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LINEAR SYSTEMS OF PLANE CURVES
WITH BASE POINTS OF EQUAL MULTIPLICITY

CIRO CILIBERTO AND RICK MIRANDA

Abstract. In this article we address the problem of computing the dimension
of the space of plane curves of degree d with n general points of multiplicity
m. A conjecture of Harbourne and Hirschowitz implies that when d ≥ 3m, the
dimension is equal to the expected dimension given by the Riemann-Roch The-
orem. Also, systems for which the dimension is larger than expected should
have a fixed part containing a multiple (−1)-curve. We reformulate this con-
jecture by explicitly listing those systems which have unexpected dimension.
Then we use a degeneration technique developed to show that the conjecture
holds for all m ≤ 12.

Introduction

Consider the projective plane P2 and n + 1 general points p0, p1, . . . , pn on it.
Let H denote the line class of the plane. Consider the linear system consisting of
plane curves of degree d (that is, divisors in |dH |) with multiplicity at least mi at
pi for i ≥ 0. If all mi for i ≥ 1 are equal, to m say, we denote this system by
L = Ld(m0,m

n) and call the system quasi-homogeneous. If in addition m0 = 0, we
say the system is homogeneous, and denote it simply by Ld(mn).

Define its virtual dimension

v = d(d+ 3)/2−m0(m0 + 1)/2− nm(m+ 1)/2;

the actual dimension of the linear system cannot be less than −1, and hence we
define the expected dimension to be

e = max{−1, v}.
The dimension of L achieves its minimum value for a general set of points;

abusing notation slightly we call this the dimension of L, and denote it by l. We
always have that

l ≥ e;
equality implies (when the numbers are at least −1) that the conditions imposed
by the multiple points are independent.

We will say that the system L is non-special if equality holds, i.e., that either
the system is empty or that the conditions imposed by the multiple points are
independent. If l > e, then we say the system is special.
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The speciality of L is equivalent to a statement about linear systems on the
blowup P′ of P2 at the points pi. If H denotes the class of the pullback of a line
and Ei denotes the class of the exceptional divisor above pi, then the linear system
on P2 transforms to the linear system L′ = |dH −

∑n
i=0 miEi| on P′. Then the

original system L is non-special if and only if

h1(L′) = max{0,−1− v}.
In particular, if the system is non-empty (which means that H0(L′) is non-zero), it
is non-special if and only if the H1 is zero. More precisely if the virtual dimension
v ≥ −1, then non-speciality means that the H1 is zero, or, equivalently, that the
conditions imposed by the multiple base points are linearly independent.

The self-intersection L2 and the genus gL are defined in terms of the transformed
system L′ on the blowup; we have

L2 = d2 −m2
0 − nm2 and 2gL − 2 = d(d − 3)−m0(m0 − 1)− nm(m− 1).

Notice the basic identity:

v = L2 − gL + 1.(0.1)

The intersection number L(d,m0, n,m) · L(d′,m′0, n′,m′), n′ ≤ n, is given by

L(d,m0, n,m) · L(d′,m′0, n
′,m) := dd′ −m0m

′
0 − n′mm′.

1. The Degeneration of the Plane and the Recursion

In this section we describe the degeneration of the plane which we use in the
analysis; for details of the construction we refer to [CM].

Let ∆ be a complex disc around the origin. The product V = P2 × ∆ comes
with the two projections p1 : V → ∆ and p2 : V → P2; let Vt = P2 × {t}.

Blow up a line L in the plane V0 and obtain a new three-fold X with maps
f : X → V , π1 = p1 ◦ f : X → ∆, and π2 = p2 ◦ f : X → P2. The map π1 : X → ∆
is a flat family of surfaces Xt = π−1

1 (t) over ∆. If t 6= 0, then Xt = Vt is a plane
P2, while X0 is the union of the proper transform P of V0 and of the exceptional
divisor F of the blow-up. The surface P is a plane P2 and F is a Hirzebruch surface
F1. They are joined transversally along a curve R which is a line L in P and is the
exceptional divisor E on F.

The Picard group of X0 is the fibered product of Pic(P) and Pic(F) over Pic(R);
a line bundle X on X0 is a line bundle XP on P and a line bundle XF on F which
agree on the double curve R. This means that XP ∼= ØP(d) and XF ∼= ØF(cH − dE)
for some c and d. We will denote this line bundle by X (c, d).

Note that the bundle ØX(P) restricts to P as ØP(−1) and restricts to F as ØF(E).
Let ØX(d) be the line bundle π∗2(ØP2(d)); it restricts to ØP(d) and to ØF(dH−dE)
on F. Let us denote by ØX(d, a) the line bundle ØX(d) ⊗ ØX((d − a)P). The
restriction of ØX(d, a) to Xt, t 6= 0, is isomorphic to ØP2(d), but the restriction to
X0 is isomorphic to X (d, a) We therefore see that all of the bundles X (d, a) on X0

are flat limits of the bundles ØP2(d) on the general fiber Xt of this degeneration.
Fix a positive integer n and another non-negative integer b ≤ n. Let us consider

n− b+ 1 general points p0, p1, . . . , pn−b in P and b general points pn−b+1, ..., pn in
F. These points are limits of n general points p0,t, p1,t, . . . , pn,t in Xt. Consider
then the linear system Lt which is the system Ld(m0,m

n) in Xt
∼= P2 based at the

points p0,t, p1,t, ..., pn,t.
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We now also consider the linear system L0 on X0 which is formed by the divisors
in |X (d, a)| having a point of multiplicity m0 at p0 and points of multiplicity m at
p1, ..., pn. According to the above considerations, any one of the systems L0 (for
any a and b) can be considered as a flat limit on X0 of the system L = Ld(m0,m

n).
We will say that L0 is obtained from L by an (a, b)-degeneration.

