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1. Introduction. 1.1. The real normalizable solutions of the Klein-Gordan
equation: D>A = «Y. m>0; form a real Hubert space K. K admits a non-
singular skew 2-formß(-, •) which is uniquely determined, apart from a scalar
factor, by the condition that it be invariant under the canonical action of
the proper inhomogeneous Lorentz group on K. There is an orthogonal trans-
formation A on K, commuting with this action, which when interpreted as
multiplication by i allows K to be made into a complex Hubert space H with
B(-, ■) as the imaginary part of the inner product. To quantize the Klein-
Gordan Field, one needs only K and B(-, •), or equivalently, H. Similarly a
complex Hubert space determines the quantization of every free boson field
[il; 12].

Accordingly, following Segal [ll], we give:
Definition 1.1. For any complex Hubert space H, 2 (if) the Single Par-

ticle Structure (or Classical Field), determined by H, is the pair {K, B( •, •)};
where K is H considered as a real Hubert space with inner product (zi, z2)
= Real(zi, z2)c, where (zi, z2)c is the inner product in H, and B(-, •) is the
nonsingular skew 2-form defined by B(zi, z2) =Im(zi, z2)c.

Definition 1.2. A quantization of 2(iz") is a (strongly) linear map R(-)
from K to selfadjoint operators on a complex Hilbert space such that if V(z)
= exp(iR(z)), then F(-) is weakly continuous when restricted to any finite
dimensional subspace of K and the following commutation relations are
satisfied :

(1.1) V(zi)-V(z2) = g-ac-i.n)it.v(zi + z2), for all zu z2 GK.

The above commutation relations are essentially those given by Weyl
[17]. In the present form they have been used by von Neumann [16], for
finite systems and by Segal [ll], for fields. Quantization as defined above is
formally implied by the current physical formalism which assigns to each
point in space-time an "operator-valued-distribution" and has the advantage
of being rigorous.

The symmetries that concern us are those that arise as linear transforma-
tions of the wave functions of the classical field. Specifically we consider the
multiplicative group of all bounded linear transformations T on K such that
if R(-) is a quantization then z-+R(Tz) is also. (See [ll].) This is the group
defined equivalently by:
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Definition 1.3. The Symplectic group Sp(K) determined by the single
particle structure 2(PT), is the multiplicative group of real bounded linear
transformations on K which preserve B(-, ■).

When the dimension of H is not finite there are at least continuumly
many irreducible unitarily inequivalent quantizations of 2(Pf) [l0]. Con-
sequently for a given irreducible quantization R(-) it is of interest to deter-
mine the subgroup of Sp(K) consisting of those P for which there is a unitary
transformation Y(T) such that R(Tz)= Y(T)-R(z)-Y(T)~1 for all z^K.
Using the theory of integration over Hubert space [especially 10, Theorem
3 ] we show (Theorem 4.1 below) that in the case of the Fock-Cook quantiza-
tion [3] the subgroup is { P: (T*-T)ll2 — I is Hilbert-Schmidt}. We study
the resulting projective unitary representation.

The choice of the Fock-Cook quantization is not arbitrary. It appears
likely that for the free scalar meson and Maxwell fields the only pure regular
state which is Lorentz invariant and such that in the quantization determined
by it the energy is positive, is the zero-interaction vacuum state which de-
termines the Fock-Cook quantization (cf. [l3]).

Summary of contents. In §2 we introduce the various classes of groups
needed later together with some of their simple properties. §3 is concerned
with the action of the general linear group of operators on a real Hubert
space M on the normal distribution over M. Both sections are necessary
preliminaries to §4 where we treat the main problem. In §5 H is restricted
to be of finite dimension. By the well-known theorem of Stone and von Neu-
mann any two irreducible quantizations are unitarily equivalent [16]. Con-
sequently the resulting projective unitary representation of Sp(K) is essen-
tially unique. We show that it determines a double-valued unitary repre-
sentation of Sp(K). Now quantization here has as its fermion analogue the
representation of the Clifford algebra over K by spinors. The analogue of our
representation is the spinor representation of the orthogonal group on K due
to Brauer and Weyl [2]. In infinitesimal form our result has been obtained
by van Hove [15]. In §6 we apply our techniques to prove some theorems
about the transformation properties of the states and observables of free
boson fields.

Acknowledgment. The author wishes to express his gratitude to Pro-
fessor I. E. Segal for many helpful suggestions and conversations.

2. Preliminaries on groups of operators. 2.1. We introduce some infinite
dimensional analogues of the General Linear Group. Let X be a bounded
linear operator on a Hubert space H which may be real or complex and of
arbitrary dimension. X is elementary if X = X\®0 when H is decomposed
suitably as Hy®Hy, with dim Hy finite. Let {ea} be an arbitrary orthonormal
basis for H. Then X is Hilbert-Schmidt if its P2 norm ||X||2= (E<* ||-^"e«||2)1/2
is finite. The Hilbert-Schmidt operators with this norm form a Banach space
which will be denoted P2. Similarly the operators of trace class :{-X": \\X\\y
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= sup(ï/ unitary) E« | (UXea, ea)\ is finite} form a Banach algebra denoted
by Li. Both are independent of the choice of basis. Now let GL(H) General
Linear Group on H be the multiplicative group of all bounded linear oper-
ators on H with bounded inverses. When dim H is not finite we consider as
well as GL(H) itself, the subgroups given by:

Definition 2.1. For any Hubert space H, the group of Tame Operators
GL(H)o, the Li Group GL(H)i, and the L2 Group GL(H)2 are the subgroups
of GL(H) whose elements have the form I-\-X where X is elementary, of
trace class and Hilbert-Schmidt respectively. For any operator T, let u(T)
and | T\ be the isometric and self adjoint parts of the polar decomposition.
The Restricted General Linear Group rGL(H) is all operators in GL(H) such
that | T\ EGL(H)2.

Let GL(H)i and GL(H)2 have the topologies arising from Li and L2 re-
spectively. GL(H)o, GL(H)i and GL(H)2 axe normal subgroups of GL(H) and
each is dense in the next. Applications will be mainly with rGL(H). We in-
clude GL(H)2 as a natural subgroup of rGL(H). GL(H)o is the most con-
servative extension from the finite dimensional classical group. The deter-
minant in the finite case extends at once to a multiplicative function A(-)
on GL(H)o. Our inclusion of GL(H)i is explained by:

Lemma 2.1. (a) A(-) extends uniquely to a continuous representation on
GL(H)i.

(b) There is no continuous local representation of GL(H)2, or of its unitary
subgroup U(H)2, which coincides with A(-) on the tame operators.

Proof, (a) Since GL(H)0 is dense in GL(H)X we need only show that A(-)
is continuous when GL(H)o is topologised as a subset of GL(H)i. Since GL(H)o
is a topological group in this topology it is enough to prove continuity at I.
If H has finite dimension, then on a suitable neighbourhood N of /, A(T)
= exp(tr(log(T))) where tr(-) is the trace and log(-) is defined by the usual
power series. The same remark holds for GL(H)0 in the general case. Con-
tinuity follows since log(-) is continuous from N to Li and tr(-) is continuous
on Li.

