
Linear-time Erasure List-decoding of Expander
Codes

Noga Ron-Zewi
Department of Computer Science

University of Haifa
noga@cs.haifa.ac.il

Mary Wootters
Department of Computer Science

Department of Electrical Engineering
Stanford University

marykw@stanford.edu.

Gilles Zémor
Institut de Mathématiques de Bordeaux

UMR 5251
Université de Bordeaux

zemor@math.u-bordeaux.fr

Abstract—We give a linear-time erasure list-decoding algo-
rithm for expander codes. More precisely, let r > 0 be any integer.
Given an inner code C0 of length d, and a d-regular bipartite
expander graph G with n vertices on each side, we give an algo-
rithm to list-decode the expander code C = C(G, C0) of length nd
from approximately δδrnd erasures in time n·poly(d2r/δ), where
δ and δr are the relative distance and the r’th generalized relative
distance of C0, respectively. To the best of our knowledge, this is
the first linear-time algorithm that can list-decode expander codes
from erasures beyond their (designed) distance of approximately
δ2nd.

To obtain our results, we show that an approach similar to that
of (Hemenway and Wootters, Information and Computation, 2018)
can be used to obtain such an erasure-list-decoding algorithm
with an exponentially worse dependence of the running time on
r and δ; then we show how to improve the dependence of the
running time on these parameters.

A full version of this paper is accessible at: https://arxiv.
org/abs/2002.08579

I. INTRODUCTION

In coding theory, the problem of list-decoding is to return
all codewords that are close to some received word z; in
algorithmic list-decoding, the problem is to do so efficiently.
While there has been a great deal of progress on algorithmic
list-decoding in the past two decades [1]–[10], most work has
relied crucially on algebraic constructions, and thus it is inter-
esting to develop combinatorial tools to construct efficiently
list-decodable codes with good parameters.

In this work, we consider the question of list-decoding
expander codes, introduced by Sipser and Spielman in [11].
The expander code C(G, C0) is a linear code constructed from
a d-regular bipartite expander graph G and a linear inner code
C0 ⊆ Fd2. A codeword of C(G, C0) is a vector in FE(G)

2 which
is a labeling of edges in G. The constraints are that, for each
vertex v of G, the labels on the d edges incident to v form a
codeword in C0.

Expander codes are notable for their efficient unique decod-
ing algorithms [11]–[20]. However, little is known about the
algorithmic list-decodability of expander codes, and it is an
open problem to find a family of expander codes that admit
fast linear-time list-decoding algorithms with good parameters.
Motivated by this open problem, our main contribution is a
linear-time algorithm for list decoding expander codes from
erasures.

Erasure-list-decoding is a variant of list-decoding where
the received word z may have some symbols which are “⊥”
(erasures). More formally, let C ⊆ FN2 be a binary code of
length N . For z ∈ (F2 ∪ ⊥)N , define

ListC(z) := {c ∈ C : ci = zi whenever zi 6= ⊥} .

We say that C is erasure-list-decodable from e erasures with
list size L if for any z ∈ (F2∪{⊥})N with at most e symbols
equal to ⊥, |ListC(z)| ≤ L.

Erasure list-decoding has been studied before [21], [23]–
[28], motivated both by standard list-decoding and as an inter-
esting combinatorial and algorithmic question in its own right.
It is known that the erasure-list-decodability of a linear code
is precisely captured by its generalized distances. The r’th
(relative)1 generalized distance δr of a linear code C ⊆ FN2 is

δr :=
1

N
min
V

∣∣ {i : ∃v ∈ V, vi 6= 0}
∣∣,

where the minimum is taken over all linear subspaces V ⊆ C
of dimension r. Thus, δ1 coincides with the traditional (rel-
ative) distance δ of the code, which for linear codes equals
the minimum relative weight of any nonzero codeword. The
generalized distances of a linear code C characterize its erasure
list-decodability:

Lemma 1 ([21]): Let C ⊆ FN2 be a linear code. Then C is
erasure-list-decodable from e erasures with list size L if and
only if δr(C) > e/N , where r = 1 + blog2(L)c.

If C is linear, then it can be erasure list-decoded in polyno-
mial time by solving a linear system. Thus, the combinatorial
result of Lemma 1 comes with a polynomial-time algorithm.

Our main result is a linear-time erasure list-decoding al-
gorithm for expander codes beyond the (designed) minimum
distance.

