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Abstract

We provide linear-time algorithms for geometric graphs with

sublinearly many crossings. That is, we provide algorithms

running in O(n) time on connected geometric graphs hav-

ing n vertices and k crossings, where k is smaller than n

by an iterated logarithmic factor. Specific problems we

study include Voronoi diagrams and single-source shortest

paths. Our algorithms all run in linear time in the standard

comparison-based computational model; hence, we make no

assumptions about the distribution or bit complexities of

edge weights, nor do we utilize unusual bit-level operations

on memory words. Instead, our algorithms are based on a

planarization method that “zeroes in” on edge crossings, to-

gether with methods for extending planar separator decom-

positions to geometric graphs with sublinearly many cross-

ings. Incidentally, our planarization algorithm also solves an

open computational geometry problem of Chazelle for tri-

angulating a self-intersecting polygonal chain having n seg-

ments and k crossings in linear time, for the case when k is

sublinear in n by an iterated logarithmic factor.

1 Introduction

A geometric graph [47] is an embedding of a graph
G = (V,E) in R2 so that each vertex v is associated
with a unique point p in R2 and each edge is “drawn”
as a straight line segment joining the points associated
with its end vertices. Moreover, the edges incident on
each vertex v are given in angular order around v, so
that faces in the embedding of G in R2 are well-defined
(e.g., using the next-clockwise-edge ordering). Thus, we
use the same notation and terminology to refer to G and
its embedding. If the edges in G have no crossings, then
G is said to be a plane graph, while graphs that admit
realizations as plane graphs are planar graphs [18, 26].

Geometric graphs are natural abstractions of the
geometric and connectivity relationships that arise in
a number of applications, including road networks,
railroad networks, and utility distribution grids, as well
as sewer lines and the physical connections defining
the Internet1. An example road network is shown in
Figure 1.

Figure 1: A portion of the road network surround-
ing the location of SODA 2009. This image is
from http://wiki.openstreetmap.org/, under the Creative
Commons attribution-share alike license.

1The union of these latter two graphs was featured in a recent
Google hoax (see http://www.google.com/tisp/).



Figure 2: A geometric graph and its planarization.

Although planar graphs and their plane graph re-
alizations have been studied extensively (e.g., see [53]),
real-world geometric graphs often contain edge cross-
ings. Recent experimental studies by the first two au-
thors gives empirical evidence that real-world road net-
works typically have Θ(

√
n) edge crossings, where n is

the number of vertices [23]. Motivated by this real-
world example, therefore, we are interested in studying
algorithms for connected geometric graphs that have a
sublinear number of edge crossings. However, we use a
weaker restriction on the number of crossings than the
bounds that our evidence suggests for road networks:
here we are interested in n-vertex geometric graphs that
have at most O(n/ log(c) n) edge crossings, for some con-

stant c, where log(c) n denotes the c-th iterated loga-
rithm function. We refer to such geometric graphs as
restrained graphs.

Given an n-vertex geometric graph G, the pla-
narization2 of G is the graph G′ that is defined by the
arrangement of the edges in G. That is, as shown in
Figure 2, we place a vertex in G′ for every vertex and
pairwise edge crossing in G, and we create an edge in G′

for every maximal edge segment from G that connects
exactly two vertices in G′. Likewise, we preserve the
(clockwise/counterclockwise) ordering of edges around
corresponding vertices in G and G′, and we assume
that intersection vertices in G′ similarly have their edges
given in rotational order. Thus, G′ is a plane graph hav-
ing n+k vertices, where k is the number of pairwise edge
crossings among the edges in G. By well-known prop-
erties of planar graphs (e.g., see [46, Prop. 2.1.6]), this
implies that G′ has at most 3n + 3k− 6 edges, which in

2Our use of this term differs from its use in the graph drawing
literature (e.g., see [18]), where it refers to the problem of
removing a minimal number of edges to make G be planar.

turn implies that G has at most 3n+k−6 edges. There-
fore, by restricting our attention to connected geomet-
ric graphs with a sublinear number of edge crossings,
we are, by implication, focusing on connected geomet-
ric graphs that have O(n) edges in their planarizations.