(b) Let A(e)={TGGZ(iî)2:||r-/||2<e, e>0) be an arbitrarily small
neighbourhood of I. Let {en} be an orthonormal sequence in H and {an} a
sequence of numbers such that JZnO,n< » and JZn an diverges. Let Am be
such that Amen = anen all n<m, and Amf=0 for all/-L{em: m<n}. It may be
seen that es.p(iAm)S U(H)2H\N(e), m=l, ■ ■ • , oo, that the exp(î^4m) are
tame and converge to exp(iAx) in GL(H)2 and that |A(exp(j^4m))} diverges.

Our discussion of rGL(H) will be for H real. The two most important
subgroups are the group of orthogonal operators 0(H) and GL(H)2. Polar
decomposition gives the unique decomposition rGL(H) = 0(H)XGL(H)2,
where + indicates the subset of positive selfadjoint operators. Under the weak
operator topology which coincides here with the strong operator topology
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0(H) is a topological group. It seems appropriate therefore to give 0(H) this
topology, topologise GP(Pf)¿" as a subset of GL(H)2 and rGL(H) as the car-
tesian product of these. Any continuous representation of rGL(H) is then
automatically continuous on 0(H) and GL(H)2.

Lemma 2.2. rGL(H) is a topological group.

If for an operator X on H, there is an orthonormal basis {ea}, and num-
bers {Xa}, such that Xea=\aea for all a, then {ea} is an eigenbasis and
{ea, Xa} an eigensystem for X.

Sublemma. (a) For fixed X£.L2, the map U-^U_1-X- U from 0(H) to Lf
is continuous at I.

(b) The map (U, T)-+U~l-T- Ufrom 0(H)XGL(H)t to GL(H)t, is con-
tinuous.

Proof of sublemma. (a) Since X is Hilbert-Schmidt it is completely con-
tinuous and hence possesses an eigensystem \ea, Xa}. There is no essential
loss in supposing that a ranges over the positive integers. Given e>0, let n
be chosen so that En+i^a<e- Let 0<S<1. Let FGO(PT) be such that
||Fea-ea||<5 for a = ra. Since ||x-;y||2g2|[x||2 + 2||;y||2, it follows that for

\\X-Vea - V-Xea\\2 = 2\\X(V - I)ea\\2 + 2\\(V - I)Xea\\2

Also

g2ï'.a+2Û|4I

T,\\X-VeX = \\X\\1 - Z\\X-Vea\\2
n+l

= £ I \\Xea\\2 - \\X-Vea\\2\  + E \\Xea\\2.
n+l

Now | \\Xea\\2-\\X-Vea\\2\è\\X(V-I)ea\\-(\\Xea\\+\\X-Vea
all a^n. It follows that the last term above is less than 2n\\X\

)^2\\X\\lb, for
\b+t. Hence

■ x-v- x\\2 = \\x-v - v-x\\2
n oo

= ¿||X-Fe«- V-Xea\\2+ £||X-Fe„- V-Xea\\2
n+l

= 4«||X||25  + 2E||*-Fe„||2+ 2 £||F-Xea||2
n+l n+l

^ 4w||Ar||2-52+ (2m||z||^ + e) + e = 6«||x|l23 + 2e.
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(b) For (U, T) and (Ui, Tx) in 0(H)XGL(H)t we have,

\\Url-TvUi - u-x-t-u\\2
ú ^UtHTi - t)Ui\\2 + Wur'-r-Ui - u^-t-u\\2
= \\Ti- t\\2+\\x-v - v-x\\2,

where X=T—I and V=Ui- U~l. The result now follows from part (a) and
the fact that 0(H) is a topological group.

Proof of Lemma 2.2. Let T, 7\ G rGL(H). We have T-1 = w(T)-1
•(M(r)-|r|-I-M(r)-1) = M(r-1)-|r-1|. The continuity of T^T-1 now fol-
lows from part (b) of the sublemma and the continuity of the operations of
taking inverses in 0(H) and GL(H)2. It may be seen that the operations:
T—>T* and T—>T1/2 are continuous in GL(H)2 and GL(H)2 respectively and
hence that polar decomposition is continuous in GL(H)2 and that T—>u(T) is
continuous from GL(H)2 to 0(H). Hence observing that u(T-Ti)=u(T)
■u(Ti) -«([«(ri)-1-! r| -«(ri)]-1 Ti| ) and | T- Ti\ = | (u(Ti)~l-1 T\ -u(Ti))
• | Ti| |, and using the Sublemma we may establish continuity of multiplica-
tion in rGL(H). Details are omitted.

2.2. Let H be complex. We now consider the corresponding classes of
symplectic groups over 2(if).

Definition 2.2. Sp(K)i = Sp(K)f\GL(K)i for i = 0, 1, 2. The restricted
symplectic group rSP(K) is Sp(K)i~\rGL(K). Each Symplectic group is
topologised as a subspace of the corresponding general linear group.

It may be seen that the group of operators which are orthogonal and
symplectic is U(H). Let A be the orthogonal operator on K defined by Az = iz.
Then A2= — I. A straightforward computation shows that a regular operator
T on K is symplectic if and only if A-T-A-1 = T*-1. It may be seen that if
TÇE.Sp(K)+ then the multiplicity of 1 in the point spectrum of T is zero, even
or infinite. It follows readily that K may be decomposed as Kt®K2 with
A-1A:2 = A:i so that T=A~1-S~1-A®S with SEGL(K)¿. Conversely any T
with this form is in Sp(K)2. It follows readily that Sp(K) is stable under
polar decomposition.

Notation. For each single particular structure 2(iT) let M be a fixed
subspace of K such that K=A~lM® M. For convenience this will be written
K= M®M. Then for zÇ£K, z = x(By with x, yGM and Az= — y®x.

Lemma 2.3. (a) // T<ESp(K)+ (resp. TESp(K)}) then there is a UE U(H)
such that T= U^-T'-U with T^S^QS on M®M and SEGL(M)+ (resp.
SEGL(M)t)-

(b) If TESp(K) (resp. TErSp(K)) then there are Ui, i/2G U(H) such
that T= Ui-T'-U2 with V as above.

Proof, (a) r=A-1-5'-1-A©5' on K = A~lK2®K2, with S'EGL(K2)+.
Also dim A2 = dim M. Let Uo be an orthogonal map from K2 onto M. Any
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zGP is A_1x©y with x, yÇz\K2. Let Pbe defined by Uz=A~1UoX® Uoy. Then
PG U(H). Let S on M be defined by S= PoS'Pö-1. Then S has the desired
form and P"1 • V ■ U= P. Part (b) follows since Sp(K) and rSp(K) are stable
under polar decomposition.

The following lemma is needed in the proof of Theorem 4.2.

Lemma 2.4. Let TESp(K)} with T=S~1®S on K = M®M. Suppose that
each element in the spectrum of T has multiplicity 1 and (hence) that 1 is not in
the spectrum. If Tn—*T in Sp(K)2+ then there is a sequence P„' in Sp(K)2 each
having the same eigenvectors as T and PnG U(H) such that Tn= Un- P„' • ipr1
with Un->I in U(H) and TJ-*T in Sp(K)t.