Theorem 2: Let C0 ⊆ Fd2 be a linear code with distance δ and
r’th generalized distance δr. Let G = (L∪R,E) be a bipartite
d-regular expander graph on 2n vertices with expansion λ =
max{|λi|, |λi| 6= d}. Let C = C(G, C0) be the expander code
that results. Let ε > 0, and suppose that λ

d ≤
ε2δ2

2r+4 .

1We will work with the relative generalized distances (that is, measured as
a fraction of coordinates). We will omit the adjective “relative” to describe
these quantities in the future.

379978-1-7281-6432-8/20/$31.00 ©2020 IEEE ISIT 2020

Authorized licensed use limited to: Stanford University. Downloaded on March 30,2021 at 19:10:21 UTC from IEEE Xplore. Restrictions apply.

Then there is an algorithm LISTDECODE which, given a
received word z ∈ (F2 ∪ {⊥})E with at most (1 − ε)δδrdn
erasures, runs in time n · poly

(
2rd
εδ

)
, and returns a matrix

L ∈ Fnd×a2 and a vector ` ∈ Fnd2 so that L := ListC(z) =

{Lx+ ` : x ∈ Fa2} where a := dim(L) satisfies a ≤ 22r+7

ε4δ4 .
Because δr > δ for any non-trivial linear code (any code of

dimension > 1), the radius that Theorem 2 achieves is beyond
the (designed) minimum distance of C, which is approximately
δ2dn. To the best of our knowledge, this is the first linear-time
list-decoding algorithm for expander codes that achieves this
with a non-trivial list size.

In light of Lemma 1, our algorithm would ideally be able to
list-decode an expander code C from up to a δr(C) fraction of
erasures with list size 2r−1 for any r ≥ 1. The r’th generalized
distance δr(C) is not well-understood2 so we are unable to
make such a guarantee for general r. However, under some
conditions on C0, we are able to make such a guarantee for
r = 2. In the full version of the paper [22], we show that, in
the setting of Theorem 2, δ2(cC) ≥ (1− ε)δδ2, provided that
δ2(C0) ≤ 2δ(C0). This implies that our algorithm can erasure
list-decode C in linear time up to a δ(C0)δ2(C0) fraction of
erasures, with an output list of size 2.

More generally, our algorithm can still achieve this for some
values of r because it is guaranteed to return a list of the
“correct” size. That is, if r′ is such that δr′(C) < δ(C0)δr(C0)
for some r = O(1), our algorithm will run in linear time and
return a list of size 2r

′−1 given a δr′(C) fraction of erasures.

A. Notation and Definitions

Let G = (L ∪ R,E) be a bipartite graph.3 For a vertex
v ∈ L ∪ R, let Γ(v) denote the set of vertices adjacent to v.
For S ⊆ L and T ⊆ R, let E(S, T) denote the set of edges
with endpoints in S ∪ T , and for A ⊆ L ∪ R, let E(A) :=
E(A ∩ L,A ∩R).

Let G be a d-regular graph on n vertices, and let λ1 =
d ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of the adjacency
matrix of G. For n ≥ 3 we define the expansion of G to be
λ := max{|λi|, λi 6= ±d}. The bipartite graph version of the
Expander Mixing Lemma reads:

Theorem 3 (Expander Mixing Lemma, see e.g. [32]): Sup-
pose that G = (L∪R,E) is a d-regular expander graph on 2n
vertices with expansion λ. Then for any S ⊆ L and T ⊆ R,∣∣∣∣E(S, T)− d

n
|S||T |

∣∣∣∣ ≤ λ√|S||T |.
We now define expander codes. Let G = (L ∪ R,E) be a

bipartite d-regular expander graph on 2n vertices. Let C0 ⊆ Fd2
be a linear code, called the inner code. Fix an order on the
edges incident to each vertex of G, and let Γi(v) denote the
i’th neighbor of v. The expander code C := C(G, C0) is defined
as the set of all labelings of the edges of G that respect the
inner code C0.

2We note that our results imply a weak bound on this distance, namely that
δr(C) is at least (approximately) δ(C0) · δΘ(log(r)(C0).

3In this paper we only consider undirected connected graphs.

