
A Linear Time Delay Model for Studying Load
Balancing Instabilities in Parallel Computations

C. Abdallah
ECE Dept

University of NewMexico
Alburquerque NM 87131-1356

Nivedita Alluri, J. Douglas Birdwell, John Chiasson
Victor Chupryna and Zhong Tang

ECE Dept
University of Tennessee
Knoxville TN 37996, USA,

T. Wang
Chemical Engineering Dept
University of Tennessee
Knoxville TN 37996, USA,

June 28, 2002

Abstract

A linear time-delay system is used to model load balancing in a cluster
of computer nodes used for parallel computations. The linear model is
analyzed for stability in terms of the delays in the transfer of information
between nodes and the gains in the load balancing algorithm. This model
is compared with an experimental implementation of the algorithm on a
parallel computer network.

1 Introduction
In this work, a linear time-delay system is used to model load balancing in a
cluster of computer nodes used for parallel computations. The linear model
is analyzed for stability in terms of the delays in the transfer of information
between nodes and the gains in the load balancing algorithm. This model is
compared with an experimental implementation of the algorithm on a parallel
computer network. Preliminary results by the authors appear in [1], however, a
change has been made to the linear model in [1] which represents better Þdelity
and also experimental results are reported here.

1



Parallel computer architectures utilize a set of computational elements (CE)
to achieve performance that is not attainable on a single processor, or CE, com-
puter. A common architecture is the cluster of otherwise independent computers
communicating through a shared network. To make use of parallel computing
resources, problems must be broken down into smaller units that can be solved
individually by each CE while exchanging information with CEs solving other
problems.
The Federal Bureau of Investigation (FBI) National DNA Indexing System

(NDIS) and Combined DNA Indexing System (CODIS) software are candidates
for parallelization. New methods developed by Wang et al [3][4][5][17][18] lead
naturally to a parallel decomposition of the DNA database search problem while
providing orders of magnitude improvements in performance over the current
release of the CODIS software. The projected growth of the NDIS database and
in the demand for searches of the database necessitates migration to a parallel
computing platform.
Effective utilization of a parallel computer architecture requires the compu-

tational load to be distributed more or less evenly over the available CEs. The
qualiÞer �more or less� is used because the communications required to distrib-
ute the load consume both computational resources and network bandwidth. A
point of diminishing returns exists.
Distribution of computational load across available resources is referred to as

the load balancing problem in the literature. Various taxonomies of load balanc-
ing algorithms exist. Direct methods examine the global distribution of compu-
tational load and assign portions of the workload to resources before processing
begins. Iterative methods examine the progress of the computation and the
expected utilization of resources, and adjust the workload assignments period-
ically as computation progresses. Assignment may be either deterministic, as
with the dimension exchange/diffusion [8] and gradient methods, stochastic, or
optimization based. A comparison of several deterministic methods is provided
by Willeback-LeMain and Reeves [19].
To adequately model load balancing problems, several features of the par-

allel computation environment should be captured (1) The workload awaiting
processing at each CE; (2) the relative performances of the CEs; (3) the com-
putational requirements of each workload component; (4) the delays and band-
width constraints of CEs and network components involved in the exchange of
workloads, and (5) the delays imposed by CEs and the network on the exchange
of measurements. A queuing theory [15] approach is well-suited to the model-
ing requirements and has been used in the literature by Spies [16] and others.
However, whereas Spies assumes a homogeneous network of CEs and models
the queues in detail, the present work generalizes queue length to an expected
waiting time, normalizing to account for differences among CEs, and aggregates
the behavior of each queue using a continuous state model. The present work fo-
cuses upon the effects of delays in the exchange of information among CEs, and
the constraints these effects impose on the design of a load balancing strategy.
Section 2 presents our approach to modeling the computer network and load

balancing algorithms to incorporate the presence of delay in communicating

2



between nodes and transferring tasks. Section 3 contains an analysis of the
stability properties of the linear models, while Section 4 presents simulations of
the model. Section 5 presents experimental data from an actual implementation
of a load balancing algorithm and Þnally, Section 6 is a summary and conclusion
of the present work and a discussion of future work.

2 A Dynamic Model of Load Balancing
In this section, linear dynamic time-delay model is developed to model load
balancing among a network of computers. To introduce the basic approach to
load balancing, consider a computing network consisting of n computers (nodes)
all of which can communicate with each other. At start up, the computers are
assigned an equal number of tasks. However, when a node executes a particular
task it can in turn generate more tasks so that very quickly the loads on various
nodes become unequal. To balance the loads, each computer in the network
sends its queue size qj(t) to all other computers in the network. A node i re-
ceives this information from node j delayed by a Þnite amount of time τ ij , that
is, it receives qj(t − τ ij). Each node i then uses this information to compute
its local estimate1 of the average number of tasks in the queues of the n com-

puters in the network. In this work, the simple estimator
³Pn

j=1 qj(t− τ ij)
´
/n

(τ ii = 0) which is based on the most recent observations is used. Node i
then compares its queue size qi(t) with its estimate of the network average as³
qi(t)−

³Pn
j=1 qj(t− τ ij)

´
/n
´
and, if this is greater than zero, the node sends

some of its tasks to the other nodes while if it is less than zero, no tasks are sent
(see Figure 1). Further, the tasks sent by node i are received by node j with a
delay hij . The controller (load balancing algorithm) decides how often and fast
to do load balancing (transfer tasks among the nodes) and how many tasks are
to be sent to each node.