As mentioned above, a wealth of algorithms are
known for planar graphs and plane graphs. Indeed,
many of these algorithms, for such problems as single-
source shortest paths and minimum spanning trees,
run in O(n) time. Much less is known for non-
planar geometric graphs, however, which motivates our
interest in such graphs in this paper. Specifically, we
are interested in the following problems for connected,
restrained geometric graphs:

• The Voronoi diagram problem, which is also known
as the post office problem: we are given a set P
of k vertices in a geometric graph G and asked to
determine for every other vertex v in G the vertex
in P that is closest to v according to the graph
metric.

• The single-source shortest path problem: we are
given a vertex s and a geometric graph G and asked
to find the shortest paths from s to every other
vertex in G.

• The polygon planarization problem: given a geo-
metric graph defining a non-simple polygon P hav-
ing n vertices, compute the arrangement of all the
edges of P , including vertices defined by the pair-
wise crossings of the edges in P .

In all these cases, we desire comparison-based algo-
rithms that require no additional assumptions regarding
the distribution of edge weights, so that our algorithms
can apply to a wide variety of possible edge weights that



may vary for different users, including combinations of
distance, travel time, toll charges, and subjective scores
rating safety and scenic interest [21].

1.1 Previous Related Work

In the algorithms community, there has been consid-
erable prior work on shortest path algorithms for Eu-
clidean graphs (e.g., see [29, 35, 37, 49, 50, 54]), which
are geometric graphs where edges are weighted by the
lengths of the corresponding line segments. This prior
work takes a decidedly different approach than we take
in this paper, however, in that it focuses on using special
properties of the edge weights that do not hold in the
comparison model, whereas we study road networks as
geometric graphs with a sublinear number of edge cross-
ings and we desire linear-time algorithms that hold in
the comparison model.

The specific problems for which we provide linear-
time algorithms are well known in the general algo-
rithms and computational geometry literatures. For
general graphs with n vertices and m edges, excel-
lent work can be found on efficient algorithms in
the comparison model, including single-source shortest
paths [16,31,48], which can be found in O(n log n + m)
time [27], and Voronoi diagrams [4, 5], whose graph-
theoretic version can be constructed in O(n log n + m)
time [25, 41]. None of these algorithms run in linear
time, even for planar graphs. Linear-time algorithms
for planar graphs are known for single-source shortest
paths [34], but these unfortunately do not immediately
translate into linear-time algorithms for non-planar ge-
ometric graphs. In addition, there are a number of ef-
ficient shortest-path algorithms that make assumptions
about edge weights [28, 29, 42, 52]; hence, they are not
applicable in the comparison model.

Chazelle [8] shows that any simple polygon can be
triangulated in O(n) time and that this algorithm can be
extended to determine in O(n) time, for any polygonal
chain P , whether or not P contains a self-intersection.
In addition, Chazelle posed as an open problem whether
or not one can compute the arrangement of a non-
simple polygon in O(n+k) time, where k is the number
of pairwise edge crossings. Clarkson, Cole, and Tar-
jan [13, 14] answer this question in the affirmative for
polygons with a super-linear number of crossings, as
they give a randomized algorithm that solves this prob-
lem in O(n log∗ n + k) expected time. There is, to our
knowledge, no previous algorithm that solves Chazelle’s
open problem, however, for non-simple polygons with a
sublinear number of edge crossings.