Definition 4 (Expander Code): Let C0 ⊆ Fd2 be a linear code,
and let G = (L∪R,E) be a bipartite d-regular expander graph
on 2n vertices. The expander code C(G, C0) ⊆ FE2 is the linear
code of length nd, such that for c ∈ FE2 , c ∈ C if and only if,
for all v ∈ L ∪R,(

c(v,Γ1(v)), c(v,Γ2(v)), . . . , c(v,Γd(v))

)
∈ C0.

It is not hard to see that if C0 ⊆ Fd2 is a linear code of rate
R, then C(G, C0) ⊆ FE2 is a linear code of rate at least 2R−
1. Moreover, it is known that expander codes have distance
at least δ(C0)(δ(C0) − λ/d) [11], [12], and that they can be
uniquely decoded from this fraction of erasures in linear time;
see the full version for details.

B. Technical Overview

In this section, we give a brief overview of our approach.
The basic idea is similar to the approach in [27]; however,
as we discuss more in Section I-C below, in that work the
goal was list-recovery, a generalization of list-decoding. In this
work we can do substantially better by restricting our attention
to list-decoding, as well as by tightening the analysis of [27].

Let G = (L∪R,E) be a bipartite d-regular expander graph,
and let C0 ⊆ Fd2 be a linear code with distance δ and r-
th generalized distance δr. Since the inner code C0 is linear
and has r’th generalized distance δr, there is an O(d3)-time
algorithm to erasure list-decode C0 from up to δrd erasures.
Our first step will be to do this at every vertex v ∈ L∪R that
we can, to produce a list Lv at each such vertex.

In order to “stitch together” these lists, we define a notion
of equivalence between edges, similar to the notion in [27].
Suppose that (u, v) and (w, v) are edges incident to a vertex
v, and that there is some b ∈ F2 such that for any c ∈ Lv ,
c(u,v) = b+ c(w,v). Then, even if we have not pinned down a
symbol for (u, v) or (w, v), we know that for any legitimate
codeword c ∈ ListC(z), assigning a symbol for one of these
edges implies an assignment for the other. In this case, we
say that (u, v) ∼ (w, v). Because the lists Lv are actually
affine subspaces, there are not many equivalence classes at
each vertex (and in particular substantially fewer equivalence
classes than in the approach used in [27]).

For intuition, we first describe an algorithm that is slower
than our final algorithm. The main idea is to choose s =
poly(2r, 1/ε, 1/δ) large equivalence classes and generate a
list of all 2s possible labelings for these equivalence classes.
For each such labeling, we now hope to uniquely fill in the rest
of the codeword, to arrive at a list of size 2s. One might hope
that labeling these s large equivalence classes would leave a
fraction of unlabeled symbols less than the designed distance
of C, allowing us to immediately use the known linear-time
erasure unique decoding algorithm for the expander code.
Unfortunately, this is not in general the case. However, we
show that there are many vertices v for which the number
of unlabeled edges incident to v is at most δ(C0)d. Thus, we
may run the unique decoder for C0 (in time O(d3)) at each
such vertex to generate yet more labels. It turns out that at

380

Authorized licensed use limited to: Stanford University. Downloaded on March 30,2021 at 19:10:21 UTC from IEEE Xplore. Restrictions apply.

this point, there are enough labels to run C’s unique decoding
algorithm and finish off the labeling.

Naively, the algorithm described above runs in time at
least 2s, since we must loop over all 2s possibilities. This is
exponential in ε and δ and doubly-exponential in r. The idea
behind our final algorithm LISTDECODE is to take advantage
of the linear structure of the lists Lv to find a short description
of all of the legitimate labelings. We will do this in time
n ·poly(d2r/εδ) by leveraging the sparsity of C’s parity-check
matrix.

C. Related Work

The work that is perhaps the most related to ours is [27],
which seeks to list-recover expander codes in the presence
of erasures in linear time.4 List-recovery is a variant of list-
decoding which applies to codes over a large alphabet Σ:
instead of receiving as input a vector z ∈ {0, 1}N , the decoder
receives a collection of lists, S1, . . . , SN ⊆ Σ, and the goal is
to return all codewords c ∈ ΣN such that ci ∈ Si for all i. In
the setting of erasures, some lists have size |Σ|, in which case
we may as well replace the whole list by a ⊥ symbol. List
decoding from erasures is a special case of list-recovery with
erasures, where the Si that are not ⊥ have size one. However,
existing list-recovery algorithms will not immediately work in
our setting, as we consider binary codes: list-recovery is only
possible for codes with large alphabets.