1 It is an estimate because at any time, each node only has the delayed value of the number
of tasks in the other nodes.

3



1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

8000
Queue lengths q1(t), q2(t- τ12), ... ,  q8(t- τ18) recorded by node 1

Node Number

Q
ue

ue
 L

en
gt

hs

Average Queue Length 

Figure 1: Graphical description of load balancing. This bar graph shows the
load for each computer vs. node of the network. The thin horizontal line is the
average load as estimated by node 1. Node 1 will transfer (part of) its load only
if it is above its estimate of the average. Also, it will only transfer to nodes that
it estimates are below the node average.

As just explained, each node controller (load balancing algorithm) has only
delayed values of the queue lengths of the other nodes, and each transfer of
data from one node to another is received only after a Þnite time delay. An
important issue considered here is to study the effect of these delays on system
performance. SpeciÞcally, the continuous time models developed here represent
our effort to capture the effect of the delays in load balancing techniques and
were developed so that system theoretic methods could be used to analyze them.

2.1 Dynamic Model

The basic mathematical model of a given computing node for load balancing is
given by

4



dxi(t)

dt
= λi − µi + ui(t)−

nX
j=1

pij
tpi
tpj
uj(t− hij)

yi(t) = xi(t)−
Pn

j=1 xj(t− τ ij)
n

(1)

ui(t) = −Kiyi(t)

pij > 0, pjj = 0,
nX
i=1

pij = 1

where in this model we have

� n is the number of nodes.
� xi(t) is the expected waiting time experienced by a task inserted into the
queue of the ith node. With qi(t) the number of tasks in the ith node
and tpi the average time needed to process a task on the i

th node, the
expected (average) waiting time is then given by xi(t) = qi(t)tpi . Note that
xj/tpj = qj is the number of tasks in the node 1 queue. If these tasks were
transferred to node i, then the waiting time transferred is qjtpi = xjtpi/tpj ,
so that the fraction tpi/tpj converts waiting time on node j to waiting time
on node i.

� λi is the rate of generation of waiting time on the ith node caused by the
addition of tasks (rate of increase in xi)

� µi is the rate of reduction in waiting time caused by the service of tasks
at the ith node and is given by µi ≡ (1× tpi) /tpi = 1 for all i.

� ui(t) is the rate of removal (transfer) of the tasks from node i at time t
by the load balancing algorithm at node i.

� pijuj(t) is the rate that node j sends waiting time (tasks) to node i at time
t where pij > 0,

Pn
i=1 pij = 1 and pjj = 0. That is, the transfer from node

j of expected waiting time (tasks)
Z t2

t1

uj(t)dt in the interval of time [t1, t2]

to the other nodes is carried out with the ith node being sent the fraction

pij
tpi
tpj

Z t2

t1

uj(t)dt where the fraction tpi/tpj converts the task from waiting

time on node j to waiting time on node i. As
Pn
i=1

µ
pij

Z t2

t1

uj(t)dt

¶
=Z t2

t1

uj(t)dt, this results in a removing all the waiting time
Z t2

t1

uj(t)dt

from node j.

5



� The quantity −pijuj(t−hij) is the rate of increase (rate of transfer) of the
expected waiting time (tasks) at time t from node j by (to) node i where
hij (hii = 0) is the time delay for the task transfer from node j to node i.

� The quantities τ ij (τ ii = 0) denote the time delay for communicating the
expected waiting time xj from node j to node i.

� The quantity xavgi =
³Pn

j=1 xj(t− τ ij)
´
/n is the estimate2 by the ith

node of the average waiting time of the network and is referred to as the
local average (local estimate of the average).

In this model, all rates are in units of the rate of change of expected waiting
time, or time/time which is dimensionless). The jth node receives the fractionZ t2

t1

pjiui(t)dt of transferred waiting time
Z t2

t1

ui(t)dt delayed by the time hij .

As all nodes are taken to be identical, the pji for each sending node i is speciÞed
as constant and equal to

pji = p = 1/(n− 1) for j 6= i
pii = 0

where it is clear that pij > 0,
Pn
i=1 pij = 1.

