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LINEAR-TIME HAPLOTYPE INFERENCE ON PEDIGREES
WITHOUT RECOMBINATIONS AND MATING LOOPS∗

MEE YEE CHAN†, WUN-TAT CHAN‡ , FRANCIS Y. L. CHIN† , STANLEY P. Y. FUNG§ ,

AND MING-YANG KAO¶

Abstract. In this paper, an optimal linear-time algorithm is presented to solve the haplotype
inference problem for pedigree data when there are no recombinations and the pedigree has no mating
loops. The approach is based on the use of graphs to capture SNP, Mendelian, and parity constraints
of the given pedigree. This representation allows us to capture the constraints as the edges in a graph,
rather than as a system of linear equations as in previous approaches. Graph traversals are then
used to resolve the parity of these edges, resulting in an optimal running time.
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1. Introduction. The modeling of human genetic variation is critical to the un-
derstanding of the genetic basis for complex diseases. Single nucleotide polymorphisms
(SNPs) [5] are the most frequent form of this variation, and it is useful to analyze
haplotypes, which are sequences of linked SNP genetic markers (small segments of
DNA) on a single chromosome. In diploid organisms, such as humans, chromosomes
come in pairs, and experiments often yield genotypes, which blend haplotypes for
the chromosome pair. This gives rise to the problem of inferring haplotypes from
genotypes.

Before defining our problem, some preliminary definitions are needed. The phys-
ical position of a marker on a chromosome is called a locus and its state is called an
allele. Without loss of generality, the allele of a biallelic SNP can be denoted by 0 and
1, and a haplotype with m loci is represented as a length-m string in {0, 1}m, and a
genotype as a length-m string in {0, 1, 2}m. Haplotype pair 〈h1, h2〉 is SNP-consistent
with genotype g if where the two alleles of h1 and h2 are the same at the same locus,
say 0 (respectively, 1), the corresponding locus of g is also 0 (respectively, 1), which
denotes a homozygous locus; otherwise, where the two alleles of h1 and h2 are different,
the corresponding locus of g is 2, which denotes a heterozygous locus (i.e., SNP). A
genotype with s heterozygous loci can have 2s−1 SNP-consistent haplotype solutions.
For example, genotype g = 012212 with s = 3 has four SNP-consistent haplotype
pairs: {〈011111, 010010〉, 〈011110, 010011〉, 〈011011, 010110〉, 〈011010, 010111〉}.

A pedigree is a fundamental connected structure used in genetics. Figure 1 shows
the pictorial representation of a pedigree with four nodes, with a square representing
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Fig. 1. Example of a pedigree with four nodes.

a male node and a circle representing a female node and children placed under their
parents: in particular, a father (node F), a mother (node M), and two children (son
node S and daughter node D). Each node in the pedigree is associated with a genotype.
In Figure 1, for example, 2102 is the genotype for F and 2000 is the genotype for M.
We assume that there are no mating loops ; i.e., the pedigree does not contain loops.
For example, marriage between descendants of a common ancestor forms a mating
loop. However, polygamy or remarriage is allowed in the sense that stepchildren can
exist. A precise definition of a mating loop will be given in section 2. Note that
mating loops are rare in real data sets, especially for humans [2].

A consistent haplotype configuration (with no recombinations) for a given pedigree
is an assignment of a pair of haplotypes to each individual node such that (i) all the
haplotype pairs are SNP-consistent with their corresponding genotypes and (ii) the
haplotypes of each child are Mendelian-consistent ; i.e., one of the child’s haplotype is
exactly the same as one of its father’s and the other is the same as one of its mother’s.

Haplotyping Pedigree Data (with No Recombinations) Problem (HPD-
NR): Given a pedigree P where each individual node of P is associated with a geno-
type, find a consistent haplotype configuration (CHC) for P.

Wijsman [7] proposed a 20-rule algorithm, and O’Connell [4] described a genotype
elimination algorithm, both of which can be used for solving the HPD-NR problem.
Li and Jiang [2] formulated the problem as a system of linear equations with O(mn)
equations and O(mn) variables, where n is the number of individuals in the pedigree
and m is the number of loci for each individual. The equations are then solved by
Gaussian elimination. This gives a O(m3n3) time algorithm. Xiao, Liu, Xia, and
Jiang [8] later improved the time complexity to O(mn2 + n3 log2 n log log n). For the
case without mating loops, their algorithm runs in O(mn2 + n3) time.

It has long been conjectured that an O(mn) time algorithm exists, but it should
be appreciated that finding such an algorithm has been elusive and far less straight-
forward than many researchers have initially thought.

In this paper, we propose a new 4-stage algorithm that can either find a CHC
solution or report “no solution” in optimal O(mn) time when the pedigree has no
mating loops. The main idea of our algorithm is to construct a tree to model the
predigree. Each vertex in the tree represents a haplotype; i.e., each genotype corre-
sponds to a pair of vertices. Different types of edges are added between the nodes
to enforce the SNP and Mendelian consistencies. This is carried out gradually in
Stages 1 and 2 in our algorithm, and Stage 3 is to add more edges to unify vertices
of the same haplotype so that a connected tree is formed. The main difficulty in our
approach is to resolve the correct alleles at the heterozygous loci in the CHC solu-
tion. We have developed a routine to resolve the heterozygous loci for tree vertices
in a connected component, which is executed in Stages 2, 3, and 4. As a connected
tree is formed after Stage 3, either a CHC solution is constructed or “no solution” is
reported. This approach allows us to find a CHC solution without (directly) solving
a system of linear equations, as in previous approaches [2, 8].
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Fig. 2. Pedigree with a family problem.

2. Preliminaries.
Definition 1 (pedigree graph and mating loop). A pedigree graph is a graph

derived naturally from the pedigree as follows. Each individual in the pedigree becomes
a node in the graph. Whenever two individuals mate and produce children, there is an
additional mating node, and there are undirected edges connecting the mating node
to the two parents as well as to each of the children. A mating loop is a cycle in the
pedigree graph, and a pedigree does not have a mating loop if the associated pedigree
graph does not have cycles; i.e., the pedigree graph is a tree. A trio consists of a
father, a mother and one of their children. A nuclear family consists of a father, a
mother, and all of their (shared) children.

We assume without loss of generality that the pedigree, and hence the pedigree
graph, is connected.

Definition 2 (family problem). If there exists a family with father F, mother
M, and two children C1 and C2 in the pedigree and two loci i and j such that i and j

are heterozygous in F, M, and C1 but are homozygous and heterozygous, respectively,
in C2, then we say that the pedigree has a family problem.

Figure 2 gives a simple example of a pedigree with a family problem. It can be
easily checked that this, and any other pedigree with a family problem, has no CHC
solution.

For each trio T , we define het(T ) as the set of all loci that are heterozygous for
the father, the mother, and the child in T , and hom(T ) as the set of all loci that are
heterozygous for the father and the mother but homozygous for the child. These two
sets for all trios can be computed easily in O(mn) time.