Our first observation is that the approach of [27] for
erasure list-recovery can be used to obtain an algorithm for
erasure list-decoding in linear time, even for binary codes. As
described above, our first step is to erasure list-decode C0 at
each vertex, leaving us with lists Lv that need to be “stitched
together.” The approach of [27] does precisely this, although
in their context the lists that they are stitching together come
from list-recovering the inner code.

However, the results of [27] about stitching together lists
do not immediately yield anything meaningful for erasure list-
decoding. More precisely, those results imply that an expander
code C(G, C0) formed from a graph G with expansion λ
and an inner code C0 with distance δ and r’th generalized
distance δr is list-decodable from up to a δδr

(
δ−λ/d

6

)
fraction

of erasures in time N · exp(exp(exp(r))). In particular, the
fraction of erasures that those results tolerate is smaller than
the distance of the expander code, yielding only trivial results
in this setting.

Thus, while we use the same ideas as [27], our analysis is
different and significantly tighter. This allows us to obtain a
meaningful result in our setting, corresponding to the slower
algorithm described above. Moreover, as described above, we
are able to take advantage of the additional linear structure
in our setting to improve the dependence on r in the running
time.

To the best of our knowledge, there is no algorithmic
work on list-decoding expander codes from errors (rather than

4We note that other works, such as [24], have also had this goal, but to the
best of our knowledge [27] obtains the best known results, so we focus on
that work here.

erasures) in linear time with good parameters. We note that
[31] recently showed that there are expander codes which are
combinatorially near-optimally list-decodable from errors, but
this work is non-constructive and does not provide efficient
list decoding algorithms.

Finally, we discuss other work on erasure list-decoding.
It is known that, non-constructively, there are erasure-list-
decodable codes of rate Ω(ε) which can list-decode up to a
1 − ε fraction of erasures, with list sizes O(log(1/ε)) [21].
However, this proof is non-constructive and does not provide
efficient algorithms, and it has been a major open question
to achieve these results efficiently. Recent progress has been
made by [28], who provided a construction (although no
decoding algorithm) with parameters close to this for ε which
is polynomially small in n.

Our work is somewhat orthogonal to this line of work on
erasure list-decoding for several reasons. First, that line of
work is mostly concerned with low-rate codes that are list-
decodable from a large fraction of erasures (approaching 1),
while expander codes tend to perform best at high rates.
Second, we are less concerned with the trade-off between
rate and erasure tolerance and more concerned with efficiently
erasure-list-decoding an arbitrary expander code as far beyond
its (designed) distance as possible. Finally, much of the line
of work described above has focused on getting the list size
down to O(log(1/ε)), which is known to be impossible for
linear codes, where the best list size possible is Ω(1/ε) [21].
Since the expander codes we consider are linear, we do not
focus on that goal in our work.

II. PROOF OF THEOREM 2

Our main algorithm, LISTDECODE, is given in Figure 1. We
describe each of the steps below. Many details are omitted due
to space constraints, and can be found in the full version of
the paper. In what follows, suppose that z ∈ (F2 ∪ {⊥})E is
a received word with at most (1 − ε)δδrdn symbols that are
⊥, and let L = ListC(z) be the set of codewords of C that are
consistent with z.

The first step is to list decode all inner codes with not too
many erasures. Let B ⊆ L∪R be the set of bad vertices v so
that z has more than δrd erasures incident to v:

B =
{
v ∈ L ∪R : z(v,u) = ⊥ for more than δrd vertices u

}
.

(1)
The first step of the algorithm is to list-decode C0 at every

vertex v 6∈ B. For all such v, let

Lv := ListC0
(
(z(v,Γ1(v)), z(v,Γ2(v)), . . . , z(v,Γd(v)))

)
. (2)

Next, we shall use the following notion of local equivalence
relation to assign labels to many of the edges. To define this
notion, note that since C0 has r’th generalized distance δr,
for any v /∈ B, Lv is an affine subspace of Fd2 of dimension
rv ≤ r − 1. Let Gv ∈ Fd×rv2 and bv ∈ Fd2 be such that
Lv = {Gvx+ bv : x ∈ Frv2 } .

Definition 5 (Local equivalence relation): Suppose that v 6∈
B. For (u, v), (w, v) ∈ E, say that (u, v) ∼v (w, v) if the row

381

Authorized licensed use limited to: Stanford University. Downloaded on March 30,2021 at 19:10:21 UTC from IEEE Xplore. Restrictions apply.

