Linear Systems on Tropical Curves

Gregg Musiker (MIT → University of Minnesota)

Joint work with Christian Haase (FU Berlin) and Josephine Yu (Georgia Tech)

FPSAC 2010

August 5, 2010

- Introduction to Tropical Arithmetic and Tropical Functions
- Abstract Tropical Curves (Think Metric Graph)
- Tropical Riemann-Roch and Linear Systems
- Onnections with the Chip-Firing Game
- Examples

Tropical Arithmetic

We work over the tropical semi-ring

 $(\mathbb{R}\cup\{-\infty\},\oplus,\odot)$

where $a \oplus b = \max(a, b)$ and $a \odot b = a + b$.

Tropical Arithmetic

We work over the tropical semi-ring

$$(\mathbb{R}\cup\{-\infty\},\oplus,\odot)$$

where $a \oplus b = \max(a, b)$ and $a \odot b = a + b$.

Notice that $a + \max(b, c) = \max(a + b, a + c)$, so we have the tropical distributive law

$$a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c).$$

Tropical Arithmetic

We work over the tropical semi-ring

 $(\mathbb{R}\cup\{-\infty\},\oplus,\odot)$

where $a \oplus b = \max(a, b)$ and $a \odot b = a + b$.

Notice that $a + \max(b, c) = \max(a + b, a + c)$, so we have the tropical distributive law

$$a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c).$$

We also have the tropical commutative and associative laws. Also,

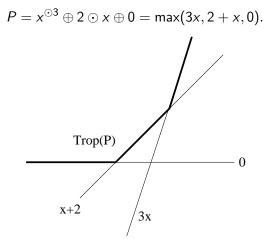
$$a \oplus (-\infty) = a$$
 and $b \odot 0 = b$

for any *a* and *b*, so we have additive and multiplicative identities.

Lastly, we have multiplicative inverses, but we do not have additive inverses.

Tropical Polynomials

We can form Tropical Polynomials such as



A tropical polynomial is a piecewise linear function with integer slopes, whose image is convex, and a finite number of linear pieces.

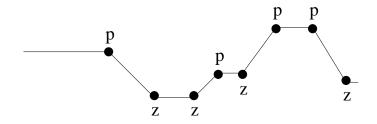
Musiker (University of Minnesota)

Linear Systems on Tropical Curves

August 5, 2010 4 / 19

A Tropical Rational Function is also a piecewise linear function of the same form, but the requirement of convexity is dropped.

The image of a Tropical Rational Function:



A zero of the Tropical Rational Function is a point where the slope increases, and a pole is a point where the slope decreases.

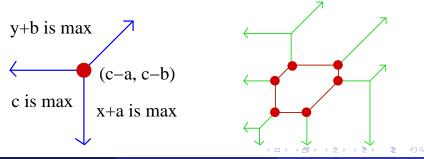
Notice that the image is convex at zeros, but is concave at poles.

Tropical Curves

The Corner Locus of a Tropical Function is the set of all points where the slope changes (i.e. the maximum is achieved twice.)

1-D: the corner locus would be the set of zeros and poles.

2 - D: The corner locus looks like a Metric Graph (plus unbounded rays). Tropical Line: $a \odot x \oplus b \odot y \oplus c$ and Tropical Cubic: $\bigoplus_{i+j \leq 3} x^i y^j$. The Degree of the polynomial equals the # of rays in each direction.



Tropical Riemann-Roch

An Abstract Tropical Curve Γ is simply a Metric Graph, where we allow leaf edges to be of infinite length. The genus of Γ is $g(\Gamma) = |E| - |V| + 1$.

Examples (Finite portions of Genus 2):

Tropical Riemann-Roch

An Abstract Tropical Curve Γ is simply a Metric Graph, where we allow leaf edges to be of infinite length. The genus of Γ is $g(\Gamma) = |E| - |V| + 1$.