Proof. Since K must be separable P (resp. P„) has an eigensystem {X,-, c<}
(resp. {Xi,„, e,,„}) where i ranges over the nonzero integers. It may be sup-
posed that X_i = X~I and Ae_i = e, (resp. X_,,n = Xi7„1 and Ae_,-,„ = e,,n) and
further that £<,„—>«< and X«,»—»A* for all i. (Cf. [15, p. 58]). We have A- Un
= Pn-A and hence P„GP(P). Also Un-^I in U(H). Let P„' = Uñ1-Tn- Un.
Then TJ—>T in rSp(K) and hence in Sp(K)2.

3. The action of rGL(M) on P2(M, n). 3.1. A complex valued function
/(•) on the real Hubert space M is tame if there is a subspace M' with dim M'
= r, finite, and a bounded Baire function/(•) on M' such that f(x) =f(Px)
where P is the projection with range M'. Let

E(f) = J (2xc)-r'2/(x)-exp(-(x, x)/2c)dx,

the integral being taken over M' with regard to Lebesgue measure. There
exists an essentially unique probability measure space T = (N, 9Í, n) and an
identification map (the normal distribution over M) of the tame functions
on M to measurable functions on N such that the cr-algebra determined by
the tame functions is 5i and E(f)=ffdn the integral being taken over N.
(Cf. [7, p. 116 et seq.].) When a function on N corresponds to a function
on M the distinction between them will be ignored, I0 is the identity func-
tion on N. We write Li(M, n) instead of P¿(T).

For PGGP(M) there is an automorphism 4>(T) of LX(M, n) such that
0(P)/(x)=/(P*x)if and only if TGrGL(M) [10, Theorem 3]. For TErGL(M),
let n(T) be the measure defined on 9Í by n(T)(S)=fcb~1(T)Hsdn where
SG5Í and N, is the characteristic function of S. Let X(T) denote the Radon-
Nikodym derivative of n(T) with regard to n. If | T\ (zzGL(M)y, X(T)
= A(|P|)exp(-((P-P*-7)x, x)/2c); [10, p. 23]. Let U(-) be the unitary
representation of rGL(M) on L2(M, n) which is defined on the tame functions
by U(P)/(x)=X(P)x/2/(P*x). If M0 denotes the operation on P2(M, n) oí
multiplication by g then for g(EL«,(M, n), Mt(T)g = Vi(T) • Af„-U(P)_1.

Theorem 3.1. U( • ) is a weakly continuous unitary representation of rGL(M)
on L2(M, n).
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Theorem 3.1 will be used in the proof of Theorem 4.2, where a somewhat
more special result would suffice. It is included because it seems to have some
independent interest. The proof depends on the following lemmas.

Lemma 3.1. There is a dense domain D of tame functions in L2(M, n) such
that if $(T) is defined by $(T)f(x) =f(T*x) for all T(=GL(M) and f(-)<=D,
then T„—>T strongly implies cp~(Tn)f—>cp~(T)f in L2(M, n).

Proof. Let D be the (algebraic) algebra of tame functionals in L2(M, n)
generated by the functions of the form r((-, e)), where e is a unit vector in
M and r(-) is a continuous function on the reals with compact support.
For fixed e, the functions r((-, e)) are dense in L2(M', n) where M' is the sub-
space generated by e. Any subspace M" of M, with finite dimension, is the
direct sum of subspaces Mi, ■ • • , Mn each of dimension 1 and L2(M", n)
= L2(Mi, n) ® • • • ®L2(Mn, n). It follows that the closure of D contains
all tame functionals based on M". Therefore D is dense in L2(M, n). If
Tn—*T strongly then Tne—>Te in M. It follows that (•, Tne)—>(•, Te) in
L2(M, n) and hence also in measure. Hence r((-, Tne))—*r((-, Te)) in L2(M, n).
The lemma follows readily.

Lemma 3.2. Let T£.GL(M)2 and {ea, \a} be an eigensystem for T. Then
fX(T)1iidn= II« (2Xa/(Xi+l))1/2, where the integral is over N.

Proof. Let 9 range over the collection of finite subsets of {a} and let these
sets be directed by inclusion. Let Te be the operator determined by the equa-
tions: Teea=\aea if «Go, Teea = ea otherwise. It follows from [10, Lemma
1.1] that X(T,)-+X(T) in LV(M, n). The inequality |a-6|2^ |a2-ô2|, for
positive a and b, now implies that (X(Te))ll%-*(X(T)yi2 in L2(M, n).
Since the functions are on a probability measure space, convergence is in
L2(M, n) also. Using a formula given above for X(T) when T is in GL(M)i ,
f(X(Te))ll2dn may be evaluated as üae« (2X„/A2( + 1)1/2. The lemma
follows.

Lemma 3.3. A(-)1/2, considered as a function from GL(M)t to L2(M, n), is
continuous at I.

Proof. (A(/)1/2) =70. From Lemma 3.2 it follows with the notation used
there that

||A(T)1/2 - 7„||2 = 2(1 - II« (2X./X. + D1/2)

= 2(1 - lia (1 + (S«/2(l + SJ)1'2 )), where Xa = 1 + i„.

Now 1 Ú IL (1 + ô|/2(l + ««)) ú exp(Ea (£/2(l + ««))). Provided that
||r-/||2<l/2, it may be seen that exp(E* (£/2(l+í„))) ^exp(|| T-l\\l).
Hence exp(-||T-j||2) ^fX(Ty2-dn^l. The lemma follows.

Proof of Theorem 3.1. It is sufficient to establish weak continuity at /.
Since U(-) restricted to 0(M) is weakly continuous, [7, Corollary 3.1]; it is
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enough to establish continuity on GL(M)t- Taking D as in Lemma 3.1, for
fED and TEGL(M)t, ||U(P)/-/|| = \\X(Tyi2tp(T)f-f\\ ú\\(X(T)^-l)cp(T)f\\
+ \\<l>iT)f - f\\. But \<t>(T)f\ g a, with a independent of P. Therefore
l|U(P)/-/|| ^a\\X(Tyi2-IoÍ +\\<t>(T)f-f\\. By Lemmas 3.1 and 3.3 this -*0
as P—>7. This proves the theorem.

The Wiener transform W is the unitary operator on L2(M, n) whose ac-
tion on polynomials is given by Wf(x)=ff(2wy+ix)dn the integral being
taken with regard to y; [7, p. 119]. The map T—yT*-1 is a continuous involu-
tion of rGL(M) and hence P—*U(P*_1) is a weakly continuous representa-
tion.

Corollary 3.1.1. For TErGL(M), W-VL(T) .!P-»-U(r*-1).

Proof. Since GL(M)0 is dense in rGL(M), by the theorem it is sufficient
to establish the result for TEGL(M)0. Since W commutes with U(F) for
VEO(M), [7, p. 125]; T may be supposed in GL(M)¡. Hence it is enough
to consider P = X7©7 on My®My with dim Afi = l, or equivalently to con-
sider the case when dim M=l. But then the unitary map f(x)—>(2wc)-lli
•exp( —x2/4c)/(x) from L2(M, n) to the square integrable functions with re-
gard to Lebesgue measure, transforms W into the Fourier transform P, [7,
p. 122]; and U(X7)/(x) is now |X| 1/2/(Xx). An elementary computation gives
P-U(X7) = U(X-l7)-P.