Algorithm: LISTDECODE
Inputs: A description of G = (L ∪R,E) and C0 ⊆ Fd2, and z ∈ (F2 ∪ {⊥})E .
Output: A matrix L ∈ Fnd×a2 and a vector ` ∈ Fnd2 so that

ListC(z) = {Lx+ ` : x ∈ Fa2}

for some integer a (which does not depend on n), or else ⊥ if ListC(z) is empty.
1) Let B ⊆ L ∪R be as in (1). For each v 6∈ B, run C0’s erasure list-decoding algorithm to obtain the lists Lv

as in (2). For each v, this entails finding the kernel of a sub-matrix of Gv , which can be done in time O(d3).
Thus, the time for this step is n · poly(d).

2) Find the set E′ as described in the prose. Find the partition of E′ into s global equivalence classes. This can
be done in time O(nd) using Breadth-First-Search.

3) Run FINDLIST, as in Lemma 9, to obtain A, b, Â, b̂. (If FINDLIST returns ⊥, then return ⊥).
4) Compute L = AÂ and ` = Ab̂+ b, and return L, `.

Fig. 1: LISTDECODE: Returns a description of ListC(z) in time n · poly(d, 2r, 1/δ, 1/ε).

of Gv corresponding to (u, v) is the same as the row of Gv
corresponding to (w, v).
Observe that for v 6∈ B, If (u, v) ∼v (w, v), then for any
c ∈ L, c(u,v) is determined by c(w,v).

The next step is to assign labels to large global equivalence
classes, defined below. For this, we first define a new edge set
E′ ⊆ E. We initialize this set to be the set of all edges that do
not touch B. Then we repeatedly remove all local equivalence
classes of size at most ε2δ2

2r+3 · d. We call the resulting set E′.
Definition 6 (Global equivalence relation): Suppose that

e, e′ ∈ E′. We say that e ∼ e′ if there is a path e =
e1, e2, . . . , et = e′ so that e1, e2, . . . , et ∈ E′, and for any
pair of adjacent edges ei = (u, v), ei+1 = (v, w) on the path
it holds that (u, v) ∼v (v, w).

The following lemma (proved in the full version) shows
that E′ is partitioned into a small number of large global
equivalence classes.

Lemma 7: Any global equivalence class in E′ has size at
least ε4δ4

22r+7 dn. In particular, E′ is partitioned into at most s :=
22r+7

ε4δ4 different equivalence classes.
Consequently, one can assign labels to all edges in E′ by

iterating over all possible assignments for a small number
of representatives from these classes. As observed above,
choosing a symbol on an edge determines all the symbols in
that edge’s equivalence class. Thus, we will exhaust over all
choices of symbols for the equivalence classes in E′; this leads
to 2s possibilities. We show that for each way of choosing
symbols on the edges in E′, there is a unique way to complete
the codeword of C. To this end, define

B′ = {v ∈ L ∪R : (v, u) /∈ E′ for more than δd vertices u}.
(3)

The next lemma (proved in the full version) bounds the size
of B′, and the number of edges in E(B′).

Lemma 8: The following hold:

1) |B′ ∩ L|, |B′ ∩R| ≤
(
1− ε

2

)
δn.

2) |E(B′)| ≤
(
1− ε

4

) (
δ − λ

d

)
δnd.

Observe that for any vertex v 6∈ B′, the choices for symbols
on E′ uniquely determine the codeword of C0 that belongs at
the vertex v. This is because C0 has distance δ, and at least
(1−δ)d edges incident to v have been labeled. Note that since
C0 is a linear code of length d, this unique codeword can be
found in time O(d3) by solving a system of linear equations.
Once this is done, the only edges that do not have labels are
those in E(B′). By Item (2) of Lemma 8, there are at most(
1− ε

4

) (
δ − λ

d

)
δnd such edges. Finally, these edges can be

recovered using global unique decoding in time n ·poly(d)/ε.
This approach gives rise to the slow algorithm described

above, where we exhaust over all 2s possibilities for the
equivalence classes in E′, and then for each choice, append
the resulting unique codeword to our list. However, we can do
better. Instead of exhausting over all possible ways to assign
values to the equivalence classes in E′, we will set up and
solve a linear system to find a description of the ways to assign
these values that will lead to legitimate codewords. In the full
version we prove the following.

