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LINEAR-TIME COMPLETE POSITIVITY DETECTION AND
DECOMPOSITION OF SPARSE MATRICES∗

PETER J. C. DICKINSON† AND MIRJAM DÜR‡

Abstract. A matrix X is called completely positive if it allows a factorization X =
∑

b∈B bbT

with nonnegative vectors b. These matrices are of interest in optimization, as it has been found that
several combinatorial and quadratic problems can be formulated over the cone of completely positive
matrices. The difficulty is that checking complete positivity is NP-hard. Finding a factorization
of a general completely positive matrix is also hard. In this paper we study complete positivity of
matrices whose underlying graph possesses a specific sparsity pattern, for example, being acyclic or
circular, where the underlying graph of a symmetric matrix of order n is defined to be a graph with
n vertices and an edge between two vertices if the corresponding entry in the matrix is nonzero. The
types of matrices that we analyze include tridiagonal matrices as an example. We show that in these
cases checking complete positivity can be done in linear-time. A factorization of such a completely
positive matrix can be found in linear-time as well. As a by-product, our method provides insight
on the number of different minimal rank-one decompositions of the matrix.
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1. Introduction. The idea of completely positive matrices is of interest due to
its uses in optimization [26, 27]. It has been found that some NP-hard problems can
be reformulated as linear optimization problems over the cone of completely positive
matrices [7, 8, 13, 15]. From these important applications we are motivated to study
properties of completely positive matrices, in order to build up intuition on them.

We say that a matrixX is completely positive if there exists a finite set B contained
in the nonnegative orthant such that

X =
∑
b∈B

bbT.

In this case we say that B is a rank-one decomposition set of X .
We can immediately see that if a matrix is completely positive, then it must be

positive semidefinite and nonnegative.
One property that can be considered with regard to complete positivity is the

cp-rank. The cp-rank of a completely positive matrix X is defined as

cp-rank(X) := min{|B| | B is a rank-one decomposition set of X}.

If X is a completely positive matrix, then from Carathéodory’s theorem we have
that cp-rank(X) ≤ 1

2n(n+ 1), where n is the order of the matrix. This bound can be
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702 PETER J. C. DICKINSON AND MIRJAM DÜR

improved to cp-rank(X) ≤ 1
2k(k + 1)− 1, where 2 ≤ k = rank(X) ≤ n, as was shown

in [1, 20]. It has also been conjectured in [12] that cp-rank(X) ≤ max{n, �n2

4 �}, which
is proved true for n ≤ 4. If a matrix is not completely positive, then its cp-rank is
defined to be infinite [4].

We define a minimal rank-one decomposition set of a completely positive matrix
X to be a rank-one decomposition set B such that |B| = cp-rank(X). In general
this minimal rank-one decomposition set is not unique, as we shall see in section 8.
Properties of a rank-one decomposition of a completely positive matrix have been
studied previously in [9, 14, 21], and in this paper we will be investigating minimal
rank-one decompositions for sparse matrices.

The set of completely positive matrices is a proper cone, and the dual of this cone
is the cone of copositive matrices, where a symmetric matrix A is copositive if and
only if vTAv ≥ 0 for all nonnegative vectors v. Surveys of both of these cones and
their applications are provided in [5, 13, 15].

Checking whether a matrix is completely positive has been shown to be an NP-
hard problem, while checking whether a matrix is copositive has been shown to be
a co-NP-complete problem [10, 24]. In spite of the complexity of checking whether
a matrix is copositive, for special cases there are efficient algorithms, even ones that
run in linear-time. For example, in [6] a method was discussed for checking whether
a tridiagonal matrix is copositive in linear-time, while in [16] this was extended to
acyclic matrices.

In this paper we will similarly consider special cases when we are able to check
whether a matrix is completely positive in linear-time and, if so, find a minimal rank-
one decomposition set for it.

Related work. While the problem of finding a factorization of a general com-
pletely positive matrix is still unsolved, the problem of factorizing matrices with
special structure has been studied before. Kaykobad [18] proved that if a matrix is
positive semidefinite and nonnegative and diagonally dominant, then it is completely
positive. He also gives an easy procedure for constructing a factorization. Berman
and coauthors [2, 3] considered matrices whose underlying graph has a special struc-
ture. In [3] they characterize completely positive matrices whose underlying graph is
acyclic. They do not, however, use this characterization for an algorithmic factoriza-
tion procedure. In [2] they study matrices with bipartite graphs and state a simple
algorithmic procedure to factorize.

The complete positivity of circular matrices has previously been studied in [29, 30].
In [29] Xu and Li characterize completely positive circular matrices of order greater
than 3, but it seems unclear how this characterization can actually be used to check
algorithmically whether a circular graph is completely positive. In [30] Zhang and Li
give conditions for complete positivity of a circular matrix in terms of its comparison
matrix. The proof of their result includes a method for finding a minimal rank-
one decomposition set; however, this was a relatively complicated method and not
subjected to much analysis.

Li, Kummert, and Frommer [20] show how—starting from an arbitrary factoriza-
tion of an n × n matrix X—one can obtain a smaller factorization X =

∑
b∈B bbT

with |B| = 1
2n(n+ 1)− 1.

Shaked-Monderer [28] considers matrices which are positive semidefinite, non-
negative with rank r and have an r × r principal submatrix that is diagonal. This
corresponds to the graph of the matrix having a maximal stable set of size r. Such a
matrix is shown to be completely positive, and a factorization is immediate from the
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COMPLETE POSITIVITY DETECTION OF SPARSE MATRICES 703

proof. Kalofolias and Gallopoulos [17] extend this result and construct a factorization
of completely positive rank-two matrices.

Finally, Dong, Lin, and Chu [11] provide a heuristic method for the so-called (non-
symmetric) nonnegative rank factorization, i.e., finding a decomposition X = UV of
X with U, V nonnegative but not necessarily U = V T (which would correspond to our
setting). Their procedure can be applied to completely positive matrices and would
be able to heuristically check whether cp-rank(X) = rank(X) and, if affirmative,
compute a factorization of X .

