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Positive systems, which carry the well known property of confining the state, output,

and/or input variables to the nonnegative orphant, are of great practical importance,

as the nonnegative property occurs quite frequently in numerous applications and in

nature. These type of systems frequently occur in hydrology where they are used to model

natural and artificial networks of reservoirs; in biology where they are used to describe

the transportation, accumulation, and drainage processes of elements and compounds

like hormones, glucose, insulin, and metals; and in stocking, industrial, and engineering

systems where chemical reactions, heat exchanges, and distillation processes take place

[30].

The interest of this dissertation is in two key problems: positive stabilization and the

positive servomechanism problem. In particular, this thesis outlines the necessary and

sufficient conditions for the stabilization of positive linear time-invariant (LTI) systems

using state feedback control, along with providing an algorithm for constructing such

a stabilizing regulator. Moreover, the results on stabilization also encompass the two

problems of the positive separation principle and stabilization via observer design. The

second, and most emphasized, problem of this dissertation considers the positive ser-

vomechanism problem for both single-input single-output (SISO) and multi-input multi-

output (MIMO) stable positive LTI systems. The study of the positive servomechanism
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problem focuses on the tracking problem of nonnegative constant reference signals for

unknown/known stable SISO/MIMO positive LTI systems with nonnegative unmeasur-

able/measurable constant disturbances via switching tuning clamping regulators (TcR),

linear quadratic clamping regulators (LTQcR), and ending with MPC control. Finally,

all theoretical results on the positive servomechanism problem are justified via numerous

experimental results on a waterworks system.
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Chapter 1

Introduction

Positive systems are systems where a natural restriction of nonnegativity occurs on states,

outputs, and possibly inputs for all time.

For example, consider a patient that is sedated during a surgical procedure. Depend-

ing on the type of surgery, various organs, tissues, cells, or simply compartments -

or states in the systems control sense - are under the infusion of an anesthetic (see

Figure 1.1), which ultimately controls the patients pain sensitivity, movements, and

overall consciousness. Normally, the amount of anesthesia must be continuously in-

fused during the surgical procedure to guarantee ideal conditions. The latter process

of anesthetic infusion represents a positive system; consisting of states, inputs, out-

puts, and various disturbances that affect the overall outcome of a successful surgery.

The amount of anesthetic that enters each compartment must be positive, the levels

within the compartments, or states, are positive, and the decaying effects of the

substance are also positive. Simply put, in the natural biological sense, negative

amounts cannot be present. We are restricted to have positive amounts of anesthe-

sia within the human body as negative amounts do not translate to any physical

interpretation. This constraint of positivity, or more precisely nonnegativity, defines

a positive system.

1
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Figure 1.1: Intravenous anesthesia infusion.

The practical importance of these systems is widely visible, as the nonnegative prop-

erty occurs quite frequently in numerous applications and in nature. Positive systems are

often found in biology where they are used to describe the transportation, accumulation,

and drainage processes of elements and compounds like hormones, glucose, and metals

[30] - leading to applications of anesthesia infusion as described above, insulin control

in diabetic patients, heartbeat rhythm control for athletes, amongst others. However,

positive systems do not only radiate within biology, as they are present in hydrology, en-

gineering, and industrial systems which involve water transportation, chemical reactions,

heat exchangers, and distillation columns. In fact, positive systems are so widely visible

in applications and in nature that it has been pointed out by Luenberger in 1979 that

“it is for positive systems that dynamic systems theory assumes one of its most potent

forms” [55].

This dissertation focuses on positive linear time-invariant (LTI) systems. In partic-

ular the problem of state and output feedback stabilization for positive LTI systems is

discussed and solved from a view point previously not encountered in the literature. The

problem of stabilization is also extended to include results of the positive separation
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principle of LTI systems, i.e. where the design of a state feedback stabilizing gain and

an observer feedback gain is considered as two separate problems. After the problem of

positive stabilization is finalized, the focal point of the dissertation shifts toward finding

necessary and sufficient conditions for reference tracking and disturbance rejection of sta-

ble positive LTI systems via robust control strategies, i.e. the servomechanism problem

for positive LTI systems. Once the necessary and sufficient conditions are established,

results on finding adequate control methodologies that solve the servomechanism prob-

lem are outlined. Finally, all theoretical results are verified via experimentation on a

waterworks positive system consisting of industrialized components.

1.1 Literature Review

This thesis studies two key problems: positive stabilization and the positive servomech-

anism problem, both of these problems are in one way or another related to or have a

connection with one or more topics discussed in this section.

Positive systems, due to their inherent nonnegative constraint, have appeared in nu-

merous fields of economics [48, 49]; engineering [55], [8], [13]; pharmokinetics and tracer

kinetics [2], [79]; ecosystems and population modeling [50], [39], [64]; hydrology [68];

medicine and biology [40], [41], [2]; and many others. It is thus no surprise that the in-

terest in positive systems has continued its growth both in the practical and theoretical

fields.

The study of positive systems, in particular nonnegative matrices, can be traced back

to the work of Perron [71] and Frobenius [31] in the early twentieth century; but it

was not until the work of David G. Luenberger, who initiated a unifying approach of

systems control and positive systems [55], that more control theorists took notice. Ever

since Luenberger’s famous book (1979), the interest in positive systems in control theory

has evolved dramatically stretching to topics of reachability, controllability, switching
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systems, 2D systems, stabilization, and optimal control - all of these topics, and others,

are reviewed next.

1.1.1 Nonnegative and Metzler matrices

The study of nonnegative and Metzler matrices dates back to Frobenius [31] and Per-

ron [71], as mentioned above; however, over the years the interest in both nonnegative

and Metzler matrices has grown considerably. One of the most referenced books, which

presents various results on nonnegative and Metzler matrices, has been written by Gant-

macher [32]. Other more recent texts covering similar, new, and extended topics are

[10], [63], and [35]. The interest in nonnegative and Metzler matrices is obvious as its

application to positive systems is direct and is outlined in Chapter 2.

1.1.2 Stability and real dominant equilibria

Stability is one of the most important topics discussed in systems control and it is no

different in the case of positive systems. Many of the results on stability have been known

since 1912 and are obtained and derived from the work of Frobenius [31]. One of the

most crucial results is that of dominant stable eigenvalues, e.g. we now know that the

dominant eigenvalue of a continuous-time positive system is real and unique. This latter

link between matrices and positive systems has been made in [55], while numerous other

results tying stability, equilibria, and positive systems have also been reported in [64]

and [65].

1.1.3 Reachability and controllability

As in the case of stability, reachability and controllability have become extremely impor-

tant throughout various disciplines in systems control. Reachability in positive systems

considers the problem of reaching nonnegative states from other nonnegative states [30].
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The reachability problem for positive systems dates back to the early nineteen eighties

where [56] presented results on complete reachability for discrete time positive systems.

The latter result was later verified and extended by [66], [74], and [28]. The extension

to multiple inputs has been primarily done by [74], [29], and [83], and references therein.

Other extensions to the reachability cone and general reachability can also be found in

[14], [51], and [69]. An interesting survey on reachability and controllability in positive

systems has been presented by Caccetta and Rumchev [11].

1.1.4 Positive Realization

The positive realization problem has now been thoroughly investigated for several decades.

The problem of positive realization is one in which a system transfer function can be

transformed into its state representation (A, B, C, D) such that the resulting state space

system is positive [30] (for more precise definitions of positive realization the interested

reader is encouraged to refer to the references provided below). It has been pointed out

by [30] that the problem of realization can be traced back to the work on compartmental

systems by [57] in the 1970’s; since that time, the interest in positive realizations has

grown considerably. In particular, [69] and [6] have outlined a set of necessary and suf-

ficient conditions for positive realization; however, the latter citations are by no means

the only ones that considered positive realizations, as [1], [46], [7], [85] and references

therein (just to mention a few) have also considered this topic.

Positive realization still continues to be an active research interest among the systems

control community and the interested reader is referred to [8] and [13] for recent results.

1.1.5 Switching positive systems

Another worthy topic of discussion for positive systems is that of switching positive sys-

tems. This topic is fairly new to positive systems, but has grown great roots within other

disciplines of systems control, e.g. see the survey paper [24] and a recent book [52] for
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more details. The study of switching positive systems has thus far been primarily re-

stricted to stability and reachability, e.g. see [77], [76], [58], and [59]. In this dissertation,

the topic of switching control strategies comes up fairly often, but the topic of switching

control, as presented within the servomechanism problem, has yet to be implemented

elsewhere.

1.1.6 2D positive systems

Two dimensional (2D) positive systems have also garnered a lot of attention and although

they have not been of interest in this thesis there are numerous complementing results

for 2D systems to stability, reachability, realization, and the like, see for example the

results presented in [84], [43], and [44].

1.1.7 Stabilization and observer design

The problem of stabilization and positive observer design has been previously studied, but

not using the algorithmic approach presented in this dissertation. The interest in positive

stabilization has grown over the years. For example, observer design for compartmental

systems for reducible and irreducible structures has been introduced in [25] (although

not completed, see Appendix), and finalized in [4]. The problem of observer design

for positive LTI systems has also been investigated in [15]; however the results for the

MIMO case are incomplete, as the example in the Appendix illustrates. Very recently

(during the time of research of this thesis), results on the existence conditions for positive

state stabilization using LMI’s and special linear programming approaches have been

summarized in [33] and [73], respectively. Another interesting recent observation has

been obtained by [88], where the authors deal with observer design and output dynamic

observer stabilization for interval positive systems via an LMI approach. Although the

latter three citations cover and provide the solution to the positive stabilization problem,

in this thesis we cover the results from a vertex enumeration algorithm which has not
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been previously covered. Moreover, in this thesis we present results, in particular on

the separation principle that have not been considered in the same context, as in this

thesis, in the literature. Several other intriguing results on observer design via Sylvester’s

approach have been portrayed in [3, 4]. It must be pointed out that results of positive

stabilization for SISO positive LTI systems has been captured in [15], [23], [3]. In this

thesis (Chapter 3), several of the results of [15], [23], [3] will be restated and extended

upon, e.g., to output positive stabilization and the positive separation principle. Another

very interesting and easy to implement sufficient result via quadratic programming has

been presented in [42]. Some other results on stability control, pole-assignment, adaptive

type schemes, and some general stability feedback control not mentioned above can be

found in [26], [9], [37], [78] [75], and for optimal control in [38] and [47].

Although various research aspects tied to this thesis and to general positive systems

have been outlined above, the one topic omitted was that of the “robust servomechanism

problem”. The discussion of this topic and its background has been deferred to Chapter

2.

1.2 Overview of the Thesis

This dissertation studies two key problems: positive stabilization and the positive ser-

vomechanism problem. However, before these two problems are tackled Chapter 2 pro-

vides detailed background work related to the thesis. This chapter first defines common

terminology used throughout the thesis while outlining numerous definitions, statements,

theorems, and common results related to both positive and compartmental systems. The

focus of Chapter 2 then shifts to a discussion of tuning regulators, feedforward controllers,

and the servomechanism problem for linear time invariant systems. Finally, a complete

discussion of singular perturbation is presented. The results on singular perturbation are

used throughout the thesis; in particular, in Chapter 4 onward.
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Next, Chapter 3 considers positive stabilization. Although the problem of positive

stabilization has been previously studied, it has never been presented from the viewpoint

of the algorithms outlined in this thesis. Thus, Chapter 3 not only provides the necessary

and sufficient conditions to the positive feedback stabilization problem, but also supplies

the stabilizing feedback gain via a vertex based algorithm. Unlike standard LTI systems,

due to the nonnegativity constraint, the solution to the positive systems stabilization

problem uses linear programming methods and enumeration procedures and not algebraic

results as in the LTI case. Aside from providing a complete solution to the positive state

stabilization problem, Chapter 3 tackles the stabilization problem for a special class of

positive systems, which are highly visible in compartmental systems. The solution to the

latter problem is attained via a very simple and computationally efficient algorithm. As a

natural progression from the outcome of positive state feedback stabilization, results are

extended to the positive output feedback case, which previously was an open problem.

Unfortunately positive feedback stabilization assumes that the state is made available

to the designer; however, in numerous situations the state is not measurable and the

separation principle must be considered. The goal in the separation principle is of course

to stabilize an unstable system via output feedback techniques, while having no knowledge

of the states. In this situation, an estimate of the states must be produced, or in a systems

control sense, an observer must be created - this approach, i.e. the positive separation

principle, is also considered in Chapter 3. Namely, results on stabilizing the overall

system while finding the stabilizing gain matrix and observer gain matrix in separation

are presented. Particularly, Chapter 3 shows that the process of separation is feasible for

positive single-input single-output (SISO) systems, but in the case of positive multi-input

multi-output case a new resolution is needed.

