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Abstract

The linear theory of an electron cyclotron maser (ECM)

operating at the fundamental is developed. A set of analytic

expressions, valid for all TE cavity modes, is derived for the

starting current and frequency detuning using the Vlasov-Maxwell

equations in the weakly relativistic limit. These results are

applicable for an arbitrary electron velocity distribution as well

as any longitudinal distribution of the RF field. It is shown that

the starting current can be expressed in a simple form which contains

the Fourier transform of the longitudinal field distribution. Ana-

lytic results are presented for specific longitudinal field varia-

tions, including uniform, sinusoidal, and Gaussian. It is found

that the starting characteristics of an ECM are strongly influenced

by the axial dependence of the RF field, but weakly affected by the

velocity spread of the electron beam. The problem of multimode

oscillation is treated in the linear theory by using a Slater

expansion of the cavity field. The complete formulation for mode

competition based on this expansion is presented and preliminary

results are derived. This comprehensive analysis of ECM linear theory

should be useful as a diagnostic of ECM performance and should facil-

itate comparison between theory and experiment.



I. Introduction

The electron cyclotron resonance maser (ECM) has been demon-

strated to be an efficient, high power source of millimeter and sub-

millimeter radiation [1-3]. The most successful results to date

have been obtained with a form of the maser called the gyrotron,

developed by A. V. Gaponov and co-workers [1]. In this paper we

present new results in the linear theory of the ECM, results which

are particularly applicable to the gyrotron.

The linear theory of the ECM describes the characteristics

of the maser at threshold, including the starting current IST and

the detuning of the operating frequency from the empty cavity reson-

ance frequency. In general, linear theory results may be expressed

in analytic form, as is the case in this work. In contrast, the non-

linear theory, which describes the operation of the maser above

threshold and yields the output power and efficiency of the device,

must ordinarily be solved numerically. The linear theory provides a

simple means of determining the threshold operating characteristics

of an ECM, making it an important tool in the analysis of this device.

There have been a number of previous investigations of the

linear theory of the ECM [4-9]. However, these studies have been

limited or idealized in one respect or another, such as by treating

only specific cavity modes or electron beams with no velocity spread.

In this paper we present an analytic treatment of ECM linear theory

that is applicable to all TE modes of the cavity, as well as to an

arbitrary, weakly relativistic, electron velocity distribution.
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Furthermore, the results presented are valid for any distribution of

the longitudinal RF field. This allows one to compare the linear

characteristics of different models of an ECM cavity, including:

an idealized right circular cylinder cavity with closed ends and

sinusoidal longitudinal RF field; and a more realistic cavity with

open ends and a Gaussian distribution. In addition, the present

comprehensive results enable us to evaluate important effects in the

ECM4, including mode competition and the changes caused by a velocity

spread in the electron beam. By analyzing these effects, we are

better able to determine what factors can strongly influence the

threshold behavior of an ECM. This should facilitate the comparison

between theoretical and experimental results and serve as a useful

aid in diagnosing ECM performance.

The method employed in this analysis involves solving the

combined Vlasov and Maxwell equations for an electron beam inter-

acting with the RF fields of a cavity. The Vlasov equation is

solved by a standard perturbation approach in the weakly relativistic

limit. The results are then combined with the Slater equations for

the cavity modes and solved for the oscillation condition. This

yields expressions for both the starting current and the frequency

detuning. Calculation of the starting current allows one to deter-

mine the minimum beam current needed for self-oscillation. The fre-

quency detuning, which depends on the cavity Q, may provide a means

of determining Q experimentally by measuring the resonance frequency

of the cavity both with and without the electron beam present.
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Our analysis is presented in the following manner. In

Section II, the problem is formulated and general expressions for

the starting current and frequency detuning are presented. In

Section III, these results are applied to three different longitu-

dinal RF field profiles: uniform, sinusoidal, and Gaussian. This

comparison allows one to determine how sensitive the threshold

behavior of an ECM is to the field structure. Section IV discusses

the effect of introducing a velocity spread into the electron beam,

while Section V investigates the problems associated with multi-

moding. Conclusions are presented in Section VI.
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II. General Theory

The formulation used for describing the EC consists of a

combination of the Vlasov equation for the electron distribution

function and Maxwell equations for the RF cavity fields. A number

of assumptions are made that aid in simplifying the calculation with-

out severely limiting its usefulness. We are concerned with the

small signal (i.e., linear) operation of an ECM. The cavity is

assumed to have a cross-sectional shape that is uniform or slowly

varying along its axis, here chosen as the z-axis. This allows us

to solve the Helmholtz equation, which describes the field structure

within the cavity, by a separation of variables. The RF field can

then be expressed as a product of two functions, one describing the

cross-sectional structure and the other giving the field variation

along z. Space charge effects are neglected. The electron beam

is assumed to be weakly relativistic, with relativistic effects

included in the calculation by retaining the velocity dependence of

the electron mass me and the cyclotron frequency C The dependence

cc
of w C on velocity is crucial in order for emission to occur. Finite

Larmor radius effects are neglected, and as a consequence the results

presented in this paper are applicable only to an ECM operating at

the fundamental frequency, i.e., w = w .
c

This calculation will include only the interaction between

the beam and the RF electric field, and will neglect the RF magnetic

field. Results from a previous paper [9] indicate that the terms

associated with the magnetic field are small if wc/kI c >> 1, where
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ki is the wavenumber parallel to the z-axis. Since a gyrotron