Our paper will provide a unified approach to these ideas and extend the domain
of cases where a factorization can be found. We will present an algorithmic method
for this and pay special attention to the run-time of this algorithm. One of our results
will be that—as in the copositive case studied in [6, 16]—for tridiagonal and acyclic
matrices complete positivity can be checked in linear-time. Our method could also
be used for preprocessing a matrix which we wish to test for complete positivity in
order to reduce the problem.

Notation. We will be using the following notation for sets of vectors:

the set of real n-vectors = R
n,

the set of nonnegative n-vectors = R
n
+,

the set of strictly positive n-vectors = R
n
++,

the set of integer n-vectors = Z
n,

where we shall suppress the “n” if the dimension is equal to one.
We will also be using the following notation for sets of matrices:

the cone of n× n symmetric matrices = Sn,
the cone of n× n symmetric positive semidefinite matrices = Sn+,
the cone of n× n symmetric nonnegative matrices = Nn,

the cone of n× n completely positive matrices = C∗n,
where we shall suppress the “n” if the dimension is obvious from the context.

Additionally for a matrix A ∈ Sn we define G(A) to be the underlying graph of A
such that we haveG(A) = (V,E) with V = {1, . . . , n} and E = {(ij) | i < j, (A)ij �= 0}.
When we talk of an index i of A having a certain degree, we are referring to the de-
gree of the vertex i in the graph G(A) having this degree. Similarly when we refer
to graph properties of a matrix A, for example, being acyclic, circular, or connected,
we are referring to the properties of the graph G(A). Recall that a circular graph is
a graph consisting of a single cycle. We will use the phrase component submatrix for
a principal submatrix whose graph is a connected component in the graph of the full
matrix. Finally a weighted-graph of A refers to G(A) with weights on the vertices
and edges equal to the corresponding values in A. We use this in order to be able to
consider certain structures in a matrix with more ease.

2. Rank-one decomposition. We will now look at some basic properties of
(minimal) rank-one decomposition sets of sparse completely positive matrices.

First we note, from the definition, that C∗ ⊆ N ∩ S+. From this we see that
a completely positive matrix must be nonnegative, and if an on-diagonal element of
a completely positive matrix is equal to zero, then all the off-diagonal elements on
this row and column must also be equal to zero. We can in fact check whether these
necessary conditions hold in linear-time.
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704 PETER J. C. DICKINSON AND MIRJAM DÜR

We now look at how the graph of a completely positive matrix corresponds to
the support of the vectors in a rank-one decomposition of the matrix. We consider a
completely positive matrix X �= 0 with a rank-one decomposition set B. For a vector
b ∈ B we must have that the set {i | (b)i > 0} is a clique of G(X). Correspondingly,
if a set of vertices J ⊆ {1, . . . , n} is not a clique of G(X), then there cannot be a
vector b ∈ B such that {i | (b)i > 0} = J . Therefore we need only consider each
component submatrix of a matrix separately, and it should be noted that using, for
example, a breadth-first search we can split a graph into its component submatrices
in linear-time.

From now on, without loss of generality, we shall assume that the matrices we
wish to analyze are nonnegative and connected and have all on-diagonal elements
strictly positive.

We finish this section by looking at a special property which always holds for at
least one minimal rank-one decomposition of a completely positive matrix.

Theorem 2.1. For any completely positive matrix A there exists a minimal rank-
one decomposition of it such that no two vectors in the decomposition have the same
support.

Proof. Consider two vectors a, b ∈ R
n
++. We define the following:

μ = max{λ ∈ R | b− λa ≥ 0},
c =

1√
1 + μ2

(b − μa),

d =
1√

1 + μ2
(a+ μb).

Then we have that

c ∈ R
n
+ \ Rn

++,

d ∈ R
n
++,

aaT + bbT = ccT + ddT.

This can easily be extended to any two matrices with the same support. We can now
take any minimal rank-one decomposition of a completely positive matrix and use
this method to get the desired property.

3. Indices of degree zero or one. In this section we look at how we can reduce
the problem of checking whether a matrix is completely positive by considering indices
of the matrix with degree zero or one. Recall that we have defined the degree of an
index to be the degree of the corresponding vertex in the graph of the matrix.

Degree-zero indices are themselves component submatrices and so can be consid-
ered separately. As they are size 1×1 matrices, checking them for complete positivity
and, if this is found, providing a minimal rank-one decomposition set are a trivial
task.

In order to see how to deal with indices of a higher degree we first consider the
following theorem.

Theorem 3.1. We define the matrices X,Yθ, Zθ ∈ Sn as

X =

⎛⎝A1 a1 0
aT1 α aT2
0 a2 A2

⎞⎠ , Yθ =

⎛⎝A1 a1 0
aT1 θ 0
0 0 0

⎞⎠ , Zθ =

⎛⎝0 0 0
0 α− θ aT2
0 a2 A2

⎞⎠ ,
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where α, θ ∈ R, A1 ∈ Sp, A2 ∈ Sq, a1 ∈ R
p, a2 ∈ R

q, p, q, n ∈ Z, p, q > 0, and
n = p+ q + 1. Then the following three statements are equivalent:

(a) X is completely positive.
(b) There exists θ such that Yθ and Zθ are completely positive.
(c) Zϕ is completely positive, where ϕ := min{θ | Yθ ∈ C∗}.
Proof. We first note that the value of the minimization in (c) is either infinity,

and so Zϕ cannot be completely positive, or it is attained, and so both Yϕ and Zϕ

are completely positive. It can now be immediately seen that (c) ⇒ (b) ⇒ (a). From
considering the cliques of G(X) we see that (a) ⇒ (b). It is also a simple task to
show that (b) ⇒ (c), by noting that if Zθ ∈ C∗ for some θ, then Zφ ∈ C∗ for all φ ≤ θ,
which completes the proof.