Examples (Finite portions of Genus 2):

A Chip Configuration C of Γ is a formal linear combination of points of Γ :

$$C = \sum_{P} c_{P} P$$
 (only finitely many c_{P} 's are nonzero).

The Canonical Chip Configuration K is the sum

$$\mathcal{K} = \mathcal{K}(\Gamma) = \sum_{V \in \Gamma} (\deg(V) - 2)V.$$

A certain rank function r(C) satisfies Riemann-Roch: (Baker-Norine '07)

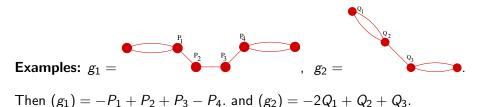
$$r(C) - r(K - C) = \deg C + 1 \operatorname{reg}(\Gamma)$$

Musiker (University of Minnesota)

Tropical Linear Systems

Given a tropical rational function f, we let $ord_P(f)$ denote the sum of the outgoing slopes locally at point P with respect to the function f.

The Chip Configuration of f is defined as $(f) = \sum_{P \in \Gamma} ord_P(f)P$.



Tropical Linear Systems

Given a tropical rational function f, we let $ord_P(f)$ denote the sum of the outgoing slopes locally at point P with respect to the function f.

The Chip Configuration of f is defined as $(f) = \sum_{P \in \Gamma} ord_P(f)P$.



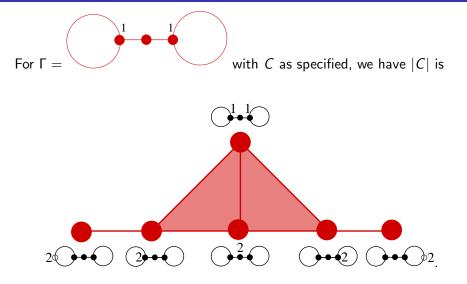
Then $(g_1) = -P_1 + P_2 + P_3 - P_4$. and $(g_2) = -2Q_1 + Q_2 + Q_3$.

Can also think of these transformations as weighted chip-firing moves.

The Tropical Linear System of *C* (following Gathmann-Kerber):

 $|C| = \{C' \ge 0 : C' = C + (f) \text{ for some tropical rational function } f\}.$

Tropical Linear Systems (Example Continued)



The Linear System |C| contains six 0-cells, seven 1-cells and two 2-cells.

|C| and R(C) as polyhedral cell complexes

Recall $|C| = \{C' \ge 0 : C' = C + (f) \text{ for some tropical rational function } f\}.$

Let $R(C) = \{f : C + (f) \ge 0\}$. This is a tropical semi-module of functions.

|C| and R(C) as polyhedral cell complexes

Recall $|C| = \{C' \ge 0 : C' = C + (f) \text{ for some tropical rational function } f\}.$

Let $R(C) = \{f : C + (f) \ge 0\}$. This is a tropical semi-module of functions.

First observation: R(C) is naturally embedded in \mathbb{R}^{Γ} and |C| is a subset of the *d*th symmetric product of Γ , where $d = \deg C$.

|C| and R(C) as polyhedral cell complexes

Recall $|C| = \{C' \ge 0 : C' = C + (f) \text{ for some tropical rational function } f\}.$

Let $R(C) = \{f : C + (f) \ge 0\}$. This is a tropical semi-module of functions.

First observation: R(C) is naturally embedded in \mathbb{R}^{Γ} and |C| is a subset of the *d*th symmetric product of Γ , where $d = \deg C$.

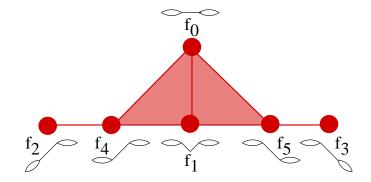
Let $\mathbb{1}$ denote the set of constant functions on Γ . (Note that if f is constant, then the chip configuration (f) = 0.)