The major theoretical portion of this dissertation deals with the positive servomech-

anism problem which is outlined for the SISO case in Chapter 4 and for the MIMO case

in Chapter 6. In short, the essence of the problem behind the servomechanism problem
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is summarized next:

Find a controller, for a positive LTI system under constant disturbances,

that

(a) guarantees closed loop stability ;

(b) ensures the plant is nonnegative for all time, i.e. the states and the

outputs are nonnegative for all time; and

(c) ensures tracking of a given set of reference signals.

(d) In addition, assuming that a controller has been found so that

conditions (a), (b), (c) are satisfied; then for all perturbations of

the nominal plant model which maintain properties (a) and (b), it

is desired that the controller can still achieve asymptotic tracking

and regulation, i.e. property (c) still holds.

A general understanding of the above problem can be traced back to the anesthesia

example. Namely, the system is the person or more precisely the organs, tissues, and

flows of anesthesia within the body. Stability can be captured as the need of having

the anesthetic bounded by some maximum value that will prevent any ill effects to the

patient. The tracking signal can be thought of as the amount of anesthesia present within

the system that will result in an ideal state of unconsciousness of the patient during

surgery, while the nonnegativity of the anesthetic is clear from our previous discussions

of positivity, i.e. the amount of anesthetic cannot fall below zero and we can only infuse

positive amounts with no extraction of an anesthetic possible. The final point (d) is

extremely relevant to real life applications since more often than not, the patient’s body

undergoes changes, or perturbations, during surgery; yet, it is highly desirable to still

maintain ideal conditions for infusing anesthesia into the patients system.

The research results of Chapter 4 - Chapter 9 concentrate on the positive servomech-

anism problem. In particular,
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• Chapter 4 considers the positive servomechanism problem under tuning regulators

for the case of SISO positive systems where the mathematical model is known or

unknown;

• Chapter 5 considers the positive servomechanism problem under linear quadratic

control for the case of SISO positive systems;

• Chapter 6 considers the positive servomechanism problem under tuning regulators

for the case of MIMO positive systems where the mathematical model is known or

unknown;

• Chapter 7 considers the positive servomechanism problem under linear quadratic

control for the case of MIMO positive systems;

• Chapter 8 considers the positive servomechanism problem under model predictive

control (MPC) for the case of both SISO and MIMO positive systems; and

• Chapter 9 puts all theoretical results of Chapters 4 - 7 to the test by running

experimental results on a positive water works setup.

Thus, the results presented in Chapter 4 - Chapter 9 consider the tracking and dis-

turbance rejection problem for SISO and MIMO systems, from both the theoretical and

experimental point of view. Mainly, existence conditions are provided, along with the

actual control laws, that solve the positive servomechanism problem for constant tracking

and (un)measurable disturbance signals for positive systems assuming that the mathe-

matical model of the system can be described by an LTI model, but may be unknown.

The motivation for studying unknown plants is that in many industrial systems and “real

world” systems, the mathematical model has not been identified, but from the physics

of the system it is known that the plant is positive. The control strategy considered

here is conservative in the case of unknown plants (via the use of tuning regulators), and
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becomes more aggressive (via the use of linear quadratic regulators and MPC control) as

more information is made available to the designer of the controller.

Finally all theoretical work is validated in Chapter 9 by an experimental water-

works real-time control setup, consisting of industrialized components with numerous

constraints. The experimental setup consists of four water tanks with various connec-

tions in between them. The system is clearly positive as the amount of water within a

tank cannot fall below zero.

In conclusion, the final chapter (Chapter 10) of the thesis summarizes the results

and outlines several directions, while the Appendix presents several counter examples to

previously published work on positive stabilization.



Chapter 2

Background

This chapter of the thesis outlines common terminology used throughout the chapters

and presents preliminary and background work related to positive LTI systems, which

will be needed throughout the pages of this thesis.

This chapter is broken down into several main sections. Section 2.1 defines all com-

mon terms and symbols used throughout the thesis. An overview of positive systems

and compartmental systems follows. Next, tuning regulators and feedforward control is

reviewed and finally Section 2.4 discusses singular perturbation theory, as outlined in

[45].

2.1 Terminology

Let the set R+ := {x ∈ R | x ≥ 0}, the set Rn
+ := {x = (x1, x2, ..., xn)T ∈ Rn | xi ∈

R+, ∀i = 1, ..., n}. Similarly, let R− := {x ∈ R | x ≤ 0}, and the set Rn
− := {x =

(x1, x2, ..., xn)T ∈ Rn | xi ∈ R−, ∀i = 1, ..., n}. If exclusion of 0 from the sets will be

necessary, then we’ll denote the sets in the standard way R+ \ {0} (Rn
+ \ {0}). The set

(R+ \ {0})n will commonly be referred to as interior(Rn
+). The set of eigenvalues of a

matrix A will be denoted as σ(A). The ijth entry of a matrix A will be denoted as aij .

A matrix A ∈ Rn×n is Hurwitz or stable when all the eigenvalues (λ) of A are in the

12
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open left half of the complex plane C (i.e., the real parts of all eigenvalues are negative).

A nonnegative matrix A has all of its entries greater than or equal to 0, i.e. aij ∈ R+. A

Metzler matrix A is a matrix for which all off-diagonal elements of A are nonnegative, i.e.

aij ∈ R+ for all i 6= j. A compartmental matrix A is a matrix that is Metzler, and where

the sum of the components within a column is less than or equal to zero, i.e.

n∑

i=1

aij ≤ 0

for all j = 1, 2, ..., n. A matrix A that is compartmental, but also satisfies

n∑

i=1

aij < 0

for all j = 1, 2, ..., n will be referred to as a strictly compartmental matrix. Note that

all strictly compartmental matrices are stable due to their structure and Gerschgorin’s

Theorem. A permutation matrix is a square (n × n) matrix that has been obtained by

permuting the rows of an identity matrix according to some permutation of the numbers

1 to n. A monomial matrix is a matrix that can be expressed as a product of a diagonal

matrix and a permutation matrix, which has the property that there is exactly one

nonzero entry in each row and each column. For convenience, lower case letters when

used in appropriate context, e.g., b, c, d, ..., will represent scalars or vectors, while upper

case letters, e.g., A, B, C, ..., will represent matrices. A vector a > 0 (or <, ≥, ≤, =)

component-wise means that each component of a is greater than zero, i.e., a > 0 means

∀ i ai > 0. The notation Ai represents the principal submatrix of A with the i− th row

and i− th column removed (throughout the thesis we will refer to a principal submatrix

simply as a submatrix). A signal1 q(t, ǫ) ∈ Rn = O(ǫ) if for all i = 1, ..., n

limǫ→0
qi(t, ǫ)

ǫ
≤ βi

uniformly for all t ∈ [0,∞) and where βi ∈ R is a constant. A set P ⊂ Rn is called a

convex polyhedron if

P = {x ∈ R
n | Ax = b, Cx ≥ d} (2.1)

1Throughout the thesis, if it is clear from the context, a signal’s dependence on time t may be dropped.
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for some matrix A ∈ R
q1×n and C ∈ R

q2×n, and some vectors b ∈ R
q1 and d ∈ R

q2.

A closed and bounded polyhedron will be referred to as a polytope. Finally, the term

bidirectional refers to a signal that can take on nonnegative and positive values.

2.2 Positive Linear Systems and Compartmental Sys-

tems

In this section we give an overview of both positive linear systems [55], [30], and a very

important subset of positive linear systems known as compartmental systems [30], [41].

The inclusion of compartmental systems within this subsection will be made because in

general compartmental systems are stable, a property of great significance throughout

the chapters (Chapters 4 - Chapter 8).

We first define a positive linear system [30] in the traditional sense.

Definition 2.2.1. A linear system

ẋ = Ax + Bu

y = Cx + Du
(2.2)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rr×n, and D ∈ Rr×m is considered to be a positive

linear system if for every nonnegative initial state and for every nonnegative input the

state of the system and the output remain nonnegative.

The above definition states that any trajectory starting at an initial condition x0 ∈

Rn
+ will not leave the positive orthant, and moreover, that the output also remains

nonnegative. For convenience, if for all time a state x satisfies x ∈ Rn
+, or the output y

satisfies y ∈ Rr
+, or the input u satisfies u ∈ Rm

+ , then we’ll say that the state, output,

or input maintains nonnegativity. Notice that Definition 2.2.1 states that the input to

the system must be nonnegative, a restriction that in applications is not always feasible;
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we’ll return to this in the sequel.

It turns out that Definition 2.2.1 has a very nice interpretation in terms of the matrix

quadruple (A, B, C, D).

Theorem 2.2.1 ([30], pg.14). A linear system (2.2) is positive if and only if the matrix A

is a Metzler matrix, and B, C, and D are nonnegative matrices.

Next we introduce compartmental systems.

A compartmental system consists of n interconnected compartments or reservoirs (an

example of such a system consisting solely of mass flows is given in Figure 2.1 for a model

of one reservoir).

Ui

Foi

Fji

Fij

xi

ẋi =
∑

j 6=i

(−Fji + Fij) − Foi + Ui

Figure 2.1: Model of one compartment.

In this figure, xi represents the current state of reservoir i, Ui is the external inflow

coming into reservoir i; Foi is the flow exiting reservoir i, hence the notation to the

outside (o) from reservoir (i) is used; Fji is the outflow into reservoir j from reservoir

i; Fij is the inflow into reservoir i from reservoir j. For the mathematical description

of a flow considered in this thesis see equation (2.3). The assumptions made for linear
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compartmental systems are that the variables just described satisfy:

Ui = bi1u1 + bi2u2 + · · · + bimum

Foi = βoixi

Fji = βjixi

Fij = βijxj .

(2.3)

where ui ∈ R, i = 1, ..., m denote the inputs that compose Ui.

Note that in a true compartmental system, by definition, all variables are nonnegative,

i.e.

xi, U, Foi, Fij, Fji ∈ R+ or bi1, u1, bi2, u2, . . . , bim, um, βio, βij, βji ∈ R+.

See [41] for a more in depth treatment of (2.3).

With the above description of one compartment, we can easily come up with the entire

state space model for an overall system consisting of n interconnected compartments:

ẋi = −(βoi +
∑

j 6=i

βji)xi +
∑

j 6=i

βijxj

+bi1u1 + bi2u2 + · · · + bimum.

(2.4)

Setting

αi = βoi +
∑

j 6=i

βji, (2.5)
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results in

ẋi =












−α1 β12 β13 β1n

β21 −α2 β23 . . . β2n

...
...

βn1 βn2 βn3 . . . −αn












x

+












b11 b12 . . . b1m

b21 b22 . . . b2m

...
...

bn1 bn2 . . . bnm












u,

(2.6)

where x = [x1 x2 . . . xn]T and u = [u1 u2 . . . um]T . For convenience, a compartmental

matrix will be denoted by

Ac =












−α1 β12 β13 β1n

β21 −α2 β23 . . . β2n

...
...

βn1 βn2 βn3 . . . −αn












(2.7)

and a compartmental B matrix will be denoted by

Bc =












b11 b12 . . . b1m

b21 b22 . . . b2m

...
...

bn1 bn2 . . . bnm












as was done for positive linear systems. Notice that, by definition, the summation of all



Chapter 2. Background 18

elements within a column of A is less than or equal to zero, i.e.

−αi +
∑

j 6=i

βji = −βoi ≤ 0,

where equality holds if there is no outflow lost to the outside environment. Note that any

matrix (2.7) that is strictly compartmental is stable due to its structure and Gerschgorin’s

Theorem.

Before we proceed, let’s make a distinction, in the control systems sense, between

inflow, outflow and output. When dealing with compartmental systems, the term inflow

designates the movement of material2 into the system, the term outflow designates the

movement of material out of the system, and the outputs of the system are measurements

on some compartment or a combination of compartments, and may have nothing to do

with the material outflows from the system. The above clarification has been nicely

captured in [41].

With the above paragraph in mind, the output equation for compartmental systems

y = Cx + Du

can be arbitrarily specified; however, to satisfy our positive linear system definition we’ll

assume C ∈ R
r×n
+ and assume D ∈ R

r×m
+ .