From this theorem we see that in some special cases, when it is relatively easy
to find ϕ = min{θ | Yθ ∈ C∗}, we can reduce the problem of checking whether X
is completely positive to checking whether the smaller nonzero principal submatrix
of Zϕ is completely positive. An example of when it is relatively easy to find ϕ is
when the underlying graph given by Yθ is a completely positive graph. A completely
positive graph is defined to be a graph such that for all Y with this underlying graph
we have that Y ∈ C∗ if and only if Y ∈ N ∩ S+. A characterization of these graphs
is that they have no odd cycles of length greater than or equal to five [19]. This
means that in such a case we have ϕ = min{θ | Yθ ∈ N ∩ S+}, and this optimization
problem can be solved in polynomial time up to any required accuracy [25].

In the following theorem we now look at a very simple but very useful special
case, which was first considered by Berman and Hershkowitz [3]. They took a different
approach to this problem and proved part (a) and a similar result to part (d), except
that they gave an inequality relation, whereas we will give an equality.

Theorem 3.2. Let X ∈ Nn, Y ∈ Sn be given as

X =

⎛⎝α β 0
β γ aT

0 a A

⎞⎠ , Y =

⎛⎝0 0 0
0 γ − 1

αβ
2 aT

0 a A

⎞⎠ ,

where α, β, γ ∈ R+, α �= 0, a ∈ R
n−2
+ , and A ∈ Nn−2. Then we have the following:

(a) X ∈ C∗ ⇔ Y ∈ C∗.
(b) For X ∈ C∗, if we let BY ⊂ R

n
+ be a rank-one decomposition set of Y , then

the following set is a rank-one decomposition set of X:

BX = BY ∪
⎧⎨⎩
⎛⎝ √

α
β/
√
α

0

⎞⎠⎫⎬⎭ .

(c) If in (b) BY is a minimal rank-one decomposition set of Y , then BX is a
minimal rank-one decomposition set of X.

(d) We have that

cp-rank(X) =

{
cp-rank(Y ) + 1 if Y ∈ C∗,
∞ otherwise.

Proof. From [22] we have that C∗2 = N 2 ∩ S2+. Therefore(
α β
β θ

)
∈ C∗ ⇔ θ ≥ β2/α,
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and using this, Theorem 3.1 gives us a proof for (a). Part (b) is trivial to prove, and
part (d) comes directly from part (c). We will now prove part (c). Another way of
expressing part (c) is that there exists a minimal rank-one decomposition of X given
by BX such that

(3.1) {v ∈ BX | (v)1 > 0} =
⎧⎨⎩
⎛⎝ √

α
β/
√
α

0

⎞⎠⎫⎬⎭ .

Due to Theorem 2.1 there exists a minimal rank-one decomposition of X given
by B̂X such that no two vectors in the decomposition have the same support. If
property (3.1) holds, then we are done. If not, then by considering the cliques of
G(X), we see that there must exist ϕ ∈ R such that 0 < ϕ <

√
α and

{
v ∈ B̂X | (v)1 > 0

}
=

⎧⎨⎩
⎛⎝ ϕ
β/ϕ
0

⎞⎠ ,

⎛⎝√
α− ϕ2

0
0

⎞⎠⎫⎬⎭ .

It is trivial to see that⎛⎝ ϕ
β/ϕ
0

⎞⎠⎛⎝ ϕ
β/ϕ
0

⎞⎠T

+

⎛⎝√
α− ϕ2

0
0

⎞⎠⎛⎝√
α− ϕ2

0
0

⎞⎠T

=

⎛⎝ √
α

β/
√
α

0

⎞⎠⎛⎝ √
α

β/
√
α

0

⎞⎠T

+

⎛⎝ 0

β
√
(α − ϕ2)/(αϕ2)

0

⎞⎠⎛⎝ 0

β
√
(α− ϕ2)/(αϕ2)

0

⎞⎠T

.

We can use this fact to obtain an alternative minimal rank-one decomposition of X
such that property (3.1) does hold.

From this theorem and the result on degree-zero indices we can now construct
Algorithm 1 for reducing the problem of checking whether a matrix is completely
positive and, if so, finding a (minimal) rank-one decomposition set. Although Berman
and Hershkowitz [3] considered a similar method of going through a matrix, this was
only to prove that an acyclic matrix is completely positive if and only if it is both
nonnegative and positive semidefinite. They did not consider how it could also be
used to produce a rank-one decomposition set or its computation time. We now give
the following results for this algorithm.

Theorem 3.3. Algorithm 1 gives the required output, and, if it does not produce
the message “X /∈ C∗,” then the X ′ and B produced will have the following properties:

(a) X = X ′ +
∑

b∈B bbT.
(b) cp-rank(X) = cp-rank(X ′) + |B|.
(c) If an index i of X ′ has degree zero, then (X ′)ii = 0.
(d) X ′ has no indices of degree one.

Also, provided that our inputs and outputs of the matrices and vectors were “efficient”
in Algorithm 1, then this algorithm runs in linear-time.

Proof. From going through the algorithm and using Theorem 3.2 this is trivial to
prove. It should be noted that we required the matrices and vectors to be inputted/
outputted efficiently. First, this means dealing with the square roots. Second, this
is because the inputting/outputting of a full vector or matrix would involve, respec-
tively, n and n2 entries which would limit the algorithm to working in quadratic time,
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Algorithm 1. Reducing the problem of checking for complete positivity.

Input: A matrix X ∈ Nn such that (X)ii > 0 for all i = 1, . . . , n.
Output: Either “X /∈ C∗” or a matrix X ′ ∈ Sn and a finite set B ⊂ R

n
+ (see

Theorem 3.3).
1: initiate a set B = ∅.
2: initiate a set R = {1, . . . , n} to keep track of indices remaining.
3: analyze X producing

(a) a set J ⊆ R of indices with degree zero or one,
(b) a vector d ∈ Z

n such that (d)i is defined to be the degree of index i,
(c) a set {N1, . . . ,Nn} such that Ni := {j | j is a neighbor of i in G(X)}.

4: while J �= ∅ do
5: pick an i ∈ J to analyze.
6: update R← R \ {i}, J ← J \ {i}
7: if (d)i = 0 then
8: update B ← B ∪ {x} such that x ∈ R

n
+ and

(x)k :=

{√
(X)ii if k = i,

0 otherwise.