Consider a nuclear family, which consists of a number of trios. The following
observation is crucial: the nuclear family has no family problem if and only if for any
two trios Ti, Tj in the family, het(Ti) and het(Tj) are either identical or disjoint. Note
that het(Ti) ∪ hom(Ti) = het(Tj) ∪ hom(Tj). Using this observation, we can check
the pedigree for family problems in O(mn) time as follows.

Lemma 1. The family problems in the pedigree can be identified in O(mn) time.
Proof. Consider each nuclear family in the pedigree. We maintain sets S0, S1, . . .

of trios where trios belonging to the same Si have identical het()’s and trios belonging
to different Si’s have disjoint het()’s. We extend the definition of het() and hom() to
Si naturally: het(Si) is the set of loci in het(T ) for T ∈ Si, and hom(Si) is similarly
defined. S0 is a special set of trios with empty het(), and initially S1 = {T1} where
T1 is a trio with non-empty het(). We then consider each trio one by one, and do the
following:

For each new trio T ,
(a) If het(T ) is empty, add T to S0 and go to next T .
(b) Otherwise, for each Si, i ≥ 1,

(i) If some loci in het(Si) are in hom(T ) but some are in het(T ), report
“family problem” and halt.
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(ii) Else if all loci in het(Si) are in hom(T ), go to next i. If this is the
last i, create a new Sj with T as a member, and go to next T .

(iii) Else (all loci in het(Si) are in het(T )) check whether all other loci
in T are homozygous. If this is false, then report “family problem”
and halt. If this is true, add this T as a member of Si, and skip to
next T (no need to test the other Sj ’s).

The processing of each trio takes O(m) time even though it may need to compare
with all Si (and there can be O(n) of them), because the running time of steps (b)(i)
and (b)(ii) is O(|het(Si)|), and the sum of all |het(Si)| is at most m. Thus the checking
of family problems over the entire pedigree takes O(mn) time.

3. The algorithm.

3.1. Stage 1—setting up the local graph G.

Stage 1A—Checking for family problems. Our algorithm begins by check-
ing for family problems. Only if there are no family problems will the algorithm
continue; otherwise, “no solution” is reported.

Stage 1B—Generating vector-pairs. For each trio in the given pedigree,
let the respective genotypes of the father F, the mother M, and the child C be:
x1x2 . . . xm, y1y2 . . . ym, and z1z2 . . . zm where xi, yi, zi ∈ {0, 1, 2}. We determine a
pair of vectors (or vector-pair) each for the father, the mother, and the child, namely:
〈f1, f2〉, 〈m1, m2〉, and 〈c1, c2〉, respectively, where f1 = x1,1x1,2 . . . x1,m and f2 =
x2,1x2,2 . . . x2,m; m1 = y1,1y1,2 . . . y1,m and m2 = y2,1y2,2 . . . y2,m; c1 = z1,1z1,2 . . . z1,m

and c2 = z2,1z2,2 . . . z2,m. The vector-pairs are determined in the following manner.
1. For each locus i, for f1 and f2:

(a) If xi = 0, then x1,i = x2,i = 0.
(b) If xi = 1, then x1,i = x2,i = 1.
(c) If xi = 2 and zi = 0, then x1,i = 0 and x2,i = 1.
(d) If xi = 2 and zi = 1, then x1,i = 1 and x2,i = 0.
(e) If xi = 2 and zi = 2 and yi = 0, then x1,i = 1 and x2,i = 0.
(f) If xi = 2 and zi = 2 and yi = 1, then x1,i = 0 and x2,i = 1.
(g) If xi = 2 and zi = 2 and yi = 2, then x1,i = ? and x2,i = ?.

2. m1 and m2 are similarly determined.
3. Set 〈c1, c2〉 = 〈f1, m1〉. Check that 〈c1, c2〉 is consistent with C’s genotype

z1z2. . . zm; otherwise, report “no solution.”
The vector-pairs are the initial assignment of haplotypes, assuming that C inherits

f1 from F and m1 from M, i.e., 〈c1, c2〉 = 〈f1, m1〉. For example, in Step 1(c), zi = 0
and, hence, z1,i = z2,i = 0. Since c1 is inherited from f1, we can conclude x1,i = 0
and, therefore, x2,i = 1. When there is not enough information to deduce the value
of a locus in the haplotype, a ? is used.

Observe that if a particular node N in the pedigree belongs to k different trios,
then k vector-pairs, or 2k vectors, will be created for N in Stage 1B. These need to be
unified eventually as a single vector-pair, because there is only one pair of haplotype
for each node. This will be handled later when Endgame-consistency is defined, but
first notice that we can define SNP-consistency and Mendelian-consistency in terms
of vector-pairs. Let Φ(N) be the multiset comprised of these k vector-pairs of a node
N. It is sometimes convenient to refer to the vectors rather than the vector-pairs.
Thus, we let Γ(N) be the multiset of 2k vectors, containing the two vectors of each
vector-pair in Φ(N).
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Fig. 3. Graph G for Example 1.

Definition 3 (SNP-consistency condition). SNP-consistency is said to be main-
tained if and only if, for all nodes N in the pedigree, each vector-pair in Φ(N) is
SNP-consistent with N’s genotype. Vector-pair 〈h1, h2〉 is said to be SNP-consistent
with genotype g if either (i) if h1 and h2 are both 0 (respectively, 1) at the same locus,
then the corresponding locus of g is also 0 (respectively, 1); or (ii) if h1 is 0 (respec-
tively, 1) and h2 is 1 (respectively, 0) at the same locus, then the corresponding locus
of g is 2.

Definition 4 (Mendelian-consistency condition [1, 6]). Mendelian-consistency
is said to be maintained if and only if, for all nodes N in the pedigree, N is a child in
a trio comprised of F, M, and N, then Φ(N) contains a vector-pair 〈c1, c2〉 = 〈f1, m1〉
where f1 ∈ Γ(F) and m1 ∈ Γ(M).

Stage 1C—Constructing the local graph G = (V, E). Let V be the multi-
set of all the vectors created in Stage 1B, and let E be the set of red and brown edges
defined below:

1. A red edge is introduced to join the two vectors of each vector-pair generated
in Stage 1A. It indicates that a ? appearing at locus i of both vectors must
be resolved differently in the later stages of the algorithm (the two vectors
can be different or the same at the other non-? locus positions). The red
edges enforce SNP-consistency.

2. For each F-M-C trio, let 〈f1, f2〉, 〈m1, m2〉, and 〈c1, c2〉 be vector-pairs in
Φ(F), Φ(M), and Φ(C), respectively, associated with this trio. Two brown
edges are introduced, one connecting c1 and f1, and the other connecting
c2 and m1. A brown edge between two vectors means that the two vectors
must be the same at all locus positions. The brown edges enforce Mendelian-
consistency.