operates near cutoff and satisfies the above inequality, this paper

is especially applicable to this device. This same condition also

results in TE modes having substantially higher gain than TM modes,

and for this reason the latter will not be treated in this paper.

The initial electron distribution function is assumed to be

separable into a product of two distributions, one in velocity space

and one in real space:

f (r,v,t = 0) = N(r,e)f(u,w) (1)

where

2Tr du F wdw f (u,w) =

Here, f 0(u,w) is expressed in terms of the electron velocities paral-

lel and perpendicular to the z-axis, u and w respectively. N(r,e)

is the spatial density of the beam, and is expressed in terms of the

cylindrical coordinates r and e, but is independent of z. It has

recently been shown [8,17] that this assumption of separability in

Eq.(l) is generally not valid unless w/w r << 1, where r is the
c e e

beam radius. Hence, we also implicitly assume this latter condition.

We begin with a Slater expansion [10] of the RF vacuum field

within the cavity:

E(r,t) = pk(t)f (E)

(2)

H(r,t) = q 9 (t)R (r)

where the field components have been written as sums of orthonormal

modes that satisfy:
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d3r EZ Ed = d3r d - fd Zd

Here, 7 is the cavity volume, wZ = ck is the vacuum frequency of the

mode, and pz(t) and q,(t) describe the amplitudes and time dependences

of the'field components. Writing Maxwell's equations

7 XE = - 0 3H/3t and 7 x H = J + E/;t in terms of the above

expansions, combining these two equations, and utilizing the ortho-

gonal characteristics of E and H leads to an expression describing

the time-dependent behavior of the Zth mode [10]:

1+ k p = d fd3r- - dA( (n x E

S-
(3)

-k2,dA (Rx )*H

where n^ is a vector normal to the cavity surface and pointing outward.

The multimode nature of this problem is embodied in the fact that

J,E, and R must be expanded in terms of all possible cavity modes.

The surfaces S and S' represent two types of boundary con-

ditions that are present. The S surface corresponds to the conducting

walls of the cavity at which the tangential component of E is

virtually zero. The S' surface corresponds to an insulated area and

is associated with power coupled out of the cavity. The S integral

can be rewritten in terms of the ohmic quality factor of the cavity,

Q2, by noting that C x E = H(l + i)/Vp/2 at a wall with conductivity

a. Using the following definition for QU :
0

Q r w dA d)H
00Zd
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the S integral in Eq.(3) can be written as:

dA(l xE (i - ) d pd (4)
S d Q kd

Here we have assumed that Q >> 1 and have dropped terms of order
0

9d-2 9
(Q ) The terms associated with Q 0, d 0 9., which represent

coupling between cavity modes, are typically small in a gryotron and

can be neglected.

The S' integral can be expressed in terms of the diffractive

Q, QD, that results from the output coupling of the cavity mode:

dA(fi x ) ' % = -z 'p (5)
JSI 0\Q /

The superscript on QD indicates that this parameter is defined in

terms of the stored energy in the kth mode and the power coupling

between the kth mode of the cavity and the output mode of the wave-

guide connected to the cavity. No mode coupling terms are obtained

from this integral. Combining Eqs.(3), (4), and (5) leads to the

following result:

1 d + k' p = - d dt rJ z + SVw) p,]

QD

(6)
k2

- (i - 1) ( )p2

Q zz 
k
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If an equilibrium exists within the cavity, it is possible to express

this equation as two separate relations, one describing the energy

balance within the cavity while the other determines the frequency

detuning. Writing p. = p09 exp~iw(Z)t], where p., is independent of

time, the decoupled expressions are:

wk - L Re [ d-J 3 r 3-E (7a)

(w) - (w(Z) ) m[1jdar JE-,  (7b)

where Q ____Q+ ,9

= WM - (Q )

0 0 d~

2.
Here Q is the overall quality factor, and w(Z) is the operating fre-

quency of the Zth mode, which generally differs from w .