We note that the system L0 restricts to P as a system LP of the form
La(m0, n− b)m and L0 restricts to F as a system LF of the form Ld(a,mb). Indeed,
at the level of vector spaces, the system L0 is the fibered product of LP and LF
over the restricted system on R, which is ØR(a).

We denote by `0 the dimension of the linear system L0 on X0. By semicontinuity,
this dimension `0 is at least that of the linear system on the general fiber, i.e.,

`0 = dim(L0) ≥ l = dimLd(m0,m
n).

Therefore we have the following:

Lemma 1.1. If `0 is equal to the expected dimension e of L = Ld(m0,m
n), then

the system L is non-special.

The main result of [CM] was the computation of the dimension `0 of the limit
linear system L0. We will not reproduce the argument here. The dimension `0 is
obtained in terms of the dimensions of the systems LP and LF, and the dimensions
of the subsystems L̂P ⊂ LP and L̂F ⊂ LF consisting of divisors containing the double
curve R. Notice that by slightly abusing notation we have

LP = La(m0,m
n−b),

L̂P = La−1(m0,m
n−b),

LF = Ld(a,mb),

L̂F = Ld(a+ 1,mb);

all of these systems are quasi-homogeneous, which provides the basis for the recur-
sion.

We denote by

vP, vF the virtual dimension of the systems LP, LF,
v̂P, v̂F the virtual dimension of the subsystems L̂P, L̂F,
`P, `F the dimension of the systems LP, LF,
ˆ̀P, ˆ̀F the dimension of the subsystems L̂P, L̂F.

The following lemma gives three useful identities (of polynomials in d, m0, n, m,
a, and b) which the reader can easily check.

Lemma 1.2. v = vP + vF − a = vF + v̂P + 1 = vP + v̂F + 1.

Theorem 1.3. Let rP = `P− ˆ̀P− 1 and rF = `F− ˆ̀F− 1; these are the dimensions
of the restrictions (to R) of the linear systems LP and LF respectively.
(a) If rP + rF ≤ a− 1, then `0 = ˆ̀P + ˆ̀F + 1.
(b) If rP + rF ≥ a− 1, then `0 = `P + `F − a.

2. Homogeneous (−1)-Configurations and the Main Conjecture

A linear system L = Ld(m0,m
n) with L2 = −1 and gL = 0 will be called a

quasi-homogeneous (−1)-class. By (0.1), we see that v = 0, so that every quasi-
homogeneous (−1)-class is effective.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4040 CIRO CILIBERTO AND RICK MIRANDA

Suppose that A is an irreducible rational curve and is a member of a linear
system L = Ld(m0,m

n). If on the blowup P′ of the plane the proper transform
of A is smooth, of self-intersection −1, then we say that A is a (−1)-curve. Such
a linear system L is non-special, of dimension 0. A quasi-homogeneous (−1)-class
containing a (−1)-curve will be called an irreducible (−1)-class.

Definition 2.1. A linear system L is (−1)-special if there are (−1)-curves
A1, . . . , Ar such that L · Aj = −Nj with Nj ≥ 1 for every j and Nj ≥ 2 for
some j, with the residual system M = L −

∑
j NjAj having non-negative virtual

dimension v(M) ≥ 0, and having non-negative intersection with every (−1)-curve.

We refer the reader to [CM] for comments on this definition. We note in par-
ticular that if there are different (−1)-curves Ai and Aj both of which meet L
negatively, then it must be the case that Ai ·Aj = 0. A divisor which is the sum of
pairwise disjoint (−1)-curves will be called a (−1)-configuration.

Every (−1)-special system is special; see Lemma 4.1 of [CM]. The main con-
jecture that we are concerned with is the following restatement of a conjecture of
Hirschowitz (see [Hi3]).

The Main Conjecture 2.2. Every special system is (−1)-special.

Suppose a quasi-homogeneous system Ld(m0,m
n) meets negatively a (−1)-curve

A of degree δ, having multiplicities µ0, µ1, . . . , µn at the points p0, . . . , pn. Since the
points are general, by monodromy we have that for any permutation σ ∈ Σn, L also
meets negatively the (−1)-curve Aσ of degree δ, having multiplicity µ0 at p0, and
having multiplicities µσ(i) at pi for each i ≥ 1. Thus either A is quasi-homogeneous
itself (and all Aσ’s are equal to A) or we obtain a (−1)-configuration formed by
A and the other Aσ’s. Necessarily, this configuration is quasi-homogeneous, and is
homogeneous if the original linear system L is.

In [CM], Proposition 5.16, we classified all homogeneous (−1)-configurations;

Proposition 2.3. The following is a complete list of homogeneous (−1)-configura-
tions:

L1(12) : a line through 2 points,

L2(15) : a conic through 5 points,

L3(23) : 3 lines each passing through 2 of 3 points,

L12(56) : 6 conics each passing through 5 of 6 points,

L21(87) : 7 cubics through 6 points, double at another,

L48(178) : 8 sextics double at 7 points, triple at another.