Example 1. Consider the pedigree with F (father), M (mother), S (son), and D
(daughter) shown in Figure 1. Stage 1 produces the graph G in Figure 3 with 12
vertices and 10 edges (6 red and 4 brown), comprised of two connected components,
one for each of the two trios, F-M-S and F-M-D, in the pedigree.

Definition 5. For any locus i in a connected component G of G, we say
1. Locus i is resolved in G if and only if all vectors in G have 0 or 1 at locus i.
2. Locus i is unresolved in G if and only if all vectors in G have ? at locus i.
3. Otherwise, locus i is mixed (it is a mix of ? and non-? at i).

In Example 1, the connected component for trio F-M-S has one unresolved locus
(locus 1) and three resolved loci (loci 2, 3, and 4). Meanwhile, the component for trio
F-M-D has no unresolved loci and four resolved loci (loci 1, 2, 3, and 4).

Lemma 2. The time complexity of Stage 1 (Stages 1A, 1B, and 1C) is O(mn),
where n is the number of nodes in the pedigree and m is the number of loci in each
genotype. Furthermore, after Stage 1, all loci are either resolved or unresolved in each
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connected component of G (no mixed loci), and each connected component has six
vertices. G has O(n) vertices and edges and is acyclic.

Proof. Checking for family problems takes O(mn) time (Lemma 1). With O(n)
trios and six vectors generated per trio with each vector having m loci, Stage 1B takes
O(mn) time. With O(n) trios and six vertices and five edges (three red and two brown)
per trio introduced in G, Stage 1C takes O(n) time altogether, and furthermore, G

has O(n) vertices and edges. G is acyclic because each connected component of G is
a path consisting of 6 vectors, 3 red edges, and 2 brown edges of a trio.

In later stages of our algorithm, no vector-pairs will be added to or deleted from
each Φ(N), and all loci resolved in Stage 1 will remain unchanged. Components of G

will later be merged with the addition of green (added in Stage 2) or white (added
in Stage 3) edges until G becomes a single connected component. Before we explain
why and how these edges are added, we first note that these new edges can always be
added between two vectors in the same Γ(N). This structured way of adding edges to
make G connected is possible given Lemma 3 below.

Lemma 3. If G has more than one connected component, then there exists a node
N such that there are two vector-pairs in Φ(N) which belong to two different connected
components.

Proof. Suppose to the contrary that, for all N, the vector-pairs in Φ(N) are all
connected. We make use of the fact that the brown edges in G preserve the con-
nectivity of any two nodes in the pedigree, which we have assumed to be connected.
Therefore, if vector-pairs in Φ(N) are all connected for all N, then all vectors are con-
nected together in a single connected component, which contradicts the assumption
that G has more than one connected component.

There are two reasons why we need to merge the connected components of G.
First, each multiset Φ(N) may contain more than one vector-pair; precisely, it con-
tains k vector-pairs if N belongs to k different trios. However, by the time all loci
are resolved, for all nodes N, each multiset Φ(N) must contain k copies of one unique
vector-pair 〈h1, h2〉, which represents the haplotype-pair in a CHC for N. The green
and white edges enforce this constraint by connecting vectors in Γ(N) that are sup-
posed to be identical (because they have identical values at some resolved heterozygous
loci). For example, consider two vector-pairs 〈u1, u2〉, 〈v1, v2〉 of a node N. If at a
heterozygous locus i, u1 is 0 and v1 is also 0, then we know u1 must be identical to v1

(and u2 identical to v2). However, if there is another heterozygous locus j where u1 is
0 and v1 is 1, then it is impossible to give a unique vector-pair, and there is no CHC
solution. We capture this observation by defining the following type of consistency:

Definition 6 (endgame-consistency condition). Vector-pairs 〈u1, u2〉, 〈v1, v2〉 ∈
Φ(N) of a node N are said to be Endgame-inconsistent if the vector values at some
heterozygous loci i and j (i �= j) for u1, u2, v1, and v2 are a permutation of the four
possibilities: 00, 01, 10, and 11, and Endgame-consistent otherwise. The node N is
said to be Endgame-inconsistent if there exist vector-pairs in Φ(N) that are Endgame-
inconsistent, and Endgame-consistent otherwise. Endgame-consistency is said to be
maintained if and only if, for all nodes N in the pedigree, N is Endgame-consistent.

The second reason of adding green and white edges to connect the components
of G is to further resolve the unresolved loci of each connected component of G with
SNP-consistency and Mendelian-consistency maintained: vectors connected by green
or white edges are supposed to be identical, and if a locus is resolved in one of the
connected components but not in the other, the new connection allows us to resolve
the locus in the other connected component as well. In the next subsection we will
develop a procedure for resolving the values of loci in a connected component of G.
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Our algorithm achieves a solution if, at the end of Stage 4, (a) graph G comprises
a single connected component; (b) all loci are resolved in G; and (c) SNP-consistency,
Mendelian-consistency, and Endgame-consistency are maintained. However, our al-
gorithm may report “no solution” if some N is Endgame-inconsistent before the end
of Stage 4.

3.2. Stage 2—Adding green edges. One of the most important aspects of
our algorithm is that, at all stages, we maintain the property that each connected
component of G has only resolved and unresolved loci (i.e., no mixed loci). In or-
der to do this, we make extensive use of a subroutine called LOCUS RESOLVE.
LOCUS RESOLVE(G) attempts to resolve ?’s in a connected component G of G. It
looks at each locus in turn, identifies a resolved locus, and uses this to resolve the lo-
cus at other vertices in the connected component by traversing in a manner consistent
with the colors of the edges. We do not lose any feasible solution in this procedure
because any feasible solution must satisfy SNP-consistency, Mendelian-consistency,
and Endgame-consistency, which are specified by the colors of the edges.

Define v(i) to be the value of locus i (= 0, 1, or ?) at vector v.
LOCUS RESOLVE(G):
For each locus i:
1. Traverse the connected component G to find a vector v where v(i) is resolved

(= 0 or 1). If no such v exists, go to the next locus.
2. Traverse G using a linear-time graph traversal procedure (such as depth-first

search), starting at v. For any edge e = (v1, v2) traversed where v1(i) = x (0
or 1) and v2(i) = ?,
(i) If e is a red edge, set v2(i) = 1 − x.
(ii) Else set v2(i) = x.

Lemma 4. LOCUS RESOLVE(G) runs in O(|G|m) time, where |G| is the number
of vectors in G. All loci in G are either resolved or unresolved after running the
procedure.

Proof. LOCUS RESOLVE performs m graph traversals, one for each locus, and
each traversal takes O(G) time. Hence the time complexity. At any locus i, if at least
one vector is resolved at i, this will be identified in Step 1, and since G is connected,
all other vectors will then be resolved at locus i in Step 2.

Stage 2 will consider the nuclear families in the pedigree one by one and will
try to connect the trios within the same nuclear family, in such a way as to respect
Endgame-consistency. Specifically, green edges are added to connect two unconnected
vectors in Γ(N) that have the value 0 at heterozygous locus i of N, where N is the
father or mother of the nuclear family. Green edges are like brown edges requiring
that the ?s in the two vectors connected by the edge to be resolved the same.