Remark 3.1. The Jacobian X(T) is the analogue of |A(P)| when dim M
is finite and the normal distribution is replaced by Lebesgue measure. We
have:

Corollary 3.1.2. X(-) is a continuous function from GL(M)2 to Ly(M, n).

Proof. Since X(P)1'2 = U(P)70, by the theorem, T->X(Ty2 is continuous
to L2(M, n). Also fX(T)dn = 1. If/„ is a sequence of non-negative functions
on a probability measure space, each with expectation 1, and f¿2—>/1/2 in
mean, it may be seen that/„—*f in L\. The corollary follows.

4. The unitary action of rSp(K) on the Fock-Cook field operators. 4.1. Let
77 be a complex Hubert space of arbitrary dimension, 770 be a complex Hubert
space of dimension 1 with unit vector e0, Hn = H® ■ ■ ■ ®H (n times) and
P=©£r=o77n. For Xi, • • ■ , x„G77 (not necessarily distinct, and w2ïl)
the symmetric tensor product (xy® ■ ■ ■ ®xn),= («!)_1£xf(i><8> • • • ®xx(„),
where summation is over all permutations tt(-) of 1, • • • , n. The symmetric
tensor algebra S(H)0 is the linear manifold in F generated by e0 and all
(xi® • • • ®xn)„ n = l, 2, 3, ■ • • . The space of symmetric tensors S(H) is
the closure of S(77)0. Let C0(z) be defined on S(77)0 by Co(z)e0 = z,
Co(z)(xy® ■ ■ ■ ®x„)s= (n + l)ll2(z®xy® • • • ®xn)a and C*(z) be the adjoint
of Co(z) restricted to S(77)0. The Fock-Cook quantization on S(H), R(-), is
given by R(z) = (l/21'2)(C0(z) + C0*(z))~ where ~ indicates closure [3]. Let
M be the real subspace of K defined in §2. Let D be the duality transform

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1962] LINEAR SYMMETRIES OF FREE BOSON FIELDS 157

from S(H) to L2(M, n). (See [7, p. 123].) The Fock-Cook quantization on
L2(M, n) is defined by R(z) =J9-(C0(z) + CÎ(z))~-D-1. Then decomposing K
as M®M and for xGAi writing P(x)=R(x®0) and Q(x) =R(0® -x) we
have Q(x) = M((-, x)/2c) on L2(M, n) where M(g) indicates the operation of
multiplication by g, and P(x) = W-Q(x) -IF-1 [7, p. 126].

The canonical unitary representation y(-) of U(H) on S(H) is deter-
mined by: y(U)eo = e0, y(U)(xi® ■ ■ ■ ®xn), = (Uxi® ■ ■ ■ ®Uxn),. When
U(H) is given the weak operator topology 7(-) is weakly continuous. Y(-)
= D-y(-)-D~\

Definition 4.1. If T£rSp(K) and T=UvV_-U2 (decomposition of
Lemma 2.3) then Y(T)=Y(Ui)-U(S)-Y(U2) and Y(T) is the unitary ray
{aY(T): \a\ =l}.

Theorem 4.1. Let T(£Sp(K) and R(-) be the Fock-Cook quantization on
L2(M, n). There is a unitary operator X such that R(Tz) —X-R(z) -A-1 for all
z(E.K if and only if TÇ£rSp(K) and then AG Y(T). Y(T) is characterised by
( Y(T)Io, h) > 0. Finally F( • ) is a projective unitary representation of rSp(K).

Proof. By considering the representation Y(-) oí U(H) and Lemma 2.3
we see that to establish the first part T may be supposed to be of the form
5-1©5 on M®M with 5 positive selfadjoint. Suppose X• R(z) • X~l = R(Tz)
for all zGK. Then X■ Q(x) ■ X~> = Q(Sx) for all x£M. Hence for gGLK(M,n),
M(g)—>X-M(g) -A-1 determines an automorphism on LX(M, n) which takes
(•, x) into (•, Sx). Therefore by [10, Theorem 3] S(ErGL(M) and hence
TGrSp(K). Now suppose TErSp(K) then Y(T)=U(S), Y(T)-Q(x)-Y(T)~1
= Q(Sx) and Y(T) -P(x) ■ F(7j-1 = U(S) -W-Q(x)- IF-1-U(S)-1= IF-U(5-1)
■Q(x) -IKS-1)-1- W~l (by Corollary 3.1.1) = W-Q(S~1x) ■ IF-1 = P(5-1x). Now
decomposing z£.K as x®y on M@M we have R(z) = (P(x)+Q(—y))~. It
follows that Y(T)-R(z) ■ Y(T)~1 = R(Tz). Since the Fock-Cook quantization
is irreducible, [3, 7]; it follows that any two unitary operators transforming
R(z) into R(Tz), belong to the same unitary ray and that F(-) is a projective
unitary representation. Finally let T(E.rSp(K) and T= Uv T'■ U2 (decom-
position of Lemma 2.3). Then (F(r)70> 70) = (U(5)/o, 7o) (since Y(-) leaves
70 fixed) =/A(5)1/2dw>0, the integral being taken over N. A unitary ray can
have at most one element with this property. Thus the theorem is proved.

A projective unitary representation Z(-) of a topological group G is con-
tinuous if T—*\ (Z(T)x, y)\ is continuous for each pair of vectors x, y.

Theorem 4.2. F(-) is a continuous projective unitary representation.

We establish this by showing that F(-) is weakly continuous.
Proof of Theorem. Since Y(T) =Y(u(T)) ■ Y(\ T\ ) and r(-) is weakly con-

tinuous it is sufficient to establish the weak continuity of F(-) on Sp(K)2.
Let Tn—*T in Sp(K)£. By Lemma 2.3 there is no loss in supposing that T
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decomposes as S-1 ©S on M® M. Since T — I and P„ — 7 are Hilbert-Schmidt
there is a separable subspace K' of K such that T and each P„ are reduced
by K' and are 7 on K'L. K' may be supposed to be determined by a complex
subspace 77' of 77. On decomposing 77 as H'®H'L, and K as K'®K'^, M be-
comes M' ® M'L (orthogonal complement in M), and L2(M, n)
= P2(M', n) ® L2(M,J-, n). If T = V ® T" on K' ® K'1 then Y(T)
= F(P')(Si Y(T"). Consequently in establishing continuity there is no loss in
supposing K is separable. Suppose T satisfies the hypothesis of Lemma 2.4.
Then adopting the notation of the lemma, since P„' can be written as S¿-1®Sn
with S„^S in GL(M)2, we have, by Theorem 3.1, Y(Tn) =T(Un) -U(S„)
■T(Uz1)-^lX(S)=Y(T) (weak convergence). In the general case there is a
selfadjoint operator AErSp(K) which commutes with T such that A • T
satisfies the conditions of the lemma. Then Y(\A-Tn\)—*Y(A-T) weakly.
Since u(A-Tn)-^I weakly T(u(A ■ Tn))-* I weakly, and Y(\A-Tn\)
= T(u(A ■ Tn)) -Y(\A- Tn\ )-^Y(A ■ T) = Y (A) ■ Y(T) weakly. Hence on multi-
plying through by Y(A)-\ there are XnE Y(Tn) such that Xn-+Y(T) weakly.
Hence Y(Tn)—>Y(T) weakly. This completes the proof.