9: update (X)ii ← 0
10: else
11: find j ∈ Ni ∩R
12: update (X)jj ← (X)jj − (X)2ij/(X)ii
13: if (X)jj < 0 then
14: output “X /∈ C∗”
15: exit
16: else if (X)jj = 0 and dj ≥ 2 then
17: output “X /∈ C∗”
18: exit
19: end if
20: output B ← B ∪ {x} such that x ∈ R

n
+ and

(x)k :=

⎧⎪⎨⎪⎩
√
(X)ii if k = i,

(X)ij/
√
(X)ii if k = j,

0 otherwise.

21: update (X)ij ← 0
22: update (X)ii ← 0
23: update (d)j ← (d)j − 1
24: if (d)j = 1 then
25: update J ← J ∪ {j}
26: else if (d)j = 0 and (X)jj = 0 then
27: update J ← J \ {j}
28: update R ← R \ {j}
29: end if
30: end if
31: end while
32: output X ′ ← X
33: output B
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but a more efficient way of specifying a sparse vector or matrix is to give only its
nonzero entries, and we are required to do this in order for the algorithm to work in
linear-time.

For Algorithm 1 we can see that if X ′′ is the maximal principal submatrix of
X ′ such that no row/column is equal to zero, then G(X ′′) is the maximal induced
subgraph of G(X) such that G(X ′′) has no vertices of degree one or zero. This
means that if X was acyclic, for example, tridiagonal, then in linear-time either the
algorithm would output X /∈ C∗ or we would have X ′ = 0 and therefore a certificate
of complete positivity in the form of a minimal rank-one decomposition set B. We
can also see that such a minimal rank-one decomposition set would be of cardinality
n− 1 or n. It was found in [5, Theorem 3.7] that this number is actually equal to the
rank of the matrix.

It should also be noted that the choice of the next vertex to consider in step 5
of Algorithm 1 affects the way in which the algorithm goes through the vertices and
can lead to a different set B at the end of the algorithm. If we simply go through the
vertices in J in numerical order, then given a permutation matrix P the algorithm
will not necessarily return the same solution (up to permutation) when X and PTXP
are inputted.

4. Chains. We define a chain of a graph to be a simple path in it such that all
vertices within the path (excluding the two end vertices) have degree equal to two.
This is equivalent to this part of the matrix being tridiagonal. The form of chain that
we shall consider is shown in Figure 4.1, where we let the internal vertices and the
edges of the chain have fixed weightings (given by the α’s and β’s, respectively), we
let y be a variable, and we let z(y) be the minimum allowable value such that the
chain is completely positive. We then consider how Algorithm 1 would run through
the chain starting at y, moving through the vertices in turn and being used to give
us the value of z(y) for each y. We show that rather than having to recompute the
algorithm for different values of y, we can instead find a simple formula linking y and
z(y). We consider this, not only to help improve our understanding of Algorithm 1,
but also due to the useful applications that this method will provide in sections 5
and 6.

Fig. 4.1. A chain we consider the algorithm working through with y > 0 and αi, βi > 0 for all i.

For i ≥ 2 the algorithm would take each vertex from αi to fi(y) and then to zero,
where

fi(y) := αi −
β2
i−1

fi−1(y)
for i = 2, . . . ,m,

f1(y) := y.

We have the requirement that fi(y) > 0 for all i, and we also have that z(y) =
β2
m/fm(y).

We now present the following lemmas, which will be used to remove the recursion
from y, thus meaning that we do not need to consider the recursion separately for
each different value of y.
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Lemma 4.1. We have that

fi(y) =
λiy − μi

λi−1y − μi−1
for i = 1, . . . ,m,

where λ0 = 0, μ0 = −1, λ1 = 1, μ1 = 0,

λi = αiλi−1 − β2
i−1λi−2 for i = 2, . . . ,m,

μi = αiμi−1 − β2
i−1μi−2 for i = 2, . . . ,m.

Also we have that the requirement “fi(y) > 0 for all i” is equivalent to

(4.1) λiy > μi for all i.

Proof. This is trivial to prove by induction.
Lemma 4.2. We shall always get that μiλi+1 < μi+1λi for all i = 0, . . . ,m− 1.
Proof. We have that μ0λ1 = −1 < 0 = μ1λ0, and for i ≥ 1,

μi+1λi − μiλi+1 = (αi+1μi − β2
i μi−1)λi − μi(αi+1λi − β2

i λi−1)

= β2
i (μiλi−1 − μi−1λi).

We can now use proof by induction.
Lemma 4.3. Requirement (4.1) implies that λi, μi > 0 for all i ≥ 2.
Proof. We shall again use proof by induction. For the case when i = 2 we have

that

λ2 = α2 > 0, μ2 = β2
1 > 0.

Therefore the statement is true for i = 2. Now for the sake of induction suppose that
it is true for i = k − 1. From Lemma 4.2 and requirement (4.1) we get that

μk−1

λk−1
< y and

μk−1λk

λk−1
< μk < λky.

From this we see that we must have that λk, μk > 0.
Lemma 4.4. If λi > 0 for all i ≥ 1, then

max

{
μi

λi
| i = 1, . . . ,m

}
=

μm

λm
.

Proof. This is simple to prove using Lemma 4.2.
Theorem 4.5. Requirement (4.1) is equivalent to

y >
μm

λm
and λi > 0 for all i ≥ 2.

Proof. The proof comes trivially from Lemmas 4.3 and 4.4.
Method 4.6. Therefore the problem of going through the chain can be split into

the following three parts:
(a) Compute the following:

λ0 = 0, μ0 = −1, λ1 = 1, μ1 = 0,

λi = αiλi−1 − β2
i−1λi−2 for i = 2, . . . ,m,

μi = αiμi−1 − β2
i−1μi−2 for i = 2, . . . ,m.
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710 PETER J. C. DICKINSON AND MIRJAM DÜR

(b) Check that λi > 0 for all i ≥ 2; otherwise it cannot be part of a completely
positive matrix.

(c) Require that y > μm/λm and

z(y) =
β2
m(λm−1y − μm−1)

λmy − μm
.