Finally, the above description of a compartmental system is not unique; in fact there

are other descriptions in the literature, see for example [30], [41]. One common addition

made to the above description, pointed out in [30], is that the summation of a column of

the matrix Bc must equal one, i.e.

n∑

j=1

bji = 1, ∀i = 1, . . . , m,

2”material” here can designate anything; for example, liquid, voltage, current, hormones, glucose,
etc.
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where each 0 ≤ bji ≤ 1. This assumption is very natural to make since one expects the

maximum inflow not to exceed ui, i.e.

n∑

j=1

bjiui ≤ ui, ∀i = 1, . . . , m,

with the summation is equal to one when the entire inflow enters the compartmental

system.

2.3 Tuning Regulators and Feedforward Control

In this section we describe two controllers, the tuning regulator and the feedforward

compensator, which solve the tracking problem for unknown3 stable LTI systems under

constant disturbances. To accomplish this, steady-state experiments are carried out on

the system to determine various DC gain matrices of the system. The results of this

section can be found in their entirety and in their general form in [17, 61]. The tuning

regulator described within this subsection is nothing more but a generalization of the

classical ”on-line tuning” controller [80].

Consider the plant

ẋ = Ax + Bu + Eω

y = Cx + Du + Fω (2.8)

e := yref − y

where x ∈ Rn, u ∈ Rm, y ∈ Rr, the disturbance vector ω ∈ RΩ̃, and yref ∈ Rr is a desired

tracking signal. Assume that the output y and the disturbance ω are measurable with

m = r, and that the matrix A is Hurwitz.

3by unknown we mean that there is no knowledge of (A, B, C, D)
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In the case of constant disturbances and constant tracking signals, the feedforward

compensator that solves the ”servomechanism problem”, i.e. such that

(i) the closed loop system is asymptotically stable, and

(ii) for all tracking signals and disturbances e → 0 as t → ∞.

is given by

u = Kryref + Kdω (2.9)

with Kr = (D − CA−1B)−1 and Kd = −(D − CA−1B)−1(F − CA−1E).

Note, in order to find Kr and Kd we require the numerical values of (A, B, C, D, E, F ).

A procedure will be given shortly that outlines how one can obtain Kr and Kd without

requiring the numerical values of the matrices. Of course, we assume that D − CA−1B

is full rank so that an inverse exists.

In the case of constant disturbances (ω) and constant tracking (yref) signals, the

tuning regulator that solves the ”robust servomechanism problem” [17], i.e. such that

(i) the closed loop system is asymptotically stable,

(ii) for all tracking signals and disturbances e → 0 as t → ∞, and

(iii) property (ii) occurs for all plant perturbations which maintain closed loop stability,

is given by:

η̇ = ǫe

u = Krη,
(2.10)

where ǫ ∈ (0, ǫ∗], with ǫ∗ ∈ R+ \ {0}, where ǫ∗ ensures that






A BKr

−ǫ∗C −ǫ∗DKr





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is Hurwitz. Such an ǫ∗ always exists by the results of [17].

We summarize the above discussion by a Theorem for the case of MIMO LTI systems.

Theorem 2.3.1 ([17]). Consider the system (2.8), under the assumption that yref ∈ Rr and

ω ∈ RΩ̃ are constants. Then there exists an ǫ∗ such that ∀ǫ ∈ (0, ǫ∗] the tuning regulator

(2.10) solves the ”robust servomechanism problem” and the feedforward compansator

(2.9) solves the ”servomechanism problem” if and only if rank(D − CA−1B) = r.

Throughout the chapters it is emphasized that no knowledge of the plant (2.8) ma-

trices exists, thus it is worth pointing out a procedure which will supply us with the gain

matrix Kr = D − CA−1B without the knowledge of the actual values of (A, B, C, D).

We present the procedure next.

Procedure 2.3.1. It is assumed that the outputs of the system are measurable and the

inputs are excitable with no disturbances acting on the plant, i.e. ω = 0.

1. Apply an input vector u = [0 ... 0 ui 0 ... 0]T to (2.8), ∀i = 1, ..., m, with ui 6= 0.

2. Measure the corresponding steady-state value of the output vectors y = yi ∈ Rr,

∀i = 1, ..., m, where yi = [y1
i y2

i ... yr
i ]

T .

3. Solve the equation:

K1












u1 0 ... 0

0 u2 ... 0

. . .

0 0 ... um












=












y1
1 y1

2 ... y1
m

y2
1 y2

2 ... y2
m

. . .

yr
1 yr

2 ... yr
m












for K1 = D − CA−1B.

Note, in the case of a tuning regulator and the feedforward compensator we need the

inverse of K1; this is easily obtained if rank(K1) = r.
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Next we present a procedure to obtain the gain matrix F − CA−1E without any

knowledge of the plant.

Procedure 2.3.2. It is assumed that the outputs of the system are measurable and the

disturbances are excitable with the inputs set to zero, i.e. u = 0.

1. Apply a disturbance vector ω = [0 ... 0 ωi 0 ... 0]T to (2.8), ∀i = 1, ..., Ω̃, with ωi

having a non-zero steady-state value.

2. Measure the corresponding steady-state value of the output vectors y = yi ∈ Rr,

∀i = 1, ..., Ω̃, where yi = [y1
i y2

i ... yr
i ]

T .

3. Solve the equation:

K2












ω1 0 ... 0

0 ω2 ... 0

. . .

0 0 ... ωΩ̃












=












y1
1 y1

2 ... y1
Ω̃

y2
1 y2

2 ... y2
Ω̃

. . .

yr
1 yr

2 ... yr
Ω̃












for K2 = (F − CA−1E).

In the above experiment it is assumed that the measurable disturbance can be excited

in Ω̃ independent ways. This is often the case in practice [17], e.g. in the control of

distillation columns, the input feed composition is a measurable disturbance which can

be excited; in a system of water tanks, an additional flow of water can be added to the

various tanks, etc. Occasionally, however, it may be possible to measure a disturbance,

but not excite it. In these cases, the operating records of the measurable disturbances

can be monitored, e.g. in commercial heat exchangers [21].

Remark 2.3.1. Note that both Kr and Kd can be found via Procedure 2.3.1 and Procedure

2.3.2 by open-loop tests on the physical plant. In the case of the tuning regulator (2.10)

the choice of ǫ > 0 to use is found by ”on-line tuning”, i.e. the controller (2.10) is applied
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to the system to be controlled, and a 1-dimensional search on ǫ > 0 is carried out to

obtain the best output response for the system; Theorem 2.3.1 guarantees that such a

stabilizing controller can always be found.

2.4 Singular Perturbation

This section has been added for completeness and covers singular perturbation results

which are needed in order to prove various results throughout the thesis. The following

discussion has been taken from [45], Chapter 11 and Chapter 4.

The standard singular perturbation model can be described as

q̇ = f(t, q, z, ǫ), q(t0) = q0

ǫż = g(t, q, z, ǫ), z(t0) = z0

(2.11)

where the functions f and g are continuously differentiable in their arguments (t, q, z, ǫ) ∈

[0,∞) × Dq × Dz × [0, ǫ0], with Dq ⊂ R
n and Dz ⊂ R

s being open and connected sets.

By setting ǫ = 0, we obtain

0 = g(t, q, z, 0), (2.12)

where we designate the real root 4 of (2.12) as

z = h(t, q). (2.13)

To obtain a reduced model, we substitute (2.13) into (2.11) resulting in

q̇ = f(t, q, h(t, q), 0), q(t0) = q0. (2.14)

4without loss of generality, we assume there is only one root
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The reduced model is sometimes referred to as the slow model, while (2.12) is referred

to as the quasi-steady-state model, because z may rapidly converge to a root of (2.12).

Now denote the solution of (2.14) by q(t) and define

z(t) = h(t, q(t)),

which describes the quasi-steady-state behavior of z when q = q.

In order to present a very important result on singular perturbations, we need to

perform a change of variables first

p = z − h(t, q), (2.15)

which shifts the quasi-steady-state of z to the origin. In the new variables (q, p) the full

problem is

q̇ = f(t, q, p + h(t, q), ǫ), q(t0) = q0

ǫṗ = g(t, q, p + h(t, q), ǫ) − ǫ
∂h

∂t

−ǫ
∂h

∂q
f(t, q, p + h(t, q), ǫ),

p(t0) = z0 − h(t0, q0)

. (2.16)

Next, we set

ǫ
dp

dt
=

dp

dτ
; hence,

dτ

dt
=

1

ǫ

and use τ = 0 as the initial value at t = t0. In the new time scale, (2.16) becomes

q̇ = f(t, q, p + h(t, q), ǫ), q(t0) = q0

dp

dτ
= g(t, q, p + h(t, q), ǫ) − ǫ

∂h

∂t

−ǫ
∂h

∂q
f(t, q, p + h(t, q), ǫ),

p(t0) = z0 − h(t0, q0)

. (2.17)
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By setting ǫ = 0, the latter equation reduces to

dp

dτ
= g(t, q, p + h(t, q), 0), p(t0) = z0 − h(t0, q0), (2.18)

which is commonly referred to as the boundary-layer model.

We will also make use of the autonomous system

dp

dτ
= g(t0, q0, p + h(t0, q0), 0), p(t0) = z0 − h(t0, q0) (2.19)

which has an equilibrium at p = 0, and has been derived from (2.18) by setting t = t0

and q = q0. Define the solution of (2.19) as p̂(τ).

Before we state the singular perturbation result on an infinite interval of time, we

recall the following theorem on Lyapunov stability:

Theorem 2.4.1 ([45] pg.152). Let x = 0 be an equilibrium point for

ẋ = f(t, x)

and D ⊂ Rn be a domain containing x = 0. Let V : [0,∞) × D → R be a continuously

differentiable function such that

W1(x) ≤ V (t, x) ≤ W2(x) (2.20)

∂V

∂t
+

∂V

∂x
f(t, x) ≤ −W3(x) (2.21)

∀t ≥ 0 and ∀x ∈ D, where W1(x), W2(x) and W3(x) are continuous positive definite

functions on D. Then, x = 0 is uniformly asymptotically stable. Moreover, if r and c are

chosen such that Br = {‖x‖ ≤ r} ⊂ D and c < min‖x‖=1W1(x), then every trajectory
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starting in {x ∈ Br | W2(x) ≤ c} satisfies

‖x‖ ≤ β(‖x(t0)‖ , t − t0), t ≥ t0 ≥ 0

for some class KL function5 β.

The following theorem presents the singular perturbation result of interest in this

thesis.

Theorem 2.4.2 ([45] pg.439). Consider the singular perturbation system (2.11). Assume

that the following conditions are satisfied for all

[t, q, z − h(t, q), ǫ] ∈ [0,∞) × Dq × Dp × [0, ǫ0]

for some domains Dx ⊂ R
n and Dp ⊂ R

s, which contain their respective origins:

1. On any compact subset of Dx×Dy, the functions f , g, their first partial derivatives

with respect to (q, z, ǫ), and the first partial derivative of g with respect to t are

continuous and bounded, h(t, q) and [∂g(t, q, z, 0)/∂z] have bounded first partial

derivatives with respect to their arguments, and [∂f(t, q, h(t, q), 0)/∂q] is Lipschitz

in q, uniformly in t;

2. the origin is an exponentially stable equilibrium point of the reduced system (2.14);

i.e. there is a Lyapunov function V (t, x) that satisfies the conditions of Theorem

2.4.1 for (2.14) for (t, q) ∈ [0,∞)×Dq and {W1(q) ≤ c} is a compact subset of Dq;

3. the origin is an exponentially stable equilibrium point of the boundary-layer model

(2.18), uniformly in (t, q). Let Rp ⊂ Dp be the region of attraction of (2.19) and

Γp be a compact subset of Ry.

5see [45] for an overview of class KL functions
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Then, for each compact set Γq ⊂ {W2(x) ≤ ξc, 0 < ξ < 1} there is a positive constant

ǫ1 such that for all t0 ≥ 0, q0 ∈ Γq, z0 − h(t0, q0) ∈ Γp, and 0 < ǫ < ǫ1, the singular

perturbation problem (2.16) has a unique solution q(t, ǫ), z(t, ǫ) on [t0,∞), and

q(t, ǫ) − q(t) = O(ǫ)

z(t, ǫ) − h(t, q(t)) − p̂(t/ǫ) = O(ǫ)

uniformly in t ∈ [0,∞).

We will also make use of the standard theorem on the continuity of solutions in terms

of parameters, which we recall below.