Lemma 9: There is an algorithm FINDLIST which, given the
state of LISTDECODE (Fig. 1) at the end of Step 2, runs in
time n·poly(d, s) and returns A ∈ Fnd×s2 , b ∈ Fnd2 , Â ∈ Fs×a2 ,
and b̂ ∈ Fs2 so that

ListC(z) =
{
Ax+ b : x = Âx̂+ b̂ for some x̂ ∈ Fa2

}
,

where a := dim(ListC(z)) satisfies a ≤ s.
This lemma explains the third and fourth steps of LISTDE-

CODE, and proves Theorem 2.

ACKNOWLEDGEMENTS

Most of this work was done while the authors were par-
ticipating in the Summer Cluster on Error-correcting Codes
and High-dimensional Expansion at the Simons Institute for
the Theory of Computing at UC Berkeley. NR is supported
in part by BSF grant 2017732. MW is supported in part by
NSF CAREER award CCF-1844628 and by NSF-BSF award
CCF-1814629, and by a Sloan Research Fellowship.

382

Authorized licensed use limited to: Stanford University. Downloaded on March 30,2021 at 19:10:21 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] V. Guruswami and M. Sudan, “Improved decoding of Reed-
Solomon and algebraic-geometry codes,” IEEE Trans. Information
Theory, vol. 45, no. 6, pp. 1757–1767, 1999. [Online]. Available:
http://dx.doi.org/10.1109/18.782097

[2] F. Parvaresh and A. Vardy, “Correcting errors beyond the Guruswami-
Sudan radius in polynomial time,” in Foundations of Computer Science,
2005. FOCS 2005. 46th Annual IEEE Symposium on. Washington,
DC, USA: IEEE, Oct. 2005, pp. 285–294. [Online]. Available:
http://dx.doi.org/10.1109/sfcs.2005.29

[3] V. Guruswami and A. Rudra, “Achieving list decoding capacity using
folded Reed-Solomon codes,” in Allerton ’06, 2006. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.6808

[4] V. Guruswami and C. Wang, “Deletion codes in the high-noise and high-
rate regimes,” IEEE Transactions on Information Theory, vol. 63, no. 4,
pp. 1961–1970, 2017.

[5] V. Guruswami and C. Xing, “Folded codes from function field towers
and improved optimal rate list decoding,” in Proceedings of the 44th
annual ACM symposium on Theory of computing (STOC). ACM, 2012,
pp. 339–350.

[6] ——, “List decoding Reed-Solomon, algebraic-geometric, and
Gabidulin subcodes up to the Singleton bound,” in Proceedings of the
45th annual ACM symposium on Theory of Computing (STOC). ACM,
2013, pp. 843–852.

[7] S. Kopparty, “List-decoding multiplicity codes,” Theory of Computing,
vol. 11, no. 5, pp. 149–182, 2015.

[8] V. Guruswami and S. Kopparty, “Explicit subspace designs,”
Combinatorica, vol. 36, no. 2, pp. 161–185, 2016. [Online].
Available: http://dx.doi.org/10.1007/s00493-014-3169-1

[9] B. Hemenway, N. Ron-Zewi, and M. Wootters, “Local list recovery of
high-rate tensor codes and applications,” SIAM Journal on Computing,
no. 0, pp. FOCS17–157, 2019.

[10] S. Kopparty, N. Ron-Zewi, S. Saraf, and M. Wootters, “Improved
decoding of folded Reed-Solomon and multiplicity codes,” in 2018 IEEE
59th Annual Symposium on Foundations of Computer Science (FOCS).
IEEE, 2018, pp. 212–223.

[11] M. Sipser and D. A. Spielman, “Expander codes,” IEEE Transactions
on Information Theory, vol. 42, no. 6, pp. 1710–1722, 1996.

[12] G. Zémor, “On expander codes,” IEEE Transactions on Information
Theory, vol. 47, no. 2, pp. 835–837, Feb. 2001. [Online]. Available:
http://dx.doi.org/10.1109/18.910593

[13] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Efficient erasure correcting codes,” IEEE Transactions on Information
Theory, vol. 47, no. 2, pp. 569–584, 2001.

[14] V. Skachek and R. M. Roth, “Generalized minimum distance iterative
decoding of expander codes,” in Proceedings 2003 IEEE Information
Theory Workshop (Cat. No. 03EX674). IEEE, 2003, pp. 245–248.

