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Abstract

The linear theory of an electron cyclotron maser (ECM)

- operating at the funaamental is developed. A set of analytic
expressions, valid for all TE cavity modes, is derived for the
starting current and frequency detuning using the Vlasov-Maxwell
equationé in the weakly relativistic limit. These results are
applicable for an arbitrary electron velocity distribution as well

as any longitudinal distribution of the RF field. It is shown that
the starting current can be expressed in a simple form which contains
the Fourier transform of the longitudinal field distribution.  Ana-
lytic results are presented for specific longitudinal field varia-
tions, including uniform, sinusoidal, and Gaussian. It is found

that the starting characteristics of an ECM are strongly influenced
by the axial dependence of the RF field, but weakly affected by the
velocity spread of the electron beam. The problem of multimode
oscillation is treated in the linear theory by using a Slater
expanéion of the cavity field. The complete formulation for mode
competition based on this exPansibn is presented and preliminary
-results are derived. This cbmprehensive analysis of ECM linear theory
should be useful as a diagnostic of ECM performance and should facil-

itate comparison between theory and experiment.




I. Introduction

The electron cyclotron resonance maser (ECM) has been demon-
strated to be an efficient, high power source of millimeter and sub-
millimeter radiation [1-3]. The most successful results to date
have been obtained with a form of the maser called the gyrotron,
Vdeveloped by A. V. Gaponov and co-workers [1]. In this paper we
present new results in the linear theory of the ECM, results which
are particularly applicable to the gyrotrom.

The linear theory of the ECM describes the characteristics
of the maser at threshold, including the starting current IST and
the detuning of the operating frequency from the empty cavity reson-
ance frequency. In general, linear theory results may be expressed
in analytic form, as is the case in this work. In contrast, the non-
linear theory, which describes the operation of the maser above
threshold and yields the output power and efficiency of the device,
must ordinarily be solved numerically. The linear theory provides a
simple means of determining the threshold operating characteristics
of an ECM, making it an important tool in the analysis of this device.

There have been a number of previous investigations of the
linear theory of the ECM [4-9]. However, these studies have been
limited or idealized in one respect or another, such as by treating
only specific cavity modes or electron beams with no velocity spread.
In this paper we present an analytic treatment of ECM linear theory
that is applicable to all TE modes of the cavity, as well as to an

arbitrary, weakly relativistic, electron velocity distribution.




Furthermore, the results presented are valid for any distribution of
the longitudinal RF field. This allows one to compare the linear
characteristics of different models of an ECM cavity, including:

an idealized right circular cylinder cavity with closed ends and
sinusoidal longitudinal RF field; and a more realistic cavity with
open ends and a Gaussian distribution. In addition, the present
comprehensive results enable us to evaluate important effects in the
ECM, including mode competition and the changes caused by a velocity
spread in the electron beam. By analyzing these effects, we are
better able to determine what factors can strongly influence the
threshold behavior of an ECM. This should facilitate the comparison
between theoretical and experimental results and serve as a useful
aid in diagnosing ECM performance.

The method employed in this analysis involves solving the
combined Vlasov and Maxwell equations for an electron beam inter-
acting with Ehe RF fields of a cavity. The Vlasov equation is
solved by a standard perturbation approach in the weakly relativistic
limit. The results are then combined with the Slater equations for
the cavity modes and solved for the oscillation condition. This
yields expressions for both the starting current and the frequency
detuning. Calculation of the starting current allows one to deter-
mine the minimum beam current neededifor self-oscillation, The fre-
quency detuning, which depends on the cavity Qi may provide a means
of determining Q experimentally by measuring the resonance frequency

of the cavity both with and without the electrom beam present.




Our analysis is presented in the following manner. 1In
Section II, the problem is formulated and general expressions for
the starting current and frequency detuning are presented. In
Section III, these results are applied to three different longitu-
dinal RF field profiles: uniform, sinusoidal, and Gaussian. This
comparison allows one to determine how sensitive the threshold
behavior of an ECM is to the field structure. Section IV discusses
the effect of introducing a velocity spread into the electron beam,
while Section V investigates the problems associated with multi-

moding. Conclusions are presented in Section VI.




II. General Theory

The formulation used for describing the ECM consists of a
combination of the Vlasov equation for the electron distribution
function and Maxwell equations for the RF cavity fields. A number
of assumptions are made that aid in simplifying the calculation with-
out severely limiting its usefulness. We are concerned with the
small signal (i.e., linear) operation of an ECM. The cavity is
assumed to have a cross-sectional shape that is uniform or slowly
varying along its axis, here chosen as the z-axis. This allows us
to solve the Helmholtz equation, which describes the field structure
within the cavity, by a separation of variables. The RF field can
then be expressed as a product of two functions, one describing the
cross-sectiénal structure and the other giving the field variation
along z. Space charge effects are neglected. The electron beam
is assumed to be weakly relativistic; with relativistic effects
included in the calculation by retaining the velocity dependence of
the electron mass o, and the cyclotrom frequency w, - The dependence
of wc on velocity is crucial in order for emission to occur. Finite
Larmor radius effects are neglected, and as a consequence the results
presented in this paper are applicable only to an ECM operating at
the fundamental frequency, i.e., w = w, .