If we have a cylindrical cavity with no taper and an arbi-

trary cross section, then the electric field of a single TE mode in

equilibrium can be written as (20]:

Z(f,t) = T(r,6)g(z)exp(iwt) (8)

where T(r,e) and g(z) satisfy:
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~(r,e) = 2

dg(z)/dz2 + ki g(z) = 0

(9)

k2 + kz = 0 C2

Here Z is a unit vector, T is determined by the boundary conditions,

and k1 and k 1 are constants. T(r,e) gives the field amplitude and

cross-sectional structure, and can be complex, while g(z) is real

and describes the longitudinal field profile. In this paper g(z) is

normalized to a maximum value of one. It can be shown that Eqs.(8)

and (9) also apply to cavities with weakly irregular features at the

ends for output coupling, or with slowly tapered cross sections, if

we allow k1 , k1l , and T to become functions of z (11,211. The depen-

dence of T on z will be relatively weak for these cavities, and can

be neglected.

An expression can be obtained for P9 by equating Eqs.(2) and

(8), squaring and integrating over the cavity volume. This gives:

IP oI = J d'r lg,(z) T,(r,6)1 2  (10)

The parameter p serves as a normalization factor in Eqs.(7) so that,

in a single mode analysis, the starting current and detuning are

independent of field amplitude. Also noteworthy is the fact that

(E0p 2/2) is equal to the total stored energy (electric plus mag-

netic RF fields) within the cavity in the kth mode.
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Equations for Single Mode Operation

We must now solve the integrals in Eqs.(7). In general, J

is written in terms of all modes existinig within the cavity. However,

we will initially limit our attention to a single oscillating TE

mode and leave the discussion of multimoding to a later section.

Starting with the linearized Vlasov and Maxwell equations, the per-

turbation f1 (r,v,t) of the distribution function of the electron

beam due to the RF electric field in the cavity can be calculated

using the method of characteristics (13]. This method is appropriate

as long as the perturbation is small, that is, the field amplitude

is small. An expression for j can be derived based on this perturbed

distribution. The approach followed is a standard perturbation

method (4,8] so that we will only present the final results. The

integrals of Eqs.(7) can be expressed in the following form:

d'r .z - d3r N(r,6)fdv E -v f (r,v,t)

= 1P .rf0 du 00dw f (u,w) (K ,1
= Z m k 4ef 0 L c d

e 11- o L

X + i F )(G - i
C s D c

where

G = de fr dr N(r,e)(T Td)
0 0
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Zd 2T - -
G C f d8 ; r dr N(r,6)IT x Td

0 -0

[ wC - W (24

ki u

C

e
m = y

em eo

Here, m is the relativistic electron mass, r is the cavity radius,

and e is the electron charge. The strength of the interaction be-

tween the beam and the RF field is measured by the geometric factors

GD and GC. The expression 1 - 1/2(sw 2/c2)d/dx ] operates on the
functions F c and F. These functions are determined by the longi-

tudinal field dependence g(z), and can be calculated from the following

equations:

F xd f digt(z) d gd(' - X)cos (Xxd) (12a)

F sd(x . digt() dXgd( - X)sin (Xxd) (12b)

where =k z. In the next section, we will present detailed results

for specific g(z) distributions. The derivative in Eq.(ll) results
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from the dependence of m , and consequently wc, on velocity, and is a

measure of the electron bunching process.

We will now specialize to an annular electron beam that is

symmetric in 6, has no radial thickness, and is located at r r e.

We will limit our attention to an RF field with a standing wave

structure in the 6 direction, so that is real and G is zero.
c

Relating N to the beam current I, the geometric factor G U can be
D

written as:

12
G D = (I/eu)G(r )

where - (13)

e rr1-
G(re) = n- ide T(.6|

0

and u is the average longitudinal velocity. An explicit expression

can now be written for the starting current IST by combining Eqs.(7a),

(11), and (13). For clarity, the Z script has been dropped from all

parameters except frequencies:

SM k2 - -z dF

ST Wt 0 eT G(r ) du dw f (u,w) F SW

(14)

The starting current is positive and emission is possible only when

(sw2/c2 )(F c ) (dF c/dx) > 2.

A simple expression can also be obtained for the frequency detuning

by dividing (7b) by (7a). Defining y E (w c W )(ki u) -and assuming

1Wc - << , one can write:
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CO 1 tW2 dF

)__ )f du fdwf0(u,w)( ) FS- i. (--2) d

_ = du dwf (Uw)() Fc dXs2Q 2Q jSo1 W!) C]

(()5)

Eqs.(14)and (15) can be further simplified by assuming that the

electron beam has no velocity spread and f can be represented by

delta functions: f (u,w) = QTrw ) 6(u - u ) 6(w - w ). This leads

to the following set of equations:

me (k 1u 0 ) 2 1 0 2 dF ~
ST -2E - 0 F 2 -- )-~ d (16a)lST 0 QT e G(re FC 2 V \C2 -(6)

Sw2  dF5F 11 0 s
y) ...7 x + -k - s-?~ C2 (16b)

s 2Q 0SW 2  
dFC

Fc ~2 C2  dx~

Note that IST is independent of the field amplitude, as is expected

in linear theory. The term y/2Q has been dropped in Eq.(16b) since

it is very small in comparison to the other terms.

