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We address the role of noise and the issue of efficient computation in stochastic optimal control
problems. We consider a class of nonlinear control problems that can be formulated as a path integral and
where the noise plays the role of temperature. The path integral displays symmetry breaking and there
exists a critical noise value that separates regimes where optimal control yields qualitatively different
solutions. The path integral can be computed efficiently by Monte Carlo integration or by a Laplace
approximation, and can therefore be used to solve high dimensional stochastic control problems.

DOI: 10.1103/PhysRevLett.95.200201 PACS numbers: 02.50.Ey, 02.30.Yy, 05.45.�a, 45.80.+r

Optimal control of nonlinear systems in the presence of
noise is a very general problem that occurs in many areas
of science and engineering. It underlies autonomous sys-
tem behavior, such as the control of movement and plan-
ning of actions of animals and robots, but also, for instance,
the optimization of financial investment policies and con-
trol of chemical plants. The problem is simply stated: given
that the system is in this configuration at this time, what is
the optimal course of action to reach a goal state at some
future time? The cost of each time course of action consists
typically of a path contribution that specifies the amount of
work or other cost of the trajectory, and an end cost, that
specifies to what extent the trajectory reaches the goal
state.

In the absence of noise, the optimal control problem can
be solved in two ways: using the Pontryagin minimum
principle (PMP) [1], which is a pair of ordinary differential
equations that are similar to the Hamilton equations of
motion or using the Hamilton-Jacobi-Bellman (HJB) equa-
tion, which is a partial differential equation [2].

In the presence of (Wiener) noise, the PMP formalism is
replaced by a set of stochastic differential equations which
become difficult to solve (see, however, [3]). The inclusion
of noise in the HJB framework is mathematically quite
straightforward, yielding the so-called stochastic HJB
equation [4]. Its solution, however, requires a discretization
of space and time and the computation becomes intractable
in both memory requirement and CPU time in high dimen-
sions. As a result, deterministic control can be computed
efficiently using the PMP approach, but stochastic control
is intractable due to the curse of dimensionality.

For small noise, one expects that optimal stochastic
control resembles optimal deterministic control, but for
larger noise, the optimal stochastic control can be entirely
different from the deterministic control [5], but there is
currently no good understanding of how noise affects
optimal control.

In this Letter, we address both the issue of efficient
computation and the role of noise in stochastic optimal
control. We consider a class of nonlinear stochastic control

problems, which can be formulated as a statistical mechan-
ics problem. This class of control problems includes arbi-
trary dynamical systems, but with a limited control
mechanism. It contains linear-quadratic [4] control as a
special case. We show that under certain conditions on the
noise, the HJB equation can be written as a linear partial
differential equation,

�@t � H ; (1)

with H a (non-Hermitian) operator. Equation (1) must be
solved subject to a boundary condition at the end time. As a
result of the linearity of Eq. (1), the solution can be
obtained in terms of a diffusion process evolving forward
in time, and can be written as a path integral. The path
integral has a direct interpretation as a free energy, where
noise plays the role of temperature.

This link between stochastic optimal control and a free
energy has two immediate consequences. (1) Phenomena
that allow for a free energy description, typically display
phase transitions. We argue that for stochastic optimal
control one can identify a critical noise value that separates
regimes where the optimal control is qualitatively different
and illustrate this with a simple example. (2) Since the path
integral appears in other branches of physics, such as
statistical mechanics and quantum mechanics, we can
borrow approximation methods from those fields to com-
pute the optimal control approximately. We show how the
Laplace approximation can be combined with Monte Carlo
(MC) sampling to efficiently compute the optimal control.

Let ~x be an n-dimensional stochastic variable that is
subject to the stochastic differential equation

d~x � � ~b� ~x; t� � ~u�dt� d ~� (2)

with d ~� a Wiener process with hd�id�ji � �ijdt, and �ij

independent of ~x; ~u; t. ~b� ~x; t� is an arbitrary n-dimensional
function of ~x and t, and ~u an n-dimensional vector of
control variables. Given ~x at an initial time t, the stochastic
optimal control problem is to find the control path ~u��� that
minimizes
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~x
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with R a matrix, V� ~x; t� a time-dependent potential, and
�� ~x� the end cost. The brackets hi ~x denote expectation
value with respect to the stochastic trajectories (2) that
start at ~x.