A delay is experienced by transmitted tasks before they are received at the
other node. The control law ui(t) = −Kiyi(t) states that if at the ith node,
ui(t) = −Kiyi(t) < 0 (yi(t) > 0), then it sends data to the other nodes. How-
ever, if yi(t) < 0, the controller (load balancing algorithm) ui(t) = −Kiyi(t) > 0
so that the node is instantaneously taking on waiting time (tasks) from the other
nodes before those tasks are removed from the other nodes� queues. As explained
above, the actual network does not do this; if yi(t) < 0, then the local node
does not initiate any transfer of tasks. That is, the actual network has a control
law of the form ui(t) = −Kisat(yi(t)) where sat(y) = y if y > 0 and sat(y) = 0
if y < 0. However, in spite of this fact, the system model (1) is used because
it can be completely analyzed with regards to stability and it does capture the
oscillatory behavior of the yi(t).

3 Stability Analysis of the Linear Model
A key issue here is whether or not the system model (1) is stable. It is well
known that the presence of delays has a great inßuence on the stability of the
system [2][11][12]. In addition to stability, performance is also an issue, that
is, the system may be stable, but oscillate. This is undesirable as the network
is wasting resources passing tasks back and forth between nodes rather than
executing the tasks. In this section, the linear model (1) is analyzed for stability
as a function of the control gains Ki.

2This is an only an estimate due to the delays.

6



To simplify the presentation of the stability analysis of (1), a three node
model is considered with K1 = K2 = K3 = K, p = 1/2, τ ij = τ , hij = 2τ for
i 6= j for all i, j = 1, 2, 3 (τ ii = hii = 0). Letting d1 = λ1 − µ1, d2 = λ2 − µ2,
and d3 = λ3 − µ3, the Laplace transform of the system equations (1) with zero
initial conditions are then (X1(s) = L{x1(s)}, etc.)

s

 X1(s)
X2(s)
X3(s)

 =
 1 −pe−2τs −pe−2τs
−pe−2τs 1 −pe−2τs
−pe−2τs −pe−2τs 1

 U1(s)
U2(s)
U3(s)

+
 D1(s)
D2(s)
D3(s)


 U1(s)
U2(s)
U3(s)

 = −K
 (n− 1) /n −e−τs/n −e−τs/n

−e−τs/n (n− 1) /n −e−τs/n
−e−τs/n −e−τs/n (n− 1) /n

 X1(s)
X2(s)
X3(s)

 .
This is solved for X(s) and the output is then given by Y1(s)

Y2(s)
Y3(s)

 =
 (n− 1) /n −e−τs/n −e−τs/n

−e−τs/n (n− 1) /n −e−τs/n
−e−τs/n −e−τs/n (n− 1) /n

 X1(s)
X2(s)
X3(s)

 .
Performing the computations, the transfer function from the inputsD1(s),D2(s),D3(s)
to the output y1(s) , x1(s)− (x1(s) + e−τsx2(s) + e−τsx3(s)) /3 is (z , e−τs)

Y1(s) =
−6s−K ¡z2 − 2¢ (z − 1)(z + 2)¡

3s+K (2 + z) (1 + 0.5z2)
¢ ¡−3s+ 2K (1− z) (−1 + z2) ¢D1(s)

+
3sz +Kz2(z − 1)(z + 2)¡

3s+K (2 + z) (1 + 0.5z2)
¢ ¡−3s+ 2K (1− z) (z2 − 1) ¢ (D2(s) +D3(s))

A more compact representation is given by

Y1(s) =
b1(s, z)

a1(s, z)a2(s, z)
D1(s) +

zb2(s, z)

a1(s, z)a2(s, z)
(D2(s) +D3(s)) (2)

where

b1(s, z) = −6s−K
¡
z2 − 2¢ (z − 1)(z + 2)

a1(s, z) = 3s+K (2 + z)
¡
1 + 0.5z2

¢
a2(s, z) = −3s+ 2K (1− z)

¡−1 + z2¢
b2(s, z) = 3s+Kz(z − 1)(z + 2)

The range of delay values τ for which (2) is stable is found by separately con-
sidering the stability of the transfer functions 1/a1(s, z), b1(s, z)/a2(s, z) and
b2(s, z)/a2(s, z).

3.1 Stability of 1/a1(s, z)

The idea here (see [6][7][13][14]) is to Þrst note that the polynomial a1(s, e−sτ )
is stable for τ = 0 as a(s, e−s0) = a(s, 1) = 3s+ 4.5K 6= 0 for Re(s) ≥ 0. Next,

7



one considers the pair of polynomials

a1(s, z) , 3s+K (2 + z)
¡
1 + z2/2

¢
�a1(s, z) , z3a1(−s, 1/z) = −3z3s+K

¡
2z3 + z2 + z + 1/2

¢
.