This calculation will include only the interaction between
the beam and the RF electric field, and will neglect the RF magnetic
field. Results from a preQious paper [9] indicate that the terms

associated with the magnetic field are small if wc/kH ¢ >> 1, where




k” is the wavenumber parallel to the z-axis. Since a gyrotron
operates near cutoff and satisfies the above inequality, this paper
is especially applicable to this device. This same condition also
results in TE modes having substantially higher gain than TM modes,
and for this reason the lattér will not be treated in this paper.
The initial electron distribution function is assumed to be
separable into a product of two distributions, one in velocity space

and one in real space:

fo(E,G,t = 0) = N(r,6)fo(u,w) (1)

where
2T [” du fm wdw fo(u,w) =1
oo (o
Here,~fo(u,w) is expressed in terms of the electron velocities paral-
lel and perpendicular to the z-axis, u and w respectively. N(r,8)
is the spatial density of the beam, and is expressed in terms of the
cylindrical coordinates r and 8, but is independent of z. It has
recently been shown [8,17] that this assumption of separability in
Eq.(1) is generally not valid unless w/wcre << 1, where T, is the
beam radius. Hence, we also implicitly assume this latter condition.

We begin with a Slater expansion [10] of the RF vacuum field

Z pl(t)ﬁz(f)

within the cavity:

E(r,t) =

2

. (2)
H(r,t) = zg: q, (0)H, (1)

)

where the field components have been written as sums of orthonormal

modes that satisfy:




Here, 7 is the cavity volume, w, = ckz is the vacuum frequency of the
mode, and pl(t) and qlkt) describe the amplitudes and time dependences
of the field components. Writing Maxwell's equatiomns

UXE= - uoaﬁ/at and Vx H=7 + eoaﬁ/at in terms of the above
expansions, combining these two equations, and utilizing the ortho-
gonal characteristics of Eland ﬁﬁ leads to an expression describing

h

the time-dependent behavior of the 2t mode [10]:

p
1 9‘ 2 = = _d- 3 -o- - -
T gt TRy B = m dt(h” ) fs,dA(an) Ez)
- - (3)
- kz fsdA (n x E)'Hz

where i is a vector no:mal to the cavity surface and pointing outward.
The multimode nature of this pfoblem is embodied in the fact that
J,E, and H must be expanded in terms of all possible cavity modes.

The surfaces S and S' represent two types of boundary con-
ditions that are present. The § surféce corresponds.to the conducting
walls of the cavity at which the tangential component of E is
virtually zero. The §' surface corresponds to an insulated area and
is éssociated with power coupled out of the cavity. The S integral
can be rewritten in terms of the ohmic quality factor of the cavity,
Qo’ by noting that & x E = H(1 + i)ﬁ:ﬁ;775 at a wall with conductivity

0. Using the following definition for Qid:




the S integral in Eq.(3) can be written as:

(4)

k

- = d
dai x )+, = 1 - 1Y [ == |p
fs 2 =\ | e

0O

Here we have assumed t:hat:'QJLd

)
24, -2 , . R 24 s
0) . The terms associated with Qo , d # 2, which represent

>> 1 and have dropped terms of order
(Q
coupling between cavity modes; are typically small in a gryotron and
can be neglected. |
The $' integral can be expressed in terms of the diffractive
Q, QD’ that results from the output coupling of the cavity mode:
A BT “g
fs' dA(an)‘E2=‘€o :QI Py (3
D
The superscript on Qb indicates that this parameter is defined in
terms of the stored enérgy in the ch.mode and the power coupling
between the lth mode of the cavity and the output mode of the wave-
guide connected to the cavity. No mode coupling terms are obtained
from this integral. Combining Egs.(3), (4), and (5) leads to the

following result:

1 dzﬁz 2 45 d 3.37.% wl
AT A R TS fd”'Ez*eo_z )
, (6)
k
'3
-(1-1 EEI Py




If an equilibrium exists within the cavity, it is possible to express
this equation as two separate relations, one describing the energy
balance within the cavity while the other determines the frequency

detuning. Writing p, = p_,exp[iw(l)t], where p_, is independent of
: 2 ol ol

time, the decoupled expressions are:

w
2) 1Ly, [-,,LLdsr 3-52] (72)
QT o ol
1% o) C 0@ o (L faen 5eE (7b)
(wz) - (w( » == n |5 r J°E,
o ol ,
A 2
e Y Qi
where QT = ‘}f:?‘ja[
QD Qo.

[
=
[0

)

Here Qi is the overall quality factor, and w(&) is the operating fre-
quency of the lth mode, which generally differs from Wy «
If we have a cylindrical cavity with no taper and an arbi-

trary cross section, then the electric field of a single TE mode in

equilibrium can be written as [20]:
E(r,t) = T(r,8)g(z)exp(int) (8)

where T(r,8) and g(z) satisfy:




Tr,8) =z xv,¥
dé(z)/dz2 + k% g(z) =0

K2+ k3 = w2/c?