Remark 4.1. The Hubert space K plays to some extent the role of phase
space in classical mechanics. Let \ea} be an orthonormal basis for M. For
zEK = M®M we write z= £« paea®qaea. Let h(pa, qa) be a real quadratic
form in the pa and qa without linear terms. The correspondence principle for
determining the field operator corresponding to the classical Hamiltonian
hip a, qa) amounts to replacing pa by Pa = P(ea), qa by Qa = Q(ea) and h(pa, qa)
by h(Pa, Qa). The difficulty is that h(Pa, Qa) may be nowhere defined. One
cause is that h(Pa, Qa) differs from a selfadjoint operator by a physically
irrelevant "infinite constant." An alternative method of quantization equiva-
lent to the above for systems with finitely many degrees of freedom is to find
the 1-parameter subgroup d(t) of Sp(K), (provided it exists) which is deter-
mined by the classical equations of motion and Hamiltonian h(pa, qa). It
follows from Theorems 4.1 and 4.2 (by choosing a 1-parameter unitary group
from Y(d(t)) and applying Stone's Theorem) that d(t) determines a self-
adjoint operator on L2(M, n) ii and only if d(t) is a continuous subgroup of
rSp(K).

Consider the Hamiltonian h(p, q) = Eö«i"a- ft is shown in [8, p. 302] that
£<* aaP2a is a selfadjoint operator if and only if E« \a°\ <co- However

d(t)(paea®qaea) =paea®i2aatpa+qa)ea. It may be seen d(t) is a continuous
subgroup of rSp(K) if and only if £<» a2a< oo. Thus although the divergence
may be said to be due to an "infinite constant" if E« a« converges, it seems
in the general case that there is no way to obtain a selfadjoint operator in
L2(M, n).

4.2. A tame function f(x) on M is even (resp. odd) if /(— x) = f(x)
(resp. f(x) = —f(x)). Let P+ (resp. L~) be the closure in L2(M, n) of the linear
manifold of even (resp. odd) tame functions. L2(M, n)=L+®L~. Let P„ be
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the image under the duality transform of the subspace of 5(77) generated by
the symmetric w-tensors. Then 7+= ® JZñ-o L2n and L~=® JZZ-0L2n+i. It
may be seen that Y(-I) = I®-I on L+®L~ and Y(-I)-Y(T)=Y(T)
T( —7) for all T(ErSp(K). Therefore L+ and L~ are invariant under all
Y(T).

Theorem 4.3. The subspaces L+ and Lr are irreducible under Y( • ) restricted
to Sp(K)0.

Proof. The subspaces Ln axe invariant and irreducible under Y(-), [9].
Since T(-) is weakly continuous and U(H0) is weakly dense in U(H) it fol-
lows that the Ln are irreducible under Y(-) restricted to U(H)0. Let e be a
unit vector in M. Then 70G7+ and (•, e)<EL~. Let S(\): S(X)e=\e and
S(\)e' = e' for e'Le. It is sufficient to show that the subspace generated by
the linear manifold F+(resp. V~) determined by (U(5(X))70: X>1} (resp. by
j U(5(X)) ( ■, e) : X > 1} ) has nonempty intersection with Ln for n even (resp. w
odd). In establishing this there is no loss in assuming that M is the 1 dimen-
sional space generated by e. Identifying M with the real line we have
U(5(X))/(x)=X!/2 exp(-(X2-l)x2/4c)/(Xx). (See §3.) Then F+ is the mani-
fold generated by {exp( —ôx2): 5>0|. F+ is closed under multiplication. An
application of the Stone-Weierstrass theorem shows that F+ is uniformly
dense in the even continuous functions vanishing at infinity and hence the
L2 closure of F+ is L+. V~ is generated by (x-exp( —5x2): ¿i>0}. Suppose
/(x)GT.- and/(x)-LF-. Then x-exp(—x2) -/(x)G7>+ and is orthogonal to F+.
Therefore it is zero a.e. Therefore f(x) = 0 a.e. Therefore F- is dense in L~.

5. The analogue of the spinor representation of the orthogonal group.
5.1. We now suppose that dim 77 is finite. Then rSp(K)=Sp(K). For
TESp(K) let 8(T)=A(u(T)) where A(-) is the complex determinant on
U(H).

Theorem 5.1. The unitary ray representation of Sp(K), Y(-), determines
uniquely the double valued unitary representation ô(-)1/2F(-).

Proof. Since F( • ), although given explicitly is difficult to treat, the proof
is indirect. Sp(K) is a semisimple Lie group with Lie algebra
g= {A on K:A-A+A*-A = 0}, supplied with the usual bracket operation.
The function exp(-) maps the selfadjoint elements of g homeomorphically
onto Sp(K)+, which consequently is simply connected. Let Sp(K) be the
universal covering group of Sp(K) and p the canonical homomorphism onto
Sp(K). Then V(H)=p-l(U(H)), is the universal covering group of U(H).
Let Sp(K)+ be the component of p~l(Sp(K)+) which contains the identity
element 7. Then Sp(K)+ is homeomorphic to Sp(K)+ under p. Any TESp(K)
can be decomposed uniquely as Z7-Ti with U(E.U(H) and TiESp(K)+. The
proofs of the above are simple and are omitted.

Since Sp(K) is semisimple, by Theorem 4.2 and [l, Theorem 7.1], there
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is a neighbourhood N of 7 and a continuous function cr(-) on N such that
T—*a(T)Y(T) is a local unitary representation. We may suppose that N is
an admissible neighbourhood for p. Let N be the component of p~l(N) which
contains 7. The local representation extends uniquely to a representation
Z(-) of Sp(K). Z(-) must have the form Z(T)=a(T)Y(pT), where ¿(-) is a
continuous function on Sp(K) corresponding to <r(-) on N. Since F(-) is the
representation T(-) on U(H), &(•) is a 1-dimensional representation of U(H).
It follows that on P(77), i(P) =A.(pU)a with a real.

We next show that i(-) = 1 on Sp(K)+. Let ei, • • • , e„ be an orthonormal
basis for M. For «-1, • • • , », let Ti(t) = Sr1(t) ©S,(i) on P = Af 0M, where
S<(0e; = exP(5ij0e; for /= 1, • • • , re. The P<(i), (all i, all /) generate an
abelian subgroup G of Sp(K). By Lemma 2.3, if PGS£(P)+then P= U~l- T'-U
with UE U(H) and P'GG. If T, T are the corresponding elements in Sp(K) +
and pP=P, then T =V~l-T'-V. Since (F(P)-1-F(P')-F(P)70, 7„)
= (F(P')r(P)70l T(P)7o) = (F(P')70, 70)>0, it follows by Theorem 4.1 that
Y(T)=Y(U)~1-Y(T')-Y(U). It follows that i(T)=d(V). Again F(-) may
be seen to be multiplicative on G (cf. Theorem 3.1). Hence it is sufficient to
consider there 1-parameter groups T,(t) where ¡j(-) must have the form
HT_i(t)) =exp(ißit) with ßi real. But Á.-Ti(t)-A-1"Ti(-t). Hence if M=A,
A-Ti(t)-A-l=Ti(-t). Therefore exp(ißjt) =exp(-ißit) for all t. Therefore
j3,- = 0. We have shown that Z(T) = b(pT)"Y(pT). Let Ky be the subspace of
K generated by ei and A_1ei. On embedding Sp(Ky) in Sp(K) in the natural
way, and using the uniqueness of Z(-), it may be seen that a does not depend
on the dimension of 77.

