
LINEAR SYSTEMS OF DIFFERENCE EQUATIONS
WITH A REGULAR SINGULARITY

W. A. HARRIS, JR.1

1. Introduction. This paper is concerned with the linear system of

difference equations

(1.1) w(z+ 1) = A(z)w(z)

where w is a vector with n components and A is an w by n matrix

which admits the generalized factorial series representation

(1.2) A(z) = z" £ Akz-™,        Re{z} > p,
fc-0

where s-w={z(z+l) • • ■ (z+k-l)}"' and z™ = 1.

In an analogous manner to linear systems of differential equations

with singularities (at z==°) we make the following definitions [l,

p. 73], [5, p. 111].
The system w(z+1) = A (z)w(z) is said to have a singularity of the first

kind if A(z) admits the factorial series representation

00

(1.3) A(z) =7+  2^Akz-w,        Re{z}>p,

and otherwise a singularity of the second kind.

The system w(z + \) =A(z)w(z) is said to have a regular singularity if

there exists a fundamental matrix of the form

(1.4) W(z) = S(z)zR

such that S(z) admits a generalized factorial series representation

(1.5) S(z) = zpl£skz-w,        Re{z} > p.',
k=0

and R is a constant matrix.

Linear systems of difference equations with a singularity of the first

kind have been extensively studied by the author [2] and such sys-

tems are known to have a regular singularity. However, the converse

is not true. Indeed, a necessary and sufficient condition that a linear

system of difference equations w(z + l) =A(z)w(z)  have a regular
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singularity is that there exists a nonsingular matrix T(z) which ad-

mits a generalized factorial series representation such that the trans-

formation w = Tu yields a system u(z+\)=B(z) u(z) which has a

singularity of the first kind, i.e.

00

B(z) = T~l(z + l)A(z)T(z) = 7 + £ Bkz-m.

If A, B and F admit generalized factorial series representations and

detF(z)f^0, we shall denote the equivalence relation B(z)

= T~1(z+l)A(z)T(z) by A~B.

Even though this condition is necessary and sufficient for the

desired structure of a fundamental matrix, it cannot be used to re-

solve the question for a preassigned system. However, the author

[3]2 has given an algorithm to determine whether a given system has

a regular singularity which is contained in the following theorems.

Theorem (Harris). Let A(z) admit a generalized factorial series

representation, A(z) = zp£t°=o Akz~w, A0^0, Re{z}>o. A necessary

condition that the system w(z + l) =A(z)w(z) has a regular singularity

is that p^O, and A0 or A0 — I be nilpotent for p > 0 or p = 0 respectively.

Theorem (Harris). Let A(z) and B(z) admit factorial series repre-

sentations, A(z) = ££.0 Akz~w, B(z) = £T-o BkZ~m, Re{z} >a, and

let Aop^O. A necessary and sufficient condition that A~B such that

r = rank(^4 0 — p7) > rank(F0 — p7) for some p is that the polynomial

n—r

«(X) = \z~* det[X7 + z(A(z) - pi)]] \ _„ =  £ \k<S,k(Ao, Ax)
k=o

vanish identically in A.

In this paper we shall derive necessary conditions for a given sys-

tem w(z + \)=A(z)w(z) to have a regular singularity based on the

characteristic polynomial of the matrix ^4(z). These results parallel

recent results of D. A. Lutz [6] for linear differential systems with a

regular singular point.

The author gratefully acknowledges several stimulating discussions

with Y. Sibuya during the preparation of this paper.

2. Statement of results. It is natural and convenient to associate

with the matrix A (z) the matrix A (z) defined by

(2.1) A(z) = A(z) - I.

1 This paper assumes that T~1(z) also admits a generalized factorial series repre-

sentation; a fact subsequently proved by the author and H. L. Turrittin [4].
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Definition. The symmetric function of rank k of a matrix A is the

coefficient of X"-* in the polynomial

U(X) = det(\7 + A) = X" + ax\n~l + ■ ■ ■ + an.

For a system «(z+l) =B(z)u(z) with a singularity of the first kind

we have: the symmetric function of rank k of the matrix B(z) satisfies

the order condition bk(z) =0(z~k).

