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Tropical Arithmetic

We work over the tropical semi-ring

(R ∪ {−∞},⊕,⊙)

where a ⊕ b = max(a, b) and a ⊙ b = a + b.
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(R ∪ {−∞},⊕,⊙)

where a ⊕ b = max(a, b) and a ⊙ b = a + b.

Notice that a + max(b, c) = max(a + b, a + c), so we have the tropical
distributive law

a ⊙ (b ⊕ c) = (a ⊙ b) ⊕ (a ⊙ c).
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Tropical Arithmetic

We work over the tropical semi-ring

(R ∪ {−∞},⊕,⊙)

where a ⊕ b = max(a, b) and a ⊙ b = a + b.

Notice that a + max(b, c) = max(a + b, a + c), so we have the tropical
distributive law

a ⊙ (b ⊕ c) = (a ⊙ b) ⊕ (a ⊙ c).

We also have the tropical commutative and associative laws. Also,

a ⊕ (−∞) = a and b ⊙ 0 = b

for any a and b, so we have additive and multiplicative identities.

Lastly, we have multiplicative inverses, but we do not have additive
inverses.
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Tropical Polynomials

We can form Tropical Polynomials such as

P = x⊙3 ⊕ 2 ⊙ x ⊕ 0 = max(3x , 2 + x , 0).

0

x+2 3x

Trop(P)

A tropical polynomial is a piecewise linear function with integer slopes,
whose image is convex, and a finite number of linear pieces.
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Tropical Rational Functions

A Tropical Rational Function is also a piecewise linear function of the
same form, but the requirement of convexity is dropped.

The image of a Tropical Rational Function:

z
z z

p
p

p p

z

A zero of the Tropical Rational Function is a point where the slope
increases, and a pole is a point where the slope decreases.

Notice that the image is convex at zeros, but is concave at poles.
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Tropical Curves

The Corner Locus of a Tropical Function is the set of all points where the
slope changes (i.e. the maximum is achieved twice.)

1 − D: the corner locus would be the set of zeros and poles.

2−D: The corner locus looks like a Metric Graph (plus unbounded rays).

Tropical Line: a ⊙ x ⊕ b ⊙ y ⊕ c and Tropical Cubic:
⊕

i+j≤3 x iy j .

The Degree of the polynomial equals the # of rays in each direction.

x+a is max

y+b is max

 c is max

(c−a, c−b)
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Tropical Riemann-Roch

An Abstract Tropical Curve Γ is simply a Metric Graph, where we allow
leaf edges to be of infinite length. The genus of Γ is g(Γ) = |E | − |V |+ 1.

Examples (Finite portions of Genus 2):
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Tropical Riemann-Roch

An Abstract Tropical Curve Γ is simply a Metric Graph, where we allow
leaf edges to be of infinite length. The genus of Γ is g(Γ) = |E | − |V |+ 1.

Examples (Finite portions of Genus 2):

A Chip Configuration C of Γ is a formal linear combination of points of Γ:

C =
∑

P

cPP (only finitely many cP
′s are nonzero).

The Canonical Chip Configuration K is the sum

K = K (Γ) =
∑

V∈Γ

(deg(V ) − 2)V .

A certain rank function r(C ) satisfies Riemann-Roch: (Baker-Norine ’07)

r(C ) − r(K − C ) = deg C + 1 − g(Γ).
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Tropical Linear Systems

Given a tropical rational function f , we let ordP (f ) denote the sum of the
outgoing slopes locally at point P with respect to the function f .

The Chip Configuration of f is defined as (f ) =
∑

P∈Γ ordP(f )P .

Examples: g1 =

4P

P2

1

P3

P

, g2 =
3

Q2

Q1

Q

.

Then (g1) = −P1 + P2 + P3 − P4. and (g2) = −2Q1 + Q2 + Q3.
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Tropical Linear Systems

Given a tropical rational function f , we let ordP (f ) denote the sum of the
outgoing slopes locally at point P with respect to the function f .

The Chip Configuration of f is defined as (f ) =
∑

P∈Γ ordP(f )P .

Examples: g1 =

4P

P2

1

P3

P

, g2 =
3

Q2

Q1

Q

.

Then (g1) = −P1 + P2 + P3 − P4. and (g2) = −2Q1 + Q2 + Q3.

Can also think of these transformations as weighted chip-firing moves.

The Tropical Linear System of C (following Gathmann-Kerber):

|C | = {C ′ ≥ 0 : C ′ = C + (f ) for some tropical rational funciton f }.
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Tropical Linear Systems (Example Continued)

For Γ =

11

with C as specified, we have |C | is

1 1

2 2
2

2 2.

The Linear System |C | contains six 0-cells, seven 1-cells and two 2-cells.
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|C | and R(C ) as polyhedral cell complexes

Recall |C | = {C ′ ≥ 0 : C ′ = C + (f ) for some tropical rational function f }.

Let R(C ) = {f : C +(f ) ≥ 0}. This is a tropical semi-module of functions.
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|C | and R(C ) as polyhedral cell complexes

Recall |C | = {C ′ ≥ 0 : C ′ = C + (f ) for some tropical rational function f }.