It can be seen that F and F , which are defined by Eq.(12),

are crucial in determining the characteristics of the starting current

and detuning. A simple expression can be obtained for Fc by writing

it in terms of the Fourier transform of g(i). Using the transform:

£(k) = (27) f g(a) e ika da

-CO
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in conjunction with Eq.(12a) gives the following simple result:

F =Tr (x) W(x (17)

Using Eq.(11), we have shown that F may be expressed in terms of

Fc using the Kramers-Kronig relations (18]:

F = Tr~ P F-a da (18)

where P indicates the principal value of the integral. These two

equations, in conjunction with (16), provide a convenient means of

quickly determining the linear characteristics of an ECM. Moreover,

because of the simple nature of these expressions, the possibility

exists of defining the desired linear characteristics of an ECM, and

then calculating the appropriate longitudinal field structure via

these relations.

The functions F c(x) and F s(x) are very similar to the absorp-

tion and dispersion functions of a forced harmonic oscillator. Thus,

it is possible to model the ECM interaction as a harmonic oscillator

with natural frequency w and a driving force due to the RF field
C

with frequency w. 'The damping time Td which is inversely related

to the resonance width, can be shown to be approximately equal to

the time of interaction between the beam and RF field, T - L/u.

If W # Wc, then the electron will precess with respect to the field,

experiencing alternating periods of acceleration and deceleration.

If the interaction continues indefinitely, (T + c), then the net
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electron energy change will be zero. In this case, an energy

transfer to the electrons will occur only at w = wc, and the reson-

ance curve becomes a delta function located at w = W . However, if
c

T. is finite, the periods of acceleration and deceleration will not

exactly cancel for w 0 wc, and the resonance curve will be broadened.

The relationship between Td and T. can also be shown by noting that

F c(x) typically has a width Ax - 2. Thus one can write:

d 27r 27r L i

This broadening mechanism is often called transit time broadening.
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III. Results for Specific Cavity Field Structures

We will now apply the general theory for single mode

oscillation given in Section II to specific longitudinal field

structures. This comparison will allow us to determine the

sensitivity of the linear characteristics of an ECIX to g(z).

We will consider a gyrotron that has a cavity of length L with

a circular cross section. The cavity will either be uniform, or

have a slow taper in the z direction, depending upon the nature

of the output coupling and g(z). We will assume an annular electron

beam located at r = r . Based on these assumptions, and assuming

a standing wave in the e directionthe starting current and frequency

detuning are given in the case of a beam with a velocity spread by

Eqs. (14) and (15) respectively, and in the case of no velocity

spread by Eq. (16).

We will be considering three specific longitudinal field

structures: sinusoidal, Gaussian, and uniform. A sinusoidal distribution

is associated with a nontapered cavity with conducting walls at each

end (at z=0 and L). In reality, a sinusoidal description for g(z) is

generally not adequate since an ECM normally consists of an open

resonator in which the field, rather than ending abruptly, extends

beyond the ends of the cavity in order to achieve output coupling.

In this case, g(z) can be calculated using Eq. (9) with k1l a function

of z, and is no longer necessarily of the form sin(kl z). One approxima-

tion for g(z) is a Gaussian distribution, which serves as a reasonably

accurate fit to exact numerical solutions for a variety of open

cavities (11], and is also a good description of the field structure

as measured in actual experimental cavities (12]. The Gaussian

distribution can be written as g(z) = exp(-k 1 z)2 , where k= 2/L and
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is determined by the shape and length of the cavity. We will use T(r,e)

as calculated for a nontapered cavity to describe the transverse field

structure under the assumption that, for a cavity operating near cutoff,

any taper will be small and the dependence of T on z can be neglected.

We will also consider a uniform field, g(z) = 1, that extends

from z - -L/2 to L/2. Such a distribution might be used to describe

a long cavity in which the resonant interaction only occurs in the

central part of that cavity. As in the case of the Gaussian, we will

use the T(r,e) of a nontapered cavity.

In order to calculate the starting current and detuning, one

must determine the functions Fc F' 1p o 12 , and G(r e). For the three

longitudinal field distributions discussed here, the expressions for

Fc, Fs, and 1po 12, derived using Eqs. (17), (18), and (10) respectively,

are given in Table I. The first column gives g(z), as well as the

definition of k11 and the range of interaction between the electron

beam and RF field. The sinusoidal and uniform distributions involve

interactions over a finite distance L, whereas the Gaussian interaction

extends from z = -- to -. In the case of the uniform field, where

g(z) is independent of k1 , the definition of k1 is arbitrary and does

not affect the final results.

The geometric factor G(re) and p 02 are calculated using Eqs.