2 2y =
V3Y + K2y = 0

Here Z is a unit vector, ¥ is determined by the boundary conditions,
and k; and k| are constants. T(r,9) gives the field amplitude and
cross-sectional structure, and can be complex, while g(z) is real
and describes the longitudinal field profile. 1In this paper g(z) is
normalized to a maximum value of one. It can be shown that Egs.(8)
and (9) also apply to cavities with weakly irregular features at the
ends for output coupling, or with slowly tapered cross sections, if
we allow k;, k;; , and ¥ to become functions of z [11,21]. The depen-
dence of T on z will be relatively weak for these cavities, and can
be neglected.

An expression can be obtained for Pol by equating Eqs.(2) and

(8), squaring and integrating over the cavity volume. This gives:
2 _ 3 = 2
[P g l* = Ld r |gy(2) Ty(r,8)] (10)

The parameter P,q Serves as a normalization factor in Egs.(7) so that,
in a single mode analysis, the starting current and detuning are
independent of field amplitude. Also noteworthy is the fact that
(eop;2/2) is equal to the total stored energy (electric plus mag-

netic RF fields) within the cavity in the ch mode.
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Equations for Single Mode Operation

We must now solve the integrals in Eqgs.(7). In general, J
is written in terms of all modes existing within the cavity. However,
we will initially limit ouQ'attention to a single oscillating TE
mode and leave the discussion of multimoding to a later sectionm.
Starting with the linearized Vlasov and Maxwell equations, the per-
turbation £ (;,;,t) of the distribution function of the electron
beam due to the RF electric field in the cavity can be calculated
using the method of characteristics [13]. This method is appropriate
as long as the perturbation is small, that is, the field amplitude
is small. An expression for J can be derived based on this perturbed
distribution. The approéch followed is a standard perturbation
method [4,8] so that we will only present the final results. The

integrals of Egs.(7) can be expressed in the following form:

Lo g3 FE =28 | 4% N(r,e)fd% Byrv £ (5,90

pol % pol

@« x
s e |2 et m aif] _1(s) 4
- lpoll a—'ET_'jdn du[o dw fo(u’w)(u)[l T2 ( ¢l dx

E§) 88y AL AL (11
x[<Fc_+iFs)(cD Tsol
where

2d _ 2T rw . _ ._*
GD = Jo de Jo r dr N(r,G)(T2 Td)

]
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I
W
5= k cu
I
w = 2B
c mec
e
me = Ymeo

Here, me is the relativistic electron mass, r, is the cavity radius,
and e is the electron charge. The strength of the interaction be-

tween the beam and the RF field is measured by the geometric factors

GD and GC' The expression [} - 1/2(sw?/c?)d/dx ] operates on the
functions F%f and Fif. These functions are determined by the longi-

tudinal field dependence g(z), and can be calculated from the following

equations:
P(x)= | dig,(3)| dig,(3 - M)cos (Ax,) (12a)
c xd.) = . zg, (2 . g4(2 cos (Ax, a
Fed (xy = 3 (z)[°° dig. (G - M)sin (Ax.) (12b)
s g =) dzg (@) dhgy d

where z = k” z. In the next section, we will present detailed results

for specific g(z) distributions. The derivative in Eq.(ll) results
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from the dependence of me, and consequently wc, on velocity, and is a
measure of the electron bunching process.

We will now specialize to an annular electron beam chgt is
symmetric in 6, has no radial thickness, and is located at r = T,
We will limit our attention to an RF field with a standing wave
structure in the 6 direction, so that fl is real and G%f is zero.
Relating N to the beam current I, the geometric factor Gﬁf can be

written as:

22

cD‘ = (I/ew)G(r)
where - ' (13)
1 2w = 2
G(r,) = 7,Efde {T, (r,,0)]
0

and u is the average longitudinal velocity. An explicit expression
can now be writteﬁ for the starting current IST by combining Egs.(7s3),
(11), and (13). For clarity, the % script has been dropped from all

parameters except frequencies:

w m k% u 2\ dF
- e Lo e Al e Llse) e
IST o QT IpoI e mG(r_ ) jm du Jw dw fo(u’ﬂ)(u) [;c 2 ( ¢ ) dx
) e -0 Q L

(14)

-1

The stérting current is positive and emission is possible only when
272 -1
(sw®/c )(FC) (ch/dx) > 2.

A simple expression can also be obtained for the frequency detuning

by dividing (7b) by (7a). Definingy (wc - wi)(kﬂ w) 'and assuming

W o-w, | << w one write:
| e 2' 9 can write
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S

QO 2Q0

7
I (&) o
- 0

Eqs.(14) and (15) can be further simplified by assuming that the

electron beam has no velocity spread and fo can be represented by
-1 N

delta functions: fo(u,w) = Qﬂwo) §(u - uo) S(w - wo). This leads

to the following set of equations:
2 2 ~1
T P N T I N
ST 0 Q, o e GZrei c 2 c2 dx
2
(Swo) dFS
c2 aX
2
SW, ch
c2 dx

Note that IST is independent of the field amplitude, as is expected

in linear theory. The term y/2Qo has been dropped in Eq.(16b) since

———
m' P
3
e
————
~<
[}
"
+
[ 3%
Sp
it
it
wn
]

it is very small in comparison to the other terms.