Theorem 2.4.3 ([45] pg.97). Let f(t, x, λ) be continuous in (t, x, λ) and locally Lipshitz

in x (uniformly in t and λ) on [t0, t1] × D × {‖λ − λ0‖ ≤ c}, where D ⊂ R
n is an open

connected set. Let y(t, λ0) be a solution of ẋ = f(t, x, λ0) with y(t0, λ0) = y0 ∈ D.

Suppose y(t, λ0) is defined and belongs to D for all t ∈ [t0, t1]. Then, given ǫ2 > 0, there

is a δ > 0 such that if

‖z0 − y0‖ < δ and ‖λ − λ0‖ < δ

then there is a unique solution z(t, λ) of ẋ = f(t, x, λ) defined on [t0, t1], with z(t0, λ) = z0,

and z(t, λ) satisfies

‖z(t, λ) − y(t, λ0)‖ < ǫ2, ∀t ∈ [t0, t1]

This concludes the preliminary and background work needed in order to proceed with

the remaining chapters.
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Positive Stabilization

The problem of stabilization, using feedback gain matrices for linear time-invariant sys-

tems, dates back several decades; the main question, of course, being able to find con-

ditions, and a controller if at all possible, such that the closed loop eigenvalues of the

system are in the open left half plane of the imaginary axis. In this chapter we ap-

proach the positive stabilization problem from the viewpoint of a vertex enumeration

method. The problem of positive stabilization is still actively researched and we refer the

reader to Section 1.1.7 for a summary of current and past results related to the positive

stabilization problem.

Throughout the following pages, the necessary and sufficient conditions for the ex-

istence of a feedback controller are presented. The results of this chapter outline the

solution to the stabilization problem via first attacking the single-input single-output

case, and secondly transforming the knowledge of the single-input single-output systems

to that of multi-input multi-output systems. Provided within the pages of this chapter

are numerous examples illustrating the key differences between single-input single-output

systems and multi-input multi-output systems. In addition to the stabilization problem,

all results, via duality, are extended to the creation of positive observers and output gain

feedback controllers. Very interesting results on the separation principle (stabilization

28
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via observer design) for positive linear time-invariant systems are also described.

The chapter is divided into three sections. The first section is introductory where all

definitions of interest are presented. The second section outlines feedback stabilization,

observer design, and the separation principle for single-input single-output (SISO) sys-

tems. The final third section considers similar problems as that of section two, but for

the multi-input multi-output (MIMO) case. Numerous examples are provided throughout

the chapter to illustrate all theoretical results.

3.1 Preliminaries

This section presents preliminary results needed for the remainder of the chapter.

First, the system of interest is provided. Throughout the remainder of this chapter,

unless otherwise stated, we will consider the following positive linear time-invariant (LTI)

system:

ẋ = Ax + Bu

y = Cx + Du
(3.1)

where A ∈ Rn×n and is Metzler, B ∈ R
n×m
+ and is full rank, C ∈ R

r×n
+ and is full rank,

D ∈ R
r×m
+ and is full rank if nonzero, and the initial condition x0 ∈ Rn

+. Notice that

the system of interest satisfies the standard definition of a positive linear time-invariant

system as presented by Theorem 2.2.1.

We now introduce several definitions, which will become vital in the sequel. First, we

define stabilization and output stabilization of positive LTI systems (3.1); thereafter, we

define completely stabilizable systems and completely output stabilizable systems.

Definition 3.1.1. A positive system (3.1) is stabilizable if there exists a feedback gain
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matrix Ks ∈ R
m×n, for the control law:

u = −Ksx,

such that the closed loop system:

ẋ = (A − BKs)x

results in the closed loop matrix A − BKs being stable and Metzler.

In similar fashion we can extend the definition to output stabilization.

Definition 3.1.2. A positive system (3.1) is output stabilizable, with D = 0, if there exists

an output feedback gain matrix Ko ∈ Rm×r, for the control law:

u = −Koy,

such that the closed loop system:

ẋ = (A − BKoC)x

results in the closed loop matrix A − BKoC being stable and Metzler.

In the above definitions only state nonnegativity was taken into account (this is

obvious by recalling the Metzler property of Theorem 2.2.1); however, if the D matrix is

not zero the above definitions do not guarantee that the gain matrices will ensure both

state x and output y nonnegativity; thus, to take the output into account two additional

definitions are provided.

Definition 3.1.3. A positive system (3.1) is completely stabilizable if there exists a feedback
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gain matrix Ks ∈ R
m×n, for the control law:

u = −Ksx,

such that the closed loop system:

ẋ = (A − BKs)x

y = (C − DKs)x

results in y and x being nonnegative for all time t ≥ 0, and

x → 0, as t → ∞,

i.e. the closed loop matrix A − BKs is stable and Metzler and the matrix C − DKs is

nonnegative.

In similar fashion the latter definition can be extended to completely output stabiliz-

able systems.

Definition 3.1.4. A positive system (3.1) is completely output stabilizable if there exists an

output feedback gain matrix Ko ∈ R
m×r, for the control law:

u = −Koy,

such that the closed loop system:

ẋ = Ax − BKoy

y = Cx − DKoy
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results in y and x being nonnegative for all time t ≥ 0, and

x → 0, as t → ∞,

i.e. the closed loop matrix A − BKoC is stable and Metzler.

Assumption 3.1.1. Note that in complete output stabilizability the control law u = −Koy

results in:

y = Cx + D(−Koy)

y = Cx − DKoy

y + DKoy = Cx

(I + DKo)y = Cx

y = (I + DKo)
−1Cx.

For the remainder of the chapter, we will assume that Ko will be chosen in such a way

that the above inverse exists. This is not a restrictive assumption since the inverse exists

for generic Ko.

The above definitions ensure that regardless of the control input (positive or negative),

the plant will maintain nonnegativity of states (and/or outputs) for all initial conditions

x0 ∈ Rn
+ of the plant. It is worth pointing out that in applications, nonnegativity of

states (and/or outputs) occurs quite often; however, the need for the input u to be

also nonnegative, as in the original definition (Definition 2.2.1), may not always be a

necessity, as was also pointed out in [23]. Thus, throughout this chapter, we do not

restrict ourselves to nonnegative inputs.
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3.2 Necessary and Sufficient Conditions: SISO case

This section tackles the stabilization, output stabilization, and the extensions to complete

stabilization and complete output stabilization for SISO positive LTI systems (3.1) with

m = r = 1. In addition, stabilization and complete stabilization results are afterward

extended to observer design, and the separation principle.

State and Output Stabilization

The results of this subsection are a summary and an extension of the work of [15], [23],

[3]; in particular, in this subsection we provide controllers and several new conditions for

state stabilization and direct output stabilization for unstable SISO positive LTI systems.

We first point out that for an unstable Metzler matrix A, no ks ∈ R
1×n
− (or ko ∈ R−

for output stabilization) exists that would make A−bks (or equivalently A−kobc) Metzler

and stable, i.e. a controller

u = −ksx, ks ∈ R
1×n
−

or

u = −kox, ko ∈ R−

cannot stabilize a linear system (3.1) with A Metzler unstable. In order to point out this

observation we will invoke a result from [70].

Lemma 3.2.1. A Metzler matrix A ∈ Rn×n is stable if and only if

∃d ∈ interior(Rn
+) such that −Ad ∈ interior(Rn

+). (3.2)

Moreover, if A is stable then every principal submatrix of A is also stable.

We are now ready to state the observation that nonpositive gain matrices cannot solve

the stabilization problem. The implication of the Lemma below is quite significant, as
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we are stating that a strictly nonnegative input cannot stabilize a single-input positive

LTI system.

Lemma 3.2.2.

(i) There does not exist a nonpositive gain matrix ks ∈ R
1×n
− (ko ∈ R−) such that an

unstable Metzler matrix A ∈ Rn×n, an input matrix b ∈ Rn
+, and an output matrix

c ∈ R
1×n
+ can be stabilized (output stabilized).

(ii) Assume k̃s ∈ R1×n stabilizes an unstable Metzler matrix A ∈ Rn×n and an input

matrix b ∈ Rn
+; then this implies that there also exists a stabilizing gain matrix

ks ∈ R
1×n
+ that can do the same.

(iii) Assume k̃s ∈ R1×n completely stabilizes an unstable Metzler matrix A ∈ Rn×n, an

input matrix b ∈ Rn
+, an output matrix c ∈ R

1×n
+ and d̃ ∈ R+ \ {0}; then this

implies that there also exists a completely stabilizing gain matrix ks ∈ R
1×n
+ that

can do the same.

Proof. First, the proof of (i) is presented.

It is sufficient to show that for any unstable Metzler matrix A and any nonnegative

matrix A+ ∈ R
n×n
+ the summation A + A+ cannot satisfy (3.2). The reason for the

introduction of A+ is due to the fact that regardless of the choice of ks ∈ R
1×n
− (or

ko ∈ R−) the multiplication of bks (or bkoc) results in

−bks ∈ R
n×n
+ (−bkoc ∈ R

n×n
+ ), ks ∈ R

1×n
− , ko ∈ R−, b ∈ R

n
+.

Thus, by Lemma 3.2.1 if A + A+ is a stable Metzler matrix, then there exists a d ∈

interior(Rn
+) such that

0 < −d1ai1 − ... − dnain − d1a
+
i1 − ... − dna+

in

≤ −d1ai1 − ... − dnain ∀i = 1, ..., n.
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However, since A is unstable we have that for all d ∈ interior(Rn
+) there exists an i such

that −d1ai1 − ... − dnain ≤ 0, resulting in 0 < 0, a contradiction.

The second statement (ii) can be proved in a similar fashion as (i) above.

Assume that k̃s ∈ R1×n stabilizes an unstable Metzler matrix A ∈ Rn×n and an

input matrix b ∈ Rn
+. First, by (i) at least one element of k̃s must be positive. Next

assume, without loss of generality, that the first r elements of k̃s are negative while all

elements after r are greater than zero. It now follows by Lemma 3.2.1 that there exists

a d ∈ interior(Rn
+) such that

0 < −d1ai1 − ... − dnain − d1(−bik̃
1
s) − ...

− dr(−bik̃
r
s) − dr+1(−bik̃

r+1
s ) − ... − dn(−bik̃

n
s ),

for all i = 1, ..., n. However, from the above inequality we can set ks equal to k̃s with all

k̃i
s ∈ R− set to zero, i.e.

0 < −d1ai1 − ... − dnain − d1(−bik̃
1
s) − ...

− dr(−bik̃
r
s) − dr+1(−bik̃

r+1
s ) − ... − dn(−bik̃

n
s )

≤ −d1ai1 − ... − dnain − d1(−bi × 0) − ...

− dr(−bi × 0) − dr+1(−bik
r+1
s ) − ... − dn(−bik

n
s ),

with

[k1
s ... kr

s kr+1
s ... kn

s ] = [0 ... 0 k̃r+1
s ... k̃n

s ].

This completes the proof for (ii).

Finally, in statement (iii) ks has the additional constraint that it must satisfy:

c − d̃ks ≥ 0,
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component-wise. However, by the same argument as used in (ii) we can simply set all

negative components of the completely stabilizing gain ks to zero from which the result

follows.

Remark 3.2.1. Note that Lemma 3.2.2 (i) can be extended to the MIMO case with the

gain matrix Ks (see Definition 3.1.1), but Lemma 3.2.2 (ii) and (iii) cannot (more on this

issue will be presented in the sequel).

The implication of Lemma 3.2.2 is that we can safely assume that a gain matrix, if

it exists, will not be strictly nonpositive (based on our definition of stabilization), and

moreover, by the second statement of Lemma 3.2.2, we can directly deal with nonnegative

stabilizing gain matrices for the SISO case. What is astounding in Lemma 3.2.2 (i) is

the fact that one cannot stabilize a positive SISO LTI system with strictly nonnegative

gain feedback control (the same will be true in the MIMO case as Remark 3.2.1 already

hinted), i.e. if the control law is of the form:

u = −ksx,

with at least one element of ks being strictly positive, then there always exists an initial

condition x0 ∈ Rn
+ which would result in a negative input control. The only way that

we could guarantee a strictly positive control input (for unstable systems) is if the gain

matrix ks would have nonpositive entries, which Lemma 3.2.2 (i) shows is impossible if

stabilization is the goal.

We note that the concept of dealing with nonpositive gain matrices ks (more precisely

with nonnegative inputs) for the stabilization problem has been pointed out before, as

for example [23] illustrates for the special case of Metzler matrices with maximal eigen-

value(s) at the origin.