Since, for every system w(z + \) =A(z)w(z) with a regular singular-

ity, we have A~B where the system m(z + 1) =B(z)u(z) has a singu-

larity of the first kind, i.e. A(z) = T(z+l)B(z)T~1(z), it is natural to

expect that the orders of the n symmetric functions of A are some-

what restricted. This is indeed the case and we state:

Theorem 1. If the system w(z+\) =A(z)w(z) with

CO

A(z) = z" Y, Akz~[k],        A0 ^ 0, Re{z} > p
fc-0

has a regular singularity, then the symmetric functions of A satisfy

an(z) = 0(z<"-1)5-2 + z~n),        ak(z) = 0(zk"~2 + z~k),

k = 1, • • • , n — 1.

We shall show by example that this result is sharp for all k, n and

e^o.
In the same manner we can also state

Theorem 2. If the system w(z + \) = A(z)w(z) with

00

A(z) = z*J^Akz-w,       Ao^Q, Re{z} > M
k=0

has a regular singularity and we write

CO

A(z) = A(z) - I = s« X) Akz~™,

then

(i)  Ao = Ofor some k^n, i.e. Ao is nilpotent and

(ii) trace (A* Ax) =0 for k=0, 1, • • • , w —1 in case q~^l and for

k = l, 2, • • • , w — 1 in case q = 0.

Even though the order conditions for the symmetric functions

given in Theorem 1 are sharp, they are clearly not sufficient for a

regular singularity. However, we do have the following partial con-

verse to Theorem 1.
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Theorem 3. If
CO

A(z) = z« £ Akz~w,       A0^0,q^0, Re{z} > p.
k=0

and the symmetric functions of A(z)  satisfy ak(z) = 0(zkQ~2+z~'k), k

= 1, 2, • • • , re, then

0)  AJ = 0,
and if Ao ' ^ 0, then

(ii) trace (A^ Ax) =0, k = 0, • • • , re —1 for q^l and k = l, ■ ■ • ,

re — 1 for q = 0.

Note that if re^2, the terms z~n and s~k may be dropped in the

order conditions except for k = 1 when q = 0.

We also have the following characterization of the order conditions.

Corollary. Let A0,~1?£0. Then the symmetric functions of A(z)

satisfy the order conditions ak — 0(zhq~2) if and only if there exists a

transformation matrix P(z) =I+P1z~1 such that

P-i(z + l)A(z)P(z) = z"Ao + 0(z^2),       q ^ 1

= zAo + 1 + 0(z~1),   q = 1.

3. Preliminary lemma. A useful tool for the proof of these theorems

is the following lemma which is a generalization to matrices of fac-

torial series of the fact that an analytic function f(z) ^ 0 with at most

a pole at z= oo can be written in the form/(z) =zag(z) where g(z) is

analytic at z= oo and g(oo)^0.

Lemma. Let T(z) admit a factorial series representation

00

T(z) =  £ TVr-w,        To ^ 0, Re{z) > a.
k—0

Then T(z) can be represented in the form

T(z) = P(z)z-DQ(z)

where P(z) is a polynomial in z~x, det P(z) = 1, Q(z) admits a factorial

series representation

Q(z)= £&z-[*],       det 00^0,
4=0

and

z~D = diag(z~'fi, z-<*2, • • • , z~d")

where 0=t7i^d2^ • • • ^dn are integers.
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For a proof of this Lemma, see Harris [3, p. 257].

4. Proof of Theorem 1. If the system w(z+l) = A(z)w(z) has a

regular singularity, there exists a fundamental matrix of the form

W(z) = S(z)zR and without loss of generality we may assume that

S(z) =   E-fe-i*!,       So ̂  0, Re{z| > a.
A-0

Hence S(z) has the representation given in the preceding Lemma,

S(z) = P(z)z-DQ(z).

Thus

A(z)~B(z) = P-l(z + l)A(z)P(z),

B(z) ~ C(z) = (z + l)DB(z)z-D,

C(z) ~ 77(z) = Q-\z + \)C(z)Q(z) = I + 0(z~1).