This list enables us to classify all homogeneous (−1)-special systems; they are
the systems Ld(mn) which intersect one of the above curves negatively.

Theorem 2.4. The (−1)-special homogeneous linear systems are

Ld(m2) with m ≤ d ≤ 2m− 2,

Ld(m3) with 3m/2 ≤ d ≤ 2m− 2,

Ld(m5) with 2m ≤ d ≤ (5m− 2)/2,
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Ld(m6) with 12m/5 ≤ d ≤ (5m− 2)/2,

Ld(m7) with 21m/8 ≤ d ≤ (8m− 2)/3,

Ld(m8) with 48m/17 ≤ d ≤ (17m− 2)/6.

Proof. Let L = Ld(mn) be a homogeneous (−1)-special system. Then L = M +
NA, where A is a homogeneous (−1)-configuration andM is a homogeneous system
with v(M) ≥ 0 and M· A = 0. We have exactly six possibilities for A, and hence
for n, given Proposition 2.3. We take these up in turn, seeking the homogeneous
system M.

A = L1(12): LetM = Lδ(µ2). The condition thatM·A = 0 is that δ = 2µ, so that
M = L2µ(µ2); then v(M) = µ(µ + 2) which is always ≥ 0 if µ is. Therefore the
(−1)-special system L is of the form L =M+NA = L2µ+N ((µ+N)2) with N ≥ 2
and µ ≥ 0. This is a general homogeneous system Ld(m2) with m ≤ d ≤ 2m− 2.

A = L2(15): LetM = Lδ(µ5). The condition thatM·A = 0 is that 2δ = 5µ, so that
there is an integer k ≥ 0 with µ = 2k and δ = 5k, and therefore M = L5k((2k)5).
Then v(M) = 5k(k + 1)/2 which is always ≥ 0 if k is. Therefore the (−1)-special
system L is of the form L =M+NA = L5k+2N ((2k+N)5) with N ≥ 2 and k ≥ 0.
This is a general homogeneous system Ld(m5) with 2m ≤ d ≤ (5m− 2)/2.

A = L3(23): Here A consists of three curves, and the (−1)-curve is A0 ∈ L1(12), a
line through 2 of the three points. LetM = Lδ(µ3). The condition thatM·A = 0
is that δ = 2µ, so that M = L2µ(µ3); then v(M) = µ(µ + 3)/2 which is always
≥ 0 if µ is. Therefore the (−1)-special system L is of the form L = M + NA =
L2µ+3N ((µ+ 2N)3) with N ≥ 2 and µ ≥ 0. This is a general homogeneous system
Ld(m3) with 3m/2 ≤ d ≤ 2m− 2.

A = L12(56): Here A consists of 6 conics, and the (−1)-curve is A0 ∈ L2(15), a conic
through 5 of the 6 points. Let M = Lδ(µ6). The condition that M· A = 0 is that
2δ = 5µ, so that there is an integer k ≥ 0 with µ = 2k and δ = 5k, and therefore
M = L5k((2k)6). Then v(M) = k(k + 3)/2 which is always ≥ 0 if k is. Therefore
the (−1)-special system L is of the form L = M + NA = L5k+12N ((2k + 5N)6)
with N ≥ 2 and k ≥ 0. This is a general homogeneous system Ld(m6) with
12m/5 ≤ d ≤ (5m− 2)/2.

A = L21(87): Here A consists of 7 cubics, and the (−1)-curve is A0 ∈ L3(2, 16),
a cubic double at one point and passing through the other 6 of the 7 points. Let
M = Lδ(µ7); the condition that M · A = 0 is that 3δ = 8µ, so that there is an
integer k ≥ 0 with µ = 3k and δ = 8k, and therefore M = L8k((3k)7). Then
v(M) = k(k + 3)/2 which is always ≥ 0 if k is. Therefore the (−1)-special system
L is of the form L = M + NA = L8k+21N ((3k + 8N)7) with N ≥ 2 and k ≥ 0.
This is a general homogeneous system Ld(m7) with 21m/8 ≤ d ≤ (8m− 2)/3.

A = L48(178): Here A consists of 8 sextics, and the (−1)-curve is A0 ∈ L6(3, 27), a
sextic triple at one point and double at the other 7 of the 8 points. LetM = Lδ(µ8);
the condition thatM·A = 0 is that 6δ = 17µ, so that there is an integer k ≥ 0 with
µ = 6k and δ = 17k, and therefore M = L17k((6k)8). Then v(M) = k(k + 3)/2
which is always ≥ 0 if k is. Therefore the (−1)-special system L is of the form
L =M+ NA = L17k+48N ((6k + 17N)8) with N ≥ 2 and k ≥ 0. This is a general
homogeneous system Ld(m8) with 48m/17 ≤ d ≤ (17m− 2)/6. Q.E.D.
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The reader will notice that the only (−1)-special homogeneous systems occur
when n ≤ 8. In fact the Main Conjecture is true in this range, which is a classical
fact; see [N], [Ha1], [G1], [G2]. The precise statement we will find useful is the
following.

Theorem 2.5. The Main Conjecture is true for all homogeneous linear systems
Ld(mn) with n ≤ 9. In particular every homogeneous linear system Ld(m4) and
Ld(m9) is non-special.