In fact, there is the natural homeomorphism:

$$\begin{array}{rccc} R(C)/\mathbb{1} & \longrightarrow & |C| \\ f & \mapsto & C+(f). \end{array}$$

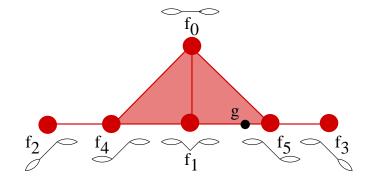
So a linear system can be described also by tropical rational functions modulo tropical multiplication (i.e. translation by adding a a constant function). Only local slope changes matter, not the function values.

In terms of tropical rational functions, we obtain the following labeling of the polyhderal complex's vertices instead:



Each of the 1-cells and 2-cells are tropically convex.

In terms of tropical rational functions, we obtain the following labeling of the polyhderal complex's vertices instead:



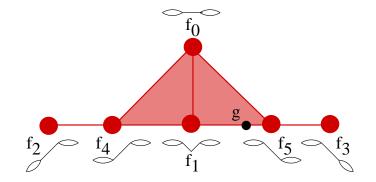
Each of the 1-cells and 2-cells are tropically convex. For example,

$$g = f_1 \oplus (+1/4 \odot f_5)$$

Musiker (University of Minnesota)

August 5, 2010 <u>11 / 19</u>

In terms of tropical rational functions, we obtain the following labeling of the polyhderal complex's vertices instead:

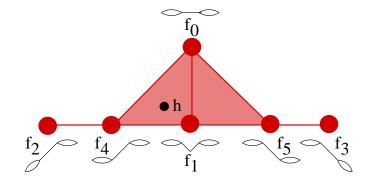


Each of the 1-cells and 2-cells are tropically convex. For example,

$$g = f_1 \oplus (+1/4 \odot f_5)$$

Musiker (University of Minnesota)

In terms of tropical rational functions, we obtain the following labeling of the polyhderal complex's vertices instead:



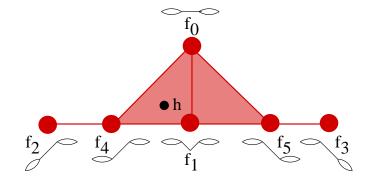
Each of the 1-cells and 2-cells are tropically convex. Second example,

$$h = f_0 \oplus (+1/4 \odot f_1) \oplus (+1/3 \odot f_4) =$$

Musiker (University of Minnesota)

Linear Systems on Tropical Curves

In terms of tropical rational functions, we obtain the following labeling of the polyhderal complex's vertices instead:

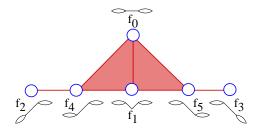


Each of the 1-cells and 2-cells are tropically convex. Second example,

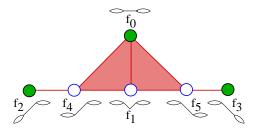
$$h = f_0 \oplus (+1/4 \odot f_1) \oplus (+1/3 \odot f_4) =$$

Musiker (University of Minnesota)

Linear Systems on Tropical Curves

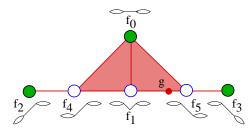


In particular, every tropical rational function on Γ is the tropical convex hull of the 0-cells $\{f_0, f_1, \ldots, f_5\}$.



In particular, every tropical rational function on Γ is the tropical convex hull of the 0-cells $\{f_0, f_1, \ldots, f_5\}$.

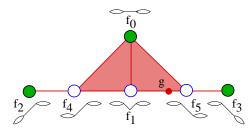
More strongly, every tropical rational function on Γ is tropical convex hull of $\{f_0, f_2, f_3\}$. Generators of this minimal set are called extremals.



In particular, every tropical rational function on Γ is the tropical convex hull of the 0-cells $\{f_0, f_1, \ldots, f_5\}$.