If the system becomes unstable for some τ > 0, then there is a Þrst value of
τ > 0 for which a1(s, e−jωτ ) has zeros in s on the jω axis. For this value of
τ , there is a zero (s0, z0) of a1(s0, z0) = 0 of the form (s0, z0) = (jω0, e

−jω0τ ),
that is, Re(s0) = 0, |z0| = 1. As −jω0 and 1/e−jω0τ are simply the conjugates
of s0 = jω0, z0 = e−jω0τ , (s0, z0) is also a zero of �a1(s0, z0) = 0 as seen by
computing the complex conjugate of a1(s0, z0). As a consequence, the Þrst
value of τ that results in the system being unstable corresponds to there being
a common zero (s, z) of

a1(s, z) = 0, �a1(s, z) = 0 (3)

with Re(s0) = 0, |z0| = 1. To Þnd the common zeros of (3), the variable s is
eliminated from a1(s, z) = 0 and �a1(s, z) = 0 resulting in

R(z) , 1 + 2z + 2z2 + 8z3 + 2z4 + 2z5 + z6 = 0.

The roots of R(z) aren
−2.43475,−0.410721, 0.107602± j0.574348, 0.315131± j1.68207

o
. (4)

For a1(s, e−jωτ ) to have a zero on the jω axis for some τ > 0, there must be a
pair of the form (s0, z0) = (jω0, e

−jω0τ ) so that Re(s0) = 0, |z0| = 1. None of
the roots (4) for z has magnitude 1 so there is no value of τ which results in
a1(s, e

−jωτ ) being zero on the jω axis. As the system is stable for τ = 0, i.e.,
a1(0, 1) 6= 0, it follows that as τ is increased, no zeros of a1(s, e−jωτ ) can cross
into the right-half plane and therefore a1(s, e−jωτ ) is stable for all delays τ ≥ 0.

3.2 Stability of b1(s, z)/a2(s, z)

The objective here is determine for what values of the delay τ ≥ 0 the transfer
function

b1(s, z)

a2(s, z)
=
−6s− 2K ¡−1 + 0.5z2¢ (z2 + z − 2)

−3s+ 2K (1− z) (z2 − 1)
is stable. Note that the polynomial a2(s, z) is unstable for τ = 0 as

a2(s, e
−τs)

¯̄
τ=0

= −3s+ 2K (1− z)
¡
z2 − 1¢¯̄

z=1
= −3s

However,

lim
τ→0

b1(s, e
−τs)

a2(s, e−τs)
= lim

z→1

−6s− 2K ¡−1 + 0.5z2¢ (z − 1)(z + 2)
−3s+ 2K (1− z) (z2 − 1) = 2 6=∞.

8



In fact,

lim
s→0

b1(s, e
−sτ )

a2(s, e−sτ )
= lim
s→0

−6s+K ¡−4 + 2e−sτ + 4e−2sτ − e−3sτ − e−4sτ¢
−3s+ 2K (−1 + e−sτ + e−2sτ − e−3sτ )

= lim
s→0

−6 +K ¡−2τe−sτ − 8τe−2sτ + 3τe−3sτ + 4τe−4sτ¢
−3 + 2K (−τe−sτ − 2τe−2sτ + 3τe−3sτ )

= −2−Kτ 6=∞ for K ≥ 0, τ ≥ 0 (5)

That is, there is a pole-zero cancellation so that transfer function b1(s, e−sτ )/a2(s, e−sτ )
does not have a pole at s = 0 for all τ ≥ 0. To determine the delay values for
which the transfer function is stable, the rational function

c1(s, z) =
a2(s, z)

b1(s, z)
=

−3s+ 2K (1− z)
¡
z2 − 1¢

−6s− 2K (−1 + 0.5z2) (z − 1)(z + 2)
is checked for its zeros (i.e., c1(s, e−jsτ ) = 0) in the right-half plane as a function
of the delay τ . To do so, an auxiliary rational function �c2(s, z) is deÞned as
follows

�c1(s, z) = c1(−s, 1/z) =
−3s+ 2K (1− z)

¡
z2 − 1¢

−6s− 2K (−1 + 0.5z2) (z − 1)(z + 2) .

If the system becomes unstable for some τ > 0, then there is a Þrst value of τ for
which c1(s, e−jsτ ) has zeros on the jω axis. On the jω axis, these zeros must be
of the form s0 = jω0, z0 = e

−jω0τ (i.e., Re(s0) = 0, |z0| = 1) and, the complex
conjugate of c1(s0, z0) is �c1(s0, z0) so that �c1(s0, z0) = 0 too. The Þrst value of
τ that results in c1(s, e−jsτ ) having a zero on the jω axis must correspond to a
common zero of

c1(s0, z0) = 0, �c1(s0, z0) = 0 (6)

which satisÞes Re(s0) = 0, |z0| = 1. Eliminating s from (6) gives

R(z) =
−2z (z + 1)2 (z − 1)2 ¡z − ejπ/3¢ (z − e−jπ/3)
−1− z + 4z2 + 2z3 − 8z4 + 4z5 + 4z6 − 4z7 = 0.

