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Abstract

Current linear-time simulation methods for articulated figures are based exclusively on
reduced-coordinate formulations. This paper describes a general, non-iterative linear-time
simulation method based instead on Lagrange multipliers. Lagrange multiplier methodsare
important for computer graphics applications because they bypass the difficult (and often
intractable) problem of parameterizing a system’s degrees of freedom. Given aloop-free
set of n equality constraints acting between pairs of bodies, the method takes O(n) timeto
compute the system’s dynamics. The method does not rely on matrix bandwidth, so no as-
sumptions about the constraints' topology are needed. Bodies need not berigid, constraints
can be of various dimensions, and unlike reduced-coordinate approaches, nonholonomic
(e.g. velocity-dependent) constraints are allowed. An additional set of k one-dimensional
constraints which induce loops and/or handle inequalities can be accommodated with cost
O(kn). Thismakesit practical to simulate complicated, closed-loop articulated figureswith
joint-limitsand contact at interactive rates. A complete description of a sample implemen-
tation is provided in pseudocode.



1 Introduction

Forward simulation with constraints is a key problem in computer graphics. Typically, a
system’s constraints are sparse: each constraint directly affects only one or two bodies (for
example, geometric connection constraints) and for a system with n bodies, there are only
O(n) constraints. In particular, the ssmulation of articulated figures and mechanisms falls
intothiscategory. Sparse constraint systemsare also either nearly or completely acyclic: for
example, robot arms are usually open-loop structures, as are animation models for humans
and animals. Considerableeffort has been directed toward efficiently simulating these types
of systems.

Reading through the dynamicsliterature, alarge variety of dynamicsformulation can be
found (Newton-Euler, Gibbs-Appel, D’ Alembert, Gauss' Least Constraint Principle, etc.)
but the details of these variations matter little; ultimately, we are faced with a basic choice.
Either we model constraints by reducing the number of coordinates needed to describe the
system’sstate, or weintroduce additional forcesinto the system that maintainthe constraints.

A reduced-coordinate formulation takesasystem with mdegrees of freedom (d.o.f.’s), a
set of constraintsthat removes c of thosed.o.f.’s, and parameterizestheremainingn=m-—c
d.o.f.’susing areduced set of n coordinates. A reduced set of n coordinates are called gen-
eralized coordinates; coordinates describing the original m-d.o.f. system are called maximal
coordinates. For an arbitrary set of constraints, finding a parameterization for m maximal
coordinatesin terms of n generalized coordinatesisarbitrarily hard; if such a parameteriza-
tion can be found, O(n®) time is required to compute the acceleration of the n generalized
coordinates at any instant. However, loop-free articulated rigid bodies aretrivially parame-
terized, and methods for computing the n generalized coordinate accelerationsin O(n) time
arewell known [5].

In contrast, Lagrange multiplier methods expressthe system’ sstate using the ssmpler set
of m maximal coordinates. Constraints are enforced by introducing constraint forces into
the system. At each instant, a basisfor the constraint forcesisknown a priori; the Lagrange
multipliers (which we must compute) are a vector of ¢ scalar coordinates that describe the
constraint forcein terms of the basis. Lagrange multiplier approaches are extremely impor-
tant for interactive computer graphics applications, because they allow an arbitrary set of
constraints to be combined. Thisis difficult (often impossible) to achieve with a reduced-
coordinate formulation. Additionally, Lagrange multiplier formulations alow (and frankly
encourage) a highly modular knowledge/software design, in which bodies, constraints, and
geometry regard each other as black-box entities (section 2 devel opsthisfurther). Lagrange
multipliers also alow us to handle nonholonomic constraints, such as vel ocity-dependent
constraints; reduced-coordinate approaches inherently lack this capability.

For a system whose constraints remove c d.o.f.’s, the Lagrange multipliers are the c un-
known variables of a set of ¢ linear equations. If ¢ is much greater than n, so that the con-
strained system possesses only a few d.o.f.’s, clearly the reduced-coordinate approach is
preferred. However, for the case of open-loop articulated three-dimensional rigid bodies,
c= O(n), sincecisat least 1/5n and at most 5n. Even though n and c are linearly related
for articulated figures, the current prevailing view isthat arti cul ated figures can be simulated
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inlinear time only by using a reduced-coordinate formulation. The possibility of achieving
O(n) performance for Lagrange multiplier methods has been largely discounted, because
the prospects for simply and easily solving the resulting O(n) x O(n) matrix system in
O(n) time have seemed dismal, at best. We show in this paper that a very simple direct
(that is, non-iterative) O(n) solution method exists for computing Lagrange multipliersfor
sparse acyclic constraint systems. The method itself arises from elementary sparse-matrix
techniques, applied to amatrix equation that varies just slightly from the normal computer-
graphics constrained dynamics formulation using Lagrange multipliers.

1.1 Specific Contributions

Theresults of thispaper are thefollowing. Consider a set of n bodies (not necessarily rigid)
and a set of n — 1 constraints, with each constraint enforcing a relationship of some di-
mension between two of the bodies. Assuming the constraint connectivity is acyclic (for
example, a constraint between body 1 and 2, between body 2 and 3, and between body 3
and 1 formsacycle), wedescribeasimple, direct O(n) method for computing the Lagrange
multipliers for these constraints. We will call this acyclic set of constraints the primary
constraints. The primary constraints need not be holonomic, though they must be equal-
ity constraints. Nonholonomic velocity-based constraints—such as a relationship between
rotational speeds of bodies—fit into this framework and are handled as primary constraints.
Reduced-coordinates approaches are restricted to holonomic constraints.

In addition, a set of auxiliary constraints can also be accommodated. Closed loops are
handled by designating constraintswhich cause cyclesasauxiliary, rather than primary con-
straints. Similarly, constraintsthat act on only asingle body, or on morethan two bodiesare
designated as auxiliary constraints, as are inequality constraints, such as joint-angle limits
or contact constraints. If the primary constraints partition the bodies into separate compo-
nents (for example, two separate chains), then an inequality might involve only one of the
primary constraint components (a chain colliding with itself); however, aconstraint involv-
ing two or more components (two different chains colliding with each other) is handled just
aseasly. In addition to the O(n) timerequired to deal with the primary constraints, k one-
dimensional auxiliary constraints cost O(nk) timeto formulate a k x k matrix system and
O(k3) timeto solvethe system. When kissmall compared to n, the added cost isessentially
just an additional O(nk). The auxiliary constraint method described is particularly efficient
in conjunction with our O(n) primary constraint method. Our approach to auxiliary con-
straints could also be used to handle auxiliary constraintsin linear-time reduced-coordinate
formulations.