1.2 Our Results

In this paper, we provide the first linear-time algorithm
for planarizing a non-planar connected geometric graph
having a number of pairwise edge crossings, k, that
is sublinear in the number of vertices, n, by an iter-
ated logarithmic factor. Specifically, we provide a ran-
domized algorithm for planarizing geometric graphs in
O(n + k log(c) n) expected time, which is linear for re-
strained geometric graphs. Given such a planarization,
we show how it can be used to help construct an O(

√
n)-

separator decomposition of the original graph in O(n)
time. Furthermore, we discuss how such separator de-
compositions can then be used to produce linear-time
algorithms for a number of problems, including Voronoi
diagrams and single-source shortest paths. We also
show how our planarization algorithm can be used to
solve Chazelle’s open problem of planarizing non-simple
polygons in expected linear time for polygons having a
number of pairwise edge crossings that is sublinear in
n by an iterated logarithmic factor. Thus, combining
this result with the polygon planarization algorithm of
Clarkson, Cole, and Tarjan [13, 14] provides a method
for planarizing an n-vertex polygon with k edge cross-
ings in optimal O(n+k) expected time, for all values of k

except those in the range [n/ log(c) n, n log∗ n]. Our re-
sult also implies that the convex hull of restrained non-
simple polygons can be constructed in O(n) expected
time, which, to the best of our knowledge, was also pre-
viously open.

Besides planar separator decompositions, which we
discuss below, another one of the techniques we use in
this paper is a method for constructing a (1/r)-cutting
for the edges of a geometric graph, G. This is a proper
triangulation3, T , of the interior of the bounding box
containing G such that any triangle t in T intersects at
most (1/r)n edges of G. Using existing methods (e.g.,
see [1,17,33]), one can construct such a (1/r)-cutting for
G in O(n log r + (r/n)k) time, where n is the number
of vertices in G and k is the number of pairwise edge
crossings. However, in our application such a bound
would be nonlinear, as we require r to be large. We
show, in Section 4, that for connected geometric graphs
such a cutting can be constructed in the faster expected
time bound O(ns + (r/n)k), where r ≤ n/ log(s) n.

2 Separator Decompositions

One of the main ingredients we use in our algorithms
is the existence of small separators in certain graph
families (e.g., see [39, 43]). Several of the algorithms

3A proper triangulation is a connected planar geometric graph

such that every face is a triangle and every triangular face has
exactly three vertices on its boundary.



Figure 3: Trapezoidal decomposition of a sampled subset of input graph edges.

in this paper are based on the use of separators: we use
them both as part of our algorithm for finding cuttings
of geometric graphs, and later, once the graph has been
planarized. Hence, we briefly review these tools here.

Given a graph G = (V,E), a subset W of V
is an f(n)-separator if the removal of the vertices in
W separates G into two subgraphs G1 and G2, each
containing at most δn vertices, for some constant 0 <
δ < 1. It is well known that planar graphs have O(

√
n)-

separators with δ = 2/3, and that such separators
can be constructed in O(n) time [39]. Such separators
are typically used in divide-and-conquer algorithms,
which involve finding a separator, recursively solving
the problem in the two separated subgraphs, and then
merging the solutions together. If the merge and divide
steps can be solved in o(n) time, however, it is useful
to have the entire recursive separator decomposition
computed in advance; for otherwise there is no way
to beat an O(n log n) time bound. Such a separator
decomposition defines a binary tree B, such that the
root of B is associated with the f(n)-separator for G
and the subtrees of this root are defined recursively for
the graphs G1 and G2, respectively.

Previous work on separators includes the seminal
contribution of Lipton and Tarjan [39], who show that
O(

√
n)-sized separators exist for n-vertex planar graphs

and these can be computed in O(n) time. Goodrich [30]
shows that recursive O(

√
n)-separator decompositions

can be constructed for planar graphs in O(n) time. A
related concept is that of geometric separators, which
use geometric objects to define separators in graphs
defined by systems of intersecting disks (e.g., see [3,
44, 45, 51]). Eppstein et al. [24] provide a linear-
time construction algorithm for geometric separators
which translates into an O(n log n) recursive separator

decomposition algorithm.
Because restrained graphs are not planar, the result

of Goodrich does not immediately apply. However, it
can be applied once we have planarized the graph, and
it can also be applied to planar structures formed from
subsets of the graph, such as the one we describe in the
next section.