With the latter observations, we next invoke the results of [15] to obtain necessary and

sufficient conditions for the stabilization of unstable SISO positive LTI systems. The next
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Theorem summarizes the SISO result of [15] (although we present it as a stabilization

problem and not a positive observer design as in [15]), and with the aid of Lemma 3.2.1,

contributes an additional observation. Before the Theorem is presented, we point out an

additional result originally given in [55].

Lemma 3.2.3. Let A ∈ Rn×n be a Metzler matrix. Let A+
1 , A+

2 ∈ R
n×n
+ be such that

A+
1 ≤ A+

2 component-wise. If A − A+
1 and A − A+

2 are Metzler, then the maximal

eigenvalue of A − A+
1 is larger or equal to the maximal eigenvalue of A − A+

2 .

The latter Lemma will play a key role in the proof of the next result.

Theorem 3.2.1. Given a Metzler matrix A ∈ Rn×n and a nonnegative input matrix b ∈ Rn
+

of rank one, let ks = [k1
s ... kn

s ] ∈ R
1×n
+ be defined by

ki
s >

aii

bi

, if bj = 0, ∀j 6= i

ki
s = min

j 6=i,bj 6=0
{
aji

bj

}, else.

Then:

(i) there exists a matrix k ∈ R
1×n such that A − bk is a stable Metzler matrix if and

only if A − bks is a stable Metzler matrix;

(ii) moreover, if bi 6= 0 and bj = 0 for all j 6= i, j, i ∈ {1, ..., n}, then there always exists

a k ∈ R
1×n
+ such that A− bk is a stable Metzler matrix if and only if the submatrix

Ai is stable.

Proof. The combination of Lemma 3.2.2(i), Lemma 3.2.3, and the proof in [3] prove the

first statement (i).

The proof for the second statement (ii) is given next.

Let us first assume, without loss of generality, that b1 6= 0.

(⇒) If there exists a k ∈ R
1×n
+ such that A − bk is a stable Metzler matrix, then since
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bj = 0 for all j 6= 1, we have that the submatrices (A − bk)1 and A1 are equal, and by

Lemma 3.2.1 A1 must be stable.

(⇐) Now since the submatrix A1 is stable then there exists a d′ = [d2 ... d3] ∈ interior(Rn−1
+ )

such that −A1d′ ∈ interior(Rn−1
+ ) by Lemma 3.2.1, i.e. for all j ∈ {2, ..., n}

−(aj2d2 + aj3d3 + ... + ajndn) > δj .

Let δ = min
i=2,...,n

{δj} and a = max
j=2,...,n

{aj1}. Now, if a = 0, then let d1 = 1; otherwise, let

0 < d1 < δ
a
. With the latter choice we can satisfy (3.2) for all rows 2, ..., n. What remains

is the first row. However, our first result with d set as above and ki
s = 0 for i 6= 1 results

in:

−(a11 − k1
sb1)d1 − (a12d2 + ... + a1ndn) ≥

k1
sb1d1 − (|a11| d1 + a12d2 + ... + a1ndn) > 0;

thus, we can always set

k1
s >

|a11| d1 + a12d2 + ... + a1ndn

b1d1

≥ 0

and

ki
s = 0, i = 2, ..., n,

which gives us the needed result of

−(a11 − k1
sb1)d1 − (a12d2 + ... + a1ndn) > 0

and by Lemma 3.2.1 we have the desired outcome.

The latter Theorem provides a very easy way of checking the stabilization existence
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condition; moreover, if the condition is met, a stabilizing gain matrix ks is provided. Let

us next illustrate the power of the latter Theorem via an example.

Example 3.2.1. Consider the following three-dimensional unstable single input positive

system:

ẋ =









−1 2 1

0 −1 1

2 1 0.5









+









1

0

1









u.

We now invoke Theorem 3.2.1 (i) to calculate our gain matrix ks = [k1
s k2

s k3
s ]:

1. for i = 1

k1
s = min

j 6=1,bj 6=0
{
a31

b3
} = 2

2. for i = 2

k2
s = min

j 6=2,bj 6=0
{
a12

b1
,

a32

b3
} = 1

3. for i = 3

k3
s = min

j 6=3,bj 6=0
{
a13

b1

} = 1,

resulting in

ks = [2 1 1].

The closed loop system matrix with the obtained ks is









−1 2 1

0 −1 1

2 1 0.5









−









1

0

1









[

2 1 1

]

=









−3 1 0

0 −1 1

0 0 −0.5









,



Chapter 3. Positive Stabilization 40

with eigenvalues {−3, − 1, − 0.5}.

△

The next result deals with systems in controllable canonical form.

Corollary 3.2.1. Every unstable positive system (3.1) in controllable canonical form is not

stabilizable.

Proof. Directly follows from Theorem 3.2.1 (ii), i.e.

An =












0 1 0 ... 0

0 0 1 ... 0

... ...
...

0 0 0 ... 0












which is not a stable matrix.

The next example brings out the latter Corollary.

Example 3.2.2. Consider the following unstable three-dimensional SISO positive sys-

tem:

ẋ =









0 1 0

0 0 1

1 2 10









+









0

0

1









u.

We now invoke Corollary 3.2.1 directly to state that the system is not stabilizable. Notice

A3 =






0 1

0 0






clearly not stable.
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△

Note that from the latter discussion, we clearly can conclude that stabilization in the

LTI sense does not translate to stabilization in the positive LTI sense.

We now extend the results of stabilization to the output stabilization case.

Corollary 3.2.2. Given a Metzler matrix A ∈ Rn×n, a nonnegative input matrix b ∈ Rn
+,

and a nonnegative output matrix c ∈ R
1×n
+ , then

(i) if bici 6= 0 for some i ∈ {1, ..., n} and bkcj = 0, for all j, k 6= i, j, k ∈ {1, ..., n}, then

there exists a ko ∈ R such that A − kobc is a stable Metzler matrix if and only if

the submatrix Ai is stable;

(ii) else, let

ko = min
j 6=i,bicj 6=0

{
aij

bicj

},

then there exists a k ∈ R such that A − kbc is a stable Metzler matrix if and only

if A − kobc is a stable Metzler matrix.

Before the proof is presented, we point out that in Corollary 3.2.2(i) one can easily

find ko by doing a one-dimensional search in the positive direction (by Lemma 3.2.2 (i)).

We are now ready to prove Corollary 3.2.2.

Proof. In order to prove the first statement (i) we will assume without loss of generality

that b1c1 6= 0. The proof follows the same procedure as that of Theorem 3.2.1 (ii) and is

included for completeness.

(⇒) If there exists a k ∈ R+ such that A − kbc is a stable Metzler matrix, then since

b1cj = 0 and bjc1 = 0, i.e. cj = 0/bj = 0, for all j 6= 1, we have that the submatrices

(A − kbc)1 and A1 are equal, and by Lemma 3.2.1 A1 must be stable.

(⇐) Now since the submatrix A1 is stable then there exists a d′ = [d2 ... d3] ∈ interior(Rn−1
+ )
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such that −A1d′ ∈ interior(Rn−1
+ ) by Lemma 3.2.1, i.e. for all j ∈ {2, ..., n}

−(aj2d2 + aj3d3 + ... + ajndn) > δj .

Let δ = min
i=2,...,n

{δj} and a = max
j=2,...,n

{aj1}. Now if a = 0, let d1 = 1; otherwise, let

0 < d1 < δ
a
, we can satisfy (3.2) for all rows 2, ..., n. What remains is the first row.

However, our first result with d set as above results in:

−(a11 − kob1c1)d1 − (a12d2 + ... + a1ndn) ≥

kob1c1d1 − (|a11| d1 + a12d2 + ... + a1ndn) > 0;

thus, we can always set

k0 >
|a11| d1 + a12d2 + ... + a1ndn

b1c1d1
≥ 0

which gives us the needed result of

−(a11 − kob1c1)d1 − (a12d2 + ... + a1ndn) > 0

and by Lemma 3.2.1 we have the desired outcome.

We now shift to point (ii). First, we know that ko must satisfy:

0 < ko ≤ min
j 6=i,bicj 6=0

{
aij

bicj

}.

where ko > 0 by Lemma 3.2.2(i) and

ko ≤ min
j 6=i,bicj 6=0

{
aij

bicj

}
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due to the Metzler restriction placed on the closed-loop matrix. Now define A+
1 =

k̃obc, A+
2 = kobc in Lemma 3.2.3, with k̃o ≤ ko ⇒ A+

1 ≤ A+
2 component-wise. It is now

clear by Lemma 3.2.3 that the result follows.

We now return to Example 3.2.1 and illustrate Corollary 3.2.2.

Example 3.2.3. Consider the following unstable three-dimensional SISO positive sys-

tem:

ẋ =









−1 2 1

0 −1 1

2 1 0.5









+









1

0

1









u

y = [1 0 1]x

We now invoke Corollary 3.2.2 to calculate our gain ko:

ko = min
j 6=i,bicj 6=0

{
a13

b1c3
,

a31

b3c1
} = 1.

The closed loop system matrix with the obtained ko is









−1 2 1

0 −1 1

2 1 0.5









−









1

0

1









[

1 0 1

]

=









−2 2 0

0 −1 1

1 1 −0.5









,

with two stable eigenvalues (−2.0515 ± 0.8750i) and one unstable eigenvalue (0.6031),

i.e. the system is not output stabilizable.

△

The next logical step in the sequence is the extension of Theorem 3.2.1 and Corollary

3.2.2 to complete stabilization and complete output stabilization. The results are outlined

below.
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Corollary 3.2.3. Given the system (3.1) with a Metzler matrix A ∈ R
n×n, a nonnegative

input matrix b ∈ Rn
+ of rank one, a nonnegative output matrix c ∈ R

1×n
+ of rank one, and

a nonnegative output input scalar d̃ ∈ R+ \ {0}, let ks = [k1
s ... kn

s ] ∈ R
1×n
+ be defined by

ki
s >

aii

bi

, if bj = 0, ∀j 6= i

ki
s = min

j 6=i,bj 6=0
{
aji

bj

}, else.

under the constraint

ki
s ≤

ci

d̃
, ∀i = 1, ..., n. (3.3)

Then, (3.1) is completely stabilizable with a gain matrix k ∈ R1×n if and only if (3.1) is

completely stabilizable with the gain matrix ks defined above.

Proof. Here the proof follows the proof of Theorem 3.2.1, and the extra condition (3.3)

follows from the fact that we need the output

y = cx + d̃u

to be positive for all time. Thus,

y ≥ 0, ∀t ≥ 0

if and only if

cx + d̃u = cx + d̃(−ksx)

= (c − d̃ks)x

≥ 0,
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which is true if and only if

c − d̃ks ≥ 0,

component-wise, i.e.

ki
s ≤

ci

d̃
, ∀i = 1, ..., n.

It is worth pointing out that Theorem 3.2.1 (ii) cannot be extended to the complete

stabilization case. An example illustrates this point below.

Example 3.2.4. Consider the following two-dimensional SISO positive system:

ẋ =






5 0

2 −1




 +






1

0




u

y = [1 0]x + u.

Here, we notice that

A1 = −1,

which is clearly stable and thus A is stabilizable; however, the system is not completely

stabilizable, as in order to obtain complete stabilization we need to, simultaneously,

satisfy the constraints:

k1
s > 5, k1

s ≤ 1,

with the first condition coming from stabilization and the second from output nonnega-

tivity.

△

The next result extends Corollary 3.2.2 to complete output stabilization.
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Corollary 3.2.4. Given the system (3.1) with a Metzler matrix A ∈ R
n×n, a nonzero

nonnegative input matrix b ∈ Rn
+, a nonzero nonnegative output matrix c ∈ R

1×n
+ , and a

nonzero nonnegative output input scalar d̃ ∈ R+ \ {0}, then let

ko = min
j 6=i,bicj 6=0

{
aij

bicj

}, (3.4)

under the extra constraint

0 < ko <
1

d̃
.

Then there exists a k ∈ R such that (3.1) is completely output stabilizable if and only if

ko =
ko

1 − d̃ko

> −
1

d̃

completely output stabilizes (3.1).

Proof.

(⇐) Trivial, set k = ko.

(⇒) Consider

y = cx + d̃u

with u = −koy, resulting in

y = cx − d̃koy

y + d̃koy = cx

y(1 + d̃ko) = cx

y =
c

1 + d̃ko

x (3.5)
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implying that

(1 + d̃ko) > 0 see Assumption 3.1.1

ko >
−1

d̃
.