In our (biased) view, linear-time performance is achieved far more easily for Lagrange
multiplier methodsthan for reduced-coordinate formulations. While O(n) inver se reduced-
coordinate approaches are easily understood, forward reduced-coordinate formulationswith
linear time complexity have an extremely steep learning curve, and make use of aformidable
array of notational tools. Theauthor admits(asdo many practitionerstheauthor has queried)
to lacking a solid, intuitive understanding of these methods.® We believe that areader who

1Thisisnot an attack on such methods; rather it isan invitation and opportunity for someoneto step forward
and clearly and simply explain such methodsto the rest of us!
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already understands the standard O(n®) method for formulating and computing Lagrange
multipliers should have no difficulty in implementing the O(n) method presented in this
paper. To back this point up, appendix A contains a complete (yet extremely short) pseu-
docodeimplementation. Givenan existing O(n®) Lagrange multiplier based simulation sys-
tem, converting to the required O(n) datastructuresis simply and easily accomplished.

2 Motivation

It is probably as important for us to stress what this paper does not say as to stress what
this paper does say. The existence of alinear-time Lagrange multiplier method shows that
the Lagrange multiplier approach can achieve the same asymptotic complexity results as
reduced-coordinate formulations; thisis of theoretical interest. However, in presenting a
linear-time method for computing multipliers we are not asserting that such a method is
faster on articulated figures than, say, Featherstone’'s O(n) method. On the other hand, we
are also not asserting it is necessarily slower. It used to be that one could attempt to discuss
therunning times of algorithmsbased on the number of multiplicationsand additions; today,
when amemory access may be as costly as a multiplication, such analysis no longer holds
true. In section 9, we will discuss and relate actual running times of our algorithm to the
few published results with which we are familiar.

2.1 Why Reduced Coordinates?

There are certainly valid reasonsfor preferring areduced-coordinate approach over amulti-
plier approach. In particular, if then d.o.f.’sleft to the system is very much smaller than the
c d.o.f.’s removed by the constraints, a reduced-coordinate approach is clearly called for.
Evenif c and n arelinearly related the use of generalized coordinates eliminates the “ drift-
ing” problem that multiplier methods have. (For example, two links which are supposed to
remain connected will have atendency to drift apart somewhat when a multiplier approach
isused.) Such drift is partly a consequence of numerical errorsin computing the multipli-
ers, but mostly from the inevitable errors of numerical integration during the simulation.
Constraint stabilization techniques [4, 3] are used to help combat this problem. The use
of generalized coordinates eliminates this worry completely, since generalized coordinates
only express configurations which exactly satisfy the constraints. There is anecdotal evi-
dence that the use of generalized coordinates thus allows simulations to proceed faster, not
because evaluation of the generalized coordinate accelerations is faster, but because larger
timesteps can be taken by the integrator. This may well be true. More importantly, for the
case of articulated figures, we know that with a reduced-coordinate approach, linear-time
performance is achievable.

2.2 Why Lagrange Multipliers?

On the other hand, there are also strong motivations for preferring a multiplier approach.
Work by Witkin et al. [14], Barzel and Barr [3], Baraff [1], and most recently and com-
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prehensively Gleicher [6], present avariety of argumentsin favor of multiplier methods. In
particular, multiplier methods neatly compartmentalize knowledge, enabling strongly mod-
ular systems. For general-purpose, extensible simulation system, thisisvital. Consider two
bodiesand aconstraint that the world-space | ocation of two points (each point having afixed
body-space location) be coincident. Parameterizing the freedoms of this system using gen-
eralized coordinates requires us to have symbolic knowledge of the body-space to world-
space mapping for each body. Thisis obviously not aproblem if we limit ourselvestorigid
bodies, but suppose that one or both of the bodies can both rotate, trandlate, and scale (pos-
sibly among one or more axes). We must know the freedoms of the bodies, in order to form
the generalized coordinates. Similarly, a constraint that depends upon surface geometry re-
guires symbolic knowledge of the surface equation. From asoftware modul arity standpoint,
every combination of constraint, body, and geometry yieldsanew type of parameterization.
Thisresultsin a quadratic explosion in the amount of code that must be generated.

In some cases it may be either to difficult, or even impossible, to derive the necessary
generalized coordinate parameterizations. Once we move past rigid bodies to globally de-
formable frames, parameterization of the constraints becomestotally impractical. Even for
rigid bodies, parameterization can be hard: imagineatangency constraint betweentworigid
smooth surfaces, that requires that the bodies remain in tangential contact (thus allowing
dliding motions). This constraint removes exactly one degree of freedom from the bodies
motions. For al but the simplest shapes, the required parameterization is extremely com-
plicated (and closed-form solutions will not in general exist).

Finally, nonholonomic constraints cannot be expressed in terms of generalized coor-
dinates. Consider a mechanical simulation, with an abstraction of a complicated gearing
mechanism. We may have a simple constraint—for example, that the rotational speed aan
object in three-dimensions be twice the speed of another—but be completely unable to ex-
press it in a reduced-coordinate formulation. In contrast, such velocity-based constraints
aretrivialy handled using multiplier methods.