There are two types of nuclear families: namely, the Type A families where
there exists a locus that is heterozygous in either one of, but not both, the parents;
and the Type B families where each locus is either heterozygous in both parents or
homozygous in both parents. Stage 2 consists of Stages 2A and 2B, which process all
Type A and Type B nuclear families, respectively.

For each Type A nuclear family, there exists a locus i that is heterozygous in either
of, but not both of, F and M. Observe that locus i will be resolved in all vectors of the
nuclear family comprised of father F, mother M and their children (that is how Stage
1B works). We can, therefore, connect all the vector-pairs into one single connected
component by adding green edges between vectors in Γ(N) with 0 at locus i, where N
is the parent with heterozygous locus i. This we do in Stage 2A.
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Stage 2A—Processing Type A families. For each nuclear family, which is
comprised of, say, father F, mother M, and their children, where there exists a locus
i that is heterozygous in either (not both) of F and M, do the following:

1. Let V = {v ∈ Γ(N) | v(i) = 0 and v belongs to this nuclear family} where
N is the parent (either M or F) such that i is heterozygous in N. Pick one
vector from V and call it u.

2. For each vector v ∈ V , v �= u, add a green edge to join u and v. After this, the
vectors in the nuclear family are connected as a single connected component.

3. Run LOCUS RESOLVE(G) where G is the connected component contain-
ing u.

4. Check for Endgame-consistency within the family, reporting “no solution” if
it is not maintained.

For each Type B nuclear family, we make use of the sets het() and hom() defined
in section 2. If there is a trio T where hom(T ) is empty, then het(T ) contains all
loci (where F and M are also heterozygous). Since all distinct het()’s are disjoint,
this implies any other trio T ′ in the nuclear family either has het(T ′) empty, or
het(T ′) = het(T ) (and hom(T ′) is empty). In this case all trios with empty hom()
cannot be connected (in Stage 2B). So in Stage 2B we consider only trios where
hom(T ) is nonempty.

We first consider each Si as defined in the proof of Lemma 1, and connect all trios
in the same Si by adding green edges between them. All trios in the same Si have
identical het() and hence identical (and nonempty) hom(); thus they share a resolved
locus, which allows us to add a green edge correctly.

Then we will add edges connecting Si and Si+1 for all i. If Si and Si+1 share
some common locus in their hom()’s, then this allows us to add a green edge correctly
using the resolved loci. If they do not share any common locus in their hom()’s, then
this implies that the union of their het()’s equals the set of all loci (where F and M
are heterozygous). This means that they are the only two Si’s (call them S1 and
S2) which have nonempty het(). If there are trios in S0 (which has an empty het()),
then S0 shares some common resolved locus with both S1 and S2 and all Si’s can
be connected by green edges. Otherwise if there are no trios in S0, then S1 and S2

cannot be connected together.

Stage 2B—Processing Type B families. For each nuclear family, which is
comprised of, say, father F, mother M, and their children, where each locus is either
homozygous in both F and M, or heterozygous in both F and M:

1. If there exists a locus i that is heterozygous in F (and also M), then do the
following:
(a) Let the sets of loci het() and hom() of each trio and the Si’s be as defined

in the proof of Lemma 1.
(b) For each Si with corresponding trios T1, T2, . . . , Tk:

i. Pick a locus x in hom(T1). This is also in hom(Tj) for all other j.
If such x does not exist, go to the next Si.

ii. For each trio Tj other than T1, add a green edge to join u and v,
where u, v ∈ Γ(F) are vectors for trios T1 and Tj with value 0 at
locus x.

(c) For each pair of Si and Si+1:
(i) Pick a T in Si and a T ′ in Si+1.
(ii) If hom(T ) and hom(T ′) share some common locus x, then add a

green edge to join u and v, where u, v ∈ Γ(F) are vectors for trios
T and T ′ with value 0 at locus x.
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(iii) Otherwise (i.e., no such common locus exists), Si and Si+1 are the
only two such sets with a nonempty het(). Call them S1 and S2. If
there are trios in S0, then add a green edge between S1 and S0, and
between S2 and S0, as in Step (c)(ii). If there are no trios in S0,
then no green edges are added.

(d) Run LOCUS RESOLVE() on each connected component of G of the
nuclear family with the green edges added above.

(e) Check for Endgame-consistency within the family, reporting “no solu-
tion” if it is not maintained.

2. Otherwise, no green edges are added for this family.
Lemma 5. The time complexity of Stage 2 (Stages 2A and 2B) is O(mn). Fur-

thermore, after Stage 2, all loci are either resolved or unresolved in each connected
component of G, and G has O(n) vertices and edges, and is acyclic.

Proof. Stage 2A considers the nuclear families of the pedigree one by one. For
each nuclear family, with, say, k children: locus i can be determined in O(m) time;
Step 1 takes O(k) time with V containing one vector per trio of the family; Step 2
takes O(k) time; Step 3 takes O(km) time; and Step 4, which checks for Endgame-
consistency, can be done in O(km) time. Therefore, the total time complexity of
Stage 2A is O(mn).

Stage 2B processes the nuclear families similarly. Each addition of a green edge
in Steps 1(b) and 1(c) takes O(m) time, and thus for a nuclear family with k children,
Steps 1(b) and 1(c) take O(km) time. Steps 1(d) and 1(e) take O(mn) time as in
Stage 2A. Hence the time complexity of Stage 2B is also O(mn).

The execution of LOCUS RESOLVE after green edges are added ensures all loci
are either resolved or unresolved in each connected component of G. No vertices
are added to G and only up to k − 1 green edges are added for each family with
k children. Thus, G continues to have O(n) vertices and edges. All green edges are
added between vectors of the same individual node, and within a nuclear family, green
edges are added in either the father or the mother but not both. Hence, in the absence
of mating loops, G remains acyclic.

Lemma 6. If a connected component G of G has only resolved and unresolved loci
(no mixed loci), then all possible ways of resolving ?’s in vectors in G such that SNP-
consistency and Mendelian-consistency are maintained will either all make all vector-
pairs Endgame-consistent or all make some vector-pairs Endgame-inconsistent.

Proof. Consider a particular resolution of ?’s in the vectors in G such that SNP-
consistency and Mendelian-consistency are maintained. Suppose Endgame-inconsis-
tency occurs at node N; i.e., there exist two vector-pairs 〈x1, x2〉, 〈y1, y2〉 ∈ Φ(N)
such that the vector values at some heterozygous loci i and j (i �= j) for x1, x2, y1,
and y2 are a permutation of the four possibilities: 00, 01, 10, and 11. We can assume,
without loss of generality, that the value at such i and j for x1, x2, y1, and y2 are 00,
11, 01, and 10, respectively. Consider the following three cases for the state of loci i

and j prior to the resolution:
Case 1: Loci i and j were both unresolved in G. Then, for all other possible reso-

lutions, the values at loci i and j for x1, x2, y1, and y2 would either be 00,
11, 01, and 10 respectively, or 11, 00, 10, and 01, respectively, and Endgame-
consistency would also be violated.