[15] A. Ashikhmin and V. Skachek, “Decoding of expander codes at
rates close to capacity,” in Information Theory, 2005. ISIT 2005.
Proceedings. International Symposium on. IEEE, 2005, pp. 317–321.
[Online]. Available: http://dx.doi.org/10.1109/isit.2005.1523346

[22] N. Ron-Zewi, M. Wootters, and G. Zémor, full version of the present
paper, available at https://arxiv.org/abs/2002.08579

[16] A. Barg and G. Zémor, “Error exponents of expander codes,” IEEE
Transactions on Information Theory, vol. 48, no. 6, pp. 1725–1729, Jun.
2002. [Online]. Available: http://dx.doi.org/10.1109/tit.2002.1003853

[17] ——, “Concatenated codes: serial and parallel,” IEEE Transactions
on Information Theory, vol. 51, no. 5, pp. 1625–1634, May 2005.
[Online]. Available: http://dx.doi.org/10.1109/tit.2005.846392

[18] ——, “Distance properties of expander codes,” IEEE Transactions on
Information Theory, vol. 52, no. 1, pp. 78–90, Jan. 2006. [Online].
Available: http://dx.doi.org/10.1109/tit.2005.860415

[19] R. M. Roth and V. Skachek, “Improved nearly-MDS expander codes,”
IEEE Transactions on Information Theory, vol. 52, no. 8, pp. 3650–
3661, 2006.

[20] B. Hemenway, R. Ostrovsky, and M. Wootters, “Local correctability of
expander codes,” Inf. Comput, vol. 243, pp. 178–190, 2015. [Online].
Available: http://dx.doi.org/10.1016/j.ic.2014.12.013

[21] V. Guruswami, “List decoding from erasures: Bounds and code con-
structions,” IEEE Transactions on Information Theory, vol. 49, no. 11,
pp. 2826–2833, 2003.

[23] V. Guruswami and P. Indyk, “Near-optimal linear-time codes for unique
decoding and new list-decodable codes over smaller alphabets,” in
Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of
Computing, ser. STOC ’02. New York, NY, USA: ACM, 2002, pp.
812–821. [Online]. Available: http://dx.doi.org/10.1145/509907.510023

[24] ——, “Linear-Time List Decoding in Error-Free Settings,” in Automata,
Languages and Programming, ser. Lecture Notes in Computer Science,
J. Díaz, J. Karhumäki, A. Lepistö, and D. Sannella, Eds. Springer
Berlin Heidelberg, 2004, vol. 3142, pp. 695–707. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-27836-8_59

[25] P. Gaborit and O. Ruatta, “Efficient erasure list-decoding of Reed-Muller
codes,” in 2006 IEEE International Symposium on Information Theory.
IEEE, 2006, pp. 148–152.

[26] Y. Ding, L. Jin, and C. Xing, “Erasure list-decodable codes from random
and algebraic geometry codes,” IEEE Transactions on Information
Theory, vol. 60, no. 7, pp. 3889–3894, 2014.

[27] B. Hemenway and M. Wootters, “Linear-time list recovery of high-rate
expander codes,” Information and Computation, vol. 261, pp. 202–218,
2018.

[28] A. Ben-Aroya, D. Doron, and A. Ta-Shma, “Near-optimal erasure list-
decodable codes,” Electronic Colloquium on Computational Complexity,
Tech. Rep. TR18-065, 2018.

[29] V. K.-W. Wei and K. Yang, “On the generalized Hamming weights of
product codes,” IEEE Trans. Information Theory, vol. 39, no. 5, pp.
1709–1713, 1993.

[30] H. G. Schaathun, “The weight hierarchy of product codes,” IEEE Trans.
Information Theory, vol. 46, no. 7, pp. 2648–2651, 2000.

[31] J. Mosheiff, N. Resch, N. Ron-Zewi, S. Silas, and M. Wootters, “LDPC
codes achieve list decoding capacity,” arXiv preprint arXiv:1909.06430,
2019.

[32] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their
applications,” Bulletin of AMS, vol. 43, no. 4, pp. 439–561, 2006.

383

Authorized licensed use limited to: Stanford University. Downloaded on March 30,2021 at 19:10:21 UTC from IEEE Xplore. Restrictions apply.