We obtain a by analysing the case dim 77= 1. Let e be a unit vector in
M. Then e and A-1e are a basis for K. Sp(K) is the 2X2 real unimodular group.
Its Lie algebra g is all 2X2 real matrices with trace zero. The matrices

*-(_î i)'   X, = ("Ô i)' and *' = C i)-
are a basis for g. We have [X0, Xi] = 2Z2, [Xy, X2]=-2X0and [X2,
Xo] = 2Zi. For all real t and î' = 0, 1, 2, let F,(/) =exp(tX{). Then

(cosí     sin¿\ /exp( —/)        0    \

— sin í     cos// \      0 exp(¿) /

and Vtit) = Fo(7r/4) • Fi(¿) • F0(—¡r/4). We note also that V0(t) =exp(it) on H.
We identify L2(M, n) with L2(R), (P = real numbers with Lebesgue meas-

ure) by the unitary map f((xe, e))-^(27rc)_1/4/(x)exp( —x2/4c). The spaces
P„, for w = 0, 1, 2, • • • (see §4.2) all have dim 1. In L2(R), Ln is generated
by the nth normalized hermite function \¡/n= (7r)_1/4(2n-«!)~1/2A„ exp( — x2/2),
where hn is the reth hermite polynomial and n = 0, 1, 2, • • • , [7, p. 124]. On
P2(P) we have T(V0(T))^n = exp(int)\f/n and U(X7)/(x) =X1'2/(Xx) for X>0.
Consequently F(Fi(/))/(x) =exp(//2)/(exp(i)x).
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Following Harish-Chandra fÇzL2(R) is well behaved for the representa-
tion Z(-) of Sp(K) if Z(T)f is analytic at 7 [5, Part II], Let L° be the (non-
closed) linear manifold generated by iA„ for all w. We show that L° is a linear
manifold of well behaved vectors. Let L0+ (resp. L°~) be the submanifold
generated by the \f/„ for w even(resp. w odd). A compact form g,; of the Lie
algebra g has basis X0, iXu iX2. Hence g^gc= {A0}. Therefore 77(77) is the
pseudo-compact subgroup of Sp(K). The irreducible subspaces of Z(-) re-
stricted to U(H) are the 1-dimensional subspaces generated by the \¡/n. Since
Sp(K) is semisimple and by Theorem 4.3 Z(-) is irreducible on L+ and L~,
it follows from [5, Theorem 6], that 70+ and L0- (and hence 7°) are linear
manifolds of well behaved vectors.

For AGfl, let dZ(X) be the infinitesimal generator of Z(exp(iA)). Again
by [5, Part II], dZ(-), restricted to the manifold of well behaved vectors, is
a representation of g. We obtain a by computing dZ(-) explicitly on 7°.

Let Yi be the infinitesimal generator of the 1-parameter unitary group
Y(Vi(t)), for i = 0, 1, 2. Then dZ(X0) = Y0+iaI, dZ(Xi) = Fx and dZ(A2) = F2.
We have

(5.1) Yotn = in*n.

For /(x)G7A since Y(Vi(t))f(x)=exp(t/2)-f(exp(t)-x), Yif(x) = (l/2)/(x)
+x-d/(x)/dx. On using d(hn)/dx-2x-hn — hn+i [18, p. 54]; we have
Fi(A„-exp(-xV2)) = ((x2+l/2)An-xA„+1)-exp(-x2/2). By [18, p. 52]
An = 2"(x"-(w-(w-l)/4)x"-2 + (w(w-l)-(w-2)-(w-3)/4.8)xn-4- • • • ).
An elementary (if tedious) computation gives: An+2 — 4x-A„+i + (4x2 + 2) -hn
- in(n - 1)-A„_2 = 0, where A„ = 0 if w < 0. Hence Fi(A„-exp(-x2/2))
= ( —An+2/4+ra(w —l)A„_2)-exp( —x2/2) or equivalently,

(5.2) Fi*„ = - (1/2)((« + 2)-(n + DY'S'n+i + (l/2)(n-(n - l))1/2«A„-2.

It may be seen that F2 = r(F0(7r/4)) • Fi-r(F0(-ir/4)). Hence

(5.3) X2*n = - i/2((n +2)-(n+ l))1/2«An+2 - i/2(n-(n - l))1^-,.

By (5.2) and (5.3) we have [Yu Y2\pn= -2(Y0+(l/2)iI)^n. But on 7°,
[Yi, F2]= [dZ(Ai), dZ(A2)]= -2dZ(A0) = -2(F0+ia7). Therefore a-1/2.
This proves the theorem.

5.2. Now let dim 77 be infinite. If M' is a subspace of M and 77', and K'
are the corresponding subspaces of 77 and K, then if T(E.Sp(K) is T'®I on
K'®K'L, we have Y(T) = Y(T')®I on L2(Af', n)®L2(M', n). It follows
5(-)l/2F(-) is a double valued unitary representation of Sp(K)o. Since the
topology of Sp(K)i is stronger than that derived from rSp(K), it follows from
Lemma 2.1 (a) and Theorem 4.2 that the representation extends to be con-
tinuous on Sp(K)i. However due to the nonexistence of even a local deter-
minant on U(H)2 (Lemma 2.1 (b)), the continuous unitary ray representa-
tion F(-) of Sp(K)i cannot be smoothed to a unitary representation even
locally.
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For P, T'ErSp(K), let Y(T) ■ Y(T')=y(T, T) Y(T- T). We have:

Corollary 5.1.1. y(T, T')2=A(u(u(T')-*-\T\ -u(T') ■ \ T'\)), where A(-)
is the determinant on U(H)y.

Lemma 5.1. (T, T')-^u(T-T') is a continuous function from Sp(K)£
XSp(K)£ to U(H)y.

Proof. Let T=I+X, T' = I+X', u(T- T) =7+F and |P-P'|=7+Z.
Notice that X, X' and Z are selfadjoint operators and that X, X', Y and Z are
Hilbert-Schmidt. Denote (C+C*)/2 and i(C*-C)/2 by real(Q and Im(C)
respectively. We have Im(P-P') =i(X'-X-X-X')/2 and lm(u(T-T')
-\T, T'\) = lm(I+Y+Z+Y-Z)=i(Y*-Y)/2+i(Z-Y*-Y-Z)/2. Hence
lm(u(T-T')) = lm(I+Y)=i(X'-X-X-X')/2-i(Z-Y-Y-Z)/2, which is of
trace class. Since (I+Y)-(I+Y*) = I, real(u(T- T')) -1 = real(I + Y) -1
= (F*+F)/2= -Y- Y*/2, which is again of trace class. It follows that
u(T- T') — I is of trace class. Therefore u(T-T')EU(H)y. The proof of con-
tinuity follows readily and is omitted.