Next,

ẋ = Ax + bu

= Ax + b(−koy)

= Ax − kob

(
c

1 + d̃ko

x

)

=

(

A −
ko

1 + kod̃
bc

)

x,

with

ko =
ko

1 + kod̃
,

which by Lemma 3.2.2 must be greater than 0, i.e. ko > 0. The second inequality,

ko <
1

d̃

comes from the fact that if ko ≥
1
d̃
, then

1. (i) if ko = 1
d̃
, then ko does not exist since

ko =
ko

1 − d̃ko

.

2. (ii) if ko > 1
d̃
, then we have the contradiction

−
1

d̃
< ko =

ko

1 − d̃ko

<
ko

−d̃ko

= −
1

d̃
,
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i.e.

−
1

d̃
< −

1

d̃
.

Thus, indeed we must satisfy

0 < ko <
1

d̃
,

with condition (3.4) being justified by Corollary 3.2.2.

Finally, one cannot overlook that in the case of d̃ = 0 complete stabilizability and

stabilizability are equivalent (similarly for complete output stabilizability and output

stabilizability).

The results presented thus far provide us with the necessary and sufficient conditions

for both (complete) stabilization and (complete) output stabilization of SISO positive

LTI systems. We next shift our focus to the presentation of results for the design of

Luenberger observers for positive SISO LTI systems.

Observer Design

The following result has been covered in [15] and [3]; its inclusion in this subsection is

strictly for completeness. However, below, we note an interesting observation that was

not covered in the latter citations. Additionally, we come back to observer design in the

sequel; thus, it’s inclusion here is a necessity.

Theorem 3.2.2 ([15]). Given a Metzler matrix A ∈ Rn×n and a nonnegative output matrix

c ∈ R
1×n
+ , let lo = [l1 ... ln]T ∈ Rn

+ be defined by

li >
aii

ci

, if cj = 0, ∀j 6= i else

li = min
j 6=i,cj 6=0

{
aij

cj

}.
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Then there exists a nonnegative matrix l ∈ R
n
+ such that A−lc is a stable Metzler matrix

if and only if A − loc is a stable Metzler matrix.

We note that as in the case of the stabilization theorem, we can add to the latter

result the following lemma.

Lemma 3.2.4. Given a Metzler matrix A ∈ Rn×n and a nonnegative output matrix c ∈

R
1×n
+ , if ci 6= 0 and cj = 0 for all j 6= i, j, i ∈ {1, ..., n}, then there exists an l ∈ Rn

+ such

that A − lc is a stable Metzler matrix if and only if the submatrix Ai is stable.

We have now presented necessary and sufficient results for both stabilization and the

existence of Luenberger observers. What remains to be shown is the design of observer

based stabilization. The interest of course being that regardless of the input into the

system, we would like to maintain nonnegativity of the states and outputs for the plant;

this we present in the sequel.

State and Observer based Stabilization

In LTI systems the separation property applies, i.e. first designing a stabilizing matrix

k, then designing, independently, an observer by finding the matrix gain l, and finally

combining the two to produce an adequate controller. We would like to determine if

this is also possible in the case of positive LTI systems, something that to date has not

been covered anywhere in the literature. The problem, of course, is ensuring that we do

not violate any nonnegativity constraint on the states or outputs of our plant. Here we

present the details behind the separation property for positive LTI systems.

Recall that a Luenberger observer is of the form:

˙̂x = Ax̂ + bu + l(y − ŷ), (3.6)

where ŷ = cx̂ + d̃u. Now in our system plant, we assume that u = −ksx̂, where ks has

been found so that A − bks is Metzler and stable, and x̂ is the estimate of the state x,
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i.e.

ẋ = Ax + bu (3.7)

= (A − bks)x + bks(x − x̂), (3.8)

so if ex := x − x̂ ≥ 0 component-wise and ks ≥ 0, then x ∈ Rn
+ for all time. Note that

from Lemma 3.2.2 and Theorem 3.2.1, we can always find a nonnegative gain matrix ks

so long as the system is stabilizable. Also,

ėx = Ax + bu − Ax̂ − bu − l(y − ŷ) (3.9)

= (A − lc)ex. (3.10)

Now, if initially ex is nonnegative, then the problem is solved. This causes no problem

as the initial condition of x̂ is at our disposal and we can simply choose it to be zero.

If in the latter discussion d̃ 6= 0, then we must ensure that ks has been chosen in such

a way that the system of interest is completely stabilizable, i.e. with d̃ 6= 0 we have the

extra constraint on ks:

y = cx + d̃u

= cx − d̃ksx̂ + d̃ksx − d̃ksx

= (c − d̃ks)x + d̃ks(x − x̂)

= (c − d̃ks)x + d̃kse,

which results in the extra constraint placed by complete stabilizability

c − d̃ks ≥ 0.

In conclusion, the separation property of positive LTI systems can be carried out, with
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the assumption that x̂0 (initial condition of x̂) is zero, the system is positive observable

(i.e. A− lc is Metzler stable), and either stabilizable (if d̃ = 0) or completely stabilizable

(if d̃ 6= 0). We note, however, that the closed loop poles of A − lc cannot be as freely

chosen as in SISO LTI systems, i.e. we normally would like to have “fast” observer poles,

but this may not be as freely done in the positive LTI SISO case.

This completes the study of stabilization, scalar output stabilization and observer

based stabilization for SISO systems.

3.3 Necessary and Sufficient Conditions: MIMO case

This section extends the results of the previous subsection of SISO positive LTI systems

to the MIMO case.

State Stabilization

This subsection will outline the differences between MIMO and SISO cases by outlining

certain special cases of MIMO systems that encapsulate the solution that was observed

in the latter section, and by providing the main necessary and sufficient results of the

chapter. However, we first turn to Lemma 3.2.2 and Remark 3.2.1 by extending the

result to the MIMO case. Namely, in Lemma 3.2.2 and Remark 3.2.1, it was noted that

in SISO and in MIMO positive systems the gain matrix ks (Ks) cannot be nonpositive.

The following Corollary is a direct extension of Lemma 3.2.2 for the MIMO case.

Corollary 3.3.1.

(i) There does not exist a nonpositive gain matrix Ks ∈ R
m×n
− (Ko ∈ R

m×r
− ) such that

an unstable Metzler matrix A ∈ Rn×n, an input matrix B ∈ R
n×m
+ , and an output

matrix C ∈ R
r×n
+ can be stabilized (output stabilized); moreover,

(ii) any column ki
s of Ks that is nonpositive can be replaced by some column k

i

s which

contains at least one strictly positive entry.
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Proof. See the proof of Lemma 3.2.2 (i) and replace ks with Ks. The result follows

directly for both (i) and (ii).

Although we have extended Lemma 3.2.2 (i) to the MIMO case above, the same cannot

be done with Lemma 3.2.2 (ii) and (iii). An example is provided below to illustrate this

point.

Example 3.3.1. Consider the system:

ẋ =









0.5 0.51 0

9 − 18
700

0

4 0.5 −1









x +









0 1

3 0

2 1









u. (3.11)

In this case, it turns out that there does not exist a nonnegative Ks (we will come back

to the reason for this, later in the chapter) which stabilizes (3.11), yet the gain matrix:

Ks =






−1 −0.005 0

6 0.51 0






yields σ(A−BKs) = {−5.5, −0.0107, −1}, with the closed loop system being Metzler:









0.5 0.51 0

9 − 18
700

0

4 0.5 −1









−









0 1

3 0

2 1














−1 −0.005 0

6 0.51 0




 =









−5.5 0 0

12 −0.0107 0

0 0 −1









.

To disprove Lemma 3.2.2 (iii) for the MIMO case we can take the latter example with

C =






1 0 0

0 1 0




 , D =






1 0

0 0




 ,
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and obtain the same closed loop matrix A − BKs with the additional constraint

C − DKs =






1 0 0

0 1 0




 −






1 0

0 0











−1 −0.005 0

6 0.51 0




 =






2 0.005 0

0 1 0






△

Through the latter example we already see a main distinguishing feature between

SISO and MIMO systems, i.e. in SISO systems we can concentrate on nonnegative gain

matrices, while in MIMO systems the same is not true.

For the remainder of this subsection, the concentration will be on the stabilization

and output stabilization problems. The treatment of complete stabilization and complete

output stabilization will follow.

Next, we will utilize Lemma 3.2.1 to provide the necessary and sufficient condition

for stabilization of positive LTI systems via the use of bilinear inequalities. For the rest

of the chapter, we will assume that system (3.1) is unstable, i.e. the A matrix is not

Hurwitz.

Corollary 3.3.2. System (2.2) is stabilizable by some gain matrix K ∈ R
m×n if and only

if there exists a matrix K ∈ Rm×n and a vector d ∈ interior(Rn
+), such that A − BK is

Metzler and the following bilinear matrix inequality problem

−(A − BK)d ∈ interior(Rn
+) (3.12)

is feasible.

Proof. From Lemma 3.2.1 we have that a Metzler matrix A ∈ Rn×n is stable if and only

if

∃d ∈ interior(Rn
+) such that −Ad ∈ interior(Rn

+).

by letting A = A − BK the result follows.
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The above Corollary, stemming from Lemma 3.2.1, definitely provides the necessary

and sufficient results without having to look at the spectrum of the closed loop system.

Unfortunately, in general, the feasibility of bilinear matrix inequalites has been shown

by Toker and Özbay [82] to be an NP -hard problem. Thus, in the remainder of this

subsection, it will be shown how Corollary 3.3.2 can be reduced to a more subtle and

checkable solution.

Before we present the main result of this subsection, a special case of MIMO positive

LTI systems, where the B matrix in (3.1) has unitary rows and is full rank, i.e. each row

bi, i = 1, ..., n, of B has one non-zero entry

∃ j ∈ {1, ...m} bij 6= 0 and ∀ k 6= j bik = 0

will be considered.

Theorem 3.3.1. Consider system (3.1), where B has unitary rows and rank(B)=m. Let

Ks ∈ Rm×n be defined by:

1. if bji = 0, ∀j 6= i, then

kii
s >

aii

bii

, and

kij
s =

aij

bii

(3.13)

2. else

krj
s = min

j 6=i,bir 6=0
{
aij

bir

}. (3.14)

Then there exists a matrix K ∈ Rm×n such that A − BK is a stable Metzler matrix if

and only if A − BKs is a stable Metzler matrix.

Proof.



Chapter 3. Positive Stabilization 55

(⇐) Simply set K = Ks.

(⇒) Assume that there exists a gain matrix K which stabilizes. Without loss of generality

assume that the unitary columns of B, i.e. a column bj is unitary if it contains one non-

zero entry

∃ i ∈ {1, ...n} bji 6= 0 and ∀ k 6= i bki = 0,

are 1, .., q, with q ≤ m. Due to (3.13) and the assumption of unitary rows we can now

express the system as:

ẋ = Ax − B1K
1
s x − B2K

2
s x,

with B1 containing only unitary columns and B2 containing nonunitary columns with

appropriate dimensions. More precisely, we have (3.15).

ẋ =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

a11 a12 a1n

a21 a22 ... a2n

...
...

. . .
...

aq1 aq2 ... aqn

a(q+1)1 a(q+1)2 a(q+1)n

...
...

. . .
...

an1 an2 ann

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

x −

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

b11 0 0

0 b22 ... 0

...
...

. . .
...

0 0 ... bqq

0 0 0

...
...

. . .
...

0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

4

k11
s

a12

b11
... a1n

b11

a21

b22
k22

s
a2n

b22

...
...

. . .
...

aq1

bqq

aq2

bqq

k
qq
s

3

7

7

7

7

7

7

7

5

x

−

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0

...
...

. . .
...

0 0 0

b(q+1)(q+1) b(q+1)(q+2) ... b(q+1)m

.

..
.
..

. . .
.
..

bn(q+1) bn(q+2) ... bnm

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

4

k
(q+1)1
s k

(q+1)2
s ... k

(q+1)n
s

...
...

. . .
...

km1
s km2

s kmn
s

3

7

7

7

7

5

x

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

a11 − b11k11
s 0 0

0 a22 − b22k22
s ... 0

.

..
.
..

.

..

0 0 ... 0

a(q+1)1 a(q+1)2 a(q+1)n

...
...

. . .
...

an1 an2 ann

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

x −

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0

...
...

. . .
...

0 0 0

b(q+1)(q+1) b(q+1)(q+2) ... b(q+1)m

...
...

. . .
...

bn(q+1) bn(q+2) ... bnm

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

×

2

6

6

6

6

4

k
(q+1)1
s k

(q+1)2
s ... k

(q+1)n
s

...
...

