ N. Then there is a subspace X ⊂ RN , dimX =
k, such that P |X ≡ 0 provided N is so big that

N > k!(log2 N)k
(

k + n− 1
k − 1

)
.

Regarding the case of 2-homogeneous polynomial on a real Banach space X, let
us recall that a 2-homogeneous polynomial P : X → R is said to be positive definite
if P (x) ≥ 0 for every x ∈ X and P (x) = 0 only for x = 0. It is known (see [139])
that the following statements are equivalent:

(i) X admits a positive definite 2-homogeneous polynomial.
(ii) There is a continuous injection of X into a Hilbert space.
(iii) There is a 2-homogeneous polynomial P onX whose set of zeros is contained

in a finite dimensional subspace of X.

In particular, there are real positive definite 2-homogeneous polynomials on X
whenever X is separable or a C(K) space for some compact, separable K. On the
other hand, c0(Γ) and �p(Γ), p > 2, do not admit positive definite 2-homogeneous
polynomials. The following result is proved via an interesting use of Zorn’s Lemma:

Theorem 4.6 (Aron, Boyd, Ryan, and Zalduendo, 2003 [15]). Let X be a real
Banach space which does not admit a positive definite 2-homogeneous polynomial.
Then, for every 2-homogeneous polynomial P : X → R, there is an infinite dimen-
sional subspace of X on which it is identically zero.
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Theorem 4.5 shows that given any k ∈ N and any odd positive integer n, there
is some N ∈ N such that for any n-homogeneous polynomial P : RN → R, there is
a k-dimensional subspace of RN on which P is identically 0. From this, it seems a
reasonable question to wonder whether something “better” happens if we replace
RN by an infinite dimensional real Banach space X:

Given any odd n and any n-homogeneous polynomial P : X → R, is
there an infinite dimensional subspace Y ⊂ X such that P |Y ≡ 0?

The answer is actually no. In fact, one has the following:

Theorem 4.7 (Aron and Hájek, 2007 [23]). Given any real, separable, infinite
dimensional Banach space X and any odd n ∈ N, there is an n-homogeneous poly-
nomial P : X → R such that P−1(0) does not contain an infinite dimensional
subspace.

From Theorem 4.2 a natural step forward is, How “big” is Y ? In view of the
previous results, the following questions arise naturally:

(Q1) Suppose that the complex Banach space X is nonseparable. Does it follow
that there is a nonseparable subspace contained in P−1(0)?

(Q2) For a real Banach space X and an n-homogeneous polynomial P : X →
R, are there situations where P−1(0) does contain an infinite dimensional
subspace?

(Q3) Let P : X → K be an n-homogeneous polynomial, where K = R or C,
and let M,N ⊂ X be two maximal subspaces of P−1(0). What can be said
about the relation between M and N? (M ⊂ X is a maximal subspace of
P−1(0) means that M is a vector subspace of P−1(0) that is not strictly
contained in any larger subspace P−1(0).)

Let us now provide some answers to each of these questions. Below, (Aj) denotes
the answer for the (Qj) above.

(A1) The answer is affirmative for �∞. To be more precise, we have:

Theorem 4.8 (Fernández-Unzueta, 2006 [140]). Let E be a complex Ba-
nach space containing �∞. For every n, every n-homogeneous polynomial
P : E → C vanishes on a nonseparable subspace of E.

In addition, in [140] it is also shown that in the case of real �∞, if
P : �∞ → R vanishes on a copy of c0, then P ≡ 0 on a nonseparable
subspace.

On the other hand, and responding to a question of [34] (see also [15]),
Avilés and Todorcevic [28] have shown that the general answer to question
(Q1) is no.

Theorem 4.9 (Avilés and Todorcevic, 2009 [28]). There is a 2-homoge-
neous polynomial P : �1(ℵ1) → C such that P−1(0) contains no nonsepara-
ble subspace.