(13) and (10) respectively, where T (r,6) is given by Eq. (9) for a

TE mode with a standing wave in the 6 direction:
mpq

dJ (k r)
kn mer 1 m dr os m(9)

T(r',e) ^r J (k~ r) +8 eT dr s in (19

(Tr,) m P s e

----------- --
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Here Jm is a Bessel function of order m, and t and 6 are unit vectors.

Boundary conditions yield kj = v /r and k,,= qlr/L, where v is the

pth zero of J' (x) 0. The brackets contain the e dependence for the twom

normal modes. The geometric factor can be written as:

G(r ) = .. (k re) + (k r) Standing (20)e L M M-l_ ~e Wave (0

A standing wave structure is obtained if the cylindrical (i.e.,e)

symmetry is destroyed. This can be done, for example, by cutting slots

in the wall. However, for a cavity with cylindrical symmetry, the RF

field structure is found to rotate in the e direction. This has been

observed in experiments [12]. For this situation, the proper description

of the cross-sectional structure of the E field is:

dJ m(k.Lr) ;-
T(r,a) = g1 dm + m Jm kjr) exp(±im6) (21)

k. dr k. r

Note that T is complex and thus IT x T*j is nonzero. We have derived

the linear theory for this case and found that Eqs. (14)-(18)

correctly give the linear characteristics of an ECM if the following

expressions for G(re) and fp 12 are used:

G(r) = J2 (k r Rotating
m - I e Wave (22)

0  po standing

Note that the two rotating modes, designated by t, interact dif-

ferently with the beam and have different G(r ) when m 0, while

G(r ) is the same for both normal modes of a standing wave struc-
e

ture. In this section we will use Eq. (20) to define G(r ). We

will now consider some features of IST and the frequency detuning



for the case of a beam with no velocity spread, and will focus our

attention on the sinusoidal and Gaussian distributions.

The sinusoidal distribution is characterized by several

self-excitation regions. which are dependant on q. Modes with

q - 1 have the lowest starting currents, with the resonance band-

width centered at approximately x = -1. This observation is in

agreement with the fact that the ECM interaction is a Doppler-

shifted resonance that satisfies w-kiI u =w Modes with q > 1

generally have higher starting currents because IST scales as

.1
q/Q, and Q increases with q. One can determine the minimum

value of sw2 /c2 needed in order for emission to occur from the

condition (sw2 /c2 ) > 2F (dF /dc). For a sinusoidal distribution
c c

this inequality becomes:

(SW2 2x + I a C xt +1) q\ -1

C( + 2 q co 2 (23)

For an ECM with a q = 1 mode operating at the minimum IST at x - 1,

sw2 /c2 must be greater than approximately 1.5 in order for the ECM

to self-oscillate. Excitation can be achieved at lower values of

sw2 /c2 by decreasing x, but this results in higher values of IST*

Eq. (23) implies that the transverse energy of the electron beam

must exceed a certain minimum value in order for emission to occur.

The use of a Gaussian, rather than a sinusoidal, function

for g(z) can substantially alter the linear characteristics of an

ECM. This can be seen in Fig. 1, where IST and the frequency detuning

have been plotted for these two cases. We restrict our attention to

the TE031 mode with L = 10.5A and w 031/2r = 200 GHz. We assume that

the cavity has a QT = 3150 and, for copper walls, Q 0 D so that the

term S/2Q can be neglected in the detuning equation. The beam,
0

-19-
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which is assumed to have no velocity spread, interacts with the RF

field at the 2nd radial maximum and has a voltage of 30kV and w/u

1.5. Calculations are based on Eq. (16). The upper curves represent

the values for IST' while the lower curves give the frequency detuning.

The detuning (w - w(Z)) is expressed relative to the resonance width

w /O. For the Gaussian curves, we have assumed that L = L, which
c 'T eff

is typical for an open resonator of length L with straight cylindrical

walls (11]. One can see that the Gaussian resonance region is sub-

stantially narrower than that for the sine distribution, and less

shifted from zero. In addition, the minimum I for the Gaussian,
ST

which occurs at:

XC) (24)

or (wc - 031 ) L/ru - 0.7 for the parameters associated with Fig. 1,

is lower by a factor of 3 than the minimum IST for a sinusoidal

g(z). The degree of detuning experienced in these two cases is similar.

The narrower (and less shifted) IST curve for the Gaussian can be

explained primarily in terms of differences in k1l , that is, differences

in the breadth of the g(z) profile. For the above example we obtain

.1
ki - 2/L = 1.21 cm. for the Gaussian and k,, - TT/L = 1.99 cm.- for

the sine. Since the wavenumber for the Gaussian is smaller, which

results in a broader profile, one would expect the Doppler shift and

resonance width, both of which are inversely related to the breadth

of g(z), to be reduced. The lower minimum starting current for the

Gaussian is also primarily a result of the lower k11 . This can be

shown using Eq. (16 a), which yields the following dependence for the

minimum starting current with x - - 1:
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MIN 2
I ko
ST

This simple relation explains the qualitative difference between

the sinusoidal and Gaussian g(z) distributions.