3 Trapezoidal Decomposition of a Sample

Suppose we are given a geometric graph G having n
vertices and k pairwise intersections among its edges. In
this section, we describe our algorithm for constructing
a trapezoidal decomposition of a random sample of
the edges of G. That is, given the sample of edges,
we construct the arrangement of these edges together
with a set of vertical line segments through each edge
endpoint and crossing, where each such segment is
maximal with respect to the property of not crossing
any other sampled edge, as shown below. (See Figure 3.)

Our method is parameterized by s where r ≤ n/ log(s) n,
and the sample probability is inversely proportional to
log(s) n. We will later show how to refine this sample so
that we can produce a cutting and then a planarization
of G.

This first step of our algorithm is essentially the
same as performing s levels of the Clarkson, Cole,
and Tarjan algorithm, except that their method is for
polygonal chains, whereas ours is for geometric graphs.
Thus, we describe it at a high level.

Our algorithm begins with a trivial trapezoidal
decomposition T0 containing a single trapezoid that
encloses all of G. Call this trapezoid t. Let C(t) = E
be the conflict list for t, that is, the set of edges from G
that intersect the interior of t. Then, for i = 1 to s, we
perform the following computation.



1. Find a random sample Si of size n/ log(i) n, of the
edges in G, and for each trapezoid t in Ti−1, use
the Bentley-Ottmann algorithm [6] to construct the
trapezoidal decomposition of the arrangement of
the segments in C(t) ∩ Si. Once all these trape-
zoidal decompositions are constructed, merge them
together to create a single trapezoidal decomposi-
tion, Ti, for the segments in Si. To be consistent
with Clarkson, Cole, and Tarjan, we choose the
samples such that S1 ⊂ S2 ⊂ · · · ⊂ Ss.

2. Perform a depth-first traversal of G, while keeping
track of the trapezoids in the trapezoidal decom-
position that are intersected during the walk, so
as to determine, for each trapezoid t in Ti, the set
C(t). Since the geometric graph is connected, we
never have to restart the depth-first traversal from
a node whose location we do not already know. We
can therefore use the arrangement of the sampled
line segments to keep track of the intersected trape-
zoids at each step of the traversal. Thus we elim-
inate the need for time-consuming point-location
data structure lookups.

Let T = Ts be the resulting final trapezoidal decom-
position we get from this computation, and let S = Ss

be the final random sample. Using the framework estab-
lished by Clarkson and Shor [15] for randomized divide-
and-conquer algorithms, such as this, we can show that

(3.1) E (|T |) = O

(

r +
( r

n

)2

k

)

and

(3.2) E

(

∑

t∈T

|C(t)|
)

= O
(

n +
( r

n

)

k
)

.

In particular, Equation (3.1) is from their Lemma 4.1
and Equation (3.2) follows from their Corollary 4.4. The
number of steps in the depth-first traversal is propor-
tional to the total size of the conflict lists of the in-
put geometric graph with the trapezoidal decomposi-
tion, which as we have seen above is small. A step from
one trapezoid to a horizontally adjacent trapezoid may
be accomplished in constant time, but a single trapezoid
may have a non-constant number of neighbors above
and below it, causing steps in those directions to take
longer. But as Clarkson, Cole, and Tarjan show, the
sum over all trapezoids of the conflict list size of the
trapezoid multiplied by its number of neighbors remains
linear in expectation, and this sum bounds the time to
step vertically from one trapezoid to another using a se-
quential search along the trapezoid boundary to find the
neighboring trapezoid. Therefore, we have the following
preliminary result:

Lemma 3.1. Given a connected geometric graph G with
n edges and k pairwise edge crossings, and a parameter
s, we can in expected time O(ns + (r/n)k) find a

random sample of r = O(n/ log(s) n) edges from G, the
trapezoidal decomposition induced by the sample, and
the set of edges of G crossing each trapezoid of the
sample.