(A2) Concerning the second question, partial information has already been noted
in Theorems 4.5, 4.6, and 4.7. Let us assume that P : X → R is a 2-
homogeneous polynomial on a nonseparable Banach space X. In this case,
there is some additional, albeit partial, information available.
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Theorem 4.10 (Aron, Boyd, Ryan, and Zalduendo, 2003 [15]). (a) Let
X be a real Banach space which does not admit a positive definite 4-
homogeneous polynomial. Then for every 2-homogeneous polynomial P
on X, there is a nonseparable subspace of X on which P is identically
zero.

(b) Let X be a real Banach space of type 2. Then either X admits a pos-
itive definite 2-homogeneous polynomial or every P ∈ P

(
2X

)
has an

nonseparable subspace on which it is identically zero.

It is worth noticing the connection with the geometry of the domain X.
The requirement of type 2 in the above result is necessary for the use of
the Extension Theorem of Maurey.

Still regarding results related to positive definite polynomials, for the
case of a compact topological Hausdorff space K, the following dichotomy
holds:

Theorem 4.11 (Férrer, 2007 [141]). The space C(K) satisfies the following
dichotomy. Either
(i) it admits a positive definite continuous 2-homogeneous real-valued poly-

nomial, or
(ii) every continuous 2-homogeneous real-valued polynomial vanishes in a

nonseparable closed linear subspace.

When X = c0 (Γ) the following result holds for general polynomials (not
necessarily homogeneous):

Theorem 4.12 (Férrer, 2007 [141]). Let Γ be an uncountable set. If P :
c0 (Γ) → R is a continuous polynomial, then there is a closed linear subspace
E of c0 (Γ) such that E ⊂ P−1 (0) and E is isometric to c0 (Γ) .

(A3) For the last question we actually have a negative answer, as the following
result shows.

Theorem 4.13 (Avilés and Todorcevic 2009, [28]). There exists a 2-homo-
geneous polynomial P : �1(c) → C such that P−1(0) contains both separable
and nonseparable maximal subspaces.

Also [28] provides new perspectives on the investigation of zeros of complex
polynomials, including new techniques and, especially, connections with results
from [265] related to the existence of certain partitions with special properties.

As a final remark to this section, we would like to emphasize that this particular
topic of study (subsets and subspaces of zeros of polynomials) has just recently
started to develop. Thus, although it has rapidly caught the eye of many researchers
in the field, there is still plenty of ongoing work on it. We believe that, in the years
to come, this topic will certainly experience a large growth.

5. Some remarks and conclusions. General techniques

This last section will be devoted to providing several remarks on very particular
results (not treated earlier) about lineability, operator theory, and the classical
problem of the lineability of the set of norm-attaining functionals. Later, a number
of heuristic comments will be given and, finally, some general techniques will be
considered.
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Remark 5.1. Besides all the examples shown in the preceding sections, together with
the different areas in which the topic of lineability has had its influence, the theory of
absolutely—and nonabsolutely—summing operators has also attracted the attention
of some authors when working on lineability. We refer the interested reader to
[110, 112, 113, 201, 242]. Also, and more particularly, Pellegrino and Teixeira [236]
provided some results within the framework of norm-attaining operators, results
that were later generalized in 2011 by Botelho, Diniz, Fávaro, and Pellegrino [109].

Remark 5.2. Regarding a classical problem on norm-attaining functionals, a well-
known theorem by E. Bishop and R. Phelps (1961 [93]) states that for any Banach
space X, the set NA(X) := {ϕ ∈ X∗ : attains the norm} is a dense subset of X∗. It
is natural to ask about the lineability of the set NA(X). For many specific spaces
X, the answer is routine. For example,

NA(c0) = {x = (xn) ∈ �1 : xn = 0 for all sufficiently large n}.
In this case, NA(c0) is itself a dense vector subspace of c∗0 = �1. However, note that
NA(c0) contains no infinite dimensional closed subspace, so here we have lineability
without spaceability. On the other hand,