Since Q0 is nonsingular, C(z) =I+0(z~1). Writing

B(z) = (z + \)~DC(z)zD = z~D(l + z-l)-»C(z)zD

and noting that (l+z-1)-0 =7+0(z~1), we have that det(\I+B)

= Xn+/>iX"-1+ • • • +b„, where

(4.1) bk(z) = 0(z~k),       k = 1, • • • , ».

We have

A(z) = P(z){B(z) + (P-1(z)P(z + 1) - I)B(z)}P-\z)

= P(z){B(z)+F(z)}P~\z).

Since P~1(z)P(z + l)-I = 0(z-2), F(z)=0(z«~2) and

det(X7 + A) = det(X/ + B + F) = det(X7 + £) +  Z (X/ + B, F),

where Z(X7+5, F) represents the sum of all determinants formed

from k rows of \I+B and n — k rows of F with natural ordering for

Ogfe<w.
If, for a particular determinant, m rows have been taken from F,

lgm|«, there will possibly be a nonzero coefficient of X* for k^n — m

which will be the sum of products oin — m—k elements from B and m

elements from F. Since B = 0(zq) and F = 0(zq~2), the coefficient of

X* will have an order not exceeding

(n — m — k)q + m(q — 2) = (n — k)q — 2m ^ (n — k)q — 2.
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Hence, £(A7+F, F)=fxh"-1+f2\"-2+ ■ • • +/„, where

(4.2) f„ = 0(zk«~2),       k = 1, • • • , n.

Combining (4.1) and (4.2) we have

det(\7 + A) = X" + OiX"-1 + • • • + an

where ak(z) =bk(z)+fk(z) = 0(zkq~2+z~k) which gives the correct order

estimates for ak when q = 0 and for ak, k = l, ■ ■ ■ , re —1 when g=l;

but an(z) = 0(znq~2), re =^2. To obtain the order estimate aH(z)

= 0(z("_1,s-2), <?=^1, we utilize a special property of systems with a

regular singularity; namely, if w(z + l) =A(z)w(z) has a regular singu-

larity, there exists a fundamental matrix of the form W(z) = S(z) zR

and hence

det A(z) = det S(z + 1) det(l + z-^det S(z)]~l = 1 + 0(z~1).

Consider

det(X7 + A) = det[(X + 1)7 + A]

= (\+ 1)" + ax(X + I)""1 + ■ ■ ■ +an.

Hence a„= det A — 1 —ax— ■ ■ • — a„_i and using the preceding order

estimates, we obtain an(z) = <9(z(n~1)5_2), re=±2, which concludes the

proof of Theorem 1.

5. Proof of Theorem 2. As in the proof of Theorem 1, we have

(q^O)

(5.1) B(z) ~ A(z) = P(z + l)F(z)F-1(z)

and

(5.2) C(z) ~ B(z) = z-fl(l + z~l)-DC(z)»

where C(z)=I+0(z-1).

Since F0 is nonsingular, from (5.1) we have

(5.3) Aa = PoBoPo1,        Ax = PoBxPo1 - AoPxPo1 + PxPolA0.

From (5.2) we see that B(z)=z~DG(z)zD, where G(z) =0(z~l). Thus

the ijth element of B(z) satisfies

h3(z) = 0(^-^.-1).

Since the dt are nondecreasing, all the elements on and below the

diagonal are zero for B0 if g = 0, and for B0 and Bx if gs£l. Thus F0

and hence also /f0 is nilpotent and trace (Fj Fi) =0, k = 0, ■ ■ ■ , re —1
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for q^ 1. For q = 0, write BQ = (b%), Bx = (b\}) and note that blv^0,i>j,

implies dk=di for j^k<i and bki = 0(z~1) and hence />w = 0, j^k<i.

Since Z>y = 0, i ^j, we have for k — 1, •••,» — 1

trace(jBoTii) =2      X      h ,, • • • &<*_!<»&<*< = 0.

Using equation (5.3) we have

^Ui = Po^oTJiP^1 - ^*+1PiPr + ^oPiP^^o.