3. The Recursion for Homogeneous Systems

Suppose that we want to investigate the dimension of a homogeneous system
L = Ld(mn). We construct an (a, b) degeneration of the plane and the bundle, and
we are led to studying the four systems

LP = La(0,mn−b),

L̂P = La−1(0,mn−b),

LF = Ld(a,mb),

L̂F = Ld(a+ 1,mb).

We note that the first two systems LP and L̂P are also homogeneous, and so an
opportunity to apply induction presents itself. However, the last two systems LF
and L̂F on F are not homogeneous in general, which spoils the possibility of a
simple-minded induction on this side.

The reader sees that we need a second method to compute the dimensions of these
last two systems. Such a method is provided by using Cremona transformations
when the extra multiplicity (a and a+ 1 in the case of LF and L̂F respectively) are
large with respect to the degree. In [CM] we have made the analysis necessary and
we present the results below.

We first handle the case of a linear system Ld(a,mb) with a = d−m.

Proposition 3.1. Let L = Ld(d−m,mb) with 2 ≤ m ≤ d. Write d = qm+µ with
0 ≤ µ ≤ m− 1, and b = 2h+ ε, with ε ∈ {0, 1}. Then the system L is special if and
only if q = h, ε = 0, and µ ≤ m− 2. More precisely:

(a) If q ≥ h+ 1, then L is nonempty and non-special. In this case

dimL = d(m+ 1)−
(
m

2

)
− b
(
m+ 1

2

)
.

(b) If q = h and ε = 1, the system L is empty and non-special.
(c) If q = h, ε = 0, and µ = m − 1, the system L is nonempty and non-special;

in this case

dimL = (m− 1)(m+ 2)/2.

(d) If q = h, ε = 0, and µ ≤ m− 2, the system L is special; in this case

dimL = µ(µ+ 3)/2.

(e) If q ≤ h− 1, the system L is empty and non-special.

If a > d − m, then in the system Ld(a,mb), the lines through p0 and pi split
off repeatedly, with a residual system having m0 = d − m. Therefore the above
analysis leads to a computation in these cases also.
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Corollary 3.2. Let L = Ld(d−m+ k,mb) with k ≥ 1, and let

L′ = Ld−kb(d− kb−m+ k,m− kb).
Then dimL = dimL′ and L is non-special unless either

(a) k ≥ 2 and L′ is nonempty and non-special, or
(b) L′ is special.

Finally, one is able to make reductions also in the case when m0 = d−m− 1.

Proposition 3.3. Let L = Ld(d − m − 1,mb) with 2 ≤ m ≤ d − 1. Write d =
q(m− 1) +µ with 0 ≤ µ ≤ m− 2, and b = 2h+ ε, with ε ∈ {0, 1}. Then the system
L is non-special of virtual dimension d(m+ 2)− (b+ 1)m(m+ 1)/2 unless

(a) q = h+ 1, µ = ε = 0, and (m− 1)(m+ 2) ≥ 4h, in which case

dimL = (m− 1)(m+ 2)/2− 2h,

or
(b) q = h, ε = 0, and 4q ≤ µ(µ+ 3), in which case dimL = µ(µ+ 3)/2− 2q.

These statements above are taken directly from [CM]; for the argument below
we need to extract the following specific information.

Corollary 3.4. Let L = Ld(d−m+k,mb). Suppose that 2 ≤ m ≤ d and b = 2h+1
is odd. If −1 ≤ k ≤ 1, then L is non-special.

4. The Induction Step for Large d

Suppose now we want to prove the Main Conjecture for systems Ld(mn). As
noted above, the degeneration method gives a bound (namely the dimensions of
the limit system `0) for dim(L) in terms of the four dimensions `P, ˆ̀P, `F, and ˆ̀F.
The last two are obtained with the results of the previous section. The first two
will be assumed to be non-special by induction. With this approach we are able to
prove the following theorem, whose statement requires a bit of notation.

Define the function

dlow(γ, h) =

(
m
2

)
+
(
γ+1

2

)
+ (2h+ 1)

(
m+1

2

)
−mγ − 1

m+ 1− γ ;

notice that it is also a function of m, which we suppress. Set

D(m) = max{b23m+ 16
6

c, ddlow(−1, dm
2 − 1

3m+ 4
e)e}.

For m large D(m) is asymptotically m2/3.

Theorem 4.1. Fix m ≥ 2 and let D = D(m) be as defined above. Suppose that
the Main Conjecture holds for all linear systems Ld(mn) with d < D. Then the
Main Conjecture holds for all linear systems Ld(mn).

Proof. We go by induction on d, and therefore fix a d ≥ D(m), and we assume that
the Main Conjecture holds for all linear systems Ld′(mn) with d′ < d. We first take
up the case when v < 0, and must show then that the system Ld(mn) is empty,
because when d ≥ D(m), there are no (−1)-special systems.

To prove that this system is empty, it suffices to find an (a, b)-degeneration
such that the limit dimension `0 = −1. By Theorem 1.3(a), it suffices to have
`P + `F ≤ a− 1 and ˆ̀P = ˆ̀F = −1.
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We take care to choose b = 2h+ 1 odd, and a ∈ {d−m− 1, d−m, d−m+ 1},
so that by Corollary 3.4 the system LF = Ld(a,mb) is non-special.

Since d ≥ D(m), in particular we have a− 1 > (17m− 2)/6, so that by Theorem
2.4 the systems LP and L̂P are not (−1)-special, and therefore by induction they
are not special.