NA(�1) = {y = (yn) ∈ �∞ : ‖y‖∞ = max
n

|yn|}

is not a subspace. Indeed, both y = (−1, 0, 0, . . .) and y′ = (1, 12 ,
2
3 , . . . ,

n
n+1 , . . .)

are in NA(�1) although y + y′ /∈ NA(�1). Furthermore, NA(�1) contains both
dense vector subspaces and infinite dimensional closed subspaces. This raises two
questions:

When is NA(X) a vector space? When is NA(X) spaceable?
These questions have been deeply studied in [35] by Bandyopadhyay and Gode-
froy, who provided, among other results, conditions that ensure that NA(X) is not
spaceable; see also the recent works [1, 153] for more results on the linear struc-
ture of NA(X). Very recently, Garćıa-Pacheco and Puglisi [158] showed that every
Banach space admitting an infinite dimensional separable quotient can be equiva-
lently renormed in such a way that the set of its norm attaining functionals contains
an infinite dimensional linear subspace. Nevertheless, the general problem of the
2-lineability of the set of norm-attaining functional in any Banach space is still
open.

After the previous remarks, let us raise some considerations related to the Baire
category theorem and lineability. Let (X, d) be a complete metric space. A subset
E ⊂ X is said to be porous if there exist a constant a ∈ (0, 1) and a radius
r0 > 0 such that for every x ∈ X and every r ∈ (0, r0) there is y ∈ X with
B(y, ar) ⊂ B(x, r) \ E. The set E is said to be σ-porous if E can be written as a
countable union of porous subsets of X. If E is porous, then it is nowhere dense.
Hence σ-porous sets are of first category. The converse is false. Thus, it is in general
a stronger statement to say that a set has σ-porous complement than to say that
it is residual. There is some recent work on this topic. For instance, J. Borwein
and X. Wang [106] show that if X is a separable Banach space, then the set of
all nonexpansive Lipschitz functions with maximal Clarke subdifferentials is not
only residual but has σ-porous complement. In [106] the authors do not mention
lineability, but our guess is that this property is lineable. Let us point out that,
just recently, more examples of cases relating porosity and strong algebrability (in
the case of continuous functions on locally compact groups) were provided in [5].
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So far, we have seen many cases in which a set of functions having an exotic
property is residual, so that its complement is of first category. We wonder in how
many cases it is true that the complement is σ-porous. For instance, Bayart [46]
demonstrated that the set HC(Cϕ) of hypercyclic functions with respect to the
composition operator Cϕ generated by a nonelliptic automorphism ϕ (recall that
this set is residual, dense-lineable and spaceable, see Section 3) has no σ-porous
complement. Also, and as we saw in Theorem 2.8, although being a residual set
is “symptomatic” of containing large subspaces, there is clearly no immediate im-
plication: recall, for instance, the example of the set U((Δαn

)) given in Subsection
3.2.1. Also, in [33], there is another example in this direction: for any x ∈ �1 define
E(x) = {a ∈ R : ∃A ⊂ N such that

∑
n∈A x(n) = a}, and let C be the set of

all x ∈ �1 for which E(x) is homeomorphic to the Cantor set. Then C is residual,
strongly c-algebrable, but not spaceable.

Certainly, and after what we have been seeing throughout this paper, one could
think that almost everything is lineable, dense-lineable, or spaceable. This is cer-
tainly not the case, as we have already seen in, for instance, Theorems 2.8 and
2.17. In spite of this, and in a much more general frame, the following has been
established.

Theorem 5.3 (Aron, Garćıa-Pacheco, Pérez-Garćıa, and Seoane-Sepúlveda,
2009 [20]).

(a) Let X be an infinite dimensional Banach space. There exists a subset M ⊂
X such that M is spaceable and dense, although it is not dense-lineable.

(b) Let X be an infinite dimensional Banach space. There exists a subset M ⊂
X which is lineable and dense, but which is not spaceable. If X is separable,
then M can also be chosen to be dense-lineable.