It can be seen that Fc and Fs’ which are defined by Eq.(12),
are crucial in determining the characteristics of the starting current
and detuning. A simple expression can be obtained for Fc by writing

it in terms of the Fourier transform of g(z). Using the transform:

£(k) = (2m)" i‘f?(a) etk 4o

-0

00 W B 1 SWZ dFS ﬂ
2 £ du‘/o‘dwfo(u,w)(a) Fe- (‘5{) =
( T) (y . __L) |

(16a)

(16b)
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in conjunction with Eq.(l2a) gives the following simple result:

Fo= 1, () 2) () an

Using Eq.(1l), we have shown that Fs may be expressed in terms of

Fc using the Kramers-Kronig relations [18]:

F (a)
-1
Fs =T P/: ;_a da (18)

where P indicates the principal value of the integral. These two

equations, in conjunction with (16), provide a convenient means of
.quickly determining‘the linear characteristics of an ECM. Moreover,
Because of the simple nature of these expressions, the possibility
exists of defining the desired linear characteristics of an ECM, and
then calculating the appropriate longitudinal field structure via
these relations.

The functions Fc(x) and Fs(x) are very similar to the absorp-
tion and dispersion functions of a forced harmonic oscillator. Thus,
it is possible to model the ECM interaction as a harmonic oscillator
with natural frequency w, and a driving force due to the RF field
with frequency w. 'The damping time Td’ which is inversely related
to the resonance width, can be shown to be approximately equal to
the time of interaction between the beam and RF field, Ti ~ L/u.

If w# wc’ then the electron will precess with respecﬁ to the field,
experiencing alternating periods of acceleration and deceleration.

If the interaction continues indefinitely, (Ti + ®), then the net
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electron energy change will be zero. In this case, an energy

transfer to the electrons will occur only at w = W, and‘the reson-
ance curve becomes a de;ta function located at w = wc. However, if
Ti is finite, the periods of acceleration and deceleration will not
exactly cancel for w # W, s and the resonance curve will be broadened.
-The relationship between T4 and T; can also be shown by noting that

Fc(x) typically has a width Ax ~ 2. Thus one can write:

This broadening mechanism is often called transit time broadening.




~16-

IIT. Results for Specific Cavity Field Structures

We will now apply the general theory for single mode
oscillation given in Sectiom II to specific longitudinal field
structures. This comparison will allow us to determine the
sensitivity of the linear characteristics of an ECM to g(z).

We will consider a gyrotron that has a cavity of length L with

a circular cross section. The cavity will either be uniform, or
have a slow taper in the z direction, depending upon the nature

of the output coupling and g(z). We will assume an annular electron
beam located at r = re. Based on these assumptions, and assuming

a standing wave in the 6 directionthe starting current and frequency
detuning are given in the case of a beam with a velocity spread by
Eqs. (14) and (15) respectively, and in the case of no velocity

spread by Eq. (16). ’ .

PSR i ’

We will.bé éonsidering three specific longitudinal field
structures: sinusoidal, Gaussian, and uniform. A sinusoidal distribution
is associated with a nontapered cavity with conducting walls at each
end (at z=0 and L). In reality, a sinusoidal description for g(z) is
generally not adequate since';n ECM normally comnsists of an open
resonator in which the f£ield, rather than ending abruptly, extends
béyond the ends of the cavity in order to achieve output coupling.

In this case, g(z) can be caiculated using Eq. (9) with k;; a function

of z, gnd is no longer necessarily of the‘form sin(k; z). One approxima-
tion for g(z) is a Gaussian distribution, which serves as a reasonably
accurate fit to exact numefical solutions for a variety of open

cavities [11], and is also a good description of the field structure

as measured in actual experimental cavities [12]. The Gaussian

distribution can be written as g(z) = exp(-k z)2, where k|,= 2/LAFFand L ce
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is determined by théﬂshape and length of the cavity. We will use T(r,0)
as calculated for a nontapered cavity to describe the transverse field
structure under the assumption that, for a cavity operating near cutoff,
any taper will be small and the dependence of T on z can be neglected.
We will also consider a uniform field, g(z) = 1, that extends
from z = -L/Z to L/2. Such a distribution might be used to describe
a long cavity in which the resonant interaction only occurs in. the
central part of that cavity. As in the case of the Gaussian, we will
use the f(r,e) of a nontapered cavity.
In order to calculate the starting current and détuning, one
ﬁust.determine thé functions Fc, Fs’ Ipojz, and G(re). For the three

longitudinal field distributions discussed here, the expressions for

ch FS, an& |P0|2, derived using Eqs. (17), (lé), and (10) respectively,
are given in Table I. The first column gives g(z), as well as the
definition of k;; and the range of interaction between the electron
beam and RF field. The sinusoidal and uniform distributions involve
interactions over a finite distance L, whereas the Gaussian interaction
extends from z = -~ to «. In the case of the uniform field, where
g(z) is independent of k| , the definition of k; is arbitrary and does
not affect the final results.