The roots are then
©
0,−1,−1, 1, 1, ejπ/3, e−jπ/3ª and solving c2(s, z) = 0 for

these particular values of z gives

{(si, zi)} =
n
(2K/3, 0), (0,−1), (0,−1), (0, 1), (0, 1),

(j
4K

3
sin(π/3), ejπ/3), (−j 4K

3
sin(π/3), e−jπ/3)

¾
In order to correspond to a zero of c1(s, e−jsτ ), a common zero (s0, z0) must
also satisfy

z0 = e
−s0τ . (7)

The pair (−2K/3, 0) can never satisfy (7) and therefore s = −2K/3 does not
correspond to a zero of c1(s, e−jsτ ). Similarly, (s, z) = (0,−1) can never satisfy

9



(7) either. The two common zeros at (0, 1) correspond to having a zero of
c1(s, e

−jsτ ) at s = 0 on the jω axis, but it has already been shown in (5) that the
transfer function b1(s, e−τs)/a2(s, e−τs) does not have a pole at s = 0. Finally,
putting the common zeros (±j 4K3 sin(π/3), e±jπ/3) into (7) requires solving

ejπ/3 = e−jτ
4K
3 sin(π/3) or e−j5π/3 = e−jτ

4K
3 sin(π/3)

giving

τ =
5π

4K sin(π/3)
.

That is, for K < Kmax , 5π/(4τ sin(π/3)), the system is stable and for K =
Kmax the system will have poles on the jω axis at ±j 4K3 sin(π/3) and is therefore
unstable.

3.3 Stability of b2(s, z)/a2(s, z)

Finally, the stability of the transfer function

b2(s, z)

a2(s, z)
=

3s+Kz(z − 1)(z + 2)
−3s+ 2K (1− z) (−1 + z2)

as a function of the delay τ is determined. As the polynomial a2(s, z) is unstable
for τ = 0, one checks the transfer function itself at τ = 0, that is,

lim
τ→0

b2(s, e
−τs)

a2(s, e−τs)
= lim
z→1

3s+K(−2z + z2 + z3)
−3s+ 2K (1− z) (z2 − 1) = −1 6=∞.

Also,

lim
s→0

b2(s, e
−sτ )

a2(s, e−sτ )
= lim
s→0

3s+K(−2e−sτ + e−2sτ + e−3sτ )
−3s+ 2K (−1 + e−sτ + e−2sτ − e−3sτ )

= lim
s→0

3 +K
¡
2τe−sτ − 2τe−2sτ − 3τe−3sτ¢

−3 + 2K (−τe−sτ − 2τe−2sτ + 3τe−3sτ )
= −1 +Kτ 6=∞ for K ≥ 0, τ ≥ 0 (8)

so that this transfer function does not have a pole at s = 0 for all τ ≥ 0.
To determine the delay values for which the transfer function is stable, the

rational function

c2(s, z) =
a2(s, z)

b2(s, z)
=
−3s+ 2K (1− z) ¡−1 + z2¢
3s+Kz(z − 1)(z + 2)

is checked for its zeros (i.e., c1(s, e−jsτ ) = 0) in the right-half plane as a function
of the delay τ . As explained in the previous subsection, an auxiliary rational
function �c2(s, z) is deÞned as

�c2(s, z) = c2(−s, 1/z) =
z
³
3sz3 − 2K (−1 + z)2 (1 + z)

´
−3sz3 − 2K (−1 + z) (0.5 + z)

10



and the rational functions

c1(s, z) = 0, �c1(s, z) = 0

are solved for their common zeros. Eliminating s gives

R(z) =
− z (1 + z)2 (z − 1) ¡1− z + z2¢

(−1.33224 + z) (0.433748 + z) (1.18764 + z) (0.728556− 0.289146 z + z2)
= 0.

The roots are then
©
0,−1,−1, 1, ejπ/3, e−jπ/3ª. Solving c2(s, z) = 0 for these

particular values of z gives

{(si, zi)} =
n
(2K/3, 0), (0,−1), (0,−1), (0, 1),

(j
4K

3
sin(π/3), ejπ/3), (−j 4K

3
sin(π/3), e−jπ/3)

¾
Again, each of these common zeros must also satisfy z = e−sτ which leaves the
common zeros (±j 4K3 sin(π/3), e±jπ/3) as the only viable candidates. As in the
previous subsection, this results in

τ =
5π

4K sin(π/3)
.