One conclusion that we can infer from what we have been presenting in this sur-
vey is that a very common (and possibly the only!) constructive strategy to obtain
lineability is the following: once a mathematical object enjoying a particular prop-
erty is found, one tries to modify it in order to construct a basis for the potential
candidate to linear space. Thus, almost all techniques are, at this time, construc-
tive. Only a handful of existence techniques (although not very general ones) have
been obtained in recent years. Here, and to conclude this survey, we will give a
brief account of them. It was not until very recently that some existence results
to guarantee the lineability of certain sets were given. These mentioned results,
although not giving the specific linear space, supply the positive answer we are
looking for in this area. Due to the lack of existence results in this topic, we believe
that it is interesting to have this kind of machine-proving result that, right away,
guarantees the lineability of a given family of functions. In order to do that, we
relate the notion of lineability with that of additivity, introduced by T. Natkaniec
in [232,233] and thoroughly studied by F. E. Jordan in his Ph.D. dissertation [193].

Definition 5.4. Let F ⊂ RR. The additivity of F is defined as the following
cardinal number:

A(F) = min
(
{ cardF : F ⊂ RR, ϕ+ F 	⊂ F , ∀ϕ ∈ RR } ∪ {(2c)+}

)
,

where (2c)+ stands for the successor cardinal of 2c.

The above definition gives us, roughly, the biggest cardinal number κ for which
every family G, with cardG < κ, can be translated into F . Let us remark that for
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some families the additivity is relatively “easy” to compute, whereas lineability is,
in general, “hard” to calculate.

Additivity and lineability have not been related until very recently. Although
it may seem like this concept has nothing to do with the concept of lineability, it
actually has a lot to do with it:

Theorem 5.5 (Gámez-Merino, Muñoz, Seoane-Sepúlveda, 2010 [150]). Let F ⊂ RR

be star-like, that is, αF ⊂ F for all α ∈ R. If c ≤ A(F) ≤ 2c, then F is A(F)-
lineable.

Theorem 5.5 can be applied to many classes of functions, such as those presented
in Definition 2.15. The result provides a technique that can only be used or applied
within the framework of RR. It would be very interesting if a dual result of Theorem
5.5 above could also be found for algebrability; that is, is there any cardinal invariant
that relates to the concept of algebrability as the additivity does with lineability?

On the other hand, a few criteria have appeared recently that tell us how to get
dense-lineability from the mere lineability. The idea that is in the core of these
results is to obtain the desired dense subspace by adding small vectors coming from
a known lineable set to the vectors of a dense subset. Such criteria are contained in
the next two theorems. According to [20], if A and B are subsets of a vector space
X, then A is said to be stronger than B provided that A+B ⊂ A.

Theorem 5.6 (Aron, Garćıa, Pérez, and Seoane-Sepúlveda 2009, [20]). Assume
that X is a metrizable separable topological vector space. If A and B are subsets of
X such that A is lineable, B is dense-lineable, and A is stronger than B, then A is
dense-lineable.

Theorem 5.7 (Bernal, 2008, 2010 [67, 69]). Assume that X is a metrizable sepa-
rable topological vector space. Suppose that Γ is a family of vector subspaces of X
such that

⋂
S∈Γ S is dense in X. We have:

(a) If μ is an infinite cardinal number such that
⋂

S∈Γ(X \ S) is μ-lineable,
then it contains a dense vector subspace of dimension μ.

(b) In particular, if
⋂

S∈Γ(X \ S) is lineable, then it is dense-lineable. And if⋂
S∈Γ(X \ S) is maximal-lineable then it is maximal-dense-lineable.

Some of the lineability results mentioned in the present paper—concerning
nowhere differentiable functions, nowhere analytic functions, dense hypercyclic
manifolds, strict-order integrable functions, nowhere monotone functions, functions
with everywhere unbounded derivatives, and strongly annular functions, among oth-
ers, and which are contained in [20,67–69,71]—can be deduced by using Theorems
5.6 or 5.7.