Thus, trace (AJ ^4i) = trace (B* Bx) = 0, and Theorem 2 is proved.

6. Proof of Theorem 3. A satisfies its characteristic equation.

Hence using the order conditions on the symmetric functions we

obtain z-n*A" = 0(z~2), q^l and An— (trace A)An~1 = 0(z-2), q = 0,or

ij = 0 and

^o    Ax + Ao   AxAo + ■ ■ ■ + AxAo     =0,    q ^ 1,

(6.1)

= (trace Ax)A0   ,    q = 0.

Since A0> = 0 and -4J}_1?^0 by hypothesis, there exists a nonsingular

matrix G such that A0 has Jordan canonical form N=G~1A0G with 1

on the superdiagonal and 0 elsewhere. Setting G1 = G~1AxG, equation

(6.1) becomes

N^Gx + N"~2GxN + • • • + Gi/V"-1 = 0,    q ^ 1,

= (trace ^OiV"-1,    q = 0.

A simple computation using the special form of N shows that

trace (NkGx)=0, k = 0, 1, • • • , w-1 for q^l and k = \, ■ ■ ■ , w-1

for g = 0; but trace (iV* Gi) =trace (A* Ax) and Theorem 3 is proved.

Remark. The equation (6.1) is always satisfied if the order condi-

tions ak = 0(zkq~2+z~k) are satisfied. However, if A 0 is not nilpotent

of maximum rank, this equation does not imply that trace (Aq Ax)=0,

k=l, • • • , n — 2.

7. Proof of Corollary. The necessity can be proved as in Theorem 1

and is omitted. To prove sufficiency consider the equation

(7 + Px(z + 1)-X)-M(z)(7 + Piz-1)

= z"Ao + z^{A0Pi - Pi^o + Ax} + 0(z<>-2).

Thus, the sufficiency reduces to showing that the equation

AoPi—PiAo + Ai — 0 has a solution. It is well known that if ^40 is
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nilpotent of maximum rank, i.e. A0i = 0, ^4J}-1^0, then trace (Aq Ax)

= 0,^ = 0, 1, • • • , re —1 is necessary and sufficient for a solution of

this equation (for a proof of this fact with this formulation see Wasow

[7, pp. 102-104]). Since these conditions are satisfied by Theorem 3,

the Corollary is proved.

8. Example. Let A be a maximum rank nilpotent in Jordan form

as given in §6 and R a constant diagonal matrix. Then the system

u(z+\) =B(z)u(z) where B=z"N+I+z~1R has a regular singularity.

This is easily seen since (z+l)DB(z)z~D =I+0(z~1) where D

= diag(0, 2 + 1, 2(g + l), • • • , («-l)(3 + l)).
For any constant matrix E, let P(z) be a solution to the equation

P(z + 1) = (7 + Ez~2)-ip(z),       P(z) = 7 + 0(tr1)

(this is a special case of a singularity of the first kind, see Harris [2]).

The system w(z + l) =A(z)w(z) has a regular singularity if A(z) is

defined as

(8.1) A(z) = P-\z + l)B(z)P(z).

It follows that A(z) =P~l(z) [B(z)+z~2EB(z)]P(z) and hence

det(X7 + A) = det(X7 + B + z~2EB(z)).

Choose the first re —1 rows of E to be zero and the rath row to be

(1, 1, ■ ■ • , 1, 0), F = diag (0, • • • , 0, 1) and note that B+z~2EB
= z«A+z^2FA+z-2F +z~1R.

If Dn(\) =det(\I+A) where A is re by re, then considering re as a

variable, re ̂ 2, it follows that

Dn+x(\) = X7>n(X) + (-1)«+V*-*X + (-xY+2znq-2

and hence by induction that

7J>„(X) = X" + (z«-2 + z-^X"-1

n—1

+    £ (_l)*+l(z*«-2  _|_ z(*-l)«-2)Xn-*  _|_   (_l)n+l2(n-l)«-2)

*_2

and hence the order conditions are sharp for all k, n and q ̂  0.
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