In the following two sections we look at two alternative ways in which this result
can be used.

5. Matrices with circular graphs. If Algorithm 1 did not determine whether
the original matrix was completely positive or not, then the degree of the indices in
the remaining matrix must be strictly greater than one, and so the simplest form that
it can take is being a circular matrix, where we recall that a circular matrix is one
with an underlying circular graph and a circular graph is a graph consisting of a single
cycle. This is also sometimes referred to as a cycle graph.

The complete positivity of circular matrices has previously been studied in [29, 30].
In [29] Xu and Li found a necessary and sufficient condition for a circular matrix (of
order greater than 3) to be completely positive; however, it is unclear how this result
can actually be used to check whether a circular graph is completely positive. In [30]
Zhang and Li showed that a circular matrix (of order greater than 3) is completely
positive if and only if the determinant of its comparison matrix is nonnegative. The
paper also included a method for finding a minimal rank-one decomposition set of
a circular matrix (of order greater than 3); however, this was included only for the
purpose of providing a proof to a theorem related to the number of minimal rank-one
decompositions that a circular matrix has. As a result this method was not subjected
to much analysis and is relatively complicated.

In this section we will use the results from section 4 to develop an alternative
algorithm for checking whether a circular matrix is completely positive and, if so,
providing a minimal rank-one decomposition set of the matrix. It will also be seen
that this method runs in linear-time.

We will begin by considering the following two theorems.
Theorem 5.1 (see [5, Remark 3.3]). If A is a triangle-free completely positive

matrix which is not acyclic, then cp-rank(A) = |E|, where E is the set of edges in the
graph G(A).

Theorem 5.2 (see [5, Theorem 3.2]). Let A be an n × n completely positive
matrix. If n ≤ 3, then

cp-rank(A) = rank(A).

As we see from these theorems we should consider the cases of n = 3 and n > 3
separately. We will first extend our method from section 4 for the case when n > 3.
We let A ∈ Nn be a circular matrix and without loss of generality suppose that

(5.1) A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

α1 β1 0 · · · 0 βn

β1 α2 β2 · · · 0 0
0 β2 α3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · αn−1 βn−1

βn 0 0 · · · βn−1 αn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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If A is completely positive, then due to its cp-rank being equal to n (Theorem 5.1)
and by considering its cliques, we see that its minimal decompositions must be of the
form

B =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎝

υ1
ω1

0
...
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
υ2
ω2

...
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, . . . ,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
...

υn−1

ωn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ωn

0
0
...
0
υn

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

From this it can be seen that A is completely positive if and only if there exists a
y = υ2

1 such that the chain in Figure 4.1 is completely positive, with z(y) = α1 − y,
and it can easily be seen how minimal rank-one decompositions of the original matrix
A and the chain are related. From section 4 we now get the following linear-time
method for analyzing the matrix.

Method 5.3. The problem of determining whether A given in (5.1) is completely
positive is equivalent to computing

λ0 = 0, μ0 = −1, λ1 = 1, μ1 = 0,

λi = αiλi−1 − β2
i−1λi−2 for i = 2, . . . , n,

μi = αiμi−1 − β2
i−1μi−2 for i = 2, . . . , n,

checking that λi > 0 for all i ≥ 2, and solving

find y

subject to y > μn/λn,

0 = λny
2 + (β2

nλn−1 − α1λn − μn)y + (α1μn − β2
nμn−1).

We also have that if y is a feasible solution, then the corresponding minimal rank-one
decomposition is

B =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎝

υ1
ω1

0
...
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
υ2
ω2

...
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, . . . ,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
...

υn−1

ωn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ωn

0
0
...
0
υn

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

where υi =

√
λiy − μi

λi−1y − μi−1
,

ωi = βi/υi

for all i.

We note that this method even checks the complete positivity in linear-time of
circular matrices such that their order is odd and greater than or equal to 5, even
though for these types of matrices, their underlying graph is not a completely positive
graph.
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For completeness we will now also consider how to test whether a strictly positive
matrix X ∈ S3 is completely positive and, if so, find a minimal rank-one decompo-
sition set for it. In order to do this we need the following lemmas, in which we will
consider the matrix

(5.2) X =

⎛⎝α1 β1 β3

β1 α2 β2

β3 β2 α3

⎞⎠ , where α, β ∈ R
3
++ and α3β

2
1 ≤ α1β

2
2 .

It should be noted that we can always permute a 3 × 3 strictly positive symmetric
matrix so that the required inequalities hold.

Lemma 5.4. For X given in (5.2) we have that X ∈ C∗ if and only if β2
1 ≤ α1α2,

β2
2 ≤ α2α3, β

2
3 ≤ α3α1, and det(X) ≥ 0.

Proof. From [22] we have that C∗3 = N 3 ∩ S3+. From the conditions in (5.2) we
have that X ∈ N 3. It is known that a matrix is positive semidefinite if and only if
all its principal minors are nonnegative [23, p. 40]. This combined with the fact that
the diagonal entries of X are nonnegative gives us the required result.

Lemma 5.5. For X given in (5.2) such that X ∈ C∗ we have that

cp-rank(X) = 1⇔ β2
1 = α1α2.

Proof. We have that cp-rank(X) = 1 if and only if there exists a b ∈ R
3
+ such

that X = bbT. It is obvious that such a b must be given by

b =
1√
α1

⎛⎝α1

β1

β3

⎞⎠ .

From this we get that the cp-rank(X) = 1 if and only if

X =

⎛⎝α1 β1 β3

β1 β2
1/α1 β1β3/α1

β3 β1β3/α1 β2
3/α1

⎞⎠ .

The forward implication is seen by comparing the required form of X to the
original form of X .

For the reverse implication we note that if β2
1 = α1α2, then from the require-

ments for complete positivity and the restrictions on X we have that α2α3 ≥ β2
2 ≥

α3β
2
1/α1 = α2α3, implying that β2

2 = α2α3. We also have that

0 ≤ det(X) = α1α2α3 + 2β1β2β3 − β2
1α3 − β2

2α1 − β2
3α2

= α1α2α3 + 2(α2
√
α1α3)β3 − α1α2α3 − α1α2α3 − β2

3α2

= −α2(β3 −√α1α3)
2.