Concerning closed subspaces, it should be said that there are not many explicit
spaceability general criteria in the related literature. A nice one in a rather abstract
context is due to Wilansky and Kalton (see [201,272]): if X is a Fréchet space and
Y ⊂ X is a closed linear subspace, then the complement X \ Y is spaceable if and
only if Y has infinite codimension. Kitson and Timoney exploited it to obtain the
following theorem.

Theorem 5.8 (Kitson and Timoney, 2011 [201]). Let Zn (n ∈ N) be Banach spaces
and X a Fréchet space. Let Tn : Zn → X be continuous linear mappings and Y the
linear span of

⋃
n Tn(Zn). If Y is not closed in X, then the complement X \ Y is

spaceable.
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This result can be used, for instance, to prove spaceability of the nonabso-
lutely convergent power series in the disc algebra A(D) and of the nonabsolutely
p-summing operators between certain pairs of Banach spaces. Also, some assertions
in Subsection 2.4.2 may be inferred of Theorem 5.8. As the authors of [201] suggest,
it would be interesting to know if this theorem can be extended to allow Zn to be
a Fréchet space. In the more restrictive setting of function spaces, we have the
following statement. Recall that the support of a function f : Ω → K is the set
σ(f) = {x ∈ Ω : f(x) 	= 0}.

Theorem 5.9 (Bernal-González and Ordóñez-Cobrera, 2012 [84]). Let Ω be a
nonempty set. Assume that (X, ‖ · ‖) is a Banach space of K-valued functions
on Ω and that S is a nonempty subset of X satisfying the following properties:

(i) If (gn) ⊂ X satisfies gn → g in X, then there is a subsequence (nk) ⊂ N

such that, for every x ∈ Ω, gnk
(x) → g(x).

(ii) There is a constant C ∈ (0,+∞) such that ‖f+g‖ ≥ C‖f‖ for all f, g ∈ X
with σ(f) ∩ σ(g) = ∅.

(iii) αf ∈ S for all α ∈ K and all f ∈ S.
(iv) If f, g ∈ X are such that f + g ∈ S and σ(f) ∩ σ(g) = ∅, then f, g ∈ S.
(v) There is a sequence of functions fn (n ∈ N) with pairwise disjoint supports

such that, for all n ∈ N, fn ∈ X \ S.
Then X \ S is spaceable.

With this statement in hand, one can derive, for instance, some assertions about
Lebesgue spaces; see Subsection 2.4.2. Theorem 5.9 also applies (see [84]) to the
space X = CBV [0, 1] of bounded variation continuous functions on [0, 1], en-
dowed with the norm ‖f‖ = sup[0,1] +Variation[0,1]f , yielding that the set {f ∈
CBV [0, 1] : f is not absolutely continuous in [0, 1]} is spaceable.

Just recently, a new technique has been developed that can be applied to the
framework of sequence spaces; see [107]. The authors actually obtain maximal-
spaceability by providing a series of conditions that, once fulfilled, guarantee the
existence of a closed infinite dimensional subspace inside sets of certain topological
vector sequence spaces. Their general result [107, Theorem 3.1], which is obtained
by making use of the notion of “sequence functor” (see [107, Definition 2.1]), ap-
plies to a large amount of cases, most of them never studied before, such as the sets
c0(X)\

⋃
p>0 �

w
p (X), �p(X)\

⋃
0<q<p �

w
q (X), or �up(X)\

⋃
0<q<p �

w
q (X) (among many

others), where X is any infinite dimensional Banach space, �wp (X) denotes the Ba-
nach (p-Banach if 0 < p < ∞) space of all X-valued weakly p-summable sequences,
and �up(X) stands for the closed subspace of �wp (X) formed by all unconditionally
p-summable sequences; see [107, Corollaries 3.2–3.7].