That is, for K < Kmax , 5π/(4τ sin(π/3)), the system is stable and for K =
Kmax the system will have poles on the jω axis at ±j 4K3 sin(π/3) and is therefore
unstable.
In summary, the system (2) is stable for

0 ≤ K < Kmax =
5π

4τ sin(π/3)

4 Simulations
Experimental procedures to determine the delay values are given in [9] and
summarized in [10]. These give representative values for a Fast Ethernet network
with three nodes of τ ij = τ = 200 µ sec for i 6= j, τ ii = 0, and hij = 2τ = 400
µ sec for i 6= j, hii = 0. The initial conditions were x1(0) = 0.6, x2(0) = 0.4 and
x3(0) = 0.2. The inputs were set as λ1 = 3µ1, λ2 = 0, λ3 = 0, µ1 = µ2 = µ3 = 1.
The tpi �s were taken to be equal. Figure (2) is a block diagram of one node of
the system.
The simulation of the linear model was performed with three nodes (n = 3),

K1 = K2 = K3 = K, pij = 1/2, for all i, j, τ ij = τ , hij = 2τ for i 6= j, τ ii = 0,
hii = 0 for i = 1, 2, 3 and τ = 200 µ sec. The maximum value for the gain using
these parameter values is

Kmax =
5π

4τ sin(π/3)
=

5π

4(200× 10−6) sin(π/3) = 22672

11



Figure 2: Simulation Block Diagram for Node 1

Figures 3 and 4 show the responses y1(t), y2(t), y3(t) with the gain K = 1000
andK = 5000, respectively. Note the increase in oscillatory behavior as the gain
is increased. To compare with the experimental results given in Figure 8, Figure
5 shows the output responses with the gains set as K1 = 6667,K2 = 4167,K3 =
5000, respectively. In each of the plots, the effect of delay of 200µ sec coming
into play at t = 200µ sec is evident. Note that the responses in 4 with the higher
gain die out slower and oscillate more compared to the responses in 3. This is
due to the delays in that, if the delays are set to zero, then the response with
K = 5000 dies out fastest as expected.

12



0 0.002 0.004 0.006 0.008 0.01
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time in secs

y1
,y

2,
y3

y1 

y2 

y3 

K = 1000 

Figure 3: Linear output responses with K = 1000.

0 0.002 0.004 0.006 0.008 0.01
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time in secs

y1
,y

2,
y3

y1 

y2 

y3 

K = 5000 

Figure 4: Linear output responses with K = 5000.

13



0 0.002 0.004 0.006 0.008 0.01
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time in secs

y1
,y

2,
y3

K1=6666.7,K2=4166.7,K3=5000

y1 

y2 

y3 

Figure 5: Linear simulation with K1 = 6666.7;K2 = 4166.7;K3 = 5000

5 Experimental Results
A parallel machine has been built to implement an experimental facility for
evaluation of load balancing strategies. To date, this work has been performed
for the FBI Laboratory to evaluate candidate designs of the parallel CODIS
database. The design layout of the parallel database is shown in Figure 6.

Figure 6: Hardware structure of the parallel database.

A root node communicates with k groups of computer networks. Each of
these groups is composed of n nodes (hosts) holding identical copies of a por-
tion of the database. (Any pair of groups correspond to different databases,

14



which are not necessarily disjoint. A speciÞc record, or DNA proÞle, is in gen-
eral stored in two groups for redundancy to protect against failure of a node.)
Within each node, there are either one or two processors. In the experimental
facility, the dual processor machines use 1.6 GHz Athlon MP processors, and the
single processor machines use 1.33 GHz Athlon processors. All run the Linux
operating system. Our interest here is in the load balancing in any one group
of n nodes/hosts.
The database is implemented as a set of queues with associated search engine

threads, typically assigned one per node of the parallel machine. Due to the
structure of the search process, search requests can be formulated for any target
DNA proÞle and associated with any node of the index tree. These search
requests are created not only by the database clients; the search process also
creates search requests as the index tree is descended by any search thread. This
creates the opportunity for parallelism; search requests that await processing
may be placed in any queue associated with a search engine, and the contents of
these queues may be moved arbitrarily among the processing nodes of a group
to achieve a balance of the load. This structure is shown in Figure 7.

Figure 7: A depiction of multiple search threads in the database index tree.
Here the server corresponds to the �root� in Figure 6. To even out the search
queues, load balancing is done between the nodes (hosts) of a group. If a node
has a dual processor, then it can be considered to have two search engines for
its queue.