This implies that X must be in the required form.
Lemma 5.6. For X given in (5.2) such that X ∈ C∗ we have that α1β2−β1β3 ≥ 0.
Proof. From Lemma 5.4 and the restrictions on X we have that β2

3 ≤ α3α1 and
0 ≤ α3β

2
1 ≤ α1β

2
2 . This implies that α3β

2
1β

2
3 ≤ α3α

2
1β

2
2 , which gives the required

result, due to X being strictly positive.
Lemma 5.7. For X ∈ C∗ as given in (5.2) such that cp-rank(X) �= 1 we have

that

cp-rank(X) = 2⇔ det(X) = 0.
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Proof. From [5, Theorem 3.2] we have that cp-rank(X) = rank(X). From the
restrictions on X we have that X �= 0, which, combined with the requirement that
cp-rank(X) �= 1, implies that rank(X) ≥ 2. From this we have

cp-rank(X) = 2⇔ rank(X) = 2

⇔ rank(X) �= 3

⇔ det(X) = 0,

which completes the proof.
From these lemmas we now present Algorithm 2 for testing whether a matrix X

of the form given in (5.2) is completely positive and, if so, finding a minimal rank-one
decomposition set for it.

Algorithm 2. For testing whether a matrix X ∈ S3 of the form given in (5.2) is
completely positive and, if so, finding a minimal rank-one decomposition for it.

Input: A matrix X of the form given in (5.2).
Output: Either “X /∈ C∗” or a set B ⊆ R

3
+ such that |B| = cp-rank(X) and X =∑

b∈B bbT.

1: if β2
1 > α1α2 or β2

2 > α2α3 or β2
3 > α3α1 or det(X) < 0 then

2: output “X /∈ C∗”
3: else
4: initiate

B =

⎧⎨⎩ 1√
α1

⎛⎝α1

β1

β3

⎞⎠⎫⎬⎭
5: if β2

1 �= α1α2 then
6: update

B ← B ∪
⎧⎨⎩
√

1

α1(α1α2 − β2
1)

⎛⎝ 0
α1α2 − β2

1

α1β2 − β1β3

⎞⎠⎫⎬⎭
7: if det(X) �= 0 then

8: update B ← B ∪
⎧⎨⎩√

det(X)
α1α2−β2

1

⎛⎝0
0
1

⎞⎠⎫⎬⎭.

9: end if
10: end if
11: output B
12: end if

This is a linear-time method for checking whether a circular matrix A ∈ N 3 is
completely positive and, if so, giving a minimal rank-one decomposition set for it.

6. Reducing chain lengths. Suppose that the matrix we wish to check for
being completely positive gives the weighted-graph in Figure 6.1. In this section we
will see how we can reduce the length of the chain to give a smaller matrix while
maintaining the property of whether the matrix is completely positive or not. For
simplicity we shall view the matrices using their weighted-graph forms.
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Fig. 6.1. We wish to analyze the matrix giving this weighted-graph to check for complete
positivity, where the end points of the chain are distinct, the gray area represents an arbitrary
structure in the graph, and m > 3.

Fig. 6.2. The weighted-graph in Figure 6.1 gives a completely positive matrix if and only if there
exists a y such that the chain in Figure 4.1 and the weighted-graph above give completely positive
matrices, where the gray area represents an arbitrary structure in the graph.

Fig. 6.3. A chain we consider the algorithm working through with n > 3, y > 0, and the values
for α̂2, α̂3, β̂1, β̂2, and β̂3 given in (6.1).

From considering the form of the rank-one decompositions when this graph is
completely positive we see that we have that the graph gives a completely positive
matrix if and only if there exists a y such that the chain in Figure 4.1 and the
weighted-graph in Figure 6.2 give completely positive matrices.

We now consider the chain in Figure 4.1 in which the values of y and z(y) are not
fixed. We consider Method 4.6 on this chain. If the second step (checking λi > 0)
finds that the chain cannot be part of a graph giving a completely positive matrix,
then we are done. Otherwise we compare this chain to the chain in Figure 6.3.

In the chain in Figure 6.3 we set the values α̂2, α̂3, β̂1, β̂2, β̂3, from the results of
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running the method for the original chain and where we pick arbitrary γ1, γ2 > 0:

α̂2 = γ1λm−1,

α̂3 = γ2μm,

β̂1 =
√
γ1μm−1,(6.1)

β̂2 =
√
γ1γ2(λm−1μm − λmμm−1),

β̂3 = βm
√
γ2μm−1.

We are free to pick whatever strictly positive values of γ1 and γ2 that we like
without changing the theory. This freedom may, however, be able to be put to some
advantages in reducing numerical difficulties in an algorithm, and it is recommended
to pick values such that the order of magnitude on these vertices and edges is approx-
imately that of the original weighted-graph.

From the results in section 4 we can immediately see that all the vertices and
edges in the chain have strictly positive values. We now consider Method 4.6 running
through this chain.

(a) We compute the values for λ̂i, μ̂i, displayed in the following table:

i λ̂i μ̂i

0 0 −1
1 1 0
2 γ1λm−1 γ1μm−1

3 γ1γ2λmμm−1 γ1γ2μmμm−1

(b) We can easily see that the values of λ̂i for i ≥ 2 are strictly positive.
(c) We now have the following requirement on y and corresponding value for z(y):

y >
μ̂3

λ̂3

=
μm

λm
,

z(y) =
β̂2
3(λ̂2y − μ̂2)

λ̂3y − μ̂3

=
β2
m(λm−1y − μm−1)

λmy − μm
.

Therefore, viewed from the end points, the chains in Figures 4.1 and 6.3 are
equivalent. Therefore, the graph in Figure 6.1 is completely positive if and only if the
following two conditions hold:

(a) When computing the first two steps of Method 4.6 on the chain we do not
find that the chain cannot be part of a completely positive graph.

(b) The graph in Figure 6.4 is completely positive, using the values given in (6.1).
We let X be the original matrix and Y be the matrix produced from our method.