There is no need in saying that due to the complexity of many of these lineability
problems, a Baire category theorem-type result—or any general existence technique
for that matter—would be extremely valuable in this recently coined theory.
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[23] R. M. Aron and P. Hájek, Odd degree polynomials on real Banach spaces, Positivity 11
(2007), no. 1, 143–153, DOI 10.1007/s11117-006-2035-9. MR2297328 (2007m:46064)
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[52] F. Bayart and É. Matheron, Dynamics of linear operators, Cambridge Tracts in Mathemat-
ics, vol. 179, Cambridge University Press, Cambridge, 2009. MR2533318 (2010m:47001)

[53] F. Bayart and V. Nestoridis, Universal Taylor series have a strong form of universality, J.

Anal. Math. 104 (2008), 69–82, DOI 10.1007/s11854-008-0017-5. MR2403430 (2009e:30003)
[54] F. Bayart and L. Quarta, Algebras in sets of queer functions, Israel J. Math. 158 (2007),

285–296, DOI 10.1007/s11856-007-0014-x. MR2342549 (2008g:26006)
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[98] J. Bonet, F. Mart́ınez-Giménez, and A. Peris, Universal and chaotic multipliers on spaces of
operators, J. Math. Anal. Appl. 297 (2004), no. 2, 599–611, DOI 10.1016/j.jmaa.2004.03.073.
Special issue dedicated to John Horváth. MR2088683 (2005g:47006)
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⋃

q>p Lq [0, 1]

is spaceable for every p > 0, Linear Algebra Appl. 436 (2012), no. 9, 2963–2965, DOI
10.1016/j.laa.2011.12.028. MR2900689

[112] G. Botelho, M. C. Matos, and D. Pellegrino, Lineability of summing sets of ho-
mogeneous polynomials, Linear Multilinear Algebra 58 (2010), no. 1-2, 61–74, DOI
10.1080/03081080802095446. MR2641522 (2011b:46072)

[113] G. Botelho, D. Pellegrino, and P. Rueda, Cotype and absolutely summing linear oper-
ators, Math. Z. 267 (2011), no. 1-2, 1–7, DOI 10.1007/s00209-009-0591-y. MR2772238
(2012e:46022)

[114] P. S. Bourdon, Invariant manifolds of hypercyclic vectors, Proc. Amer. Math. Soc. 118
(1993), no. 3, 845–847, DOI 10.2307/2160131. MR1148021 (93i:47002)

[115] P. S. Bourdon and J. H. Shapiro, The role of the spectrum in the cyclic behavior of compo-
sition operators, Memoirs Amer. Math. Soc. 596, AMS, Providence, Rhode Island, 1997.

[116] J. Bourgain, On the distribution of Dirichlet sums, J. Anal. Math. 60 (1993), 21–32.
[117] A. M. Bruckner, Differentiation of real functions, Lecture Notes in Mathematics, vol. 659,

Springer, Berlin, 1978. MR507448 (80h:26002)
[118] D. Burdick and F. D. Lesley, Some uniqueness theorems for analytic functions, Amer. Math.

Monthly 82 (1975), 152–155. MR0357766 (50 #10234)
[119] Z. Buczolich, Solution to the gradient problem of C. E. Weil, Rev. Mat. Iberoamericana 21

(2005), no. 3, 889–910, DOI 10.4171/RMI/439. MR2231014 (2007c:26012)
[120] M. C. Calderón-Moreno, Universal functions with small derivatives and extremely fast

growth, Analysis (Munich) 22 (2002), no. 1, 57–66. MR1899914 (2003c:30023)
[121] F. S. Cater, Differentiable, nowhere analytic functions, Amer. Math. Monthly 91 (1984),

no. 10, 618–624, DOI 10.2307/2323363. MR769526 (86b:26034)
[122] S. Charpentier, On the closed subspaces of universal series in Banach spaces and Fréchet
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ization of continuity revisited, Amer. Math. Monthly 118 (2011), no. 2, 167–170, DOI
10.4169/amer.math.monthly.118.02.167. MR2795585 (2012c:26008)
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