Case 2: Only one of locus i and j was unresolved, say i, in G. Then, for all other
possible resolutions, the values at loci i and j for x1, x2, y1, and y2 would
either be 00, 11, 01, and 10 respectively, or 10, 01, 11, and 00, respectively,
and Endgame-consistency would also be violated.
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Case 3: Both loci i and j were resolved. Then, Endgame-inconsistency existed prior
to any resolution of ?’s.

The green edges are essential to the next stage of our algorithm by ensuring that
certain trios are connected. This is established in Lemmas 7 and 8 below.

Lemma 7. Consider a nuclear family within the pedigree with father F, mother
M, and their children. If there exists a locus i that is heterozygous in either one (not
both) of F and M, then after Stage 2A, the family will be represented by a single
connected component in G.

Proof. This follows straightforwardly from how Stage 2A works.
Lemma 8. Consider a nuclear family within the pedigree comprised of father F,

mother M, and their children and with no family problems. If there exists a locus
that is heterozygous in both F and M but homozygous in both C1 and C2, C1 and C2

being children of F and M, then the components for trios F-M-C1 and F-M-C2 will
become connected during Stage 2B.

Proof. All trios with a nonempty hom() will be connected to other trios within
the same Si in Step 1(b) of Stage 2B, which in turn will be connected to all other
Sj ’s in Step 1(c) of Stage 2B. All such Si’s will be connected to a single connected
component since any two of them must share at least one common locus in their
hom() (since otherwise, all trios will form into two S1 and S2 with disjoint het() and
hom(); see the discussion just before Stage 2B is defined). Thus the two trios, which
share a common locus in their hom()’s, will be connected in Stage 2B.

The previous two lemmas lead up to Lemma 9 below, which defines the Mother-
Father Property. The Mother-Father Property helps us from not having to check
for Endgame-consistency for the mother if the father is Endgame-consistent, or vice
versa. This will become important in Stage 3.

Lemma 9 (mother-father property). Suppose (a) M and F are the mother and
father of two unconnected trios in G after Stage 2 and (b) the given pedigree has no
family problems. Then, for all possible way(s) of resolving ?s in vectors in the two
trios such that SNP-consistency and Mendelian-consistency are maintained, M and
F are either both Endgame-consistent or both Endgame-inconsistent.

Proof. Suppose F is Endgame-inconsistent. Without loss of generality, let the
values at loci i and j for x1, x2, y1, and y2 be 00, 11, 01, and 10, respectively, where
〈x1, x2〉, 〈y1, y2〉 ∈ Φ(F). This means that loci i and j are heterozygous loci for F.
Since the two trios are not connected by a green edge, loci i and j are also heterozygous
for M (Lemma 7). Let C1 and C2 be the two respective children of F connected to
〈x1, x2〉 and 〈y1, y2〉 by brown edges. In the absence of family problems and green
edges connecting the two trios, there are only three cases to consider (there is no need
to consider i or j being homozygous for both C1 and C2 according to Lemma 8): (i)
when loci i and j are both heterozygous for both C1 and C2; (ii) when loci i and
j are both heterozygous for C1 and both homozygous for C2; and (iii) when locus i

is heterozygous for C1 and homozygous for C2 while locus j is homozygous for C1

and heterozygous for C2. It can be readily shown that in all three cases, M is also
Endgame-inconsistent.

The argument is similar supposing M is Endgame-inconsistent. Thus, if F (or M)
is Endgame-inconsistent, then M (respectively, F) is Endgame-inconsistent, and the
contrapositive implies that, if M (or F) is Endgame-consistent, then F (respectively,
M) is Endgame-consistent. The lemma follows.

3.3. Stage 3—Adding white edges. After Stage 2, suppose G is left with
more than one connected component. The idea of Stage 3 is to connect components
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of G together with white edges, so that a single connected component results and loci
can be further resolved. Before we present the various substages of Stage 3 formally,
we first give an intuitive idea.

Suppose a pedigree has a CHC solution. Then for any node N with vector-pairs
〈u1, u2〉 and 〈v1, v2〉, if these vector-pairs are not already connected by green edges
in Stage 2, then we need to add a white edge to connect either u1 to v1, or connect
u1 to v2. These represent the two different ways of resolving the haplotypes in N so
as to maintain Endgame-consistency (i.e., either u1 should be identical to v1, or it
should be identical to v2). Thus white edges are analogous to green edges and they
are treated as “nonred” edges by LOCUS RESOLVE.

While it may appear at first sight that each of these white edges can be added
arbitrarily, it turns out that this is not true when multiple white edges are considered
together, and we need a way to determine which of the two ways is the correct way
of connecting the vectors. To do this, we first construct a support graph H in
Stage 3A. The support graph contains unlabeled edges, each corresponding to a white
edge in G, and which will be labeled with either 0 or 1 in Stage 3C. Suppose e is an
unlabeled edge in H corresponding to the white edge between the vector-pairs 〈u1, u2〉
and 〈v1, v2〉 as defined in the previous paragraph. A label of 0 on e denotes that the
white edge in G should connect u1 and v1, while a label of 1 denotes that the white
edge should connect u1 to v2. This is how H is used. In order to find this labeling,
we will construct another graph J in Stage 3B which captures the constraints on how
the unlabeled edges can be labeled.

We start with the construction of H in Stage 3A.

Stage 3A—Constructing the support graph H.
1. For each nuclear family:

If the vector-pairs in the family consist of k > 1 connected components,1

then do the following. Pick a vector from each of the connected compo-
nents in either the father or the mother, but not both (all vectors must
be from the same parent). Create a vertex in H for each such vector.
Add k − 1 unlabeled edges to join these vertices in H .

2. For each pedigree node N:
Suppose this individual N belongs to k′ different nuclear families. Within
each such nuclear family, any two vectors of N in G are either already
connected in Stage 2, or they belong to connected components with
corresponding vertices in H that are connected in Step 1 above. Vectors
of N from different nuclear families are, however, not connected in either
G or H . Pick one vector from N from each of these nuclear families.
Create a vertex in H for each such vector. Add k′ − 1 new unlabeled
edges to connect them in H .

3. For each connected component G in G:
(a) Let k′′ be the number of vectors in G that are chosen as vertices in H in

Steps 1 or 2 above.
(b) Join these vertices in H with k′′ − 1 labeled edges. The label is 0 if the

path between the two vectors in G has an even number of red edges, and
1 otherwise.

1After Stage 2, Type A families have k = 1, and vector-pairs of each Type B family are connected
into at most two connected components except those trios whose hom() is empty, which are still
unconnected.
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Fig. 4. An example showing the steps in Stage 3. (a) The pedigree. (b) The local graph G.
(c) The support graph H. Two edges are labeled with 0. (d) The parity constraint graph J. Three
constraints are added.