We first claim that with these assumptions, if ˆ̀P = ˆ̀F = −1, the condition that
`P + `F ≤ a − 1 (which is equivalent to rP + rF ≤ a − 1) is automatic. Indeed,
if either one of the systems LP or LF are empty, then it is obvious (because the
restricted systems whose dimensions are rP and rF both are subsystems of the
complete system |ØR(a)| on the double curve R). If neither is empty, then because
they are non-special, we have `P = vP and `F = vF so that by Lemma 1.2 we see
that `P + `F = v + a ≤ a− 1 since v ≤ −1 in this case.

We are left with imposing that ˆ̀P = ˆ̀F = −1. Let us write a = d − m + γ
with γ ∈ {−1, 0, 1}. For the system L̂F = Ld(a + 1,mb), we remark that the b
lines through p0 and the pi’s each splits off γ+ 1 times, leaving the residual system
Ld−b(γ+1)(d−m+γ+1−b(γ+1),m−(γ+1)b), which by Corollary 3.4 is non-special
since b is odd. Therefore ˆ̀F = −1 if the virtual dimension of this residual system
is negative. This leads to the inequality

d ≤ dhigh(γ, h) := m+ hm− 1 + h+ hγ.

For the system L̂P = La−1(mn−b), we simply impose that v̂P ≤ v, which gives
the inequality

d ≥ dlow(γ, h).

We therefore obtain an inductive proof for this d if we are able to choose γ and
b = 2h+ 1 with d in the interval [dlow(γ, h), dhigh(γ, h)].

Both dlow and dhigh are increasing functions of γ. It is a remarkable fact that

dhigh(−1, h) = dlow(0, h) and dhigh(0, h) = dlow(1, h)

for every h. Therefore for a fixed h the three intervals (given by the three values of γ)
match perfectly to give a single larger interval, and if d is in this larger interval, we
have executed the inductive proof. This larger interval is [dlow(−1, h), dhigh(1, h)].

We now want to vary h, and show that all integral d’s larger than D(m) are in
one of these larger intervals. This will be the case if the gap between the upper
end of one interval dhigh(1, h) is within one of the lower end of the next interval
dlow(−1, h+1), since dhigh(1, h) is an integer. This condition is that the difference
is at most one, i.e.

1 ≥ dlow(−1, h+ 1)− dhigh(1, h)

=
m2 +m+ 1− 3mh− 4h

m+ 2
,

which is equivalent to

h ≥ m2 − 1
3m+ 4

.(4.2)

We note in passing that h can be chosen to be this big; this requires that n be large
enough, which it is since v < 0. Specifically, we need b = 2h+ 1 < n, so that it is
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enough if n ≥ (2m2 − 2)/(3m + 4); since d(d + 3) < nm(m + 1), and d ≥ D(m),
this is guaranteed.

Therefore as soon as h is this big, there are no integers d which fail to be in one
of the desired intervals. These intervals begin at

ddlow(−1, dm
2 − 1

3m+ 4
e)e,

and since D(m) is at least this quantity by assumption, we are done.
We must now address the case when the virtual dimension v is non-negative,

and we must show that the actual dimension l is equal to the expected dimension
v. For this we assume that v is non-negative, but that for this d and m the n is
maximal with v ≥ 0. If we are able to prove that for these d, n, and m we have
v = l, then for all smaller n’s we will also have v = l: if the conditions imposed
by n general multiple points are independent, then the conditions imposed by any
fewer points are.

It suffices to find an (a, b)-degeneration such that the limit dimension is `0 = v.
By Theorem 1.3(b), it suffices to have rP + rF ≥ a− 1 and `P + `F − a = v.

We will try to find a and b such that LP and LF are non-special with virtual
dimension at least −1; if this is the case, then `P = vP and `F = vF, and so we will
obtain `P + `F − a = v automatically using Lemma 1.2.

Again we will take b = 2h+1 odd, and a = d−m+γ with γ ∈ {−1, 0, 1}, so that
by Corollary 3.4 the system LF = Ld(a,mb) is non-special. Its virtual dimension is

vF = d(m+ 1− γ)−
(
γ + 1

2

)
−m2 +mγ − hm2 − hm

which we need to be at least −1. Requiring vF ≥ −1 is, by Lemma 1.2, equivalent
to requiring v̂P ≤ v, which we have already noted above in the first part of the
proof is the inequality

d ≥ dlow(γ, h).

We now also require that L̂F is empty; the same analysis as we did in the v < 0
case above shows that this is implied by

d ≤ dhigh(γ, h) = m+ hm− 1 + h+ hγ.

Since ˆ̀F ≥ v̂F, this will also imply that v̂F < 0; by Lemma 1.2, this imposes that
vP ≥ v.

Since d ≥ D(m), in particular we have a− 1 > (17m− 2)/6, so that by Theorem
2.4 the systems LP and L̂P are not (−1)-special, and therefore by induction they
are not special. In particular because vP ≥ v ≥ 0, we have that LP is non-empty
and non-special.

At this point we have `F + `P − a = v, so we need only address the inequality
rP + rF ≥ a− 1, which is equivalent to v ≥ ˆ̀P + ˆ̀F + 1 = ˆ̀P.

If ˆ̀P = −1, this inequality holds. Otherwise, since L̂P is non-special, ˆ̀P = v̂P,
and the inequality follows from Lemma 1.2.