4 Cuttings

At this stage we take a detour from the Clarkson, Cole,
and Tarjan algorithm. For each trapezoid g in T , let
αg = |C(g)|r/n. That is, αg is the degree of excess
that the conflict list for g has beyond what we would
like for a (1/r)-cutting. For each trapezoid t with
αt > 1, we form a random sample, Rt, of C(t) of size
2bαt log αt, where b is the constant Kmax from Corollary
4.4 of Clarkson-Shor [15]. We then form the trapezoidal
decomposition, Tt of the arrangement of the segments in
Rt using any quadratic-time line segment arrangement
algorithm [2, 7, 10, 19]. Thus, by Corollary 4.4 from
Clarkson-Shor [15], the maximum size of any conflict
list of a trapezoid in Tt is expected to be less than
( |C(t)|

|Rt|

)

log |Rt| =
(n

r

)

(

1

log α2
t

)

log(2αt log αt)

≤ n

r
,

for αt ≥ 4. Thus, we can repeat the above algorithm an
expected constant number of times until we have this
condition satisfied, which gives us one of the crucial
properties of a (1/r)-cutting: namely, that each cell
intersects at most (n/r) edges of G.

In addition, the number of new trapezoids created
inside t, as well as the running time for creating the
trapezoidal diagram Tt, is certainly at most O(|Rt|2),
which is O(α2

t log2 αt). More importantly, we have the
following:

Lemma 4.1. Given the above construction applied to
each trapezoid t in T , then

E

(

∑

t∈T

α2
t log2 αt

)

= O

(

r +
( r

n

)2

k

)

.

Proof. Our proof is based on an application of Theo-
rem 3.6 from the Clarkson-Shor framework. To apply
this theorem, we bound

E

(

∑

t∈T

α2
t log2 αt

)

by bounding the term, α2
t log2 αt, by

W

((|C(t)|
c

))

,



where W is a positive concave function on R+ and c is
a constant. Here, for the sake of an upper bound, we
take c = 3 and we define

W (x) =

(

x1/3

N

)2

log2 x1/3 + N

N
,

where N = n/r. Finally, to apply Theorem 3.6 from
[15], we need to observe that the number of trapezoids in
T that have a conflict list size at most c is proportional
to the number of trapezoids in T that have a conflict
list size at least 0, which is |T |. To see this, note that
we can extend the vertical edges of any trapezoid in T
in at most O(1) ways until it hits i = 1, 2, 3 other edges
of the random sample, S, at which point we can extend
this trapezoid horizontally in O(1) ways until we hit 3
segments in total. Therefore, by Theorem 3.6 from [15],

E

(

∑

t∈T

α2
t log2 αt

)

is

O

(

r +
( r

n

)2

k

)

.

✷

Thus, our refined trapezoidal decomposition, T ′,
will have size proportional to |T |. It is still not
quite a (1/r)-cutting, however, as it is not a proper
triangulation. Indeed, some trapezoids may have many
more than 4 vertices on their boundaries (see Figure 4).

Figure 4: Many trapezoids may be adjacent to another
trapezoid along its top or bottom edges.

To refine T ′ into a proper triangulation, we bor-
row an idea from the fractional cascading framework of
Chazelle and Guibas [?] to first refine T ′ into a trape-
zoidal decomposition such that each trapezoid has O(1)
vertices on its boundary, while keeping the total number
of trapezoids to be O(|T ′|), which is expected to be

O

(

r +
( r

n

)2

k

)

.

By triangulating the interior of each such trapezoid, we
will get a (1/r)-cutting whose size is still O(|T ′|).

Construct the graph-theoretic planar dual U to T ′,
and note that we can direct the edges of U so as to
define four directed-acyclic graphs, which respectively
define the partial orders “below,” “above,” “left-of,”
and “right-of” among the trapezoids. Without loss of
generality, let us direct U according to the “below”
relation, perform a topological sort, and process the
trapezoids of T ′ from top to bottom according to this
ordering. When processing a trapezoid, t, we assume
inductively that we have determined the ordered list of
vertices Vt = (v1, v2, . . . , vj) on t’s upper edge, which
are bottom vertices of trapezoids above t. To process
t we choose every other vertex, v2i, in Vt and extend
a vertical segment from v2i to the bottom of t to
split t in two for each such v2i. Doing this for every
other vertex in Vt, therefore, splits t and increases the
number of trapezoids by ⌊|Vt|/2⌋. We then repeat this
computation by considering the new set of trapezoids
according to the “above” relation, from bottom to top.
Next, we do a similar computation for the “left-of”
and “right-of” relations (except that now we extend
segments parallel to the top or bottom edges of our
trapezoid in a way that partitions its interior into non-
crossing trapezoids). When we have completed this
last scan of the trapezoids, we will have created a
trapezoidal decomposition such that each trapezoid has
O(1) vertices on its edges. More importantly, we also
have the following:

Lemma 4.2. The total number of trapezoids created
by the above refinement process is O(|T |), which has
expected value O(r + (r/n)2k).

Proof. We have already established that E(|T |) is O(r+
(r/n)2k) and that E(|T ′|) is O(E(|T |)). So we have
yet to show that the number of new trapezoids created
during any of our splitting processes is O(|T ′|). We
do this by an accounting argument. Without loss of
generality , consider the processing according to the
“below” relation. Assume, for the sake of our analysis,
that, at the beginning of our computation, we give each
vertical edge in our trapezoidal decomposition $2 and
we require every vertical edge at the end of the process
to have at least $1. When we extend a vertical ray from
an even numbered vertex v2i at the top of a trapezoid, t
we can assume inductively that the vertical edge above
v2i has $2, as does the vertical edge directly to the
left of this edge (which hits t at vertex v2i−1). Let
us take $1 from this vertical edge and from the one
that hits t at v2i, which leaves $1 at each of those
edges, and use the $2 to pay for the new vertical edge
that we then extend through t. Therefore, since the



two vertical edges we just took money from will not be
processed again, we can process each trapezoid and pay
for every action, while keeping $1 for each trapezoid
in our refined trapezoidal decomposition. Repeating
this accounting argument for the “above,” “left-of,” and
“right-of” relations completes the proof. ✷

Given a trapezoidal diagram having O(1) vertices
on the boundary of each trapezoid, and each trapezoid
intersecting at most (n/r) edges of our geometric graph
G we can easily triangulate each trapezoidal face in
this diagram to turn it into a (1/r)-cutting with a
number of triangles that is proportional to the number
of trapezoids. Thus, putting all the pieces together, we
get the following.

Theorem 4.1. Given a connected geometric graph G
having n vertices and k pairwise edge crossings, one can
construct a (1/r)-cutting for the edges of G of expected
size O(r+(r/n)2k) in expected time O(ns+(r/n)k), for

r ≤ n/ log(s) n.

Taking s as a constant gives us such a (1/r)-
cutting of expected size O(r+(r/n)2k) in expected time
O(n + (r/n)k), and taking s = log∗ n gives us a (1/r)-
cutting of the same expected size (but with a potentially
larger r) in expected time O(n log∗ n + (r/n)k), for any
r ≤ n. Since, in our applications involving restrained
geometric graphs, k is sublinear in n by an iterated
logarithmic factor, we will be taking s to be a constant.

5 Planarization

In this section, we describe how to planarize a con-
nected geometric graph G having n vertices and k edge
crossings. We begin by using the method of Theo-
rem 4.1 to construct a (1/r)-cutting, C, of the edges
of G of expected size O(r + (r/n)2k) in expected time

O(n + (r/n)k), where r = n/ log(c+1) n, for a fixed con-
stant c ≥ 1. We then do a depth-first search of G,
keeping track of the triangles we cross in C as we go,
to compute, for each triangle t in C, the set, C(t), of
at most (n/r) edges of G that intersect t. This takes
O(|C|n/r) time, which has expectation O(n + (r/n)k).