In order to better understand the importance of the fringe

fields at each end of an open cavity, the calculation of the

starting current for a Gaussian profile was redone for a finite

resonant interaction extending from z = -L' to L'. In this case an

analytic solution was not feasible, and the integration had to be

done numerically. The results are shown in Figure 2. Here IST

has been plotted for various, values of L'/L. The cavity parameters

given with Fig. 1 were used. The curve L'/L = is the same curve

as that shown for the Gaussian in Figure 1. One can see that as L'/L

decreases and less of the tails are included in the interaction region,

the curves shift to more negative values of x.

Again, this effect can be explained in terms of a changing

value of k11. For L'/L ;< 0.5, the effective k 1 for the distribution

is 2/L'. Thus, as L' decreases, the effective k1 increases, increasing

both the width and the shift of the resonance curve.

The general expressions derived in Section II have been

compared with the results of previous studies of ECM linear theory.

Chu (8] has derived the starting current for TE p modes (i.e., m = 0)

with a sinusoidal longitudinal field profile and no velocity spread

in the beam using a fully relativistic approach. It was found that

our weakly relativistic approach agrees with his results to within

18% for a beam energy of 60 keV or less. Thus, use of a fully

relativistic model introduces rather small corrections in comparison
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to changes resulting from varying the RF field shape or allowing for

a velocity spread in the electron beam. The results of this paper

should be sufficiently accurate as long as the beam voltage is low

and the device operates at the fundamental. Antakov et. al. [6]

have derived the starting current for a TE mode with g(z) =

sin kj z and a velocity spread, in the beam. Their results were

found to be in agreement with ours except for an additional factor

of ($II /$I.) in their equation, a factor we believe is in error.

Finally, our expression for IST for the Gaussian profile and no

beam velocity spread was found to agree with similar results given

by Nusinovich and Erm (19], as well as with an expression presented

by Gaponov et. al. (12] for the minimum starting current.
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IV. Beam Velocity Spread

We will now investigate the effect on IST of having a velocity

spread in the electron beam. In order to avoid a detailed analysis

of particle trajectories from the gun cathode, we will assume that

all electrons are emitted with the same energy, and that the parallel

velocity dispersion can be described by a Maxwellian with a character-

istic width Au (full width at half maximum). For simplicity, no

spatial dispersion will be included. If we define U and w as the average

velocities, then the electron distribution function is written as:

fO(u,w) ( ) exp ( 3 (Au() + 12- uZ_ W2)(2w)- (25)

This expression for f is then used in conjunction with Eq.(14)

to calculate the starting current.

This calculation was done numerically for the TE031 mode

with a sinusoidal longitudinal field distribution using the same

design parameters as those given for Fig. 1. The results are shown

in Fig.3, where IST has been plotted versus x = (W c - w())/k11 u for

various velocity spreads Aw/w, which can be related to the longi-

tudinal velocity dispersion using Au/u = (w/u)2 (Aw/w). It can be

seen that large spreads in velocity have a relatively minor effect
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on the minimum starting current. Increasing the velocity dispersion

causes the minimum value of I to decrease and shift towards

x = 0 provided the dispersion does not become excessively large.

This behavior can be explained in the following manner. Let x
opt

be that value of x at which the electrons lose the greatest fraction

of their energy and IST is minimized. If an ECM with a beam velocity

spread is operating at lxi slightly less than Ix j, then a number0 opt

of electrons will have a sufficiently small velocity u such that

they have an effective x x opt. In addition, these particles will

have a relatively high ratio w/u. These two factors cause these

electrons to lose a larger than average fraction of their energy.

It can be shown that this effect dominates, resulting in a reduction

of the 'starting current for lxi slightly less than Ix opt for a beam

with a velocity spread.

Although a velocity dispersion has a small and even somewhat

beneficial effect in the linear regime of operation, this is not

expected to be the case in the nonlinear operation of an ECM. For

example, V. P. Taranenko et al. (15] conclude that a velocity spread

in the electron beam has a detrimental effect on the efficiency of

the device.
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V. Multimode Operation