If we had a (minimal) rank-one decomposition set of Y , then it would be a trivial
task to convert this into a (minimal) rank-one decomposition set of X . We note that
we have that

cp-rank(X) = cp-rank(Y ) +m− 3.
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Fig. 6.4. Smaller graph for checking for complete positivity, which is equivalent to that in
Figure 6.1 using the results in section 6.

We finish this section by discussing the computational time of such a process.
One simple method for applying this process is as follows, where we assume that no
component submatrix is circular:

(a) Find W = {v ∈ {1, . . . , n} | The degree of v in G(X) is equal to 2}.
(b) Find connected components of the subgraph of G(X) induced by the vertices
W . Let these be denoted by the following with consecutive vertices being
connected: {{v11, . . . , v1k1

}, . . . , {vl1, . . . , vlkl
}}.

(c) For all i ∈ {1, . . . , l} such that ki ≥ 3, do the following:
(i) Find u,w ∈ {1, . . . , n}\W such that u, vi1, . . . , v

i
ki
, w is a chain in G(X).

(ii) If u �= w, then apply the method for reducing chain lengths to this chain.
(iii) If u = w and ki ≥ 4, then apply the method for reducing chain lengths

to the chain {u, vi1, . . . , viki
}.

This method takes a linear number of calculations. In general we cannot compute
the square roots exactly, but if we are computing to a set level of accuracy, then this
method could be carried out in linear-time.

7. Preprocessing. For a matrix X ∈ Sn we can now reduce the problem of
checking whether it is completely positive and finding a (minimal) rank-one decom-
position using the following linear-time method:

(a) Check whether the matrix is nonnegative.
(b) Check that whenever one of the matrix’s on-diagonal entries is equal to zero,

all of the off-diagonal entries in this row and column are also equal to zero.
(c) Reduce the problem to considering the maximal principal submatrix with

strictly positive on-diagonal elements.
(d) Use Algorithm 1 to reduce the problem.
(e) Split a matrix into its component submatrices (for example, with a breadth-

first search).
(f) Use section 2 to connect results from these submatrices to those for the orig-

inal matrix.
(g) For each of these submatrices, do the following:

(i) If the resultant matrix is in S3, then use Algorithm 2 to process it.
(ii) Otherwise, if the resultant matrix is circular, then use Method 5.3 to

process it.
(iii) Otherwise use the method from section 6 to reduce the chain lengths.

This method fully processes all component submatrices which have a maximum
of one cycle. If all the component submatrices have a maximum of one cycle, then
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this method determines whether the matrix is completely positive in linear-time and,
if so, also outputs a minimal rank-one decomposition of it. Otherwise the method
reduces the problem. As the method runs in linear-time and all known algorithms for
computing the cp-rank in the general case run in exponential time [4], this is a very
efficient preprocessor.

8. Number of minimal decompositions. Our method finds a single minimal
rank-one decomposition set for a completely positive matrix such that every com-
ponent submatrix has a maximum of one cycle. In this section we briefly look at
how many minimal rank-one decomposition sets these matrices actually have. For
simplicity we assume that the matrices are completely positive and connected and all
the on-diagonal elements are strictly positive. We could then use section 3 to extend
these results to matrices where the assumptions do not hold.

If the cp-rank of a matrix X ∈ Sn is equal to one, then it is trivial to see that it
must have exactly one minimal rank-one decomposition set. Next we consider when
the cp-rank of X is equal to two.

Theorem 8.1. Let X ∈ C∗n be a connected matrix such that all the on-diagonal
elements are strictly positive and cp-rank(X) = 2. Then the following hold:

(a) If there exists i, j ∈ {1, . . . , n} such that (X)ij = 0, then there is exactly one
minimal rank-one decomposition set.

(b) If there does not exist i, j ∈ {1, . . . , n} such that (X)ij = 0, then there are
infinitely many minimal rank-one decomposition sets.

Proof. This proof comes from considering the proof in [5, Theorem 2.1].
A minimal rank-one decomposition set must be of the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛⎜⎜⎜⎝
x1

x2

...
xn

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
y1
y2
...
yn

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

We now consider the ordered set of vectors

V = {v1, . . . , vn} ⊂ R
2
+ such that vi =

(
xi

yi

)
for all i.

X is then the gram matrix of these vectors; i.e., (X)ij = 〈vi, vj〉 for all i, j. The
minimal rank-one decomposition set is unique if and only if the ordered set V is
unique up to a swapping of the coordinates of the vi’s. For i, j = 1, . . . , n such that
i < j, let θij be the angle between the vectors vi, vj ∈ V , such that 0 ≤ θij ≤ π.

(X)ij√
(X)ii(X)jj

=
〈vi, vj〉
‖vi‖‖vj‖ = cos θij .

We have that

Xij > 0⇔ θij < π/2 and Xij = 0⇔ θij = π/2.

Now let vk, vl be the pair of vectors from V with maximal angle θkl. As V ⊂ R
2
+,

we see that once the vectors vk, vl are set, all the other vectors are uniquely defined
and must lie between them.D
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T
a
b
l
e
8
.
1

P
ro
pe
rt
ie
s
o
f
m
in
im

a
l
ra
n
k-
o
n
e
d
ec
o
m
po

si
ti
o
n
s
fo
r
so
m
e
m
a
tr
ic
es

w
h
ic
h

a
re

co
m
p
le
te
ly

po
si
ti
ve

a
n
d

co
n
n
ec
te
d

a
n
d

h
a
ve

a
ll

o
n
-d
ia
go

n
a
l
en

tr
ie
s
st
ri
c
tl
y

po
si
ti
ve
.
U
si
n
g
th
e
re
su

lt
s
o
f
se
ct
io
n

3
w
e
ca
n

ex
te
n
d
th
es
e
re
su

lt
s
to

a
ll
th
e
m
a
tr
ic
es

w
h
ic
h
ca
n
be

ch
ec
ke
d
a
n
d
d
ec
o
m
po

se
d
by

o
u
r
m
et
h
od

.