Suppose however that we are interest only in simulating articulated rigid bodies, so that
none of theaboveissuesapply. If theimplementation of one of the O(n) reduced-coordinate
algorithms described in the literature is seen as manageable, quite possibly thereisno gain
to be realized from the algorithm described in this paper. If generalized coordinates are de-
sired, but the effort to implement a linear-time reduced-coordinate approach is prohibitive,
amiddle ground exists. at each step of the simulation, trans ate the generalized coordinates
and velocitiesto maximal coordinates and vel ocities, compute the L agrange multipliersand
thus the maximal coordinate accel erations, and translate these accel erations back into gen-
eralized coordinates. For all other cases (when a reduced-coordinate approach isinfeasible
because of the demandsit places on software architecture, or because the necessary parame-
terization simply cannot be realized) the algorithm described in this paper yieldsapractical,
simple linear-time alternative to traditional reduced-coordinate techniques.
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3 Background

In this paper, the term simulation does not merely refer to dynamic, physical simulation: the
use of constrained differential kinematic manipulation, as pioneered by Witkin et al. [14]
and Gleicher [6] isalso considered ssmulation. For dynamic, or “second-order” simulation,
we relate acceleration to force according to Newton’slaw f = ma, whilefor kinematic ma-
nipulation we instantaneously relate velocity and “force” according to the first-order law
f = mv. Similarly, in adynamics simulation with collisions, the velocity discontinuity Av
caused by acollisionisrelated to an impulsiveforce j according to thelaw Av = mj. Inall
of the above cases, the problem isto compute the correct acceleration, velocity, or velocity
change that satisfies the constraints of the system. We will not distinguish between any of
these problems further; this paper dealswith f = ma problems, with the understanding that
the results obtained obvioudly transfer to the other two problems.

Lagrange multipliers are usually computed by solving a matrix equation (which we de-
scribein greater detail later)

IM "\ =c.

The elements of the vector A are the multipliers we wish to solve for, while M is a block-
diagonal matrix. The rows of J encode the constraints' connectivity in block-form: if the
ith constraint affects only bodies p and g, then only the pth and gth blocks of J'sith row
are nonzero. (We discussthe block structure of J and M more carefully in the next section.)
Because of J’'sand M’sstructure, for some special casesitisobviousthat A can be computed
inlinear time.

For example, consider aserial chain (an unbranching sequence of links). The dynamics
of serial chain robot arms were not generally known to be solvablein linear time until very
recently, with the advent of Featherstone's [5] recursive articul ated-body method.? Thisis
a curious oversight, when one considers that linear-time simulation of serial chains with
L agrange multiplier methodsis obvious and trivial, because JIM ~1JT istightly banded (as-
suming an ordering so that body p is connected to body p+ 1 for al bodies).

Once we move past ssmple chains, the problem becomes more complicated. Depending
on the structure of the constraints, exploiting bandedness is still a possibility. For exam-
ple, Surles [12] exploited bandedness (by symmetrically permuting rows and columns of
JIM~1J7) to achieve adirect, linear-time solution for the multiplierson systemsthat are very
chain-likeintheir connectivity, but have somelimited branching. Asstructuresbecomeless
chainlike however, the bandwidth of the system increases, and his method reducesto aregu-
lar O(n®) dense solution method. Negrut et al. [10] describe asimilar method. The method
described in this paper does not attempt to exploit bandwidth, because for many structures,
there is no permutation that yields a matrix system with reasonabl e bandwidth.

While sparse (but not necessarily acyclic) constraint systems aways yield sparse ma-
trices J and M ~1, in more general problems the product JM~1J7 (although usually sparse)

2Featherstone made this discovery independently of earlier work by Vereshchagin, in 1974. Vereshchagin
[13] described a solution al gorithm for serial chainswhich turned out to have linear time complexity, although
the algorithm was not advertised as such.
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need not be. One well-known approach to dealing with this kind of sparsity is the use of
iterative methods, with time-complexity O(n?) (or lower, depending on convergence prop-
erties). Despite impressive recent results by Gleicher [6] in applying conjugate-gradient
methods to compute multipliers, the prospect of computing multipliersin less than O(n®)
still seemsto be largely viewed as a theoretical result, but not a practical actuality. Simi-
larly, many papers have pointed out that, in theory, the sparsity of JM ~1JT can be exploited
by direct, non-iterative methodsin linear time by applying general sparse-matrix solversto
the problem. However, thisfirst supposesthat JIM ~1J7 is sparse which is generally but not
alwaystrue. Evenif sparsity exists, solving such problems by employing ageneral-purpose
sparse-matrix solver is, practically speaking, not something that most computer graphicists
would approach with much enthusiasm.

To the best of our knowledge though, no one has made the observation that any pair-
wise, acyclic set of constraints resultsin a system that (when formulated correctly) is eas-
ily solved in linear time using rudimentary sparse-matrix principles. The next few sections
simply elaborate on this basic observation. In section 8, we describe a practica method
for dealing with loop-closing and inequality constraints that are not handled by the ssimpler
sparse formulation we are about to describe.

4 TheLagrange Multiplier Formulation

Our goal isto treat bodies, forces, and constraints as “anonymously” as possible: we wish
to assume the minimum possible structure. For example, we may have amix of body types
(e.g. rigid, rigid plus scalable, etc.) and constraints of various dimensions (e.g. a pinjoint of
dimension three, a point-to-surface constraint with dimension one). This lead usto afor-
mulation where matrices are composed of smaller, dense matrices; thisisknown as a block-
matrix formulation [7]. The dimensions of an individual block are dictated by the dimen-
sions of bodies and constraints. A body’s dimension is the number of d.o.f.’sthe body has
when unconstrained, while a constraint’s dimension is the number of d.o.f.’sthe constraint
removes from the system. If no body hasadimension greater than p, then no constraint will
have adimension greater than p. Asaresult, all blockswill be of size p x p or smaller. Re-
garding p as a constant for the simulation, an operation on a single block or pair of blocks
(inversion, multiplication, addition) takes constant time.