We then apply Goodrich’s separator decomposi-
tion algorithm [30] to construct an O(

√

|D|)-separator
decomposition of the graph-theoretic dual, D, to C.
Rather than taking this decomposition all the way
to the point where we would have subgraphs of D
of constant size, however, we stop when subgraphs
have size O(log2(n/r)); hence, have separators of size
O(log(n/r)). Since C is a triangulation, D has degree
3; hence, any vertex separator for D of size g also gives
us an edge separator for D of size at most 3g. More-
over, each edge of D corresponds to a triangle edge in

C, which in turn crosses at most (n/r) edges of G. For
each separator H in our decomposition, therefore, we
can sort the edges of G that cross each boundary of
a triangle in the separator in time O((n/r) log(n/r))
time. There are O(|D|/ log2(n/r)) nodes at this level
of the separator decomposition tree; hence, there are
O(|D|/ log2(n/r))×O(log(n/r)) = O(|D|/ log(n/r)) tri-
angles involved. Thus, the total time for all these sorts
is O(|D|(n/r)) = O(n + k).

After performing all these sorts of edges on the
boundaries of triangles in our separators, we can imag-
ine that we have used these boundaries to cut G into
O(|D|/ log(n/r)) regions (including each triangle in one
of our separators), such that the edges of G intersect-
ing each region boundary are given in sorted order.
The total size of each subgraph is O((n/r) log2(n/r)).
Moreover, the boundaries of these regions form a pla-
nar subdivision. Thus, we have just subdivided our geo-
metric graph G into O(|D|/ log(n/r)) disjoint geometric
graphs. In other words, all k edge crossings in G have
been isolated into these small subgraphs.

For each subgraph Gi, use Chazelle’s algorithm [8]
to test if all the faces of Gi are simple in O(|Gi|)
time. If all the faces of Gi are in fact simple, then Gi

clearly contains no edge crossings. Thus, we can identify
each small subgraph in this partition that contains
an intersection in time O(|C|(n/r) + |G|), which has
expectation O(n + k).

Clearly, there are at most k such subgraphs that
contain edge crossings. We complete our planariza-
tion algorithm, therefore, by running the Bentley-
Ottmann algorithm [6] for each subgraph of G that
is identified as having at least one edge crossing.
The time for each such invocation of the Bentley-
Ottmann algorithm is O((n/r) log3(n/r) + k′ log(n/r)),
where k′ ≥ 1 is the number of edge crossings found.
Summing this over k regions implies that the to-
tal time needed to complete the planarization of G
is O(k(n/r) log3(n/r)). Substituting for r, we see

that this time is O(k log(c+1) n log3 log(c+1) n), which is

O(k log(c) n). Therefore, we have the following:

Theorem 5.1. Suppose one is given a connected geo-
metric graph G with n vertices and k edge crossings,
together with a (1/r)-cutting of the edges of G of size

O(r + (r/n)2k), for r = n/ log(c+1) n. Then one can
construct a planarization of G (and the trapezoidal de-
composition of the arrangement of G’s edges), in time

O(n + k log(c) n).

Combining this result with Theorem 4.1, we get the
following corollary.



Corollary 5.1. Given a connected geometric graph G
having n vertices and k pairwise edge crossings, one
can construct a planarization of G in expected time
O(n + k log(c) n).

6 Applications

In this section, we provide a number of applications of
the above algorithms.

6.1 Separator Decompositions of Restrained

Geometric Graphs

The algorithms in this section are based on the use
of separators. As mentioned above, the separator-
decomposition algorithm of Goodrich [30] applies only
to planar graphs. Nevertheless, given the tool of ge-
ometric graph planarization, we can adapt Goodrich’s
result to restrained geometric graphs in a fairly straight-
forward manner. Given a restrained geometric graph G,
we planarize it using the algorithm above, creating the
planar graph G′. As observed above, G′ has total size
O(n). Thus, we can use the result of Goodrich [30] to
compute a recursive O(

√
n)-separator decomposition of

G′ in O(n) time. We convert this separator decompo-
sition into a O(

√
n)-separator for G by the following

transformation. For each node v in a separator W of G′

at a node w in the separator decomposition tree B, we
do the following:

• If v is also a vertex in G, then we add v to the
separator for G corresponding to w, provided v
is not already a member of a separator associated
with an ancestor of w.

• If v is an intersection point in G′, between edges
(a, b) and (c, d) in G, then we add each of a, b, c,
and d to the separator for G corresponding to w,
provided it is not already a member of a separator
associated with an ancestor of w.