The geometric factor G(re) and lpolz are calculated using Egs.
(13) and (10) respectively, where T (r,8) is given by Eq. (9) for a

TEﬁp mode with a standing wave in the 6 direction:

A 1 ddm(k*r) cos me (19)
0 Kk, dr sin me{

- ~afm sin mé
T(r,0) = r(E—Y¢> Jm(k‘r);_cos me
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Here Jm is a Bessel function of order m, and £ and 5 are unit vectors.
Boundary conditions yield k; = vmp/rw and k= qm/L, where vmp is the

th '
P zero of Jé(x) = 0. The brackets contain the 6 dependence for the two

normal modes. The geometric factor can be written as:

6(r.) = & [g2 ng
(re) =3 [dm-1 (kyrg) + J;+](k+re)] Stﬁ?ﬂéng (29)

A standing wave structure is obtained if the cylindrical (i.e.,8)
symmetry is destroyed. This can be done; for example, by cutting slots
in the wall. However, for a cavity with cylindrical symmetry, the RF
field structure is found to rotate in the 8 direction. This has been
observed in experiments [12]. For this situafion,“;he proper description

of the cross-sectional structure of the E field is:

T(r,3) = Fé 1 :Eﬁﬂgifil +ri m VI (kyr) | exp(ximd) (21)
i kl dr (k-L: o

Note that T is complex and thus |T X f*l is nonzero. We have derived
the linear theory for this case and found that Eqs. (14)-(18)
correctly give the linear characteristics of an ECM if the following
expressions for G(r ) and lpol2 are used:

= 12 Rotating
G(re) Jm £ (klre) Wave (22)

2 = 2
|P°| le0I standing

Note that the two rotating modes, designated by £, interact dif-
ferently with the beam and have different G(re) when m # 0, while
G(re) is the same for both normal modes of a standing wave struc-

ture. In this section we will use Eq. (20) to define G(re). We

will now consider some features of IST and the frequency de;uning
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for the case of a beam with no velocity spread, and will focus our

attention on the sinusoidal and Gaussian distributions.
The sinusoidal distribution is characterized by several

self-excitation regions. which are dependant on q. Modes with

q = 1 have the lowest starting currents, with the resonance band-
width centered at approximateiy X = ?l. This observation is in
agreement with the fact that the ECM interaction is a Doppler-
shifted resonance that satisfies w-k|| u 0, - Modes with q > 1
generally Have higher starting currents because IST scales as

q/Q, and Q_lincreases with q. One can determine the minimum

value of sw?/c2? needed in oraer for emission to occur from the
condition (sw2/c?) > ZFC (ch/dk)-l. For a sinusoidﬁl distribution

this inequality becomes: ‘ ' .
Tk 2x T A+ may -1 '
R

For an ECM with a q = 1 mode operating at the minimum IST at x = - 1,

sw?/c? must be greater than appréximately 1.5 in order for the ECM

to self-oscillate. Excitation can be achieved at lower valﬁes of

sw?/c2 by decreasing x, but this results in higher values of IST'

Eq. (23) implies that the transverse energy of the electron beam

must exceed a certain minimum valge in order for emission to occur.
The use of a Gaussian, rather than a sinusoidal, function

for g(z) can substantially alter the linear characteristics of an

ECM. This can be seen in Fig. 1, where I and the frequency detuning

ST

have been plotted for these two cases. We restrict our attention to

the TE mode with L = 10.5) and wo3l/2ﬂ = 200 GHz. We assume that

031
the cavity has a QT = 3150 and, for copper walls, Q0>>QD so that the

term S/ZQO can be neglected in the detuning equation. The beam,
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which is assumed to have no velocity spread, interacts with the RF
field at the an radial maximum and has a voltage of 30kV and w/u =
1.5. Calculations are based on Eq. (16). The upper curves represent

the values for I T while the lower curves give the frequency detuning.

S

The detuning (m2 - w(l)) is expressed relative to the resonance width

w /QT° For the Gaussian curveé, we have assumed that L = L, which
c eff

is typical for an open resonator of length L with straight cylindrical
walls [11]. Ome can see that the Gaussian resonance region is sub-
stantially narrower than that for the sine distribution, and less

shifted from zero. In addition, the minimum IST for the Gaussian,

which occurs at:

RONEE

or (mc - w031) L/mu = - 0.7 for the parameters associated with Fig. 1,

is lower by a factor of 3 than the minimum I T for a sinusoidal

S
g(z). The degree of detuning experienced in these two cases is similar.
The narrower (and less shifted) IST curve for the Géussian can be .
explained primarily invterms of differences in k; , that is, differences
in the breadth of the g(z) profile. For the above example we obtain

-1 =1
kjj= 2/L = 1.21 em. for the Gaussian and k, = 7/L = 1,99 cm. for

the sine. Since the wavenumber for the Gaussian is smaller, which
results in a broader profile, oné would expect. the Doppler shift and
resonance width, both of which are inversely related to the breadth
of g(z), to be reduced. The lower minimum starting current for the
Gaussian is also primarily a result of the lower k, . This can be
shown using Eq. (16a), which yields the following dependence for the

minimum starting current with x = - 1:
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2
II;%N ok

This simple relation explains the qualitative difference between
the sinusoidal and Gaussian g(z) distributions.