Figures 4(a) and 4(b) show a pedigree and the corresponding local graph G.
Figure 4(c) shows the support graph H . In this example, since each nuclear family
has only one connected component, Step 1 is skipped. Unlabeled edges (A, B), (B′, C),
and (C′, D) are added in Step 2, and labeled edges (B, B′) and (C, C′) with label 0
are added in Step 3. In this case H happens to be a path, but it can be more general.
Lemma 10 shows that H is always acyclic.

Lemma 10. If there are no mating loops in the pedigree, then H is acyclic.
Proof. If there is a cycle in H , it cannot involve only vectors in one nuclear family,

by our construction (Step 1 of Stage 3A). Any other cycle is impossible without mating
loops.

Lemma 11. H is connected, has O(n) vertices and edges, and can be constructed
in O(n) time.

Proof. Vertices in H which correspond to vectors in the same connected com-
ponent in G are connected by labeled edges. The different connected components
of G can always be connected by adding edges joining vectors in the same Φ(N) for
some node N (Lemma 3); these correspond to the unlabeled edges in H . Hence, H is
connected.

H clearly has O(n) vertices since the set of vertices is a subset of those of G.
Since H has no cycles by Lemma 10, it has O(n) edges.

Steps 1 and 2 of Stage 3A take O(n) time since the time to process each nuclear
family or individual is proportional to the number of vectors in them. We can check
for connectivity easily by preprocessing (e.g., traversing G to identify connected com-
ponents). Step 3 also takes O(n) time, where the only tricky part is computing the
labels on the labeled edges. This can be done in constant time per label, once the
following preprocessing step is done. By traversing each connected component G of
G, we can compute, for each vertex v in G, whether the number of red edges in the
path from a fixed vertex t in G is odd or even, i.e., the parity. Since G has O(n)
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edges, this can be done in O(n) time and is only done once as a preprocessing step.
Then, the parity of the path in G between any pair of vertices u and v in the same
connected component can be computed in constant time from the parity of the path
between u and t and that between t and v.

In Stage 3B, we construct a parity constraint graph J to represent the con-
straints on the labeling of H . One of the essential differences between H and J is that
H shows connections between “neighboring” components while J captures all parity
constraints between far-apart components.

Figure 4(d) shows the graph J which is derived from the graph H in Figure 4(c).
The vertices in J are the same as the vertices in H . Since the vertices in H correspond
to vertices (vectors) in G, we can extend the terminology of vectors to the vertices
in H : for example, we say that a vertex u in H is heterozygous at locus i when i is
heterozygous in a pedigree node N where u ∈ Γ(N). Simlarly we can speak of a vertex
as homozygous, resolved, unresolved, etc., at a locus i.

Assume white edges have been added to G. G remains acyclic by a reasoning
similar to showing that G is acyclic after adding green edges (Lemma 5). Hence, a
path between any two vectors u and v in G is unique. If u and v are heterozygous
and resolved (have 0 or 1) at locus i but all other vectors (if any) in the path between
u and v are unresolved at locus i, then there is a constraint on how the unresolved
loci can be resolved (equivalently, how the white edges should be added): namely,
the number of red edges in the path in G must be even (or odd) if u and v have
the same (respectively, different) parity of resolved loci at a locus i. This is because
the unresolved loci at the two ends of each red edge must have different parity. To
represent this constraint, we add an edge (u, v) labeled L between u and v in J , where
L is 1 if u and v are resolved differently at locus i, and 0 otherwise.

A straightforward implementation of the above idea will lead to too many edges.
Stage 3B below adds only O(mn) edges to J , and Lemma 12 shows that this is
sufficient to represent all parity constraints.

Stage 3B—Constructing the parity constraint graph J.
1. The vertices in J are the same as the vertices in H .
2. Add an edge between two vectors u and v in J if (u, v) is labeled in H .

Furthermore, the label of this edge in J is the same as its label in H .
3. For each locus i, consider the tree H as if it is separated into subtrees at

all vertices where i is homozygous. That is, each subtree does not contain
any vertex homozygous at i. For each subtree, we root the subtree at an
arbitrary vertex that is heterozygous and resolved at i. (If there is no such
vertex, go to the next subtree.) Traverse the subtree and find, for each vertex
v that is heterozygous and resolved at locus i, its lowest ancestor u that is
also heterozygous and resolved at locus i. Add an edge between u and v in
J . Label this edge with 0 (or 1) if u and v have same (respectively, different)
parity of locus value. Note that there may already be such an edge in J , with
the same or different labels, due to other loci. If it is the same label, do not add
the edge (which is redundant). If the label is different, report “no solution.”

4. Check whether all cycles in J have an even number of edges labeled 1. Report
“no solution” and stop if there is a cycle in J with an odd number of edges
labeled 1.

5. Note that J may not be connected. To make J connected, add edge (u, v) to
J if u and v are in different connected components in J and (u, v) is an edge
in H . This is always possible because H is a connected graph, and J and H
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have the same set of vectors as the vertices. Arbitrarily label this edge with
0. We call the corresponding edge in H a free edge because we have the
freedom to label (u, v) with 1 instead. We continue adding edges until J is
connected.

In effect, the graph J represents a set of linear equations modulo 2; in the example
in Figure 4(d) the equations are xAB +xB′C = 1, xB′C +xC′D = 0, and xAB +xB′C +
xC′D = 0. The free edges in Step 5 correspond to the edges in H that are still
unlabeled after Step 4, and are the result of the degrees of freedom in the system of
equations. These unlabeled edges are “free” by themselves, in the sense that they can
be assigned either 0 or 1, but once an assignment is made on one of the free edges, the
other free edges may become nonfree. For example, consider Figure 4(d). There are
no free edges since H is one connected component (and the system of linear equations
has no degree of freedom). If we assume the edge connecting A and D does not exist,
then there are two connected components, and AB, B′C, and C′D are all potential
free edges. But there is only one degree of freedom since if we assign AB to, say, 0,
then all other “free” edges have their values fixed.

Lemma 12 below shows that Step 3 in Stage 3B adds sufficient edges in J to
represent the parity constraints.

Lemma 12. Suppose there is a path between two vertices u and v in H and there
is a locus i such that both u and v are heterozygous and resolved at i while all other
vertices in this path are not resolved at i. Let L = 0 if u and v have the same resolved
value at i, and 1 otherwise. Then, there is a path in J connecting u and v so that
the result of applying the logical operation exclusive or (XOR) to all labels in this path
equals L.

Proof. Since all other vertices in this path are not resolved, u and v must be in
the same subtree in Step 3 of Stage 3B. If one of u or v is an ancestor of the other
in the rooted subtree (for locus i), not necessarily the lowest ancestor, then by the
construction in Step 3 of Stage 3B, there is a sequence of edges (u, v0), . . . , (vk, v) in
J connecting u and v, such that all these vertices are resolved at locus i. If this path
is a single edge (in the case of the lowest ancestor), then we are done. Otherwise, we
can assume by induction that the XOR of the labels on the path between u and vk

is equal to the parity difference of u and vk. Adding the edge from vk to v, with the
label equal to the parity difference of vk and v, the claim follows.