Let R(C ) = {f : C +(f ) ≥ 0}. This is a tropical semi-module of functions.

First observation: R(C ) is naturally embedded in R
Γ and |C | is a subset

of the dth symmetric product of Γ, where d = deg C .
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|C | and R(C ) as polyhedral cell complexes

Recall |C | = {C ′ ≥ 0 : C ′ = C + (f ) for some tropical rational function f }.

Let R(C ) = {f : C +(f ) ≥ 0}. This is a tropical semi-module of functions.

First observation: R(C ) is naturally embedded in R
Γ and |C | is a subset

of the dth symmetric product of Γ, where d = deg C .

Let 1 denote the set of constant functions on Γ. (Note that if f is
constant, then the chip configuration (f ) = 0.)

In fact, there is the natural homeomorphism:

R(C )/1 −→ |C |

f 7→ C + (f ).

So a linear system can be described also by tropical rational functions
modulo tropical multiplication (i.e. translation by adding a a constant
function). Only local slope changes matter, not the function values.
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Back To Barbell Example

In terms of tropical rational functions, we obtain the following labeling of
the polyhderal complex’s vertices instead:

f
ff2

f

3

0

1
f5 f4

Each of the 1-cells and 2-cells are tropically convex.

Musiker (University of Minnesota) Linear Systems on Tropical Curves August 5, 2010 11 / 19



Back To Barbell Example

In terms of tropical rational functions, we obtain the following labeling of
the polyhderal complex’s vertices instead:

f f4ff2

f

3

0

1f
5

g

Each of the 1-cells and 2-cells are tropically convex. For example,

g = f1 ⊕ (+1/4 ⊙ f5) =
Musiker (University of Minnesota) Linear Systems on Tropical Curves August 5, 2010 11 / 19



Back To Barbell Example

In terms of tropical rational functions, we obtain the following labeling of
the polyhderal complex’s vertices instead:

f f4ff2

f

3

0

1f
5

g

Each of the 1-cells and 2-cells are tropically convex. For example,

g = f1 ⊕ (+1/4 ⊙ f5) = .
Musiker (University of Minnesota) Linear Systems on Tropical Curves August 5, 2010 11 / 19



Back To Barbell Example

In terms of tropical rational functions, we obtain the following labeling of
the polyhderal complex’s vertices instead:

f f4ff2

f

3

0

1f
5

h

Each of the 1-cells and 2-cells are tropically convex. Second example,

h = f0 ⊕ (+1/4 ⊙ f1) ⊕ (+1/3 ⊙ f4) =
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Back To Barbell Example (Continued)

1
ff2 3

f

f0

f5 f4

In particular, every tropical rational function on Γ is the tropical convex
hull of the 0-cells {f0, f1, . . . , f5}.
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Back To Barbell Example (Continued)

f
ff2

f

3

0

1
f5 f4

In particular, every tropical rational function on Γ is the tropical convex
hull of the 0-cells {f0, f1, . . . , f5}.

More strongly, every tropical rational function on Γ is tropical convex hull
of {f0, f2, f3}. Generators of this minimal set are called extremals.
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Back To Barbell Example (Continued)

f f4ff2

f

3

0

1f
5

g

In particular, every tropical rational function on Γ is the tropical convex
hull of the 0-cells {f0, f1, . . . , f5}.

More strongly, every tropical rational function on Γ is tropical convex hull
of {f0, f2, f3}. Generators of this minimal set are called extremals.

For example, g = f1 ⊕ (+1/4 ⊙ f5)
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Back To Barbell Example (Continued)

f f4ff2

f

3

0

1f
5

g

In particular, every tropical rational function on Γ is the tropical convex
hull of the 0-cells {f0, f1, . . . , f5}.

More strongly, every tropical rational function on Γ is tropical convex hull
of {f0, f2, f3}. Generators of this minimal set are called extremals.

For example, g = f1 ⊕ (+1/4 ⊙ f5) = f2 ⊕ (+1/4 ⊙ f3) =

=
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Main Results

Theorem (HMY 2009) R(C ) is a finitely generated tropical semimodule.

If C ′ ∈ |C |, with C ′ = C + (f ), is in the cell with vertices C1,C2, . . . ,Ck

(with corresponding f1, f2, . . . , fk), then

f = (c1 ⊙ f1) ⊕ (c2 ⊙ f2) ⊕ · · · ⊕ (ck ⊙ fk),

i.e. the cells of |C | are tropically convex.
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Main Results

Theorem (HMY 2009) R(C ) is a finitely generated tropical semimodule.

If C ′ ∈ |C |, with C ′ = C + (f ), is in the cell with vertices C1,C2, . . . ,Ck

(with corresponding f1, f2, . . . , fk), then

f = (c1 ⊙ f1) ⊕ (c2 ⊙ f2) ⊕ · · · ⊕ (ck ⊙ fk),

i.e. the cells of |C | are tropically convex.