Our assumptions about the constraints are made as weak as possible. At any instant,
each constraint is specified as alinear condition on the acceleration of apair of bodies. The
mechanics of expressing various geometric and vel ocity-based constraints as conditionson
bodies accelerations has been extensively considered in past work [3, 1, 6, 11]; we there-
fore omit the details of particular constraints. Hopefully, this rather aggressive retreat into
anonymous notation will both simplify the resulting discussion, and explicitly define the
modular relationship between bodies, constraints, and the computation of the Lagrange mul-
tipliers.
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4.1 Notation

With the above in mind, we introduce a small amount of notation. The dimension of theith
body is denoted dim(i) and is the number of d.o.f.’sthe body has when unconstrained. We
describe the ith body’s velocity as a vector v; € IRY™D: aforce F; acting on the ith body
is also avector in IRY™M_ The acceleration v; of the ith body in response to the force F;
is

MiVi =F

whereM; isadim(i) x dim(i) symmetric positive definite matrix which describes the mass
properties of body i. The matrix M; may vary over time, according to the body’s geometric
state; however, M isindependent of v;. For asystem of nbodies, thevectorv = (vq, ..., Vy)
denotes the velocity of the entire system, and similarly for v. (Note that v is described in
block-fashion; v’'sith element v; isitself avector, with dimensiondim(i).) Similarly, aforce
F=(Fy,...,Fy,) acting onthe system meansthat aforce F; act on body 1, and soon. Given
such aforce F, the system’s evolution over timeis

MV =F 1)
where M is the block-diagonal matrix

M; 0O -.- 0

0 M, --- O

0O 0 --- M,

The dimension of aconstraint is the number of d.o.f.’sthe constraint removes from the
system. Aswe said earlier, aconstraint is expressed as alinear condition on bodies' accel-
erations. If the ith constraint has dimension m, then an expression for the constraint is an
m-dimensional acceleration condition of the form

JitVi+ -+ JikVk+ - - +JinVn + G = 0. (2

Each matrix jix has dimension m x dim(k), ¢; is an m-length column vector, and O is the
zero vector of length m. The coefficients of this equation (the jx matrices and the vector ¢;)
depend on the specifics of the bodies and the exact constraint being enforced, as well asthe
positionand vel ocities of thebodiesat the current instant. 1nthe next section, wewill require
that each primary constraint affect only apair of bodies; this means that for each value of i,
all but two of the j;x matriceswill be zero. For now, this restriction is not important.

4.2 Constraint Forces

In order to enforce the accel eration conditions of the constraints, a constraint force must be
added to the system. For the primary constraints of the system, wedeal only with constraints
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that are maintained by workless constraint forces. A rigorously physical definition of work-
less constraints is difficult, because explicitly time-varying constraint functions (such as
thosein Barzel and Barr [3], which cause gradual assemblages of structures) can add energy
into the system.® The most direct way to attack the problem isto say that by workless con-
straint forces, wereally mean “constraint forces that are aslazy possible.” Fortunately, this
intuitive notion has a simple mathematical trandation: the constraint force that maintains
theith constraint isworklessonly if theforce it exerts on the bodiesis of the form
in
A (3)
jin
where \; isacolumnvector of dimension m(thedimension of theith constraint). Wecall the
vector \j theLagrange multiplier of theith constraint. (If theith constraint isnot maintained
by such aforce, it must be treated as an auxiliary constraint.)
Totalk about atotal of g constraints, we switch to matrix notation. We can expressthese
g multi-dimensional acceleration conditionsin the form

JuVi+ -+ jmVn+C =0
javVi+ - +jaVa+C,=0

4)
jq1V1+"'+jann+Cq:O~
If we define
ju Ji2 oo Jan C1
J=1: : : and c=
qu jq2 jqn Cq
then we can replace equation (4) with ssimply
Jv+c=0. (5)

In a similar fashion, we group the individual vectors A; through A, into one large vector
A=A ..., ).

From equation (3), we see that the vector being multiplied by A; forms the ith block-
column of JT; accordingly, the sum of all theindividual constraint forces must have therefor
have the form JT A. The problem now isto find a vector A so that the constraint force JT,
combined with any external forces (such as gravity), produces a motion of the system that
satisfies the constraints; that is, Jv + ¢ = 0.

3A lengthy discussion on the topic of rheonomic, scleronomic, monogenic and polygenic constraints and
forces, asin Lanczos[ 8], can pin down an exact definition, but offerslittleinsight. Weforego such adiscussion
here. A precise, but nonconstructive mathematical definition would be to say that workless constraint forces
are those which maintain the system according to Gauss' “principle of least constraint.”
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5 TheJM~1JT Approach

The formulation most commonly used by the graphics community to compute \ is as fol-
lows. Given that an unknown constraint force JT acts upon the bodies, and letting F&¢
represent the known net external force acting on the system (including al inertial velocity-
dependent forces), from equation (1) we know that

Mv =JTX + F&
Solving for v, thisyields
v=M1ITA+MIF, (6)

Thus, once we compute A, we will be able to easily computev. Since M isblock diagonal,
M~1isaswell. Substituting equation (6) into equation (5), we obtain

IJMITA+M ) +c=0.
If the matrix A and vector b are defined by
A=IMYT  and b=-UM'F*+0)
then we can express A as the solution of the equation
AX =Dh. (7

This formulation has a number of desirable properties. First, assuming that J has full
rank (equivalently, none of the imposed constraints are conflicting or redundant) then since
M1 is symmetric positive definite, A is as well. Note that for an articulated structure, J
automatically hasfull rank, independent of the structure's current geometric configuration.*

Aslong as A is not too large, we can use direct methods to compute A. In particular,
when A is nonsingular, the Choleski decomposition is an excellent method for computing
. As A becomes larger, iterative methods can be used to solve equation (7), either by ex-
plicitly forming the matrix A when it is sparse, or by using methods that work in terms of
the (always) sparse factors J and M ~1. In discussing the sparsity of A, we regard A as a
block matrix, with the blocks defined by the blocks of M and J.

At thispoint, werestrict oursel vesto constraintsthat act between apair of bodies. Refer-
ring to equation (2), this meansthat for agiven valuei, only two elements of theith block-
row of J are nonzero. If constraint i acts on bodiesr and s, then only j;; and jis will be
nonzero. How does thistrandate to sparsity on the matrix A? From the definition of A, the
ijth block of A is

Aij = Z (jik) (Mk) (J-Jrk) .

k=1

4The inverse dynamics of a straight chain are singular; however, the forward dynamics are always well
defined. Contrary to popular belief, A remains nonsingular for articul ated figures unless one accidentally re-
peats some of the articulation constraintsin forming J. However, a perfectly straight chain that has both its
endpoints constrained does result in asingular matrix A.
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(b)

N
-

Figure 1. (a) A serial chain. (b) A branched object yielding a complete dense matrix
A=JIM1JT,

When is Aj; nonzero? Since each My is nonzero, Aj; is nonzero only if there exists k such
that jixj ka =# 0. From equation (2), this means that there must exist abody k that both theith
and jth constraint affect.