Otherwise, if neither u nor v is an ancestor of the other in the subtree, let w be
the lowest common ancestor of u and v which is resolved at i. We then have two
paths, one from w to u and the other from w to v, which by a similar argument to
the above, have the correct labels. Hence, there is a path from u to v (through w)
in J , and the XOR of the labels on this path is equal to the parity difference of u

and w XORed with the parity difference of w and v, the result of which is the parity
difference of u and v.

Lemma 13. If Steps 3 and 4 of Stage 3B report “no solution,” then there is
no CHC solution. Otherwise, J has no odd cycle (an odd cycle is a cycle where the
number of 1-labeled edges is odd).

Proof. In Step 3, if “no solution” is reported, there are two conflicting constraints.
In Step 4, if “no solution” is reported, then there is an odd cycle. Each edge with
label 1 denotes that the resolved loci at two ends of the edge must be of different
parity (and label 0 implies same parity). It follows that there is no way of resolving
the loci consistently along an odd cycle.

The free edges introduced in Step 5 are to make J connected so that we can
determine the parity difference between any two nodes in J and completely label all
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edges in H . The following lemma shows that these free edges can be added freely and
labeled arbitrarily without affecting the existence of the CHC solution.

Lemma 14. If there is a CHC solution of the pedigree, then any label (0 or 1)
on the free edges introduced in Step 5 of Stage 3B will make all vector-pairs SNP-
consistent, Mendelian-consistent, and Endgame-consistent. On the other hand, if
there is no CHC solution, none of the labels on the free edges can achieve Endgame-
consistency for all vector-pairs.

Proof. It is obvious that SNP-consistency and Mendelian consistency will always
be maintained because of the red and brown edges. Since a free edge (u, v) is only
added when J is not connected, u and v must be two vectors in different connected
components of J and there must not exist two vectors, one in each connected com-
ponent, where locus i is resolved and the vectors in the path in H between these two
vectors are unresolved at locus i.

As edge (u, v) is in H , u and v must be in the same Φ(N) for some node N whose
loci are either homozygous or heterozygous. If N is heterozygous at locus i, then locus
i will be unresolved in all vectors in either u’s connected component, or v’s connected
component, or both connected components (otherwise J cannot be disconnected). In
all these cases, it can be shown that, from Lemma 6, Endgame-consistency will be
maintained or not maintained no matter whether the free edge is labeled with 0 or 1.
Thus the lemma is proved.

Lemma 15. J has O(mn) edges and can be constructed in O(mn) time.
Proof. There are O(n) vertices and edges in H . Thus, Steps 1 and 2 of Stage 3B

can be done in O(n) time.
Step 3 can be done in O(mn) time using a recursive traversal of each subtree of

H for each locus as follows. We start at the root noting itself as the lowest resolved
ancestor, and recursively traverse each child, passing down the ancestor information
in the recursive calls. At each child, its lowest resolved ancestor is the lowest resolved
ancestor of the parent. If the child itself is resolved heterozygous, then the child notes
itself as the lowest resolved ancestor in subsequent traversal of its own children. Thus,
it takes O(n) time to perform such traversal for each locus.

Each traversal of a locus adds at most O(n) edges to J , so J has at most O(mn)
edges.

In Step 4 we need to identify cycles with an odd number of edges labeled 1. If
we imagine contracting every edge in J with label 0, then the problem reduces to
checking whether the contracted graph has an odd cycle, which amounts to checking
bipartiteness. Thus Step 4 can be done in O(mn) time.

Step 5 can also be done in O(mn) time as follows. First, for each vertex x in
J , keep a list LIST(x) of vertices adjacent to x in H . Next, we perform a two-
pass traversal as follows. Start with an arbitrary vertex X, traverse the connected
component, and label the vertices traversed as “marked.” Then we go back and
traverse the connected component again starting at X. When traversing vertex x, we
check whether all the vertices in LIST(x) are marked. If there is a vertex y that
is unmarked, we add (x, y) to J and perform the same two-pass traversal for the
connected component of y; in effect we are doing a traversal within traversal. In this
way, we grow from one connected component of J and add free edges to connect to
other connected components. The two-pass approach is employed to prevent adding
edges which are not actually free after other free edges are added. Since the graph
has O(mn) edges, Step 5 takes O(mn) time.

Thus, the total time complexity of Stage 3B is O(mn).
Next, we use J to complete the labeling of H .
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Stage 3C—Completing the labeling of H.
1. Traverse J , computing, for each vertex v in J , the parity (odd or even) of the

number of 1-labeled edges in the path from a fixed vertex t in J .
2. For each unlabeled edge (u, v) in H , if u and v have the same parity in J ,

then label edge (u, v) in H with 0, otherwise with 1.
Lemma 16. All edges in H can be labeled with 0 or 1 in O(mn) time in Stage

3C, and the labels in H are consistent with the parity constraints specified in J in the
sense that the parity between any two vectors u and v specified in J is the same as
the parity of the number of 1-labeled edges in the path between u and v in H.

Proof. Note that J specifies a unique parity between any two vertices because J

has no odd cycle. Consider a path P = (v0, v1), (v1, v2), . . . , (vk−1, vk) in H . Each
unlabeled edge (vi, vi+1) in P receives a label equal to the parity between vi and vi+1

in J in Step 1 of Stage 3C, which is equal to the parity of the number of 1-labeled
edges between vi and vi+1 in J . Each labeled edge (vi, vi+1) in P has the same edge
(with the same label) in J , and hence the label of this edge in H is also equal to the
parity of the number of 1-labeled edges between vi and vi+1 in J . Hence, the parity
of the number of 1-labeled edges in P is equal to the XOR of the labels on all edges
in P , which in turn is equal to the XOR of the parity between vi and vi+1 in J over
all i, which is the parity between v0 and vk in J .

As far as the time complexity is concerned, since H has O(n) edges and J has
O(mn) edges, the total time complexity of Stage 3C is O(mn).

Stage 3D—Adding white edges to G.
1. For each edge (u, v) in H that became labeled during Stage 3C:

(a) If the edge is labeled 1, then let x be the vector adjacent to v by a red
edge; otherwise, let x be v.

(b) Add a white edge between u and x.
2. G now becomes a single connected component. Run LOCUS RESOLVE(G).

Lemma 17. Stage 3D can be done in O(mn) time, and after Stage 3D, G will be
a single connected component with only unresolved and resolved loci.

Proof. Step 1 of Stage 3D considers each of the O(n) edges of H one by one, each
taking constant time; thus this step takes O(n) time. Step 2 takes O(mn) time. The
time complexity thus follows.

H is a connected graph that contains at least one vertex from each connected
component of G, and the newly labeled edges in H are between vertices that were not
connected in G (while the edges that were already labeled are between vertices that
were already connected in G). Therefore, each white edge added results in one fewer
connected component in G, and G will become a single connected component after
Step 1 finishes.