More strongly, every tropical rational function on Γ is tropical convex hull of $\{f_0, f_2, f_3\}$. Generators of this minimal set are called extremals.

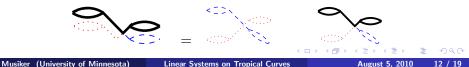
For example, $g = f_1 \oplus (+1/4 \odot f_5)$



In particular, every tropical rational function on Γ is the tropical convex hull of the 0-cells $\{f_0, f_1, \ldots, f_5\}$.

More strongly, every tropical rational function on Γ is tropical convex hull of $\{f_0, f_2, f_3\}$. Generators of this minimal set are called extremals.

For example, $g = f_1 \oplus (+1/4 \odot f_5) = f_2 \oplus (+1/4 \odot f_3) =$



Theorem (HMY 2009) R(C) is a finitely generated tropical semimodule.

If $C' \in |C|$, with C' = C + (f), is in the cell with vertices C_1, C_2, \ldots, C_k (with corresponding f_1, f_2, \ldots, f_k), then

$$f = (c_1 \odot f_1) \oplus (c_2 \odot f_2) \oplus \cdots \oplus (c_k \odot f_k),$$

i.e. the cells of |C| are tropically convex.

Theorem (HMY 2009) R(C) is a finitely generated tropical semimodule.

If $C' \in |C|$, with C' = C + (f), is in the cell with vertices C_1, C_2, \ldots, C_k (with corresponding f_1, f_2, \ldots, f_k), then

$$f = (c_1 \odot f_1) \oplus (c_2 \odot f_2) \oplus \cdots \oplus (c_k \odot f_k),$$

i.e. the cells of |C| are tropically convex.

In particular, $R(C)/\mathbb{1} \cong |C|$ is finitely generated by the 0-cells of |C|.

Theorem (HMY 2009) The 0-cells of |C|, as well as all other *d*-cells, can be described explicitly.

Dimension of a cell

Definition. A point $P \in \Gamma$ is **smooth** if it has valence two and is not a vertex (i.e. the interior of an edge).

Definition. The **support** of a chip configuration C is the set of points of Γ with nonzero coefficients in C.

Let $I(\Gamma, C') = \Gamma \setminus (\text{Supp } C' \cap \{\text{Smooth points}\})$.

Theorem (HMY 2009) The cell containing chip configuration C' is of Dimension = # (Connected components of $I(\Gamma, C')$) - 1.

Dimension of a cell

Definition. A point $P \in \Gamma$ is **smooth** if it has valence two and is not a vertex (i.e. the interior of an edge).

Definition. The **support** of a chip configuration C is the set of points of Γ with nonzero coefficients in C.

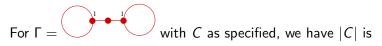
Let $I(\Gamma, C') = \Gamma \setminus (\text{Supp } C' \cap \{\text{Smooth points}\})$.

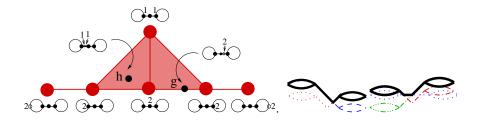
Theorem (HMY 2009) The cell containing chip configuration C' is of Dimension = # (Connected components of $I(\Gamma, C')$) - 1.

Corollary (HMY 2009) The 0-cells, i.e. a set of generators for R(C)/1, correspond to the C's whose smooth support does not disconnect Γ .

The extremals lie inside this set: They are the functions f precisely such that no two proper subgraphs Γ_1 and Γ_2 of Γ covering Γ (i.e. $\Gamma_1 \cup \Gamma_2 = \Gamma$) can both fire on the chip configuration C + (f).

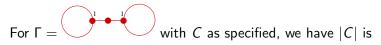
Another return to the barbell

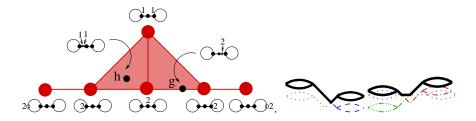




Notice that removal of the smooth support of C' (for C' a 0-cell) does not disconnect the graph Γ .