This gives us the following:

Theorem 6.1. Suppose we are given an n-vertex geo-
metric graph G and its planarization, G′, which is of
size O(n). Then we can construct a recursive O(

√
n)-

separator decomposition of G in O(n) time, for δ = 2/3.

6.2 Single-Source Shortest Paths and Voronoi

Diagrams

Given an n-vertex bounded-degree graph G and a recur-
sive O(

√
n)-separator decomposition for G, Henzinger

et al. [34] show that one can compute shortest paths
from a single source s in G to all other vertices in G
in O(n) time. Using the separator decomposition algo-
rithms presented above, then, we can show that their

algorithm applies to restrained geometric graphs, even
ones that do not have bounded degree, by a simple
transformation that replaces high-degree vertices with
bounded-degree trees of zero-weight edges.

Suppose we are given K distinguished vertices in
an n-vertex restrained geometric graph G and we wish
to construct the Voronoi diagram of G, which is a
labeling of each vertex v of G with the name of the
distinguished vertex closest to v. As before, by replacing
high degree vertices with bounded-degree trees of zero-
weight edges we can assume without loss of generality
that G has constant degree. In this case, we construct
a recursive O(

√
n)-separator decomposition of G using

one of the algorithms of the previous section. Let B be
the recursion tree and let us label each vertex v in G
with the internal node w in B where v is added to the
separator or with the leaf w in B corresponding to a set
containing v where we stopped the recursion (because
the set’s size was below our stopping threshold). Given
this labeling, we can trace out the subtree B′ of B that
consists of the union of paths from the root of B to
the distinguished nodes in G in O(n) time. Let us now
assign each edge in B′ to have weight 0 and let us add
B′ to G to create a larger graph G′. Note that if we add
each internal node v in B′ to the separator associated
with node v in B, then we get a recursive O(

√
n)-

separator decomposition for G′, for each separator in
the original decomposition increases by at most one
vertex. Thus, we can apply the algorithm of Henzinger
et al. [34] to compute the shortest paths in G′ from the
root of B′ to every other vertex in G′ in O(n) time.
Moreover, since the edges of G′ corresponding to edges
of B′ have weight 0, this shortest path computation will
give us the Voronoi diagram for G. Therefore, we have
the following:

Theorem 6.2. Given a connected n-vertex restrained
graph G, together with its planarization, one can com-
pute shortest paths from any vertex s or the Voronoi
diagram defined by any set of K vertices in G in O(n)
time.

Incidentally, the above approach also implies a
linear-time Voronoi diagram construction algorithm for
planar graphs, which was not previously known.

7 Conclusions and Future Work

We have provided linear-time algorithms for a number
of problems on connected restrained geometric graphs,
which includes real-world road networks. Our results
allow for linear-time trapezoidalization, triangulation,
and planarization of geometric graphs except for the
very narrow range of the number of crossings for which
neither our algorithm nor the previous O(n log∗ n+k) al-



gorithm is linear. In addition, our methods imply linear-
time algorithms for other problems on such graphs as
well. For example, one can use our algorithm to pla-
narize a restrained non-simple polygon and then con-
struct its convex hull in linear time by computing the
convex hull of the outer face of our planarization (e.g.,
by an algorithm from [32, 38]). There are a number of
interesting open problems and future research directions
raised by this paper, including:

• Can one close the log(c) n gap on values of k that
admit optimal solutions to Chazelle’s open problem
of computing a trapezoidal decomposition of an n-
vertex non-simple polygon in O(n+k) time, where
k is the number of its edge crossings?

• Can we planarize restrained geometric graphs de-
terministically in linear time? Such a result would
allow us to apply separator-based divide and con-
quer techniques for minimum spanning trees [22]
to construct them in linear time for this family of
graphs. Known linear-time minimum spanning tree
algorithms for arbitrary graphs require randomiza-
tion [36], and known deterministic algorithms for
this problem are superlinear [9], although determin-
istic linear-time algorithms are known for planar
graphs and minor-closed graph families [12,20,40].
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