We therefore obtain an inductive proof for this d if we are able to choose γ and
b with d in the interval [dlow(γ, h), dhigh(γ, h)]. At this point the reader sees that
the proof goes identically as in the v < 0 case, and we are finished.

The only point to check is that we can take h to be large enough to satisfy
(4.2). Again this involves an inequality on n, and here (and only here) we use the
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Table 1.

m 2 3 4 5 6 7 8 9 10 11 12
3m+ 1 7 10 13 16 19 22 25 28 31 34 37

D(m)− 1 9 13 17 20 24 28 32 36 40 50 55

assumption that we have the maximum n with v ≥ 0. The reader can check that
this is sufficient. Q.E.D.

By analysing the above proof, one sees that in the induction, we only use that LP
and L̂P are non-special, and for this we need that the Main Conjecture holds for the
systems Ld−m−2(mn−b), Ld−m−1(mn−b), Ld−m(mn−b), and Ld−m+1(mn−b). This
remark allows us to deduce the following.

Corollary 4.3. Fix m ≥ 2 and let D = D(m) as defined above. Suppose that there
is an N ≥ D(m)−1 such that the Main Conjecture holds for linear systems Ld(mn)
with N −m − 1 ≤ d ≤ N . Then the Main Conjecture holds for all linear systems
Ld(mn) with d ≥ N .

5. Proof of the Main Conjecture for m ≤ 12

Suppose we want to prove the Main Conjecture for a fixed degree d and fixed
multiplicity m and all numbers of points n. There is a critical number n0 = n0(d,m)
such that the virtual dimension of Ld(mn0) is non-negative, but that of Ld(mn0+1)
is negative. If one can show that the critical system Ld(mn0) is non-special, and
that the system Ld(mn0+1) is empty, then Ld(mn) will be non-special for all n.

Proposition 5.1. Fix m and d ≤ 3m. Then for all n the Main Conjecture holds
for the homogeneous linear system Ld(mn).

Proof. We know that the Main Conjecture holds for all n ≤ 9. Therefore if d and
m are fixed with n0(d,m) ≤ 8, then the Main Conjecture will hold for all n. This
is true if d < 3m.

If d = 3m, then n0 = 9, and the linear system L3m(m9) is non-special, of
dimension 0, consisting of the unique multiple cubic through the 9 general points.
Therefore the system L3m(m10) is empty. Q.E.D.

Using Theorem 4.1 and the previous proposition, the Main Conjecture for a
fixed m and all d and n will follow if one can show that for all d in the interval
[3m+ 1, D(m)− 1], the system Ld(mn0) is non-special and the system Ld(mn0+1)
is empty.

These intervals for m ≤ 12 are given in Table 1.
We have shown in Theorem 4.1 that the degeneration method will always work

for investigating the system Ld(mn) when d ≥ D(m), reducing the computation
to the knowledge of the dimensions of homogeneous systems with lower d and n.
For smaller values of d the method often works anyway; the estimates given in the
proof of the Theorem simply do not guarantee a suitable (a, b)-degeneration, but
usually one exists, even for d’s in the middle range [3m+ 1, D(m)− 1].

We have written a computer program to investigate, for a fixed m, all d’s in this
middle range, and the two critical values of n, namely n0 and n0 + 1, searching for
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Table 2

d n m v (a, b)
7 12 2 -1 (4,8)
8 15 2 -1 (5,9)
9 18 2 0 (6,9)
9 19 2 -3 (6,12)
10 11 3 -1 (6,7)
11 13 3 -1 (7,7)
12 15 3 0 (8,8)
13 16 3 -6 (9,8)
13 10 4 4 (7,7)
13 11 4 -6 (7,7)
14 12 4 -1 (8,8)
15 13 4 5 (9,9)
15 14 4 -5 (10,7)
16 15 4 2 (11,8)
16 16 4 -8 (11,9)
17 17 4 0 (11,10)
17 18 4 -10 (11,11)

d n m v (a, b)
16 10 5 2 (9,7)
16 11 5 -13 (9,7)
17 11 5 5 (11,7)
17 12 5 -10 (10,8)
18 12 5 9 (11,8)
18 13 5 -6 (12,7)
19 14 5 -1 (14,7)
20 15 5 5 (14,7)
20 16 5 -10 (14,9)
19 10 6 -1 FAIL
20 11 6 -1 (12,7)
21 12 6 0 (16,5)
21 13 6 -21 (12,9)
22 13 6 2 (15,7)
22 14 6 -19 (15,7)
23 14 6 5 (16,7)
23 15 6 -16 (16,8)

d n m v (a, b)
24 15 6 9 (16,8)
24 16 6 -12 (16,9)
22 9 7 23 (16,5)
22 10 7 -5 FAIL
23 10 7 19 (17,5)
23 11 7 -9 (17,5)
24 11 7 16 (18,5)
24 12 7 -12 (19,5)
25 12 7 14 (19,5)
25 13 7 -14 (19,6)
26 13 7 13 (18,7)
26 14 7 -15 (18,7)
27 14 7 13 (19,7)
27 15 7 -15 19,7)
28 15 7 14 (19,8)
28 16 7 -14 (19,9)