LOCUS RESOLVE ensures that G, as a single connected component, has only
unresolved and resolved loci.

Figure 5 shows the graph H of the same example in Figure 4 after the edges are
labeled. The resulting white edges are added to G and the loci resolved.

Lemma 18. If the pedigree has a CHC solution, Stage 3D maintains Endgame-
consistency.

Proof. Suppose, to the contrary, that some node N becomes Endgame-inconsistent
after Stage 3D. Without loss of generality, let the values at loci i and j for x1, x2, y1,
and y2 be 00, 11, 01, and 10, respectively, where 〈x1, x2〉, 〈y1, y2〉 ∈ Φ(N).

Consider the situation prior to Stage 3D. Since the pedigree has a CHC solu-
tion, given Lemma 6, the vector-pairs in each connected component are Endgame-
consistent. Thus 〈x1, x2〉 and 〈y1, y2〉 must belong to different connected components;
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Fig. 5. The same example from Figure 4 showing the result of Stages 3C and 3D. (a) The
graph H with the correct labels. In this case there is a unique solution. (b) The local graph G after
addition of white (dashed) edges. Loci values are also resolved.

call them G1 and G2, respectively. Now suppose 〈x1, x2〉 and 〈y1, y2〉 become con-
nected during Stage 3D after the addition of a white edge e, which connects G1 and
G2. There are four cases to consider:

Case 1: e connects 〈x1, x2〉 and 〈y1, y2〉. White edge e corresponds to an edge
in H , and since H is acyclic, it is the unique edge between the vector-pairs and is
labeled with a unique parity. Without loss of generality, suppose e connects x1 and
y1 and is labeled 0. This white edge will make x1 and y1 equal and, therefore, the
value of loci i and j cannot possibly become 00 for x1 and 01 for y1.

Case 2: e connects 〈x3, x4〉 in G1 and 〈y3, y4〉 in G2 where 〈x3, x4〉 and 〈y3,
y4〉 ∈ Φ(N). Since the pedigree has a CHC solution, and G1 has only resolved and
unresolved loci, according to Lemma 6, vector-pairs of N that are in G1 must be
Endgame-consistent. This implies that 〈x1, x2〉 and 〈x3, x4〉, which are in G1, are
Endgame-consistent. Likewise, 〈y1, y2〉 and 〈y3, y4〉 must also be Endgame-consistent.
By the argument in Case 1, 〈x3, x4〉 and 〈y3, y4〉 must also be Endgame-consistent.
This makes it impossible for 〈x1, x2〉 and 〈y1, y2〉 to be Endgame-inconsistent.

Case 3: e connects 〈x3, x4〉 in G1 and 〈y3, y4〉 in G2 where 〈x3, x4〉 and 〈y3, y4〉
∈ Φ(M) and M is N’s spouse. Suppose 〈u1, u2〉 ∈ Φ(M) belongs to the same trio as
〈x1, x2〉 and suppose 〈v1, v2〉 ∈ Φ(M) belongs to the same trio as 〈y1, y2〉. According
to Lemma 9, 〈u1, u2〉 and 〈v1, v2〉 are also Endgame-inconsistent. Thus, we can con-
sider 〈u1, u2〉 and 〈v1, v2〉 instead of 〈x1, x2〉 and 〈y1, y2〉, and accordingly, apply the
arguments of Case 2.

Case 4: e connects 〈x3, x4〉 in G1 and 〈y3, y4〉 in G2 where 〈x3, x4〉 and 〈y3, y4〉
∈ Φ(M) and M is neither N nor N’s spouse. Assuming no mating loops, this case does
not exist.

3.4. Stage 4—Finishing up. At this point, our graph G has only one con-
nected component, and it only has resolved or unresolved (no mixed) loci, since this
is the property we maintain by our locus resolve procedures. If all loci are resolved,
then of course we are done. For those loci that are still unresolved, Lemma 6 tells
us that any way of resolving makes no difference: we can arbitrarily resolve them in
an SNP-consistent and Mendelian-consistent manner, and it will not affect Endgame-
consistency in the sense that either all vector-pairs will be Endgame-consistent for
all resolutions, or there will be Endgame-inconsistent vector-pairs for all resolutions.
This means the algorithm does not need to try all possibilities; any one will do. This
is crucial for avoiding an exponential blow-up.
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Hence, we do the following as the final stage of our algorithm.

Stage 4—Dealing with a single connected component.
1. Arbitrarily pick a vector u of G. For all unresolved loci i, assign a value of 0

to each of them. Then run LOCUS RESOLVE(G).
2. For all N, check Φ(N) for Endgame-consistency and report “no solution” if it

is not maintained.
Lemma 19. Stage 4 runs in O(mn) time.
Proof. After Stage 3D, G is a single connected component and has no mixed

loci. By Lemma 6, we do not have to try all possible resolutions; any one will do.
Let s be the number of unresolved loci in G. The time complexity of resolving all of
these unresolved loci is O(sn) since LOCUS RESOLVE runs in O(n) time per locus.
Checking all N for Endgame-consistency can be done in O(mn) time.

Note that assigning a value of 1 instead of 0 to any locus before running LO-
CUS RESOLVE would work equally well (Lemma 6); the effect is that all 1’s become
0 and all 0’s become 1 at each such locus, giving another solution. In general, if there
are s unresolved loci after Stage 3D and the pedigree admits a consistent solution,
then there are 2s different CHC solutions. However, if every node in the pedigree has
exactly s heterozygous loci, then there are only 2s−1 different CHC solutions due to
symmetry.

Theorem 1. For a given pedigree, we can either achieve a solution that represents
a CHC for the given pedigree, or report “no solution” when there is no solution, in
O(mn) time where n is the number of nodes in the pedigree and m is the number of
loci.

Proof. Each of the stages of our algorithm runs in O(mn) time. The algorithm
reports “no solution” only when there can be no CHC solution. If the algorithm does
not report “no solution,” then after Stage 4, all loci are resolved and SNP-consistency,
Mendelian-consistency, and Endgame-consistency are all maintained. Thus, the re-
solved loci values represent a CHC solution.

4. Open problems. In this paper, an optimal linear-time algorithm is presented
to solve the haplotype problem for pedigree data when there are no recombinations
and the pedigree has no mating loops. It remains an open problem to extend the
algorithm to handle mating loops. For the haplotyping problem with recombinations,
the problem becomes intractable even when at most one recombination is allowed at
each haplotype of a child, or when the problem is to find a feasible haplotype with the
minimum number of recombinations (even without mating loops) [3]. However, there
is still much scope for further study. For example, in practice, pedigree data often
contain a significant amount of missing alleles (up to 14–15% of the alleles belonging
to a block could be missing in the pedigree data studied). In some cases, the deduction
of the missing information on alleles is possible. The goal is then to devise an efficient
algorithm to determine as many missing alleles as possible.
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