In particular, R(C )/1 ∼= |C | is finitely generated by the 0-cells of |C |.

Theorem (HMY 2009) The 0-cells of |C |, as well as all other d-cells, can
be described explicitly.
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Dimension of a cell

Definition. A point P ∈ Γ is smooth if it has valence two and is not a
vertex (i.e. the interior of an edge).

Definition. The support of a chip configuration C is the set of points of
Γ with nonzero coefficients in C .

Let I (Γ,C ′) = Γ \ (Supp C ′ ∩ {Smooth points}) .

Theorem (HMY 2009) The cell containing chip configuration C ′ is of
Dimension = # (Connected components of I (Γ,C ′)) − 1.
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Dimension of a cell

Definition. A point P ∈ Γ is smooth if it has valence two and is not a
vertex (i.e. the interior of an edge).

Definition. The support of a chip configuration C is the set of points of
Γ with nonzero coefficients in C .

Let I (Γ,C ′) = Γ \ (Supp C ′ ∩ {Smooth points}) .

Theorem (HMY 2009) The cell containing chip configuration C ′ is of
Dimension = # (Connected components of I (Γ,C ′)) − 1.

Corollary (HMY 2009) The 0-cells, i.e. a set of generators for R(C )/1,
correspond to the C ′’s whose smooth support does not disconnect Γ.

The extremals lie inside this set: They are the functions f precisely such
that no two proper subgraphs Γ1 and Γ2 of Γ covering Γ (i.e. Γ1 ∪ Γ2 = Γ)
can both fire on the chip configuration C + (f ).

Musiker (University of Minnesota) Linear Systems on Tropical Curves August 5, 2010 14 / 19



Another return to the barbell

For Γ =

11

with C as specified, we have |C | is

1 1

2 2
2

2 2

gh

2
11

.

Notice that removal of the smooth support of C ′ (for C ′ a 0-cell) does not
disconnect the graph Γ.
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Another return to the barbell

For Γ =

11

with C as specified, we have |C | is

1 1

2 2
2

2 2

gh

2
11

.

Notice that removal of the smooth support of C ′ (for C ′ a 0-cell) does not
disconnect the graph Γ.

Chip configurations corresponding to tropical rational functions g and h

correspond to the interiors of 1-cells and 2-cells.

Removal of their breakpoints disconnects the graph into 2 and 3 pieces.
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Final Examples: Genus One Circle Graph

Take the circle Γ = S1 on one vertex and a chip configuration of degree d .
E.g. d = 3 or 4:

− 2
− 1 1

0

− 2 1 − 1 2− 1
1 − 1

1

2

− 2 1

0

− 1

0

2

1
− 1

0

2

1
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− 1− 2

− 1 1
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1
− 11

− 2

− 1

2

1 − 1 2

− 1 1

− 2 2

− 3

− 2

1 3− 1

1− 1

− 1
 1

 2

3

− 2

− 3

− 1

 1

− 2 2

Black Vertices correspond to Extremals. |C | is a subdivision of a
(d − 1)-simplex.

In the case of d = 4, |C | is a cone over the triangle that is shown. The
cone point is the constant function, and is another extremal.
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Final Examples: Complete Graph on 4 Vertices

For Γ = K4 with edges of equal length and K the canonical chip
configuration with 1 at all four vertices: |K | is a cone over the Petersen
graph from point K .

2

2

2

1 1

2
2

4

2

1
1

4

1
1

2
2

2
2

1

1

1

12

1

1

2

4

4

Theorem (HMY) For any Γ, the fine subdivision of link(K , |K |) contains
the fine subdivision of the Bergman complex B(M∗(Γ)) as a subcomplex.
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Final Examples: Complete Graph on 4 Vertices

(Continued)

Fourteen 0-cells, seven (black vertices) of which (not K ) are extremal.
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This is a 2-dimensional cell complex: including K (at the bottom), here is
a close-up of a quadrilateral cell. In particular, |K | is not simplicial.
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Open Questions

Question: Is there a relationship between geometric properties of the
polyhedral cell complex |C | and the Baker-Norine rank function satisfying
Tropical Riemann-Roch?
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Question: Is there a relationship between geometric properties of the
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Question: Can we identify geometrically for a given |C | which of the
0-cells are extremals?
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Question: Can we identify geometrically for a given |C | which of the
0-cells are extremals?

Question: What happens to |C | as either C changes, the combinatorial
type of Γ changes in a small way, or if the edge lengths of Γ change?

Musiker (University of Minnesota) Linear Systems on Tropical Curves August 5, 2010 19 / 19



Open Questions

Question: Is there a relationship between geometric properties of the
polyhedral cell complex |C | and the Baker-Norine rank function satisfying
Tropical Riemann-Roch?

Question: Can we identify geometrically for a given |C | which of the
0-cells are extremals?

Question: What happens to |C | as either C changes, the combinatorial
type of Γ changes in a small way, or if the edge lengths of Γ change?

Thanks for Listening!

Linear Systems on Tropical Curves (with Christian Haase and Josephine
Yu), arXiv:math.AG/0909.3685
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