As was previously pointed out, serial chains yield tightly banded matrix system. As-
suming a chain of n links ordered so that body i connects to body i + 1 (figure 1a) we see
that Ajj iszero if |i — j| > 2. Thus, we can trivially solve AX = b in O(n) time using a
banded solution method (e.g. banded Cholesky decomposition). However, if we have in-
stead a branching structure, so that neither A (nor any permutation of A) is banded, can we
find some general way to exploit the sparsity of A? The answer to thisis“no,” because A
isnot necessarily sparse at al!

Consider a structure where constraint 1 acts between body 1 and 2, constraint 2 acts
between body 1 and 3, and so on (figure 1b). The matrix A for thisstructure is not sparse at
al: infact, A iscompletely dense, because every constraint has body 1 in common (i.e. the
product (ji1)M1(j ,-Tl) isnonzero for all pairsi and j). To exploit sparsity we must abandon
the approach of computing X in terms of the matrix JM ~1JT,

6 An (Always) Sparse Formulation

Thematrix A issquareand hasdimension N. x N; where N, isthesum of all theconstraint’s
dimensions. Instead of computing A intermsof A, consider the matrix equation

(5 ) (3)=(5) @

Thetop row yieldsMy — JT X\ = 0, or equivalently, y = M~1JT X. Substituting thisinto the
bottom row and multiplying by —1 yields

Jy=JM "N =b

whichisequation (7). Thus, wecan compute A by solving equation (8) for A andy (although
y isan unneeded byproduct).
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L et us define the matrix of equation (8) by writing

M =J7
=M )

This formulation is commonly seen in the robotics and mechanical-engineering literature.
Whilesomeseetheuseof H ashelpingto explicitly separate the equations of motion (thetop
row of the matrix) from the constraint conditions (the bottom row of the matrix), it is clear
that actually computing A directly from equation (8) isavery foolishthing to do, using dense
matrix methods. Using an O(n®) technique, equation (7) is easier to solve because A is
much smaller than H and al so because A ispositivedefinite, whileH isnot. However, when
we consider the problem from a sparse viewpoint, it becomes apparent that equation (8) is
superior to equation (7), because H is always sparse. In the next section, we describe a
simple O(n) solution procedure for solving equation (8).

7 A Sparse Solution Method

Our O(n) algorithm is based solely on the properties of the graph of H. The graph of a
square symmetric s block by s block matrix H is an undirected graph with s nodes. For
i # |, thereis an edge between nodesi and j if Hjj is nonzero. (The diagonal elements of
H are always regarded as nonzero elements, but they do not contribute edges to the graph.)
Because the connectivity of the primary constraint is acyclic, the graph of H isaso acyclic;
hence, H’s graph is atree.® For example, consider the structure shown in figure 2a: the
matrix J associated with this set of constraints has the form

ju jn 0 0 0 O
0 j» jzs O 0 O
J=10 jx 0 ju 0 O
ja 0 0 0 js O
0 0 0 0 jss js6

and thus yields the matrix
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The graph defined by H is shown in figure 2b.

5If the primary constraints partition the bodies into discrete components, H's graph is a forest (i.e. a
set of trees). For simplicity, assume the primary constraints do not partition the bodies into more than one
component.
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@ (b)

{"‘1 o

Figure2: (a) Anarticulated object. (b) Thegraph of thematrix H correspondingtothe
object. Nodes corresponding to bodies are squares; circlesindicate constraint nodes.
For clarity, constraints are numbered beginning with 7.

Our first thought was to solve equation (8) by computing the Choleski decomposition
H = LLT whereL islower triangular. Unfortunately, this does not work because the lower-
right corner of H is zero, making H indefinite. Instead, we factor H asH = LDL T where
L isalower-triangular block matrix whose diagonal entries are identity matrices, and D is
ablock-diagonal matrix. We then solvethe system LDL Tx = ( 78) and extract the portion
of x which correspondsto A. Although H is always sparse, we must permute H to exploit
this sparsity.

7.1 Elimination Order

A fundamental fact of sparse-matrix theory isthat amatrix whose graph isacyclic possesses
a perfect elimination order; this means that H can be reordered so that when factored, the
matrix factor L will be just as sparseas H. Asaresult L can be computed in O(n) time
(and stored in O(n) space) and then LDL "x = (_2) can be solvedin O(n) time.

The matrix H is correctly ordered if it satisfies the following property. Let usview H’s
graph as arooted tree, with node n being the root. This defines a parent/child relationship
between every pair of nodes connected by an edge. The matrix H must be ordered so that
the each node'sindex is greater than the indices of its children. When H is ordered so that
the tree has this property, then the factor L will have its nonzero entries only where H has
nonzero entries. An ordering with this property istrivially found by perfoming a depth-first
search on the original H’s graph (see appendix A). The reordered matrix H, when factored,
issaid to have no “fill-in”; in other words, factoring methods such as Gaussian elimination
(or the LDL ™ decomposition we will use) do not introduce new nonzero elements during
the factoring process.
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As an example, aproper reordering of the matrix in equation (9) would be

)

=

N

doe4d

= cooo

ocoocoocoo

ocooooo
coocoocooooo
coocoocooooo

0 jf; Mijs O
0 0 ja O jgs
0 0 0jkMs 0L
0 0 0 0 Mgjk
0 O O js5js6 O /

\ 0

0
In actual practice, H is not actually changed; rather the rows and columns are processed
in a particular order. The bookkeeping associated with thisis very smple and is given in
appendix A.