In o?der to better understand the importance of the fringe
fields at each end of an open cavity, the calculation of the
starting current for a Gaussian profile was redone for a finite
resonant interaction extending from z = -L' to L'. In this case an
analytic solution was not feaéible, and the integration had to be
done numerically. The results are shown in Figure 2. Here Ig.
has been plotﬁed for various values of L;/L. The cavity parameters
given with Fig. 1 were used. The curve L'/L = « is the same curve
as that shown for the Gaussian in Figure 1. One can see that as L'/L
decreases and less of the tails are included in the interaction regionm,
the curves shift to more negative #alues of x.

Again, this effect can be explained in terms of a changing
.value of ky. For L'/L < 0.5, the effective k) for the distribution
is 2/L'. Thus, as L' decreases, the effective k; increases, increasing
both the width and the shift of the resonance curve.

The general expressions derived in Section II have been
compared with the resuits of previous studies of ECM linear theory.
Chu [8] has derived the starting current for TEopq modes (i.e., m = 0)
with a sinusoidal longitudinal field profile and no velocity spread
in the beam using a full& relativistic approaéh. It was found that
our weakly relativistic approach agrees with his results to within
18% for a beam energy of 60 keV or less. Thus, use of a fully

relativistic model introduces rather small corrections in comparison
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to changes resulting from varying the RF field shape or allowing for
a velocity spread in the electron beam. The results of this paper
should be sufficiently accurate as long as the beam voltage is low
and the device operates at the fundamental. Antakov et. al. [6]
have derived the starting current for a TEmpq mode with g(z) =

sin k|, z and a velocity spread in the beam. Their results were
found to be in agreement with éuré except for an additional factor
of (B /B8.)" in their equation, a factor we believe is in error.
Finally, our expression for IST for the Gaussian profile and no
beanm velocity spread was found to agrée with similar results given
by Nusinovich and Erm ([19], as well as with an expression presented

by Gaponov et. al. [12] for the minimum starting current.

'

s
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IV. Beam Velocity Spread

We will now investigate the effect on IST of having a velocity
spread in the electron beam. In order to avoid a detailed analysis
of particle trajectories from the gun cathode, we will assume that
all electrons are emitted with the same energy, and that the parallel
velocity dispersion can be described by a Maxwellian with a character-
istic width Au (full width at half maximum). For simplicity, no
spatial dispersion will be in;luded. If we define u and w as the average

velocities, then the electron distribution function is written as:

0. )2\ -2, -
fo(u,W) :(—A—-zi) exp (— O%Z) §(u%+ W2- u2- w2)(2mw) 1 (25)

This expression for fO is then used in conjunction with Eq.(14)
to calculate the starting current.

This calculatién was done numerically for the TE031 mode
with a sinusoidal longitudinal field distribution using the same
design parameters as those given for Fig. 1. The results are shown

in Fig.3, where I T has been plotted versus x = (wc - w(%)ykllﬁ for

S
various velocity spreads Aw/w, which can be related to the longi-
tudinal velocity dispersion using Au/u = (w/u)?(Aw/w). It can be

seen that large spreads in velocity have a relatively minor effect




YRR

on the minimum starting current. Increasing‘the velocity dispersion
causes the minimum value of IST to decrease and shift towards

=0 provided the dispersion does not become excessively large.
This behavior can be explained in the following manner. Let xopt

be that value of x at which the electrons lose the greatest fraction

of their energy and I T is minimized. If an ECM with a beam velocity

S

spread is operating at l§| slightly less than lxo , then a number

l
pt
of electrons will have a sufficiently small velocity u such that
they have an effective x = xopt' In addition, these particlesvwill
have a relatively high rati§ w/u. These two factors cause these
electrons to lose a larger than éverage fraction of their energy.

It can be shown that this éffect dominates, resulting in a reduction
of the starting current for l§l slightly less than lxoptl for a beam
with a velocity spread.

Although a velocity dispersion has a small and even somewhat
beneficial effect in the linear regime of operation, this is not
expected to be the case in the nonlinear operation of an ECM. For
example, V. P. Taranenko et al. [15] conclude that a velocity spread

in the electron beam has a detrimental effect on the efficiency of

the device.
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V. Multimode Operatiomn