d n m v (a, b)
25 9 8 26 (18,5)
25 10 8 -10 FAIL
26 10 8 17 (15,7)
26 11 8 -19 (19,5)
27 11 8 9 (20,5)
27 12 8 -27 (16,8)
28 12 8 2 (16,8)
28 13 8 -34 (15,9)
29 12 8 32 (20,6)
29 13 8 -4 (20,7)
30 13 8 27 (21,6)
30 14 8 -9 (21,7)
31 14 8 23 (22,7)
31 15 8 -13 (20,9)
32 15 8 20 (21,9)
32 16 8 -16 (21,9)
28 9 9 29 (20,5)
28 10 9 -19 FAIL

d n m v (a, b)
29 10 9 14 FAIL
29 11 9 -31 (21,5)
30 11 9 0 (18,7)
30 12 9 -45 (17,8)
31 11 9 32 (20,7)
31 12 9 -13 (18,8)
32 12 9 20 (24,5)
32 13 9 -25 (18,9)
33 13 9 9 (22,7)
33 14 9 -36 (22,8)
34 14 9 -1 (24,7)
35 14 9 35 (26,6)
35 15 9 -10 (25,7)
36 15 9 27 (24,8)
36 16 9 -18 (24,9)
31 9 10 32 (21,5)
31 10 10 -23 FAIL
32 10 10 10 FAIL

d n m v (a, b)
32 11 10 -45 (19,7)
33 10 10 44 (19,7)
33 11 10 -11 (20,7)
34 11 10 24 (21,7)
34 12 10 -31 (19,8)
35 12 10 5 (20,8)
35 13 10 -50 (19,9)
36 12 10 42 (27,5)
36 13 10 -13 (24,7)
37 13 10 25 (25,7)
37 14 10 -30 (26,7)
38 14 10 9 (27,7)
38 15 10 -46 (24,9)
39 14 10 49 (28,7)
39 15 10 -6 (28,7)
40 15 10 35 (27,8)
40 16 10 -20 (27,9)

d n m v (a, b)
34 9 11 35 (23,5)
34 10 11 -31 FAIL
35 10 11 5 FAIL
35 11 11 -61 (22,7)
36 10 11 42 (21,7)
36 11 11 -24 (22,7)
37 11 11 14 (23,7)
37 12 11 -52 (27,6)
38 11 11 53 (27,5)
38 12 11 -13 (22,8)
39 12 11 27 (23,8)
39 13 11 -39 (26,7)
40 13 11 2 (27,7)
40 14 11 -64 (26,8)
41 13 11 44 (28,7)
41 14 11 -22 (29,7)
42 14 11 21 (27,8)
42 15 11 -45 (27,9)
43 15 11 -1 (31,7)
44 15 11 44 (29,9)
44 16 11 -22 (29,9)
45 16 11 24 (30,9)
45 17 11 -42 (31,9)

d n m v (a, b)
46 17 11 5 (32,9)
46 18 11 -61 (29,11)
47 17 11 53 (31,10)
47 18 11 -13 (32,10)
48 18 11 36 (35,9)
48 19 11 -30 (32,11)
49 19 11 20 (34,10)
49 20 11 -46 (35,10)
50 20 11 5 (35,10)
50 21 11 -61 (35,11)
37 9 12 38 (25,5)
37 10 12 -40 FAIL
38 10 12 -1 FAIL
39 10 12 39 FAIL
39 11 12 -39 (28,5)
40 11 12 2 (24,7)
40 12 12 -76 (29,6)
41 11 12 44 (25,7)
41 12 12 -34 (24,8)
42 12 12 9 (24,8)
42 13 12 -69 (23,9)
43 12 12 53 (25,8)
43 13 12 -25 (29,7)

d n m v (a, b)
44 13 12 20 (30,7)
44 14 12 -58 (28,8)
45 13 12 66 (31,7)
45 14 12 -12 (32,7)
46 14 12 35 (33,7)
46 15 12 -43 (29,9)
47 15 12 5 (34,7)
47 16 12 -73 (31,9)
48 15 12 54 (32,8)
48 16 12 -24 (32,9)
49 16 12 26 (33,9)
49 17 12 -52 (32,10)
50 17 12 -1 (34,9)
51 17 12 51 (36,9)
51 18 12 -27 (34,10)
52 18 12 26 (35,10)
52 19 12 -52 (35,10)
53 19 12 2 (39,9)
53 20 12 -76 (38,10)
54 19 12 57 (40,8)
54 20 12 -21 (38,10)
55 20 12 35 (39,10)
55 21 12 -43 (39,11)
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Table 3

d n m v reason for truth of the Main Conjecture
19 10 6 -1 [Hi1], or implied by L38(1210)
22 10 7 -5 restrict L38(1210)
25 10 8 -10 D − 3K, or restrict L38(1210)
28 10 9 -16 D − 4K, or restrict L38(1210)
29 10 9 14 D − 4K +H
31 10 10 -23 D − 5K, or restrict L38(1210)
32 10 10 10 D − 5K +H
34 10 11 -31 D − 6K, or restrict L38(1210)
35 10 11 5 D − 6K +H
37 10 12 -40 D − 7K, or implied by (or restrict) L38(1210)
38 10 12 -1 Gimigliano’s Thesis [G1]
39 10 12 39 implied by L38(1210)

a suitable a and b to execute the recursion which comes from the (a, b)-degeneration.
If the program successfully finds an a and b, it outputs the values and goes on to
the next case. If the program does not find any suitable a and b, the value of d and
the critical n for which the recursion fails is printed.