Proof of Corollary 5.1.1. Let T, T'ErSp(K). Then A =u(T')~1- \ T\ -u(T')
and B=\T'\ESp(K)£. We have T-T=u(T)-u(T')-A-B. It follows that
Y(T-T')=T(u(T)-u(T'))-Y(A-B), and hence y(T, T')=y(A, B). If A, B
ESp(K)o it follows from Theorem 5.1 that y(A, B)2 = A(u(A ■ B)). In the
general case let An, BnESp(K)o and An—>A and Bn—>B in Sp(K)£. By Lemma
5.1 u(A-B)EU(H)y. By Lemmas 5.1 and 2.1, y(An, Bn)2 = A(u(An-Bn))
-+A(u(A-B)). But by the continuity of Y(-), (Theorem 4.2), y(An, Bn)
->y(A,B).

6. Symplectic transformations of field observables and states. 6.1. We
apply the foregoing, (especially Theorem 4.1) to answer some mathematical
questions in the theory of free boson fields as formulated in [ll] and [12].
We begin by giving some relevant definitions and results. It is assumed that
dim 77 is infinite.

Let R(-) be a quantization of the single particle structure 2(77). For any
subspace 77' of 77, let SLy- be the weakly closed ring generated by
{exp(¿P(z)): zG77'}. Let 2lo = U2l#', the union being taken over all 77' with
dim 77' finite. The algebra of field observables SI is the uniform closure of 3I0.
The elements of 2lo are called tame field observables. If XE^-H' with dim 77'
finite then X is said to be based on 77'. When dim 77 is infinite there are
continuumly many unitarily inequivalent irreducible quantizations. How-
ever as an abstract C*-algebra, 21 is independent of the particular quantiza-
tion used in its definition [ll, Theorem l].

A (mathematical) state E of the field is a positive linear functional on 31
such that P(7) = 1. E is pure if it is not a nontrivial convex combination of
distinct states. E is regular if for A, PG2I, E(A*-exp(iR(z)) -B) is continuous
on each finite dimensional subspace of 77. Our concern is with pure regular
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states. As is well known any pure state determines an irreducible representa-
tion of 21. If E is also regular it determines an irreducible quantization. Con-
versely let R(-) be an irreducible quantization on §. If xG«f) the state
E: E(X) = (Ax, x) is pure regular and R(-) is the quantization it determines.
This suggests, [cf. [12])

Definition 6.1. Two pure regular states E, F axe relatively normalizable ;
E~F; if there is an irreducible quantization R(-) on ¡Q and x, yG£> such that
E(X) = (Ax, x) and F(X) = (Ay, y) for all AG2I.

Clearly • ~ • is an equivalence relation and the equivalence classes are in
1-1 correspondence with the classes of irreducible quantizations under unitary
equivalence. Now let E, F be determined by vectors x, yG€>, where R(-) is
an irreducible quantization on §, then by a theorem of Kadison [6], there is
an Aen, such that Ax = y. Then F(X) = (Xy, y) = (X-Ax, Ax)=E(A*-X-A).
Consequently E and F are relatively normalizable if and only if F(X)
= E(A*-X-A) for all X and some fixed A G21. It seems plausible that only
states normalizable with regard to the physical vacuum state can correspond
to actual "physically realizable" states of the field.

If TESp(K), then 9(T) is the unique *-automorphism of such that
9(T)exp(iR(z)) =exp(iR(Tz)) for all zG77. Any *-automorphism 9 of 21 de-
termines an automorphism 9* of the states defined by 9*E(X) =E(6~1X).
Both 9(-) and 9*(-) axe multiplicative. Clearly for T<ESp(K),9*(T) leaves the
set of pure regular states invariant.

Theorem 6.1. (a) If E and Fare pure regular states and E~ F and TESp(K)
then 9*(T)E~9*(T)F. (b) Let E be a pure regular state and TESp(K). Let
R( • ) on ¡Q and R'(-) on $&' be representatives of the equivalence class of quantiza-
tions determined by E and 9*(T)E respectively. Then there exists a unitary map
Y from $ onto & such that Y'• R(z) = R\Tz) ■ Y for all zG77. (c) With E, T,
R(-) and !q as in (b), E~9*(T)E if and only if there exists a unitary operator
Y on § such that Y-R(z) ■ F-1 = i?(7z) all zEH.

Proof, (a) Since £~F, we have F(X)=E(A*-X-A) for all X and some
A in 21. But then 9*(T)F(X)=9*(T)E(9(T)A*-X-9(T)A). Therefore 9*(T)E
~Ö*(T)F. (b) We take 21 to be realised on §. If ¿G2I, A' denotes the same
observable realised as an operator on «£>'. Let xG>Ê> and yG§' be unit vectors
determining the states E and 9*(T)E respectively. Let Y(Ax) =8(T)A'y.
Then by the result of Kadison cited above, F is everywhere defined and maps
onto £>'. To see that F is well defined suppose Ax = Bx(BEW). Let
C=A-B\\Y(Cx)\\* = (9(T)C'y,9(T)C'y) = F(9(T)(C*-C)) = E(C*-C) = \\Cx\\\
Hence Y(Ax) — Y(Bx) = 0. Replacing C by A above we see that F is unitary.
Finally Y(exp(iR(z)) ■ Ax) =9(T)(exp(iR'(z)) -A')y = exp(iR'(Tz)) -9(T)A'y.
(c) Part (c) follows readily from (b) and proof is omitted.

6.2. Now let R(-) be the Fock-Cook quantization on L2(M, n). The zero-
interaction vacuum state £0 is defined by E0(X) = (A70, 70) for all AG2I. It

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



164 DAVID SHALE [April

is the unique state invariant under the action of U(H) and for which the
free field energy is non-negative [13]. We have immediately by Theorem 4.1
and Lemma 6.1(c)

Corollary 6.1.1. £o~0*(P)£o if and only if TErSp(K).

This answers a question raised in [12].
The class of pure regular states most easily treated mathematically, is

Sr0, the states symplectically related to £0. Specifically Sr0= {E: £~0*(P)£o,
for some TESp(K)}. It follows from a result of Feldman [4], that there are
pure regular states not in Sr0. Now if £~0*(P)£O and F~d*(T')E0, then
£~P if and only if 0*(P_1- P')£0~£o, or equivalently (by Corollary 6.1.1)
if and only if T~l- T'ErSp(K). It follows that the equivalence classes in Sra
are in 1-1 correspondence with the elements of the space © of left cosets of
rSp(K) in Sp(K). For TG© let E(T) be the corresponding class of pure regu-
lar states. LetP<f(") on &f be a representative of the class of unitarily equiv-
alent irreducible quantizations determined by £(T). Extending Theorem 4.1
we have immediately :

Corollary 6.1.2. Let T'ESp(K). There is a unitary operator Y on &f
such that Pf(P'z) = Y-Rf(z) • Y~l for all zEK, if and only if T'ET-rSp(K)
■T-\

Remark 6.1. Given TESp(K) it is an open question whether there exists
irreducible quantization R(-) and a unitary operator F such that R(Tz)
= Y-R(z) ■ Y~1 for all zEK. However if irreducibility is not required such a Y
may be constructed, using Lemma 6.1 (b), with R(-) = © E-^r(') on
§= © E^r, where the summations are over @. It is not clear however that
a projective unitary representation of Sp(K) can be obtained. It is moreover
quite hopeless to attempt to recover "observables" from 1-parameter sub-
groups in Sp(K) in the manner discussed in Remark 4.1. For let P(X)
= \-1I®\I on K = M®M, Xt¿0.