An important point is that the actual delays experienced by the network
traffic in the parallel machine are random. Work has been performed to char-
acterize the bandwidth and delay on unloaded and loaded network switches, in
order to identify the delay parameters of the analytic models and is reported
in [9][10]. The value τ = 200 µ sec used for simulations represents an average

15



value for the delay and was found using the procedure described in [10]. The in-
terest here is to compare the experimental data with that from the three models
previously developed.
To explain the connection between the control gain K and the actual im-

plementation, recall that the waiting time is related to the number of tasks as
xi(t) = qi(t)tpi where tpi is the average time to carry out a task. The continuous
time control law is

u(t) = −Kyi(t)
where u(t) is the rate of decrease of waiting time xi(t) per unit time. Conse-
quently, the gainK represents the rate of reduction of waiting time per second in

the continuous time model. Also, yi(t) =
³
qi(t)−

³Pn
j=1 qj(t− τ ij)

´
/n
´
tpi =

ri(t)tpi where ri(t) is simply the number of tasks above the estimated (local)
average number of tasks. With ∆t the time interval between successive execu-
tions of the load balancing algorithm, the control law says that a fraction of the
queue Kzri(t) (0 < Kz < 1) is removed in the time ∆t so the rate of reduction
of waiting time is −Kzri(t)tpi/∆t = −Kzyi(t)/∆t so that

u(t) = −Kzyi(t)

∆t
=⇒ K =

Kz

∆t
. (9)

This shows that the gain K is related to the actual implementation by how fast
the load balancing can be carried out and how much (fraction) of the load is
transferred. In the experimental work reported here, ∆t actually varies each
time the load is balanced. As a consequence, the value of ∆t used in (9) is
an average value for that run. The average time tpi to process a task is the
same on all nodes (identical processors) and is equal 10µ sec while the time it
takes to transfer of load is about 50µ sec . The initial conditions were taken
as q1(0) = 60000, q2(0) = 40000, q3(0) = 20000 (corresponding to x1(0) =
q1(0)tpi = 0.6, x2(0) = 0.4, x3(0) = 0.2). All of the experimental responses
were carried out with constant pij = 1/2 for i 6= j.
Figure 8 is a plot of the responses ri(t) = qi(t) −

³Pn
j=1 qj(t− τ ij)

´
/n

for i = 1, 2, 3 (recall that yi(t) = ri(t)tpi). The (average) value of the gains
were (Kz = 0.5) K1 = 0.5/75µ sec = 6667,K2 = 0.5/120µ sec = 4167,K3 =
0.5/100µ sec = 5000. This Þgure compares favorably with Figure 5 of the linear
model except for the time scale being off, that is, the experimental responses
are slower. The explanation for this it that the gains here vary during the
run because ∆t (the time interval between successive executions of the load
balancing algorithm) varies during the run. Further, this time∆t is not modeled
in the continuous time simulations, only its average effect in the gains Ki. That
is, the continuous time model does not stop processing jobs (at the average rate
tpi) while it is transferring tasks to do the load balancing.

16



-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40

qu
eu

e 
le

ng
th

time (ms)

Comparison of local averages on Node01 - Node03

node01
node02
node03

Figure 8: Experimental response of the load balancing algorithm. The average
value of the gains are (Kz = 0.5) K1 = 6667,K2 = 4167,K3 = 5000 with
constant pij .

Figure 9 shows the plots of the response for the (average) value of the gains
given by (Kz = 0.2) K1 = 0.2/125µ sec = 1600,K2 = 0.2/80µ sec = 2500,K3 =
0.2/70µ sec = 2857. Note that these gains are about half that of the previous
case with a consequence that the response die out slower. The initial condi-
tions were q1(0) = 60000, q2(0) = 40000, q3(0) = 20000 (x1(0) = q1(0)tpi =
0.6, x2(0) = 0.4, x3(0) = 0.2).

17



-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40

qu
eu

e 
le

ng
th

time (ms)

Comparison of local averages on Node01 - Node03

node01
node02
node03

Figure 9: Experimental response of the load balancing algorithm. The average
value of the gains are (Kz = 0.2) K1 = 16000,K2 = 2500,K3 = 2857 with
constant pij .

Figure 10 shows the plots of the response for the (average) value of the
gains given by (Kz = 0.3) K1 = 0.3/125µ sec = 2400,K2 = 0.3/110µ sec =
7273,K3 = 0.3/120µ sec = 2500.

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40

qu
eu

e 
le

ng
th

time (ms)

Comparison of local averages on Node01 - Node03

node01
node02
node03

Figure 10: Experimental response of the load balancing algorithm. The average
value of the gains are (Kz = 0.3) K1 = 2400,K2 = 7273,K3 = 2500 with
constant pij .

18



6 Summary and Conclusions
In this work, a load balancing algorithm was modeled in three ways using a linear
time-delay model. Under the assumption of symmetric nodes and controllers
(all intercommunication delays are identical and the controller gains identical)
a systematic procedure was presented to determine the stability of the linear
system by an explicit relationship between the delay values and the control gain.
In particular, the delays create a limit on the size of the controller gains in order
to ensure stability. Experiments were performed that indicate a correlation of
the continuous time models with the actual implementation.
A consideration for future work is the fact that the load balancing operation

involves processor time which is not being used to process tasks. Consequently,
there is a trade-off between using processor time/network bandwidth and the
advantage of distributing the load evenly between the nodes to reduce overall
processing time.
An issue is that the delays in actuality are not constant and depend on such

factors as network availability, the execution of the software, etc. An approach
to modeling using a discrete-event/hybrid state formulation that accounts for
block transfers that occur after random intervals may also be advantageous in
analyzing the network.