7.2  An O(n®) Factorization Method

If we treat H as dense, then an O(n?) solution method is as follows. First, the upper trian-
gular portion of H isoverwritten with theentriesof L T, and the diagonal of H isoverwritten
with the entries of D. (The diagonal entries of L are identity matrices so there is no reason
to keep track of them.) The code for thisis short, and requires O(n®) time:

procedure densefactor
fori=1ton
fork=i—1tol
Hii = Hii —HgHiiH
for j=i+1ton
fork=i—1to1l
Hij = Hij = HgHiHyg
Hij = HitHy)
Then, definingz = ( _J), wesolveLx® = z, followed by Dx® = x® andfinally L Tx =
x@, which yields a solution to Hx = z, with the lower portion of x containing X. This can
be done (successively overwriting x at each step) in O(n?) time:

0O ~NO O WN P

9 procedure densesolve
10 fori=1ton

11 Xi = Zj
12 for j=1toi—1
13 Xi:Xi—H;JTXj

14 fori=ntol
15 X =Hix;
16 for j=i+1ton
17 Xi:Xi—Hinj
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7.3 An O(n) Factorization Method

Now let ustreat H as sparse. To simplify our discussion of the solution procedure below,
assumewe are dealing with amatrix H which has been reordered as described in section 7.1.
To make the two previous procedures run in linear time, we need a small amount of book-
keeping. Let us define par(i) = j to denote that in H’'s graph, node | is nodei’s parent.
Conversely, define child(j) = {i | par(i) = ]} and note that

e if i < jthenH;; isnonzero only if par(i) = j which meansthat i e child(j) and
e if i > j, thenH;; isnonzero only if par(j) = i, which meansthat j € child(i).

Since every node in the graph has at most one parent, H has the property that in each row,
only one nonzero block ever occurs to the right of the diagonal. We can store the upper
triangular portion of H by row, with each row having only two entries (one entry for the
diagonal, and one entry for the single nonzero element to the right of the diagonal). As
we overwrite H with LT, this structure is preserved. The pseudocode in appendix A gives
specific implementation details.

Given these relations, we can simplify the O(n®) method as follows. In lines 3 and 4
of densefactor, k islessthan i, which means H,; is nonzero only for k € child(i). Lines6
and 7 can be omitted entirely, because k < i < j, so that the product HjHHy; is aways
zero (sincek cannot bei’schildand j’schild). Finally, sincei < jinline8andH;; isnonzero
only when j = par(i), the factoring step reduces to simply

procedur e spar sefactor
fori=1ton
for k € child(i)
Hii = Hii —HjHiiH
ifi #n
Hi pariy = Hii *Hiparc)
Note that assignment to H;; is executed once for each child node of another node, which
means that spar sefactor takes time O(n). Employing a similar strategy, we solve Hx =
(_2) =zin O(n) time:
procedur e spar sesolve
fori=1ton
Xi = Zj
for j e child(i)
Xi =Xj — H;EXj
fori=ntol
Xi = Hi1x;
ifi #n
Xi = Xi — Hi pariy Xpar(iy

After computing X, we extract the appropriate el ements to form the vector A, and then

perform two (sparse!) multiplicationsto compute

V=MTATA+F).
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Thus, we can compute an acceleration v that satisfies the primary constraintsin only O(n)
time. A complete (yet surprisingly short) pseudocode implementation of both spar sefactor
and spar sesolve, using sparse datastructures, is presented in appendix A.

8 Auxiliary Constraints

Now that we know how to quickly compute the multipliersfor the primary constraints, we
can turn our attention to handling the auxiliary constraints (such as loop-closure or contact)
which cannot be formulated as part of the primary constraints. In this section, it is best to
internalize the results of the last few sections as the statement “we can quickly determine
the primary constraint force J'\ that would arise in response to an external force F&.”

8.1 Constraint Anticipation

Our approach to computing the multipliers for the secondary constraintsis as follows. We
will begin by first computing the multipliers for the auxiliary constraints; however, in do-
ing so, we will anticipate the response of the primary constraints due to the auxiliary con-
straint forces. Once we have computed the auxiliary constraint forces, we then go back and
compute the primary constraint forces; but since we have aready anticipated their effects,
adding the primary constraint forces into the system will not violate the conditions of the
auxiliary constraints.

This“anticipation” of the primary constraints effects is as follows. Consider aforce F
acting on the system. If not for the primary constraints, the accelerational response of the
system in reaction to the force F would be v = M~1F. However, because of the primary
constraints, theresponseisquitedifferent. What wewould liketo do iscompute anew mass
matrix M which reflects how the system behaves as aresult of the primary constraints. That
is, wewould liketo be ableto write that the response of the system dueto aforceF is, taking

. . o~ . . :
into account the primary constraints, M F. We will not compute either the actual matrix

M oritsinverseM ; wewill usethe O(n) method of section 7.3 to compute vectorsM  F
for avariety of forcesF.

In describing the k auxiliary constraints, we will regard each constraint as a separate,
one-dimensional constraint. This meansthe matrix system we build will not have any block
structure: thisisappropriate, becausethe matrix systemwill bein general completely dense.
For each constraint, we will produce a scalar expression a; which is a measure of acceler-
ation; each a; will have an associated scalar multiplier ;. The relation between the vector
of a’'sand the vector of ’sis, as dways, alinear relation. Our goa hereisto show how
we can efficiently compute the k x k coefficient matrix that relates the a;’s to the u;’sin
O(kn) + O(K?) time, where n is the number of primary constraintsto be maintained by the
system.® Once we have computed this coefficient matrix, we can use known techniques to

81f each auxiliary constraint acts on only one or two bodies, the time required to formulate the system
is O(kn) + O(k?). If auxiliary constraints constrain n bodies at a time, (which is rare), the time becomes
O(kn) + O(nk?) In either casg, it isthe O(kn) term which dominates; the constant in front of the O(k?) term
or O(nk3) termis small.
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compute the uj multipliers. For an equality constraint, a; is forced to be zero, and p; can
have any sign. If al the constraints are equality constraints, we can solve for the u; using
standard matrix techniquesin time O(k®). Going beyond this, simple workless inequality
constraints, such as contact or joint-angle limitsrequire that a; > 0 and a;;j = 0. Methods
for handling a mix of equality, inequality and frictional conditions are described by Baraff
[2] and have time complexity O(k®) for a system of k constraints. Aslong as k is small
compared to n, it is the computation of the k x k matrix of coefficients which dominates
the running time, and not the computation of the w; multipliers. Thus, our focus hereison
computing the coefficient matrix as opposed to the multipliers themselves.