Another return to the barbell





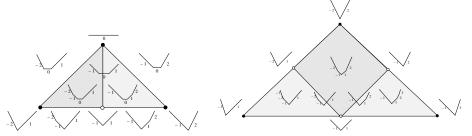
Notice that removal of the smooth support of C' (for C' a 0-cell) does not disconnect the graph Γ .

Chip configurations corresponding to tropical rational functions g and h correspond to the interiors of 1-cells and 2-cells.

Removal of their breakpoints disconnects the graph into 2 and 3 pieces.

Final Examples: Genus One Circle Graph

Take the circle $\Gamma = S^1$ on one vertex and a chip configuration of degree *d*. E.g. d = 3 or 4:

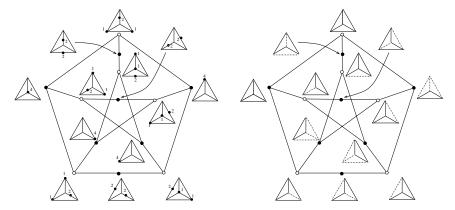


Black Vertices correspond to Extremals. |C| is a subdivision of a (d-1)-simplex.

In the case of d = 4, |C| is a cone over the triangle that is shown. The cone point is the constant function, and is another extremal.

Final Examples: Complete Graph on 4 Vertices

For $\Gamma = K_4$ with edges of equal length and K the canonical chip configuration with 1 at all four vertices: |K| is a cone over the Petersen graph from point K.



Theorem (HMY) For any Γ , the fine subdivision of link(K, |K|) contains the fine subdivision of the Bergman complex $B(M^*_{\Box}(\Gamma))$ as a subcomplex, so

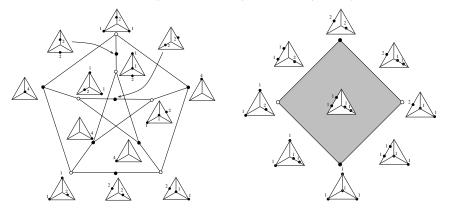
Musiker (University of Minnesota)

Linear Systems on Tropical Curves

August 5, 2010

Final Examples: Complete Graph on 4 Vertices (Continued)

Fourteen 0-cells, seven (black vertices) of which (not K) are extremal.



This is a 2-dimensional cell complex: including K (at the bottom), here is a close-up of a quadrilateral cell. In particular, |K| is not simplicial.

Musiker (University of Minnesota)

August 5, 2010

18 / 19

Question: Is there a relationship between geometric properties of the polyhedral cell complex |C| and the Baker-Norine rank function satisfying Tropical Riemann-Roch?

Question: Is there a relationship between geometric properties of the polyhedral cell complex |C| and the Baker-Norine rank function satisfying Tropical Riemann-Roch?

Question: Can we identify geometrically for a given |C| which of the 0-cells are extremals?

Question: Is there a relationship between geometric properties of the polyhedral cell complex |C| and the Baker-Norine rank function satisfying Tropical Riemann-Roch?

Question: Can we identify geometrically for a given |C| which of the 0-cells are extremals?

Question: What happens to |C| as either *C* changes, the combinatorial type of Γ changes in a small way, or if the edge lengths of Γ change?

Question: Is there a relationship between geometric properties of the polyhedral cell complex |C| and the Baker-Norine rank function satisfying Tropical Riemann-Roch?

Question: Can we identify geometrically for a given |C| which of the 0-cells are extremals?

Question: What happens to |C| as either C changes, the combinatorial type of Γ changes in a small way, or if the edge lengths of Γ change?

Thanks for Listening!

Linear Systems on Tropical Curves (with Christian Haase and Josephine Yu), arXiv:math.AG/0909.3685