We present in Table 2, for each m with 2 ≤ m ≤ 12, for each d with 3m+1 ≤ d ≤
D(m)−1, and for the critical values n0 and n0 + 1, a suitable a and b for which the
recursion succeeds. We leave it to the reader to check the details of these finitely
many computations. We note that when the virtual dimension of Ld(mn0+1) is
exactly −1, a proof for that system suffices for the n0 system as well.

For those linear systems for which the method fails, one must argue in a different
way; if one can successfully show that these finitely many systems are non-special,
then one has proved that all homogeneous linear systems Ld(mn) with this fixed
multiplicity m satisfy the Main Conjecture. These finitely many systems for m ≤ 12
which we must deal with are presented in Table 3.

In the last column of Table 3, for the reader’s convenience, we have given an
abbreviated description of the argument or the reference used below to show that
these systems all satisfy the Main Conjecture (and hence all have the expected
dimension). Notationally, D represents a general element of the system L16(510),
K is the canonical class, and H is the line class.

Theorem 5.2. For every linear system Ld(mn) with m ≤ 12, the Main Conjecture
is true.

Proof. For m ≤ 5, the degeneration method works in every case, and there is
nothing more to do. For 6 ≤ m ≤ 12, the degeneration method reduces us to
checking each of the 12 cases presented above. These we take up in turn.

First, in the thesis of Gimigliano [G1], he uses the Horace Method developed in
[Hi1] to prove that the system L = L38(1210) is empty. Since its virtual dimension
is −1, this implies that both H0 and H1 of this system (as a complete linear system
on the blowup of the plane at the 10 general points) are zero. If we denote by H
the line class on blowup, then of course the system L −H = L37(1210) must also
be empty.
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Consider the system L+H = L39(1210). Restricting this to a general line gives
the short exact sequence

0→ L→ L+H → ØH(39)→ 0,

and since we have that H1(L) = H1(ØH(39)) = 0, we see that also H1(L+H) = 0;
therefore L+H is non-special, of dimension 39 as expected.

The system L19(610) must also be empty, since if it contained an effective divisor
F , then 2F would be a member of L39(1210). This system L19(610) was also shown
to be empty by the Horace Method in [Hi1]. We note for the argument below that
since the virtual dimension of L19(610) is −1, its emptyness implies that its H1 is
zero.

Finally, the emptyness of L38(1210) also implies the emptyness of several other
systems of the form Ld(m10) with negative virtual dimension v. Suppose on the
contrary that an effective divisor C existed in the system Ld(m10). Taking the ideal
sequence of C and twisting by the line bundle corresponding to the linear system
L38(1210) gives

0→ L38−d((12 −m)10)→ L38(1210)→ L38(1210)|C → 0

which gives a contradiction if the virtual dimension of the kernel system
L38−d((12 − m)10) is non-negative; then the sheaf on the left will have sections,
while that in the middle does not. This argument is successful for proving the
emptyness of L22(710) (where the kernel system is L16(510)), L25(810) (the kernel
system is L13(410)), L28(910) (the kernel system is L10(310)), L31(1010) (the kernel
system is L7(210)), and L34(1110) (the kernel system is L4(110)).

An alternate argument for most of these empty systems is as follows. Consider
the system L16(510), which is non-special of dimension 2; let D be a general divisor
in this system. Note that D is irreducible, since if not, by symmetry, any irreducible
component would have to generate (under the permutation group of the 10 points)
a homogeneous linear system Lδ(µ10), all of whose members were components of
D. Since we would have µ ≤ 5, and these systems would have to have non-negative
expected dimension, we would need δ ≥ 4 if µ = 1, δ ≥ 7 if µ = 2, δ ≥ 10 if µ = 3,
and δ ≥ 13 if µ = 4. But then dimLδ(µ10) would be at least 3, contradicting the
fact that the dimension of |D| is 2.

Consider the systems D−mK; since (D−mK)·D = 6−2m, and D is irreducible
and effective with D2 > 0 and dim |D| = 2, we see that |D−mK| is empty as soon
as m ≥ 3. This shows that the systems L25(810) (m = 3), L28(910) (m = 4),
L31(1010) (m = 5), L34(1110) (m = 6), and L37(1210) (m = 7) are all empty.

The above arguments handle all of the cases where the virtual dimension is
negative. We now turn to the remaining three cases where the virtual dimension is
positive.

Consider H−(m−1)K = L3m−2((m−1)10); its virtual dimension is non-negative
for m ≤ 6. Let C be a general member of this system. An argument as above shows
that C is irreducible; denote by g its arithmetic genus. Specifically, these systems
are given in Table 4.

Note that in all cases (D −mK + H) · C is at least 2g, so that the restricted
system (D −mK +H)|C is non-special on C. Using the exact sequence

0→ D −K = L19(610)→ D −mK +H → (D −mK +H)|C → 0
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Table 4

m H − (m− 1)K g (D −mK +H) · C
3 L7(210) 5 22
4 L10(310) 6 20
5 L13(410) 6 16
6 L16(510) 5 10

we see that since H1(L19(610)) = 0, we have H1(D −mK + H) = 0 too, proving
that these four systems are non-special. For 3 ≤ m ≤ 6 these systems are L26(810)
(m = 3), L29(910) (m = 4), L32(1010) (m = 5), and L35(1110) (m = 6); this
provides an alternate proof for L26(810) for which the degeneration method also
worked (in fact, using a = 15 and b = 7).

This completes the analysis of all systems for which the degeneration method
failed, and finishes the proof. Q.E.D.
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