7 Acknowledgements
The work of J.D. Birdwell, V. Chupryna, Z. Tang, and T.W. Wang was sup-
ported by U.S. Department of Justice, Federal Bureau of Investigation under
contract J-FBI-98-083. Drs. Birdwell and Chiasson were also partially sup-
ported by a Challenge Grant Award from the Center for Information Technol-
ogy Research at the University of Tennessee. The work of C.T. Abdallah was
supported in part by the National Science Foundation through the grant INT-
9818312. The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of the U.S. Government.

References
[1] C. Abdallah, J. Birdwell, J. Chiasson, V. Churpryna, Z. Tang,

and T. Wang. Load balancing instabilities due to time delays in parallel
computation. In �Proceedings of the 3rd IFAC Conference on Time Delay
Systems� (December 2001). Sante Fe NM.

[2] R. Bellman and K. Cooke. �Differential-Difference Equations�. New
York: Academic (1963).

[3] J. Birdwell, R. Horn, D. Icove, T. Wang, P. Yadav, and S. Niez-
goda. A hierarchical database design and search method for codis. In

19



�Tenth International Symposium on Human IdentiÞcation� (September
1999). Orlando, FL.

[4] J. Birdwell, T. Wang, R. Horn, P. Yadav, and D. Icove. Method
of indexed storage and retrieval of multidimensional information. In �Tenth
SIAM Conference on Parallel Processing for ScientiÞc Computation� (Sep-
tember 2000). U. S. Patent Application 09/671,304.

[5] J. Birdwell, T.-W. Wang, and M. Rader. The university of ten-
nessee�s new search engine for codis. In �6th CODIS Users Conference�
(February 2001). Arlington, VA.

[6] J. Chiasson. A method for computing the interval of delay values for
which a differential-delay system. IEEE Transactions on Automatic Control
33(12), 1176�1178 (December 1988).

[7] J. Chiasson and C. Abdallah. A test for robust stability of time de-
lay systems. In �Proceedings of the 3rd IFAC Conference on Time Delay
Systems� (December 2001). Sante Fe, NM.

[8] A. Corradi, L. Leonardi, and F. Zambonelli. Diffusive load-
balancing polices for dynamic applications. IEEE Concurrency 22(31),
979�993 (Jan-Feb 1999).

[9] P. Dasgupta. �Performance Evaluation of Fast Ethernet, ATM and
Myrinet under PVM, MS Thesis�. University of Tennesse (2001).

[10] P. Dasgupta, J. D. Birdwell, and T. W. Wang. Timing and conges-
tion studies under pvm. In �Tenth SIAM Conference on Parallel Processing
for ScientiÞc Computation� (March 2001). Portsmouth, VA.

[11] O. Diekmann, S. A. van Gils, S. M. V. Lunel, and H. Walther.
�Delay Equations�. Springer-Verlag (1995).

[12] J. Hale and S. V. Lunel. �Introduction to Functional Differential Equa-
tions�. Springer-Verlag (1993).

[13] D. Hertz, E. Jury, and E. Zeheb. Stability independent and dependent
of delay for delay differential systems. J. Franklin Institute (September
1984).

[14] E. Kamen. Linear systems with commensurate time delays: Stability
and stabilization independent of delay. IEEE Transactions on Automatic
Control 27, 367�375 (April 1982).

[15] L. Kleinrock. �Queuing Systems Vol I : Theory�. John Wiley & Sons
(1975). New York.

[16] F. Spies. Modeling of optimal load balancing strategy using queuing the-
ory. Microprocessors and Microprogramming 41, 555�570 (1996).

20



[17] T. Wang, J. Birdwell, P. Yadav, D. Icove, S. Niezgoda, and
S. Jones. Natural clustering of DNA/STR proÞles. In �Tenth Interna-
tional Symposium on Human IdentiÞcation� (September 1999). Orlando,
FL.

[18] T. Wang, J. D. Birdwell, P. Yadav, D. J. Icove, S. Niezgoda, and
S. Jones. Natural clustering of DNA/STR proÞles. In �Tenth International
Symposium on Human IdentiÞcation� (September 1999). Orlando, FL.

[19] M. Willebeek-LeMair and A. Reeves. Strategies for dynamic load
balancing on highly parallel computers. IEEE Transactions on Parallel
and Distributed Systems 4(9), 979�993 (1993).

21