The auxiliary constraints are described in aform similar to that of equation (2). Let the
vector a of the k auxiliary a; variables be expressed in the form

a;
a= ; =Jv+c (10)
ay

where J2 has k rows and ¢ € IRX. Since the auxiliary constraint forces do not have to be
workless, let the constraint force acting on the system due to the ith constraint have the
form

Ki i

where k; is a column vector of the same dimension as v (that is, k’'s dimension is the sum
of all the bodies’ dimensions). Defining K as the k-column matrix

K =[k; ko Kk] (12)
the constraint force due to all k constraints has the form
Kipi + -+ + Kk = Kp.

The process of computing both the primary and auxiliary multipliersisasfollows. First,
we compute what v would be without the auxiliary constraints. That is, given an external
force F&, we solve equation (7) for A (using spar sefactor and spar sesolve). We then de-
fine

Fot = 3T+ Fe

Theforce F®t isthe external forceas seen by theauxiliary constraints. (Remember, the aux-
iliary constraints are formulated so as to anticipate the response of the primary constraints.
Thefirst step in this anticipation is to know what the primary constraint force would have
beeninthe absence of any auxiliary constraint forces.) Having computed F&t, weknow that
the system’s accel eration without the auxiliary constraintsis M —F®. Let us write

\-/aux =M leext
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to express this. The auxiliary constraint forces must now “kick in” to the extent that the
acceleration v violates the auxiliary constraints.

. . o~ L .

Using the anticipated response matrix M, the accel eration v of the system in response
to an auxiliary constraint force K s is the system’s accel eration without the auxiliary con-
straint force, v, plus the response to K p:

V=M K v,

If we actually had access to the matrix M 71, we could stop at thispoint: from equation (10),
we obtain

a=JV+cd= JamilKu-i- (JBVAX 4 c?) (12)

which gives the desired relation between a and p. (At this point, we can easily evauate
Java* + c?, since we have actually computed v@*.) The real trick then is to compute the

coefficient matrix M K.
Remember that equation (11) definesK in terms of columnsk;, and that k; isthe direc-
tion that theith auxiliary constraint force actsin. We cannot (nor do we wish to) formulate

~—-1 . . -~ -1 . ~ -1
M  directly; instead, we wish to compute M K column by column. SinceM — encapsu-

) ~ -1
lates the response of the systemto aforce, given avector k;, we compute M k; asfollows.
The primary constraints, in reaction to a force k;, generate a response force F® = JTX
where AX = JM~1k;. Asaresult, the system’s response to a force k;, is not M ~k;, but
rather

M~ (F™ 4+ k).

. . —_ ~-1 :
This gives us a computational definition of M : we can now write that the system’'s re-
sponse to theforce k; is

M_lki = M_l(Fr%p —+ k,)

where F®® = JT X\ and \ iscomputed by solving AX = JM ~2k;. Thecost to compute M _1ki
~ -1
isthus O(n). Given equation (11), we can expressM K column-wise as

MK=[M ki M ky ... M k]

where each column M _1ki is computed according to the above procedure. The cost to do
this O(nk), since we have k columns, and each column requires O(n) work. Having com-

puted MK , we can easily compute the coefficient matrix 33N K of equation (12). If J@

issparse, thek x k matrix JaM _1K iscomputed in O(k?) timewhile adense matrix J? takes
O(nk?) time.
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8.2 Computing the Net Constraint Force

It is extremely important to note that although we must compute a total of k + 2 different
A’s during the solution process (see below), each A is actually computed by solving a sys-
tem of the form Hx = ( _?) and then extracting A from x. The significance of thisis that
what is changing each time is not the matrix H, but b. This means that we call the pro-
cedure spar sefactor of section 7.3 only once during the entire constraint force computa-
tion described below; for each different vector b, we only need to perform the second step
gpar sesolve. Although both stepstake O(n) time, spar sefactor isapproximately four times
as expensive as spar sesolve. Thus, refactoring each time would still yield an O(n) algo-
rithm, but would needlessly repeat computation.

At thispoint, theentire sequence of stepsrequired may sound complicated, but again, the
implementationisstraightforward. Inthe description below, whenever we solvean equation
AX = b wedo sointerms of the associated equation Hx = ( 78) of the previous section.
The steps for the entire solution process are as follows.

1. Formulate the sparse matrix H for the primary constraints, and run spar sefactor to
factor H.

2. Giventheexterna force F&, computethe primary constraint force JT A dueto F&* by
solving AX = —(IM~1F® 4 ¢). Thisrequires one call to sparsesolve. Once A has
been computed, set v&* = M~1(JTA + F&),

3. For jfrom1tok, computetheresponseforce F™ = JTX by solving A\ = —IM ~k;.
Thisrequiresk callsto spar sesolve. Forming the product M 71(Fr%p +k;) yieldsthe
jth column of M K. Multi plying the ith row of J2 with this jth column yields the

ijth entry in the coefficient matrix JaM _1K. Computing these k? different products
takes either O(k?) or O(nk?) time, depending on the sparsity of J2.

4. Now that the coefficients of equation (12) have been determined, compute the multi-
pliers i, employing either a standard linear solution method (for example, Gaussian
elimination) or the method for contact constraints and friction described by Baraff [2].
This takes approximately O(k®) time.

5. Giventheauxiliary constraint forceK p, computethe primary constraint’sresponseto
theforce F&! + K p; that is, solve AX = —IM (K . 4 F® + ¢). Thefinal constraint
force due to both the primary and auxiliary constraintsis K e + JT\; adding to this
the external force F*! yields the net force acting on the system.