T
y
p
e

cp
-r
a
n
k

N
u
m
b
er

o
f

m
in
im

a
l

ra
n
k
-o
n
e

d
ec
o
m
p
o
si
ti
o
n

se
ts

S
k
et
ch

o
f
p
ro
o
f
o
n
n
u
m
b
er

o
f
m
in
im

a
l
ra
n
k
-o
n
e
d
ec
o
m
p
o
si
ti
o
n
se
ts

A
cy

cl
ic

n
−

1
1

F
ro
m

th
e
fo
rm

th
a
t
a
m
in
im

a
l
ra
n
k
-o
n
e
d
ec
o
m
p
o
si
ti
o
n
se
t
m
u
st

ta
k
e.

n
∞

C
o
n
si
d
er

st
o
p
p
in
g
A
lg
o
ri
th
m

1
w
h
en

ex
a
ct
ly

tw
o
(c
o
n
se
cu

ti
v
e)

in
d
ic
es

a
re

re
m
a
in
in
g
.
T
h
is

eff
ec
ti
v
el
y
le
av

es
u
s
w
it
h
a
st
ri
ct
ly

p
o
si
ti
v
e
m
a
tr
ix

in
C∗

2
to

d
ec
o
m
p
o
se

w
it
h
cp

-r
a
n
k
eq

u
a
l
to

2
.
N
ow

u
se

T
h
eo
re
m

8
.1
.

C
ir
cu

la
r,

n
=

3
1

1
A
s
th
e
m
a
tr
ix

h
a
s
cp

-r
a
n
k
eq

u
a
l
to

1
.

2
∞

T
h
eo
re
m

8
.1
.

3
∞

C
o
n
si
d
er

st
o
p
p
in
g
A
lg
o
ri
th
m

2
a
ft
er

st
ep

4
,
eff

ec
ti
v
el
y
le
av

in
g
a
st
ri
ct
ly

p
o
si
ti
v
e
m
a
tr
ix

in
C∗

2
to

d
ec
o
m
p
o
se

w
it
h
cp

-r
a
n
k
eq

u
a
l
to

2
.
N
ow

u
se

T
h
eo
re
m

8
.1
.

C
ir
cu

la
r,

n
>

3
n

1
o
r
2

M
et
h
o
d
5
.3

re
su

lt
s
in

ei
th
er

o
n
e
o
r
tw

o
so
lu
ti
o
n
s
fo
r
y
.
C
o
n
si
d
er
in
g
a
cy

cl
ic

m
a
tr
ic
es

w
it
h

cp
-r
a
n
k
eq

u
a
l
to

n
−

1
,
w
e
se
e
th
a
t
ea
ch

va
lu
e
o
f
y
g
iv
es

ex
a
ct
ly

o
n
e
m
in
im

a
l
ra
n
k
-o
n
e

d
ec
o
m
p
o
si
ti
o
n
se
t.

T
h
is

w
a
s
a
ls
o
fo
u
n
d
in

[3
0
],
w
h
er
e
th
e
a
u
th
o
rs

fo
u
n
d
th
a
t
th
e
n
u
m
b
er

o
f

m
in
im

a
l
ra
n
k
-o
n
e
d
ec
o
m
p
o
si
ti
o
n
se
ts

o
f
a
co
m
p
le
te
ly

p
o
si
ti
v
e
ci
rc
u
la
r
m
a
tr
ix

w
a
s
d
ep

en
d
en

t
o
n
th
e
d
et
er
m
in
a
n
t
o
f
it
s
co
m
p
a
ri
so
n
m
a
tr
ix
.

G
(X

)
h
a
s
ex

a
ct
ly

o
n
e
cy

cl
e,

w
h
ic
h
is

o
f
le
n
g
th

eq
u
a
l
to

3
n
−

2
1

F
ro
m

th
e
fo
rm

th
a
t
a
m
in
im

a
l
ra
n
k
-o
n
e
d
ec
o
m
p
o
si
ti
o
n
se
t
m
u
st

ta
k
e.

n
−

1
o
r
n

∞
A
lg
o
ri
th
m

1
fo
ll
ow

ed
b
y
A
lg
o
ri
th
m

2
a
n
d
co
n
si
d
er
in
g
ci
rc
u
la
r
m
a
tr
ic
es

w
it
h
n
=

3
a
n
d

cp
-r
a
n
k
g
re
a
te
r
th
a
n
o
r
eq

u
a
l
to

2
.

G
(X

)
h
a
s
ex

a
ct
ly

o
n
e
cy

cl
e,

w
h
ic
h

is
o
f
le
n
g
th

g
re
a
te
r

th
a
n
3

n
1
o
r
2

A
lg
o
ri
th
m

1
fo
ll
ow

ed
b
y
M
et
h
o
d
5
.3

g
iv
es

th
e
fo
rm

th
a
t
a
m
in
im

a
l
ra
n
k
-o
n
e
d
ec
o
m
p
o
si
ti
o
n

se
t
m
u
st

ta
k
e,

a
n
d
th
en

w
e
co
n
si
d
er

ci
rc
u
la
r
m
a
tr
ic
es

w
it
h
n
>

3
.

D
ow

nl
oa

de
d 

10
/2

3/
12

 to
 1

29
.1

25
.6

3.
11

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPLETE POSITIVITY DETECTION OF SPARSE MATRICES 719

We now look at the two cases given in the theorem.
(a) We must have that θkl = π/2, and so vk and vl must lie on perpendicular

axes. This implies that V is unique up to a swapping of coordinates and
therefore there is exactly one minimal rank-one decomposition set.

(b) We must have that θkl < π/2. This gives us the freedom to rotate V while
keeping it within R

2
+; therefore there must be infinitely many minimal rank-

one decomposition sets.
This completes the proof of the theorem.

In Table 8.1 we now use this result to consider different types of matrices with the
conditions given at the start of this section, i.e., completely positive and connected
and all the diagonal elements strictly positive. The matrices we look at can, in fact, be
easily extended to all the types of matrices that our method can check and decompose.
For finding the cp-rank we simply consider how our method would work through this
type of matrix.
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