Corollary 6.13. For any Xt^O, 1, and any EESro, d*(TÇX))E and E are
not relatively normalizable.

Proof. Suppose E~d*(T)E0. By Corollary 6.1.2 0*(P(X))£~£ if and only
if T-i-T(\)-TErSp(K). Suppose T->-T(X)-TErSp(K). Then T*-T(X)
.7-*-i.r-i.r(X).rGS^(P)2+. Let A = (T-T*)-\ Then since Sp(K)2 is a
normal subgroup of Sp(K), we have ^4_1-P(X) -A • TÇk)ESp(K)2. Therefore
C=P(X)_1-^4— A -P(X) is Hilbert-Schmidt. Let P be the projection on
K = M®M such that P(xffiy)=0©y. Then C-P = (\-1-\)P-A-P and, if
\.?¿1, P-A-P are Hilbert-Schmidt. But A is self ad joint and strictly positive
since A~l is bounded. Further, the range of P has infinite dimension. Hence
P-A-P cannot be Hilbert-Schmidt. Contradiction.
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6.3. In view of the foregoing it becomes natural to enquire for which
TESp(K) the field automorphisms 9(T) axe inducible by a unitary operator
in every irreducible quantization. The following two theorems give partial
answers.

Theorem 6.2. For TESp(K), 9(T) is inducible by a unitary operator in all
quantizations arising from states symplectically related to the zero interaction
vacuum state £0, if and only if T= ± 7+X with X Hilbert-Schmidt.

Proof. By Corollary 6.1.2, T has the desired property if and only if
TEG= {TE Sp(K) : T'~l -T-T E rSp(K) for all V E Sp(K)}. Let
G' = { TESp(K) : T= +I+X with X Hilbert-Schmidt}. Then G' is a normal
subgroup of Sp(K) and G'ErSp(K). Therefore G'CG. If TEGCrSp(K),
then | T\ ESp(K)2EG'EG. Therefore u(T)EG also. Consequently it is suffi-
cient to show that if T is unitary and TEG then TEG'. We show first that
T~l—T is Hilbert-Schmidt. Now T=exp(iA) with A bounded and self-
adjoint. There is no loss in supposing that A leaves M invariant. Then on
K = M®M, T corresponds to the matrix

(cos A    —sin A\
sin A       cos A /

Now let T(X) be as defined in Corollary 6.1.3. Then T(X)-1- T- T(K)ErSp(K).
Therefore T(X) • T* ■ T(X-2) • T- T(\)ESp(K)f. Therefore C= T(X2) • T*• T(X-2)
• TESp(K)2. A computation gives the matrix corresponding to C—7 as

/ X-4 - 1       0    \ / sin A       0    \ /    sin A    cos A \

\     0      X4-l     /\    0       sin 4/V-cos-4    sin AI

But C—I is Hilbert-Schmidt. It follows that sin A and hence T~1—T axe
Hilbert-Schmidt. Hence T2 = 7+A with X Hilbert-Schmidt. It follows that
T has one of the three following forms: 7+Ai on 77, — 7+Ai on 77, or
(7+A!)©(-7+A2) on H=Hi®H2 where Ai and A2 are Hilbert-Schmidt
and dim 77i and dim 772 are infinite. Suppose T has the latter form and TEG.
By further decomposing 77i and 772 it may be seen that there is no loss in sup-
posing further that dim 77i = dim 772 and that neither 1 or — 1 is in the spec-
trum of Xi or X2. Then (7+Ai)©(7-A2)GG' and T' = 7©-7GG. For
z = x®y in H=Hi®H2, let S(t)z= (cos t-x — sin /-y)ffi(sin i-x+cos t-y).
Then S(t)EU(H) and S(2t) = T'S(t)~1-T'-S(t)EG. But (S(2t)~1-S(2t))z
= 2 sin 2t-y® —2 sin 2/-x which is not Hilbert-Schmidt unless sin 2t = 0. Con-
tradiction. This proves the theorem.

A ""-automorphism 9 of 2t is inner if there is a FG2I such that 9X= Y-X- F-1
for all AG21. Then 9X = (9X*)*= F*-1-A- F*. It follows that Y*-Y is in
the center of 21. It may be assumed without loss that F* ■ F= 7. Consequently
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an inner automorphism is inducible by a unitary operator in every quantiza-
tion.

Theorem 6.3. For TESp(K), 0(P) is inner if and only if TESp(K)0
(i.e. T is tame).

Proof. Let R( • ) be the Fock-Cook quantization on L2(M, n). If TESp(K)o,
it follows from Definition 4.1 that F(P)G2l0. If 0(P) is inner, TErSp(K) and
we may suppose that F= Y(T). Now 9Io is stable under polar decomposition.
Hence given e>0, there exists a unitary operator PGSÍo and based on a sub-
space 77' of 77 with dim 77' finite, such that || Y- U\\ <e and || F"1- U'^ <e.
Then for all zEK, || U-exp(iR(z)) ■ P^-exp^Pz))!! =|| U-exp(iR(z)) ■ U~l
— Y-exp(iR(z)) ■ F_1|| which may be seen to be less than 2e. Now let 77" = H'L
and K' and K" be subspaces in K and M' and M" be subspaces in M cor-
responding to 77' and 77" respectively. Since on P2(M', n) ®L2(M", n) U de-
composes as U'®I, it follows that U commutes with exp(iR(z)) for all
zEK". Hence for zGP", ||exp(íP(^))-exp(¿P(Pz))|| <2e.

Suppose 6<l/2. Then P=7 on K". Otherwise there is a unit vector
z2 = Zi— Pzi with ziEK". Then using the commutation relations (1.1), for any
integer n, we have | (exp(î£(wzi))70, exp(îP(raPzi))70)| = | (exp(îP(wz2))7o, 70)|.
But since 0*(F)£o = £o for all VE U(H), this equals | (exp(î'P(«Fz2))70, 70)|.
Now let F be such that on K = M® M Fz2 = 0ffi —y. Then with the notation
of §4.1, R(nVz2) =nQ(y). By [7, Corollary 3.4], Q(y) is the operation of multi-
plication by (•, y)/(2c)112 on L2(M, n). Consequently (exp(inQ(Y))I0, 70) may
be evaluated as (l/(27rc)1/2)/exp((iwv/(2c)1/2)-y2/2c)dy,=exp(-KV4) the
integral being taken over the reals with regard to Lebesgue measure. We have
for zEK",

sup||exp(tP(z)) - exp(¿P(Pz))||2

^ ||(exp(iP(«zi)) - exp(iP(«rzi)))7o||2

= 2-2 Real ((exp(iP(«zi))70, exp(jP(»Pzi))70))

^ 2 - 2 exp(-«2/4),       for all ».

Hence for zGP\ sup||exp(tP(z)) — exp(i'P(Pz))]|2 = 2.  Contradiction. This
shows that P=7onP:".

Let K'" = K'VJT(K'). Then dim K'" is finite. It may be seen that K'" is
invariant under P. Also since (K'")LCK", T=I on (K'")1. Therefore T is
based on K'" and TESp(K)0. This proves the theorem.
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