We next consider the case of multimode excitation, which is

one of the major problems confronting the high power, high frequency

ECM. This involves the excitation of a number of competing modes

in addition to the working mode, thus adversely affecting the effi-

ciency of the maser. This problem is exasperated as the cavity

size is increased to accommodate higher powers, since one must move

to higher order modes, and mode separation decreases. In order to

analyze multimode excitation, the oscillation equations (6) for all

possible excited modes must be solved simultaneously. In general,

a mode can be excited if its frequency falls within the gain band-

width Aw ~ k u. These equations are coupled since the perturbed

current J is a function of all the modes oscillating within the

cavity. Coupling between modes also occurs as a result of the ohmic

losses in the cavity walls (i.e., the Q terms, where Z 0 d), but
0

these terms are typically small and can be neglected. The cross-

terms associated with the J * EZ integral result from the fact that

the RF field serves two purposes. It is responsible for the bunching

of the electrons as well as the energy extraction from the electron

stream. In the case of a single mode, both duties are accomplished

by the same field, resulting in the geometric factor GD being expressed

in terms of IT(r,e)1 2. In the case of multimode operation, cross-

terms occur because bunching and energy extraction can be accomplished

by different modes, and this gives geometric factors which are func-

tions of (T 9Td) and IT x Tdi, where T and Td represent different

modes.
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A number of complications arise when two or more modes are

allowed to oscillate within a cavity. For a single-mode analysis,

the final equations for the starting current and detuning are inde-

pendent of both time and RF field amplitude, which is consistent

with linear theory. However, in a multimode analysis, the cross-

terms associated with the interaction of two separate modes will be

functions of both time and the relative amplitudes of the two modes.

These terms will be proportional to exp(iws t), where ,ws = w(Z) - w(d).

The correct treatment of these terms will thus depend upon the rela-

tive frequencies of the competing modes. If (AWs) is small com-
5

pared to the transit time of the electron in the cavity (Ti - (k11 u) ),

then exp(iAw t) is expected to be highly oscillatory along the

electron path, mode coupling will be weak, and the cross-terms can

be ignored. In this case each oscillation equation can be solved

independently in the linear regime. However, if Aw S kn u, then

the cross-terms cannot be neglected, and the system of oscillation

equations must be solved simultaneously. A multimode analysis

would utilize Eqs.(7a) and (7b), and Eq.(ll) in its generalized form.

Such an analysis is beyond the scope of this paper, and will be

treated in a subsequent publication. However, we will point out

some of the major qualitative features of such a solution in this

section.

Consider the cavity resonator treated in Section III, with

a circular cross section and a thin annular beam symmetric in 8.

For this cavity, we can show that two cavity modes, TE and
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TEmp 'q, will only have significant competition if m = m' and

p = p'. This can be explained as follows. For those competing

modes with different m, the orthogonality of the e dependence of

Zd Ud
the two modes will cause G and G , k 0 d, in Eq.(ll) to be zero.

D c

This will eliminate mode coupling in that case. For modes with

m = M' but p # p' (and q = q' or q # q'), it is easy to show that

the frequency difference of the modes

s mp mp mp

will always be quite large for modes with m or p less than about

20. Here,, we have assumed a cavity near cutoff so that the q

dependence of the oscillation frequency is unimportant.

Thus, in practice, mode competition in the linear theory

only occurs between modes of the form TE and TE mpq. These modes
mpq p

can be closely spaced, particularly if q = 1 and q' = 2 and the

cavity is near cutoff (k >> k ). Since a rigorous treatment of

multimode effects is beyond the scope of this paper, we have calcu-

lated IST and the frequency detuning for closely spaced modes using

the single mode equations. Therefore it should be understood that,

for modes of the form TEMP, and TE in regions of magnetic field

where the starting currents for the two modes are comparable, the

calculations to be presented are inaccurate.

Fig. 4 shows results for the TE03q and TE23q modes with q = 1

and 2. The starting current and detuning (w - w(k)) are plotted

031
versus x0 3 1 3)/k 03 u. The parameter x0 31 is effectively
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a measure of the magnetic field. The device parameters are the

same as those presented in conjunction with Fig. 1. Here one can

see extensive mode overlap of the 031 and 032 modes. Such compe-

tition is especially prevalent in the case of gyrotrons, where

kI >> kii and TE modes are very close in frequency to TEp In
mp2 mp 1

addition, the TE and TE modes tend to be closely situated,

especially for p > 3. The frequency detuning observed in Fig. 4 is

quite small, although measurable, with Q(wZ - w(Z))/wc 2 over a

major portion of the IST curves.

Based on the observation that the starting current curves

have an approximate width of Ax 4 2, one can derive a simple scaling

law that determines if mode competition will be a major problem.

Modes TE and TE , , will not overlap when 1L - W ,mpq m p q mpq m p q

> (kii + k' )u.. Writing k1l = qir/L and w ~ cv /r gives:
II IImpq mp w

(q + q')q( + > (q + q(26)

as the mode separation condition, where Aq = q - q' and Av =
mp

V - V . This is satisfied in the case of the competing TE031

and TE231 modes with L/A = 10.5 and Av = 0.2, and thus only a

slight overlap of these modes is observed in Fig. 4. However, Eq.(26)

indicates competition between TE031 and TE032 (Aq 1, AV 0),

and this is verified by the graph. Fig. 5 shows results for a

shorter cavity length L/A = 5 (vs. 10.5 in Fig. 4). Here, the

starting current has been plotted versus x03 1. At this smaller value
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of L/X, the mode separation equation (26) is not satisfied for TE0 3 1

and TE2 3 1, and extensive overlap of these two modes is observed.