. . .
...

km1
s km2

s kmn
s

3

7

7

7

7

5

x. (3.15)
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Let

B2 =









b(q+1)(q+1) b(q+1)(q+2) ... b(q+1)m

...
...

. . .
...

bn(q+1) bn(q+2) ... bnm









. (3.16)

Now clearly the upper (q × n) matrix consists of a Metzler and stable matrix and zero

entries; thus, if there exists a

K =






K1

K2






which stabilizes with some K1 then there definitely exists a

K =






K1
s

K2






which stabilizes, by the argument above, where

K1
s =












k11
s

a12

b11
... a1n

b11

a21

b22
k22

s
a2n

b22

...
...

. . .
...

aq1

bqq

aq2

bqq
kqq

s












.

We now show that K2 can be replaced by K2
s .

By Lemma 3.2.1, we can concentrate on the stabilization of the lower submatrix

A1,...,q;

thus, we take

K =






K1
s

K21 K22





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where K2 = [K21 K22], and since K stabilizes then

A1,...,q − B2K2 (3.17)

must be stable and Metzler. Therefore, there exists a d2 ∈ interior(Rn
+), by Lemma

3.2.1, such that

−(A1,...,q − B2K2)d2 ∈ interior(Rn
+).

Now, clearly each entry of K2 cannot exceed the constraint (3.14) due to the Metzler

property, thus either each entry is equal to that of (3.14) or is less. If an entry is less,

then by the same procedure as used in the proof of Lemma 3.2.2 with (3.17) under

consideration, it follows that K2 can be replaced by K2
s , completing the proof.

Notice the close resemblance of Theorem 3.3.1 to that of the results of Theorem

3.2.1 for SISO systems. In fact, the results for SISO systems are just a special case of

Theorem 3.3.1 due to the fact that, clearly, the b matrix in the SISO case has unitary

rows. Although, at first, it may appear that Theorem 3.3.1 is restrictive (w.r.t. the B

matrix), it has direct application in compartmental systems. Theorem 3.3.1 uses the idea

of unitary rows, which intuitively just means that there is at most one input controlling

a state (or compartment). One can argue that it may be redundant, in compartmental

systems, to have more than one controlling input per compartment.

We illustrate the results of Theorem 3.3.1 in the next example.

Example 3.3.2. Consider the following unstable positive system:

ẋ =









0 1 1

1 0 2

1 0 −3









x +









1 0

0 1

1 0









u.
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Clearly, the rows of B are unitary so we may proceed to use Theorem 3.3.1 to find a

legitimate Ks if it exists. By (3.13) and (3.14) we end up with:

1. for k11
s , r = 1, j = 1

k11
s = min

i6=1,bi1 6=0

{
a31

b31
= 1

}

= 1

2. for k12
s , r = 1, j = 2

k12
s = min

i6=2,bi1 6=0

{
a12

b11
= 1,

a32

b31
= 0

}

= 0

3. for k13
s , r = 1, j = 3

k13
s = min

i6=3,bi1 6=0

{
a13

b11

= 1

}

= 1

4. for [k21
s k22

s k23
s ] (by Equation (3.13)) we have

k21
s =

a21

b22

, k22
s > 0, k23

s =
a23

b22

,

resulting in

Ks =






1 0 1

1 1 2




 ,

where k22
s > 0 is chosen arbitrarily to equal one. The resultant closed loop matrix is:

Ac =









0 1 1

1 0 2

1 0 −3









−









1 0

0 1

1 0














1 0 1

1 1 2




 =









−1 1 0

0 −1 0

0 0 −4









,

which is clearly Metzler and stable.

△

Theorem 3.3.1 provides the necessary and sufficient (checkable) conditions for a special
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row unitary MIMO positive LTI system to be stable; we now return to the general

solution. Our first goal will be to utilize Corollary 3.3.2 for the case when each column

of the B matrix contains at least two (or more) nonzero entries, i.e. the columns of B

are all nonunitary.

Lemma 3.3.1. Consider system (3.1), where rank(B)=m and each column of B is nonuni-

tary. Let K ∈ R
m×n
+ , and define n polytopes Pi, i = 1, ..., n by the set of inequalities:

a1i − b11k1i − ... − b1mkmi ≥ 0

...
...

a(i−1)i − b(i−1)1k1i − ... − b(i−1)mkmi ≥ 0

aii − bi1k1i − ... − bimkmi ≤ 0

a(i+1)i − b(i+1)1k1i − ... − b(i+1)mkmi ≥ 0

...
...

ani − bn1k1i − ... − bnmkmi ≥ 0.

Let Vi be the accompanying set of vertices for Pi.

Then the system (3.1) is stabilizable with a nonnegative gain if and only if there exists

a set of vertices ki
s ∈ Vi, such that

A − BKs, (3.18)

where Ks = [k1
s ... kn

s ], is stable.

Before we prove the result a few remarks are in order.

Remark 3.3.1. We note that in Lemma 3.3.1 we restricted Ks ∈ R
m×n
+ , but there is no

need to make that restriction and, in fact, any lower bound kl ∈ R− for the elements of

Ks can be chosen!

We point out that the finite set of inequalities in Lemma 3.3.1 are a result of Metzler

properties of the A − BK matrix. Also, the iith-inequalities carry a less or equal to

zero symbol due to the fact that for positive LTI systems all submatrices must be stable,



Chapter 3. Positive Stabilization 60

including the iith entries (see Lemma 3.2.1). Thus, we can automatically drop any vertices

that fall on the hyperplane generated by the iith-inequality. If we did choose a vertex

on the hyperplane generated by the iith-inequality, then the iith entry of the closed loop

matrix would result in 0, clearly not stable.

Additionally, any vertex that has only negative components can also be dropped, by

a similar argument that was made in the SISO case for the stabilization vector ks and

stabilization constant ko, which had to be nonnegative, and by Corollary 3.3.1 (ii).

It is to be noted that a stabilizing gain matrix Ks, if it exists, can be found by

enumeration, on checking the finite list of Ks vertices which result from examining each

of the vertices of (3.18).

We are now ready to prove the result.

Proof. First, since by assumption B is full rank and has at least two nonzero elements

in each column, Pi is indeed a polytope and the set of vertices Vi exists.

Next, by contradiction assume that there exists a K such that A−BK is stable, yet

no Ks (see (3.18)) stabilizes. Since a K exists, then (A−BK)T must be stable and there

exists a d ∈ interior(Rn
+), by Corollary 3.3.2, such that:

−(A − BK)T d = −(AT − KT BT )d ∈ interior(Rn
+). (3.19)

Assume, without loss of generality, that the first column (k1) of K does not belong to V1,

i.e. k1 /∈ V1. Now taking equation (3.19), we can set up the following linear programming

problem:

max
k1

− (a1 − k1B
T )d
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subject to the constraints:

a11 − b11k11 − ... − b1mkm1 ≤ 0

a21 − b21k11 − ... − b2mkm1 ≥ 0

...
...

an1 − bn1k11 − ... − bnmkm1 ≥ 0

where k1 = [k11 ...km1], a1 = [a11 ... an1], and the maximizing function coming from

the condition of Corollary 3.3.2. It is now well known that the maximum of a linear

programming problem occurs at a vertex, i.e. it is both necessary and sufficient to just

check the vertices of P1. We can continue this process for each Pi, i = 2, ..., n, resulting

in a contradiction that no Ks (see (3.18)) stabilizes. This completes the proof.

We now illustrate the importance and power of Lemma 3.3.1 via returning to Example

3.3.1.

Example 3.3.3. Consider the system of Example 3.3.1. We first restrict the gain matrix

Ks to be nonnegative, which will illustrate that indeed no nonnegative gain matrix Ks

can solve the stabilization problem, as pointed out in Example 3.3.1. Afterward, we

allow the gain matrix to take on negative values, bounded from below, arbitrarily by −1,

and thus resulting in the stabilization of system (3.11). Let us first define the polytopes

P1, P2, P3.

P1 :

0.5 − k21 ≤ 0

9 − 3k11 ≥ 0

4 − 2k11 − k21 ≥ 0

ki1 ∈ R+, i ∈ {1, 2}

The resultant V1 = {[0 4]T}. Notice that by the statement of Remark 3.3.1, i.e. no

vertices on the hyperplane 0.5 − k21 = 0 qualify as possible candidates, we can omit all
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other vertices. Next, we define P2 and P3:

P2 :

0.51 − k22 ≥ 0

− 18
700 − 3k12 ≤ 0

0.5 − 2k12 − k22 ≥ 0

ki2 ∈ R+, i ∈ {1, 2}

and P3 :

0 − k23 ≥ 0

0 − 3k13 ≥ 0

−1 − 2k13 − k23 ≤ 0

ki3 ∈ R+, i ∈ {1, 2}.

The resultant sets of vertices are: V2 = {[0 0.5]T , [0 0]T , [0.25 0]T} and V3 = {[0 0]T}.

We now can show by enumeration that the most advantageous gain matrix generated

from V1, V2, V3 is:

Ks =






0 0 0

4 0.5 0




 ,

which results in closed loop eigenvalues of {−3.526, 0,−1}. Notice that indeed a non-

negative gain matrix does not stabilize system (3.11). We now lift the restriction of

nonnegative gain matrices and instead bound all entries of Ks to be greater or equal to

−1. The definition of P1, P2, P3 is identical, except for the bound condition. The new

sets of vertices are:

V1 = {[−1 6]T }

V2 = {[0.25 0]T , [−0.005 0.51]T }

V3 = {[0 0]T },

which results in the same Ks as in Example 3.3.1, where the closed loop system matrix



Chapter 3. Positive Stabilization 63

is given by:

(A − BKs) =









−5.5 0 0

12 −0.0107 0

0 0 −1.









.

△

The next step toward the full result of stabilization is to consider the case when

the input B matrix has at least one column with just one nonzero entry, i.e. unitary

columns1. Recall that we have already summarized this case in the SISO situation (see

Theorem 3.2.1 (ii)) and thus we are only extending it to the MIMO case below.

Corollary 3.3.3. Consider system (3.1), where rank(B)=m and there exists a unitary col-

umn (bi) of B. Without loss of generality assume i = 1. Then system (3.1) is stabilizable

if and only if there exists a gain matrix K2,...,n
s ∈ Rm×(n−1) such that (A−B[0n×1 K2,...,n

s ])1

is stable.

Proof.

(⇒) Trivial.

(⇐) Let the candidate stabilizing matrix be Ks = [k1
s K2,...,n

s ], where K2,...,n
s ∈ R

m×(n−1)

stabilizes A1, i.e.

Ac =













a11 a12 ... a1n

a21

...

an1

A1













− B[0n×1 K2...n
s ]

with A1
c stable. Next, by similar arguments as used in the proof of Corollary 3.2.2, we

can set the first element k11
s of k1

s arbitrarily (positive) large (all other elements of k1
s can

be set to any value), as there are no constraints on its size; thus if A1 is stabilizable then

so is A.

One remark regarding the latter Corollary is in order, namely, the value of k11
s may

1without loss of generality the case of zero columns is neglected
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turn out to be very large, although it always exists so long as A1 is stabilizable. Thus,

the designer of the stabilizing matrix may want to place an upper bound ku ∈ R+ on the

value of k11
s ; however, the resultant bound, clearly, may not be sufficiently large enough to

provide stability. As it stands, k11
s , in Corollary 3.3.3, can be found via a one-dimensional

search, which translates to setting (and possibly resetting) an upper bound ku ∈ R+.

The next logical step is to combine the results of Lemma 3.3.1 and Corollary 3.3.3.

Theorem 3.3.2. Consider system (3.1), where rank(B)=m, there exists one (or more)

row(s) of B which is nonunitary, and (without loss of generality) where columns 1, ..., j

of B are unitary and columns j+1, ..., m are not. Assume the elements of Ks are bounded

from below and above by kl ∈ R− and ku ∈ R+, respectively.

Let K ∈ Rm×n. Set krr = ku for r = 1, ..., j and define n polytopes Pi, i = 1, ..., n by

the set of inequalities:

a1i − b11k1i − ... − b1mkmi ≥ 0

...
...

a(i−1)i − b(i−1)1k1i − ... − b(i−1)mkmi ≥ 0

aii − bi1k1i − ... − bimkmi ≤ 0

a(i+1)i − b(i+1)1k1i − ... − b(i+1)mkmi ≥ 0

...
...

ani − bn1k1i − ... − bnmkmi ≥ 0.

Let Vi be the accompanying set of vertices for Pi.