We next consider the case of multimode excitation, which is
one of the major problems confronting the high power, high‘frequency
ECM. This involves the excitation of a number of competing modes
in addition to the working mode, thus adversely affecting the effi-
ciency of the maser. This problem is»exasperated as the cavity
size is increased to accommodate higher powers, since one must ﬁove
to higher order modes, and mode separation decreases. In order to
analyze multimode excitation, the oscillation equations (6) for all
possible excited modes must be solved simultaneocusly. In general,

a mode can be excited if its frequency falls within the gain band-
width Awg.~ k” Ua These equations are coupled since the perturbed
current J is a function of all the modes oscillating within the
cavity. Coupling between modes also occurs as a result of the ohmic
losses in the cavity walls (i.e., the Q%? terms, where £ # d), but
these terms are typically small and can be neglected. The cross-
terms associated with the J ° Ez integral result from the fact that
the RF field serves two purposes. It is responsible for the bunching
of the électrons as well as the energy extraction from the electron
stream. In the case of a single mode, both duties are accomplished
by the same field, resulting in the geometric factor GD being expressed
in terms of IT(r,G)lz. In the case of multimode operation, cross-
terms occur because bunching and energy extracfion can be accomplished
by different modes, and this gives geometric factors which are func-
tions of (TQ°T§) and [fg X T:[, where 52 and Td represent different

modes.
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A number of complications arise when two or more modes are
allowed to oscillate within a cavity. For a single-mode analysis,
the final equations for the starting current and detuning are inde-
pendent of both time and RF field amplitude, which is consistent
with linear theqry. However, in a multimode analysis, the cross-
terms associated with the interaction of two separate modes will be
functions of both time and the relative amplitudes of the two modes.
These terms will be proportional to exp(iAwSt), where Aws = w(l) - w(d).
The correct treatment of these terms will thus depend upon the rela-
tive frequencies of the competing modes. If (A‘ous)-1 is small com-
pared to the transit time of the electron in the cavii:y_(‘ti ~ (kllu)-l),
then exp(iAwst) is expected to be highl§ oscillatory along the o
electron path, mode coupling'wili be weak, and the éross—terms can
be ignored. In this case each oscillation equation can be solved
independently in the linear regime. However, if Aws § kH u, then
the cross-terms cannot be neglected, and the system of oscillation
equations must be solved simultaneously. A multimode analysis
would utilize Eqs.(7a) and (7b), and Eq.(ll) in its generalized form.
Such an analysis is beyond the scope of this paper, and will be
treated in a subsequent publication. However, we will point out
some of the major qualitative features of such a solution in this
section.

Consider the cavity resonator treated in Section III, with
a circular cross section and a thin annular beam symmetric in é.

For this cavity, we can show that two cavity modes, 'I‘Empq and




TEm'p'q' will only have significant competition if m = m' and

p =p'. This can be explained as follows. For those competing"
modes with different m, the orthogonality of the © dependence of
the two modes will caﬁse Gﬁf and G%f , £ #d, in Eq.(11) to be zero.
This will eliminate mode coupling in that case. For modes with

m=m' but p #p' (and q = q' or q # q'), it is easy to show that

the frequency difference of the modes

hw_/w ~ I\)mp = Vip' |/\)mp

will always be quite large for modes with m or p less than about
20. Here, we have assumed a cavity near cutoff so that the g
dependence of the oscillation frequency is unimportant.

Thus, in practice, mode c9mpetition in the linear theory
only occurs between modes of the form TEmpq and TEmpq" These modes
can be closely spaced, particularly if q = 1 and q' = 2 and the
cavity is near cutoff (k; >> kH Y. Since a rigoroﬁs treatment of
multimcde effects is beyond the scope of this paper, we have calcu-
lated IST and the frequency detuning for clo;ely spaced modes using

the single mcde equations. Therefore it should be understood that,

for modes of the form TEm and TEmpZ in regions of magnetic field

pl
where the starting currents for the two modes are comparable, the
calculations to be presented are inaccurate.

Fig. 4 shows results for the TEOBq and TE23q modes with q =

and 2. The starting current and detuning (wz - w(L)) are plotted

- 031 . .
Versus Xgqq = (wc - w03l)/kll u. The parameter Xp37 is effectively
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a measure of the magnetic field. The device parameters are the
same as those presented in conjunction with Fig. 1. Here one can
see extensive mode overlap of the 031 and 032 modes. Such compe-
tition is especially prevalent in the case of gyrotrons, where

k; >> k i .

] lland TEmpZ modes are very close in frequency to TEmpl In

addition, the TEopq and TE modes tend to be closely situated,

2pq
especially for p > 3. The frequency detuning observed in Fig. 4 is
quite small, although measurable, with [Q§w2 - w(l))/mcl < 2 over a

major portion of the I__ curves.

ST
Based on the observation that the starting current curves
have an approximate width of Ax = 2, one can derive a simple scaling

law that determines if mode competition will be a major problem.

Modes TE . and TE ,_, , will not overlap when Iw - W gy ,l
upq mpq mpq m'p'q
2 { . i = = :
2 (k” + k” Ju Writing k“ qm/L and wmpq c\)mp/rw gives
‘ Av '
1 agl2)® o+ Dme ] 'y (4 (A
g (@+gq )Aq(f Sup 2 7@+ a )R (26)

as the mode separation condition, where Aq = q - q' and Avmp =

Vo=V,
mp o'p

and TE modes with L/A.= 10.5 and Av__ = 0.2, and thus only a
231 mp -

1+ This is satisfied in the case of the competing TEOBl
slight overlap of these modes is observed in Fig. 4. However, Eq.(26)
indicates competition between TEOBl and TE032 (Aq = 1, Avmp =0),

and this is verified by the graph. Fig. 5 shows results for a
shorter cavity length L/A = 5 (vs. 10.5 in Fig. 4). Here, the

starting current has been plotted versus X531 ° At this smaller value




of L/A, the mode separation equation (26) is not satisfied for TEO31
and TE231, and extensive overlap of these two modes is observed.