6. Compute the net acceleration of the system and move on to the next timestep.
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9 Results

We have implemented the described system, and used it for anumber of simulations. Simu-
lations were run on an SGI Indigo® workstation, with a 250 Mhz R4400 processor. The 108
multipliersfor asystem of 2D rigid bodies with 54 two-dimensional primary constraintsre-
quired 6.2 millisecondsto compute. Approximately 2.2 milliseconds of that time was spent
computing the entries of J. When the connectivity was changed so that there were 96 pri-
mary multipliers and 12 auxiliary multipliers, the computation time increased by about 14
milliseconds. Virtually al of thisincrease was due to the O(nk) computation of the aux-

iliary constraint coefficient matrix M K. The O(k®) time spent actually computing the
12 auxiliary constraint multipliers was too small to notice.

A 3D rigid body system with 96 primary multipliers and 3 auxiliary multipliers due to
3 frictionless contacts required 14.4 milliseconds. Approximately 3.5 milliseconds of that
timewas spent computing theentriesof J. A larger 3D systemwith 127 constraintsresulting
in 381 primary multipliers required 35.7 milliseconds, with approximately 11.2 millisec-
onds spent evaluating J. It isworth pointing out that on the first problem, with 99 multipli-
ers, the O(n) method yields only afactor of two speedup over Baraff [2]’s O(n®) method for
equality and inequality constraints. However, for the larger problem, the speedup is close
to afactor of forty.

Schroder [11] discusses an implementation of a linear-time reduced-coordinate scheme
due to Lathrop [9], and reports some running times. Adjusting for machine speeds, our re-
sults appear to be competitive with the figures reported by Schroder (but we had to guess
about a number of parameters, so it is hard to say for sure). We do note that Schroder dis-
cusses a number of numerical difficulties with the algorithm; in fact, the use of a singular-
value decompositionisrequired, whichisawaysasign of ill-conditioning. We were pleas-
antly surprised to find that the sparse methods described in this paper required no numerical
adjustments, even on large examples—glancing at the pseudocode in appendix A, there are
no numerical tolerance vauesto be found.’

We were able to run Gleicher’s “Bramble’ system on our 2D example. Bramble uses
a Lagrange multiplier formulation, and exploits sparsity to compute multipliers by using a
conjugate gradient method [6]. Comparing relative performance is still difficult, since the
performance of any iterative method can vary greatly based on the desired accuracy of the
answer; on the other hand, the ability to compute resultsto a lower (but acceptable) preci-
sion is one of the great strengths of iterative methods. For the 2D problem with 108 pri-
mary multipliersand no auxiliary multipliers, our method was about three times faster than
Bramble at computing the multipliers; however, when weinduced loops, changing 12 of the
primary multipliers to auxiliary multipliers, both simulation systems ran at approximately
the same same speed. Thus, for problems of thissize, an O(n?) conjugate gradient method
is competitive with the presented method. As problems grow larger (for example, the 3D

"The algorithm as described requiresthe inversion of small matrices (for rigid bodies, these matrices are at
most of size 6 x 6). Sincethese matrices are always either positive or negative definite, a Cholesky decompo-
sition can be used to simply and stably perform the inversion. The Cholesky decomposition has no numerical
tolerance valuesin it either.
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examplewith 381 multipliers) our O(n) method enjoys asignificant advantage. Ontoday’s
machines, examplesfast enough to run at interactive speeds enjoy modest speed gainsusing
our linear-timealgorithm; however, as machine speedsincrease, allowing larger interactive-
rate simulations, the difference between O(n), (n?), and O(n®) methods will only become
more pronounced.
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A Pseudocode

This appendix gives an implementation of the bookkeeping and datastructures needed to
perform the computations described by procedures spar sefactor and spar sesolve in sec-
tion 7.3. Asyou can see, the code is extremely short, and thus easily implementable. Each
body and constraint is represented by a node structure; a node also stores arow of the up-
per triangular portion of H. Recall that rows of the upper triangular portion of the (properly
ordered) matrix H only have two nonzero elements: the diagonal element itself (denoted D
below), and one off-diagonal element (denoted J below). Each node also stores space for a
portion of the solution vector x.

struct node {
boolean  isbody;

int i
matrix D, Dinv, J;
vector X;

}

A node corresponding to a body has isconstraint set false, and the index field i set to
the index of the body the node represents. Both D and Dinv are square matrices of size
dim(i). If anode corresponds to a constraint, then D and Dinv are square with size equal
to the dimension of the constraint, and isconstraint is set true. The variablei is the index
of the constraint; constraints are numbered starting from 1, because A; isthe multiplier for
thefirst constraint. We assume that for anode n, the function parent(n) yields n’s parent,
or NULL if nistheroot. Similarly, children(n) yields the set of nodes that are children
of n, or the empty set if n isaleaf. (Obvioudly, this can be done in terms of extra pointers
stored within anode structure.)

The global variables Forward and Backward are lists of nodes, with Forward ordered
so that parent nodes occur earlier in the list than their children, and Backward being the
reverse of Forward. Thus, thenotation“for n € Forward” indicates processing nodesfrom
the root down, while “for n € Backward” indicates processing nodes from the leaves up.
Thefollowing routine, called oncewiththeroot of thetree, initializesthetwo lists (assuming
that Forward and Backward are initially empty):

procedure ordermatrix(n)

for ¢ € children(n)
ordermatrix(c)

Forward =[Forward n]

Backward =[n Backward]

Assuming that we have procedures which compute the blocks M; and j ,q (With j o de-
fined asin section 4), we store and factor H as follows:
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procedure factor
for n € Forward
if n.isconstraint

n.D=0
else
n.D=My;

if parent(n) £ NULL
int p=n.i,q = parent(n).i
n.J = n.isconstraint ? Jy, : J;,
for n € Forward
for ¢ € children(n)
n.D —= (c.J")(n.D)(c.J)
n.Dinv=n.D?!
if parent(n) # NULL
parent(n).J = (n.Dinv)(parent(n).J)

As previously mentioned, after we have called factor, we can solve the system Hx =
(_2) (extracting A from x) as many times as we wish. The solution process computes A as
follows:

procedure solve(b)
for n € Forward
n.soln = n.isconstraint ?b,;: 0
for ¢ € children(n)
n.soln —=c.J"c.soln
for n € Backward
n.soln = (n.Dinv)(n.soln)
if parent(n) # NULL
n.soln —= (parent(n).J)(parent(n).soln)
if n.isconstraint
Ani=n.soln
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