The starting currents in this graph are much higher than those of

Fig. 4 due primarily to the reduction of the quality factor, which

scales as Q D (L/X)2.
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VI. Conclusions

,We have investigated in detail the startup characteristics

of 'an ECM by solving the full linear theory for the device in the

weakly relativistic limit. A set of analytic expressions was derived

for calculating the starting current and detuning properties for any

RF field distribution. The starting current was found to be simply

related to the Fourier transform of the longitudinal field shape.

These comprehensive results were applied to specific cases, including

the sinusoidal and Gaussian distributions, which were investigated

in detail. The resulting equations are fairly easy to solve, yet

remain flexible enough that they can be used to study a variety of

ECM problems; including velocity spread in the electron beam and

mode competition.

The comparison of the sinusoidal and Gaussian distributions

showed that slight alterations of the RF field longitudinal dependence

can substantially change the starting current and Doppler shift

associated with the resonance. In the example given, a decrease of

IST by a factor of three was observed for the Gaussian vis a vis the

sine case. The tails of the Gaussian were shown to cause a shif't of

the resonance curve.

The potential competition between modes was investigated by

plotting the IST curves for a set of neighboring modes, in particular

the TE03q and TE23q modes for q = 1 and 2. The starting current was cal-

culated for each mode using the assumption that no other modes existed with-

in the cavity. This approach was shown to be valid for our configuration
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except for TE and TE , modes, where q # q'. For the latter

situation, the cross-terms associated with mode coupling are not

negligible for those values of x that result in comparable starting

currents for these two modes. For a gyrotron operating near cutoff,

where k1 >> ki , there is generally extensive overlap between TE
mpq

and TE , However, this problem might not be severe in practice
mpq

since IST increases with q and it might be possible to operate at

q - 1 and remain below the starting regimes for q > 1 modes.

A velocity spread in the electron beam was found to have a

small effect on the starting behavior of an ECM. Surprisingly, such

a degradation of the beam caused a lowering of the minimum IST. How-

ever, it is known [15] that a velocity dispersion will have a detri-

mental effect on the nonlinear characteristics of the device, in

particular causing the efficiency to decrease.

Calculation of the dispersion characteristics shows that the

magnitude of the frequency detuning at threshold will be in the range

of several times w/QT as the magnetic field is varied. Since the

emission bandwidth will be narrowed to less than w/QT, the variation

in emission frequency should be measurable. Measurement of the de-

tuning, as well as the starting current, as a function of magnetic

field could be useful in evaluating certain parameters of the ECM,

such as the cavity Q.
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TABLE I

Results for Various Longitudinal Field Distributions g(z)

g(Z)
F c(x) F s(x I oZ

s2 n2  7(~yra) -1______
(1) sin k z sin2 +1 2  sin q(x-1) + k 2 [ .m -m2

k l qwr / L x(1 -x2I q

0 < z < L

(2) e- k 22 Z x ( ) k f 2 -2k 2/2

- O<z<Le
If ~e2 V47 D'2' 17 ef

(2) k z/ 2 silsn ) -2 2 -2[ 24 eff x Jm(Vmp

L L

2 O < Z < C(3 sin2 T] sin(7rx) Lk .2 [vm m2 J~(V~
2 x 2/L mM

D(x) = e-x To ea2da Dawson's Integral

Ip 0 12 corresponds to a standing wave in

(see [16])

the e direction

ii

IV~

~,1i 1~I
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Figure Captions

Fig. 1. Comparison of the linear characteristics of an ECM with

a sinusoidal (S) longitudinal RF field distribution with

one having a Gaussian (G) profile. Upper curves represent

the starting currents, while lower curves give the fre-

quency detuning. Cavity and beam parameters are given in

the text.

Fig. 2. Variation of the starting current of an ECM with a Gaussian

longitudinal profile as the range of interaction between

the electron beam and RF field is changed. L is the cavity

length, and L' is the interaction length. Same device

parameters as for Fig. 1.

Fig. 3. Dependence of the starting current on the velocity spread

of the electron beam, Aw/w, for the TE031 mode. ECM has RF

field with sinusoidal longitudinal profile, and same oper-

ating parameters as those given for Fig.. 1.

Fig. 4. Starting current (upper curves) and frequency detuning

(lower curves) for the TE0 3q and TE2 3q modes for q = 1 and

2 and a sinusoidal longitudinal field profile. Same device

parameters as 'for Fig. 1. A standihg wave in the 6

direction is assumed for the assymmetric modes.

Fig. 5. Starting current for same ECN as in Fig. 4 except cavity

has been shortened to L = 5A (vs. 10.5X in Fig. 4). As

the ratio L/X decreases, mode overlap becomes more pronounced.
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