The starting currents in this graph are much higher than those of
Fig. 4 due primarily to the reduction of the quality factor, which

scales as QD ~ (L/A)2.
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VI. Conclusions

-We have investigated in detail the startup characteristics
of ‘an ECM‘by solving the full linear theory for the device in the
weakly relativistic limit. A set of analytic expressions was derived
for calculating the starting current and detuning properties for any
>RF field distribution. The starting current was found to be simply
related to the Fourier transform of the longitudinal field shape.
These comprehensive results were applied to specific cases, including
the sinusoidal and Gaussian distributions, which were investigated
in detail. The resulting equations are fairly easy to solve, yet
remain flexible encugh that they can be used to study a variety of
ECM problems, including velocity spread in the electron beam and
mode competition.

The comparison of the sinusoidal and Gaussian distributions
showed that slight alterations of the RF field longitudinal dependence
can substantially change the starting current and Doppler shift
associated with the resonance. In the example given, a decrease of
IST by a factor of three was observed for the Gaussian vis a vis the
sine case. The tails of the Gaussian were shown to cause a shift of
the resonance curve.

The potential competition between modes was investigated by
plotting the IST curves for a set of neighboring modes, in particular
the TEO3q and TE23q modes for q = 1 and 2. The starting current was cal-
culated for each mode using the assumption that no other modes existed with-

in the cavity. This approach was shown to be valid for our configuration
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except for TE and TE , modes, where q # q'. For the latter
mpq mpq

situation, the cross-terms associated with mode coupling are not

negligible for those values of x that result in comparable starting

currents for these two modes. For a gyrotron operating near cutoff,

where k; >> k” » there is generally extensive overlap between TEm

Pq

and TEmpq'. However, this problem might not be severe in practice
since IST increases with q and it might be possible to operate at
@ = 1 and remain below the starting regimes for q > 1 modes.

A velocity spread in the electron beam was found to have a
small effect on the starting behavior of an ECM. Surprisingly, such
a degradation of the beam caused a lowering of the minimum IST' How-
ever, it is known [15] that a velocity dispersion will have a detri-
mental effect on the nonlinear characteristics of the device, in
particular causing the efficiency to decrease.

Calculation of the dispersion characteristics shows that the
magnitude of the frequency detuning at threshold will be in the range
of several times w/QT as the magnetic field is varied. Since the
emission bandwidth will be narrowed to less than w/QT,.the variation
in emission frequency should be measurable. Measurement of the de-
tuning, as well as the starting current, as a function of magnetic

field could be useful in evaluating certain parameters of the ECM,

such as the cavity Q.
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TABLE I

Results for Various Longitudinal Field Distributions g(z)

2
9(2) FC(X) FS(X) . ,Pol
: 2 . x+1 -1 . L, -2 2
sin k”z =77 sin? (( 2)”q> (T=x7)2 [sm qr(x-1) + T-TI— k, [vzmp-mz]d s
k“ =qm /L Xg]-XzngT]
2
0<z<l

ki = 2logs (v )
m' ‘mp
-0 2L @
] sin? _le m _ sin(mx) Iy -2 [\)2 -mz] J2_(v_)
k” TT/L 2 XZ X X2 2 + mp m mp
<z

_x2 062
D(x) = e e* da Dawson's Integral (see [16])
0

lpol2 corresponds to a standing wave in the 6 direction
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Fig. 2.
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Figure Captions

Comparison of the linear characteristics of an ECM with
a sinusoidal (S) longitudinal RF field distribution with
one having a Gaussian (G) profile. Upper curves represent
the starting currents, while lower curves give the fre-
quency detuning. Cevity and beam parameters are given in

the text.

Variation of the starting current of an ECM with a Gaussian
longitudinal profile as the range of interaction between
the electron beam and RF field is changed. L is the cavity
length, and L' is the interaction length. Same device

parameters as for Fig. 1.

Dependence of the starting current on the velocity spread
of the electron beam, Aw/w, for the TEOSl mode. ECM has RF
field with sinusoidal longitudinal profile, and same oper-

ating parameters as those given for Fig. 1.

Starting current (upper curves) and frequency detuning
(lower curves) for the TE03q and TE23q modes for q = 1 and

2 and a sinusoidal longitudinal field profile. Same device
parameters as ‘for Fig. 1. A standihg wave in the 8
direction is assumed for the assymmetric medes.

Starting current for same ECM as in Fig. 4 except cavity
has been shortened to L = 52 (vs. 10.5)X in Fig. 4). As

the ratio L/A decreases, mode overlap becomes more pronounced.
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