One defines the optimal cost-to-go function from any
time t and state ~x as

J� ~x; t� � min
~u���
C� ~x; t; ~u����: (4)

J satisfies the stochastic HJB equation which takes the
form

�@tJ � min
~u

�
1

2
~uTR ~u� V � � ~b� ~u�T ~rJ� 1

2
Tr��r 2J�

�

� � 1

2
� ~rJ�TR�1 ~rJ� V � ~bT ~rJ� 1

2
Tr��r2J�

(5)

with Tr��r2J� � P

ij�ij@
2J=@xi@xj and

~u � �R
�1 ~rJ� ~x; t� (6)

the optimal control at ~x; t. The HJB equation is nonlinear in
J and must be solved with end boundary condition
J� ~x; tf� � �� ~x�.

Define  � ~x; t� through [6]

J� ~x; t� � �� log � ~x; t� (7)

and assume there exists a scalar � such that

��ij � �R��ij; (8)

with �ij the Kronecker delta. In the one-dimensional case,

such a � can always be found. In the higher dimensional
case, this restricts the matrices R / �

�1 [8]. Equation (8)
reduces the dependence of optimal control on the
n-dimensional noise matrix to a scalar value � that will
play the role of temperature. Equation (5) reduces to the
linear Eq. (1) with

H � �V

�
� ~b

T ~r� 1

2
Tr��r2�: (9)

Let �� ~y; �j ~x; t� with �� ~y; tj ~x; t� � �� ~y� ~x� describe a
diffusion process for � > t defined by the Fokker-Planck
equation

@�� � Hy� � �V

�
�� ~rT� ~b�� � 1

2
Tr��r2�� (10)

with Hy the Hermitian conjugate of H. Then A��� �
R

d~y�� ~y; �j ~x; t� � ~y; �� is independent of � and in particular
A�t� � A�tf�. It immediately follows that

 � ~x; t� �
Z

d~y�� ~y; tfj ~x; t� exp���� ~y�=��: (11)

We arrive at the important conclusion that  � ~x; t� can be
computed either by backward integration using Eq. (1) or
by forward integration of a diffusion process given by
Eq. (10).

We can write the integral in Eq. (11) as a path integral.
We use the standard argument [9] and divide the time
interval t! tf in n1 intervals and write �� ~y; tfj ~x; t� �
�
n1
i�1�� ~xi; tij ~xi�1; ti�1� and let n1 ! 1. The result is

 � ~x; t� �
Z

�d~x� ~x exp
�

� 1

�
S� ~x�t! tf��

�

(12)

with
R�d~x� ~x an integral over all paths ~x�t! tf� that start at

~x and with

S� ~x�t! tf����� ~x�tf���
Z tf

t
d�

�
1

2

�
d~x���
d�

� ~b� ~x���;��
�
T

	R

�
d~x���
d�

� ~b� ~x���;��
�

�V� ~x���;��
�

(13)

the action associated with a path. From Eqs. (7) and (12),
the cost to go J�x; t� becomes a log partition sum (i.e., a
free energy) with temperature �.

The path integral Eq. (12) can be estimated by stochastic
integration from t to tf of the diffusion process Eq. (10) in

which particles get annihilated at a rate V� ~x; t�=�:

~x � ~x� ~b� ~x; t�dt� d ~�; with probability 1� Vdt=�;

~x � y; with probability Vdt=�; (14)

where y denotes that the particle is taken out of the
simulation. Denote the trajectories by ~x��t! tf�, � �
1; . . . ; N. Then,  � ~x; t� and ~u are estimated as

 ̂� ~x; t� �
X

�2alive

w�; (15)

~̂udt � 1

 ̂� ~x; t�
XN

�2alive

w�d ~���t�;

w� � 1

N
exp���� ~x��tf��=��;

(16)

where ‘‘alive’’ denotes the subset of trajectories that do not
get destroyed along the way by the y operation. The
normalization 1=N ensures that the annihilation process
is properly taken into account. Equation (16) states that
optimal control at time t is obtained by averaging the initial
directions of the noise component of the trajectories

d ~���t�, weighted by their success at tf.

The above sampling procedure can be quite inefficient,
when many trajectories get annihilated. One of the simplest
procedures to improve it is by importance sampling. We
replace the diffusion process that yields �� ~y; tfj ~x; t� by
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another diffusion process, that will yield �0� ~y; tfj ~x; t� �
exp��S0=��. Then Eq. (12) becomes,

 � ~x; t� �
Z

�d~x� ~x exp��S0=�� exp�� �S� S0�=��:

The idea is to chose �0 such as to make the sampling of
the path integral as efficient as possible. Here, we use the
Laplace approximation, which is given by the k determi-
nistic trajectories x	�t! tf� that minimize the action

J� ~x; t� 
 �� log
Xk

	�1

exp��S� ~x	�t! tf��=��: (17)

The Laplace approximation ignores all fluctuations around
the modes and becomes exact in the limit �! 0. The
Laplace approximation can be computed efficiently, re-
quiring O�n2m2� operations, where m is the number of
time discretization.

For each Laplace trajectory, we define a diffusion pro-

cesses �0
	 according to Eq. (14) with ~b� ~x; t� � _~x	�t�. The

estimators for  and ~u are given again by Eqs. (15) and
(16), but with weights

w� � 1

N
exp���S� ~x��t! tf��� S0	� ~x��t! tf���=��:

(18)

S is the original action equation (13) and S0	 is the new

action for the Laplace guided diffusion. When there are
multiple Laplace trajectories one should include all of
these in the sample.

We give a simple one-dimensional example of a double
slit to illustrate the effectiveness of the Laplace guided MC
method and to show how the optimal cost to go undergoes
symmetry breaking as a function of the noise.

Consider a stochastic particle that moves with constant
velocity from t � 0 to tf � 2 in the horizontal direction

and where there is deflecting noise in the x direction:

dx � udt� d�:

The cost is given by Eq. (3) with ��x� � 1
2
x2 and V�x; t1�

implements a slit at an intermediate time t1 � 1 (Fig. 1).
Solving the cost to go by means of the forward computa-
tion using Eq. (11) can be done in closed form. The exact
result, the Laplace approximation equation (17) and the
Laplace guided importance sampling result using Eq. (18)
are plotted for t � 0 as a function of x in Fig. 2. For each x,
the Laplace approximation consists of the two determinis-
tic trajectories, each being piecewise linear, starting at t �
0 in x and ending at t � 2 in x � 0. We see that the Laplace
approximation is quite good for this example, in particular,
when one takes into account that a constant shift in J does
not affect the optimal control. The MC importance sampler
has maximal error of order 0.1 and is significantly better
than the Laplace approximation. Naive MC sampling using
Eq. (14) (not shown) fails for this problem, because most
trajectories get destroyed by the infinite potential.
Numerical simulations using N � 100 000 trajectories
yield estimation errors in J up to approximately 6 for
certain values of x.

We show an example how optimal stochastic control
exhibits spontaneous symmetry breaking. For two slits of
width 
 at x � �1, the cost to go becomes to lowest order
in 
:

J�x; t� � R

T

�
1

2
x2 � �T log2 cosh

x

�T

�

� const; t < t1;

where the constant diverges as O�log
� independent of x
and T � t1 � t the time to reach the slits. The expression
between brackets is a typical free energy with inverse

FIG. 1 (color online). A double slit is placed at t � 1 with
openings at �6< x<�4 and 6< x< 8. V � 1 for t � 1
outside the openings, and zero otherwise. Also shown are two
example trajectories under optimal control.

FIG. 2 (color online). Comparison of Laplace approximation
(dotted line) and Monte Carlo importance sampling (solid jagged
line) of J�x; t � 0� with exact result (solid smooth line) for the
double slit problem. The importance sampler used N � 100
trajectories for each x. R � 0:1, � � 1, dt � 0:02.
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temperature 	 � 1=�T. It displays a symmetry breaking at
�T � 1. The optimal control is given by the gradient of J:

u � 1

T

�

tanh
x

�T
� x

�

: (19)

For T > 1=� (far in the past) optimal control steers towards
x � 0 (between the targets) and delays the choice of which
slit to aim for until later. The reason why this is optimal is

that the expected diffusion alone of size
�������

�T
p

is likely to
reach any of the slits without control (although it is not
clear yet which slit). Only sufficiently late in time (T <
1=�) should one make a choice.

Figure 3 depicts two trajectories and their controls under
stochastic optimal control [Eq. (19)] and deterministic
optimal control [Eq. (19) with � � 0], using the same
realization of the noise. Note, that at early times the
deterministic control drives x away from zero, whereas in
the stochastic control drives x towards zero and is smaller
in size. The stochastic control delays the choice for which
slit to aim until T 
 1.

In summary, we have shown that stochastic optimal
control involves symmetry breaking with qualitatively dif-
ferent solutions for high and low noise levels. This property
is expected to be true also for more general stochastic
control problems. The path integral formulation allows
for an efficient solution of the HJB equation because it

replaces the intractable n-dimensional numerical integra-
tion by a Monte Carlo sampling, which is known to be
often much more efficient. This approach will thus be of
direct practical value for the control of high dimensional,
strongly nonlinear systems, such as, for instance, robot
arms, navigation of autonomous systems, and chemical
reactions. For realistic applications, naive sampling should
be replaced by more advanced sampling schemes, such as
importance sampling or a Metropolis method, and should
be combined with efficient discretization such as splines,
wavelets, or a Fourier basis [10,11].
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