Then, there exists a stabilizing matrix, for (3.1), with elements bounded by (kl, ku) if

and only if there exists a set of vertices ki
s ∈ Vi, such that A−BKs, where Ks = [k1

s ... kn
s ],

is stable.

The proof for the above Theorem is omitted, as it is a direct consequence of the set

of results provided thus far.

We are now ready to outline an algorithm that will generate a stabilizing gain matrix
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for (3.1) or let us know that (3.1) is not stabilizable.

Algorithm 3.3.1 (Stabilization of MIMO positive LTI systems). Consider an unstable Metzler

matrix A and a nonnegative matrix B, with rank(B) = m.

1. If each row of B is unitary, apply the results of Theorem 3.3.1 to find a stabilizing

gain matrix Ks and return “(A,B)-stabilizable” and the gain matrix Ks; if not

stabilizable, then return “(A,B)-not stabilizable”, and stop; otherwise (i.e. if there

exists a row (or more) of B that is not unitary) proceed to the next step.

2. Provide lower and upper bounds on the entries of the gain matrix Ks: (kl, ku).

Proceed to the next step.

3. If column i is unitary, then set entry kii
s = ku and use the results of Theorem 3.3.2

to find the sets of vertices V1, V2, ..., Vn. Proceed to next step.

4. Find a stabilizing gain matrix Ks = [k1
s ... kn

s ], where ki
s ∈ Vi, for i = 1, ..., n, using

enumeration. If successful return “(A,B)-stabilizable” and the gain matrix is “Ks”,

otherwise return ‘not stabilizable under bounds (kl, ku)”.

In the above algorithm, the bounds on the entries of Ks are used simply to avoid

dealing with unboundedness, and have been already discussed after Lemma 3.3.1 and

Corollary 3.3.3. Clearly it is practically infeasible to have infinite gains and thus the

designer can choose appropriate bounds according to their application. The latter al-

gorithm can be slightly modified by separating the system into three components: one

subsystem with unitary columns and rows, one subsystem with just unitary columns,

and the final subsystem with nonunitary columns, i.e.

ẋ =









A11 A12 A13

A21 A22 A23

A31 A32 A33









x −









B11 0 0

0 B22 0

0 B32 B33

















K11 K12 K13

K21 K22 K23

K31 K32 K33









x,
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where, without loss of generality, we can assume that rows and columns 1, ..., k of B are

unitary, columns k+1, ..., j of B are nonunitary, and columns j +1, ..., m are unitary but

the corresponding rows are nonunitary. The latter separation allows the algorithm to

deal with (possibly) smaller stabilizing subroutines dependent on the number of unitary

columns, i.e. the larger amount of unitary columns the smaller the subsystem to stabilize,

this is justified by Corollary 3.3.3. Additionally, due to the results of Theorem 3.3.1 and

Remark 3.3.1 one can add several subroutines to speed up the enumeration process for

each component of Ks.

We point out that in the case of output stabilization, algorithm 3.3.1 can be repeated,

except we now have to deal with Ko at once and not column by column, i.e. the Metzler

constraints coming from the closed loop matrix Aco = A − BKoC result in only one

polytope P and thus one accompanying set of vertices V . The extension to output

stabilization can be found below.

Corollary 3.3.4. Consider system (3.1), where rank(B)=m, rank(C)=r, and D = 0. As-

sume the elements of Ko are bounded from below and above by kl ∈ R− and ku ∈ R+,

respectively. Define:

B =












− b1 −

− b2 −

...

− bn −












and C =









| | |

c1 c2 . . . cn

| | |









,

where bi is the ith row of B and cj is the jth column of C.

Let K ∈ Rm×r and initially set to 0. Define the polytope P by the set of inequalities:

aii − biKci ≤ 0

aij − biKcj ≥ 0 ∀ i 6= j
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Let V represent the accompanying set of vertices for P .

Then, there exists an output stabilizing matrix, for (3.1), with elements bounded by

(kl, ku) if and only if there exists a vertex Ko ∈ V such that A − BKoC is stable.

Proof. Omitted, see proof of Lemma 3.3.1 in combination with Theorem 3.3.2.

Remark 3.3.2. The extension to positive observer design is trivial to capture due to the

result of duality, i.e. we can consider the observer gain L design problem for:

A − LC

as a stabilization problem for:

AT − CT LT

in the usual LTI sense. The details for the design of the observer gain L are omitted.

Next, we illustrate the power of Algorithm 3.3.1 via a four dimensional example.

Example 3.3.4. Consider the following positive system:

ẋ =












0 1 1 2

1 −2 2 0

2 1 3 1

1 2 0 −1












x +












1 1 0

2 0 0

1 1 1

0 1 0












u.

By Algorithm 3.3.1, we first check if the system is stable. Since entry a11 = 0, by

Lemma 3.2.1, we know that A cannot be stable. Next, we provide the algorithm with

(kl, ku) = (−10, 10) (arbitrary). Moving to step 3 of the algorithm, we notice that

column 3 is unitary, so we set k33 = 10. Afterward, we find the corresponding sets of

vertices V1, V2, V3, V4, with Remark 3.3.1 in mind. First, we find P1, which is defined
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by the following inequalities:

0 − k11 − k21 ≤ 0

1 − 2k11 ≥ 0

2 − k11 − k21 − k31 ≥ 0

1 − k21 ≥ 0

and yields

V1 =















0.5

0

1.5









,









0.5

0

−10









,









0.5

−0.5

2









,









0

0

2









,









0

0

−10









,









0.5

−0.5

−10















.

By Remark 3.3.1 the last four elements of V1 can be removed as they lie on the inequality

k11 + k21 ≥ 0;

thus yielding

V1 = {[0.5 0 1.5]T , [0.5 0 − 10]T}.

In a similar manner, we can find the remaining sets:

V2 = {[11 − 10 0]T , [11 − 10 − 10]T}

V3 = {[1 0 10]T}

V4 = {[0 2 − 1]T , [−10 12 − 1]T , [−10 12 − 10]T , [0 2 − 10]}.
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Now by enumeration we obtain:

Ks =









0.5 11 1 0

0 −10 0 2

1.5 0 10 −1









,

which results in the closed loop matrix:

Ac =












0 1 1 2

1 −2 2 0

2 1 3 1

1 2 0 −1












−












1 1 0

2 0 0

1 1 1

0 1 0




















0.5 11 1 0

0 −10 0 2

1.5 0 10 −1









=












−0.5 0 0 0

0 −24 0 0

0 0 −8 0

0 12 0 −3












,

which is Metzler and is clearly stable.

△

Thus far the results presented have been for stabilization and output stabilization, we

now shift to complete stabilization and complete output stabilization. First, complete

stabilization is captured.

Corollary 3.3.5. Consider system (3.1), where rank(B)=m, rank(C)=r, and D 6= 0. As-

sume the elements of Ks are bounded from below and above by kl ∈ R− and ku ∈ R+,

respectively.

Let K ∈ Rm×n and initially set to 0. Define n polytopes Pi, i = 1, ..., n by the set of
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inequalities:

a1i − b11k1i − ... − b1mkmi ≥ 0

...
...

a(i−1)i − b(i−1)1k1i − ... − b(i−1)mkmi ≥ 0

aii − bi1k1i − ... − bimkmi ≤ 0

a(i+1)i − b(i+1)1k1i − ... − b(i+1)mkmi ≥ 0

...
...

ani − bn1k1i − ... − bnmkmi ≥ 0

c1i − d11k1i − ... − d1mkmi ≥ 0

...
...

cri − dr1k1i − ... − drmkmi ≥ 0

Let Vi be the accompanying set of vertices for Pi.

Then, there exists a completely stabilizing matrix, for (3.1), with elements bounded

by (kl, ku) if and only if there exists a set of vertices ki
s ∈ Vi, such that A − BKs, where

Ks = [k1
s ... kn

s ], is stable.

Proof. The proof is identical to that of Lemma 3.3.1 with the additional constraints

coming from

C − DKs ≥ 0

to yield a closed loop nonnegative output matrix.

The final result of this subsection is regarding complete output stabilization, which

is quite different and much more complex than that of the SISO case. Complete output

stabilizability asks for: stabilizability of the system, and nonnegativity of states and

outputs for all time. If we take Assumption 3.1.1 into account, then when solving the

output stabilization problem, we must also incorporate the nonnegativity constraint:

(I − DKo)
−1C ≥ 0 component-wise.
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MIMO State and Observer based Stabilization

In this subsection, we once again return to the problem of observer based stabilization.

In the SISO subsection, we have shown that the separation property applies; however,

we will show that in general the same may not hold for MIMO positive systems. The

results are very similar to that of SISO, thus for the most part we omit detail.

Once again, recall the structure of the observer:

˙̂x = Ax̂ + Bu + L(y − ŷ). (3.20)

Now, our system plant with the assumption that u = −Ksx̂, where Ks has been found

by stabilization and x̂ is the estimate of the state x, is

ẋ = (A − BKs)x + BKs(x − x̂), (3.21)

so if ex = x − x̂ ∈ R
n
+ component-wise and BKs ≥ 0 component-wise, then x ∈ R

n
+ for

all time. We recall that

ėx = (A − LC)ex, (3.22)

and if initially ex ∈ Rn
+, then ex ∈ Rn

+ for all time. Thus, we only have to make certain

that BKs ≥ 0 component-wise and set the initial condition of x̂ to zero.

We can now conclude that unless Ks is already nonnegative, BKs may not necessarily

be nonnegative component-wise; thus, in the case of observer based stabilization, an extra

linear programming condition, BKs ≥ 0 component-wise, must be added to Algorithm

3.3.1 in order to guarantee that (3.21) is satisfied.

This completes the study of stabilization and observer based stabilization for MIMO

positive LTI systems.

This chapter has presented fundamental results on stabilization of positive LTI sys-
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tems. In particular, we have outlined checkable (vertex) conditions for stabilization.

The results in this chapter are both necessary and sufficient, thus adding an additional

dimension to the ever growing tools for positive systems.



Chapter 4

Servomechanism Problem:

SISO tuning regulators

In the previous chapter our discussion was geared toward the problem of positive stabi-

lization of unstable positive LTI systems. In this chapter our focus shifts to the tuning

regulator problem for stable unknown SISO positive LTI systems under unmeasurable

and measurable disturbances. In particular, we provide existence conditions, along with

the actual control law, that solves the servomechanism problem for constant tracking and

(un)measurable disturbance signals for positive LTI systems assuming that the mathe-

matical model of the system can be described by an LTI model, but is unknown. The

motivation for studying this problem is that in many applications, the mathematical

model of the system may not be known, but from the physics of the system it is known

that the plant is positive.

The chapter is organized as follows. Preliminaries are given first, where the de-

tails of the plant, all accompanying assumptions, and several introductory results are

given. The servomechanism problem and its solution is presented next. In particular,

the servomechanism problem for unmeasurable disturbances under nonnegative control

is considered with the use of tuning regulators (TR). Thereafter, results on the ser-

73
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vomechanism problem for measurable disturbances under nonnegative feedforward (FF)

and tuning regulators (TR) are outlined. Finally, comments are made on the use of non-

positive control inputs and implementation approaches for the servomechanism problem.

Several examples illustrating the theory and the implementation approach conclude the

chapter.

4.1 Preliminaries

The plant of interest is given first1:

ẋ = Ax + bu + eωω

y = cx + du + fω

e := yref − y

(4.1)

where A is an n× n Metzler stable matrix, b ∈ Rn
+, c ∈ R

1×n
+ , d ∈ R+, eω ∈ Rn

+, f ∈ R+;

the signal yref ∈ Yref ⊂ R+ is a constant, as is ω ∈ Ω ⊂ R+. The sets Yref and Ω are

defined in Assumption 4.1.1 below. Note that throughout the remainder of the thesis we

assume that the output y is measurable.

First a result for d− cA−1b and f − cA−1eω will be stated. In order to discuss the two

gains, we recall an important result about stable Metzler matrices, which was presented

in [55], but has also appeared in the literature on nonnegative matrices, see [36] for

example.

Lemma 4.1.1. Let A be a Metzler matrix; then −A−1 exists and is a nonnegative matrix

if and only if A is Hurwitz.

We are now ready to present the result for d − cA−1b and f − cA−1eω.

1dependence on time may be dropped on occasion throughout the thesis
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Lemma 4.1.2. Consider the system matrices of the plant (4.1). If d − cA−1b 6= 0 then

d − cA−1b > 0.

Moreover,

f − cA−1eω ≥ 0.

Proof.

−A−1 ∈ R
n×n
+ by Lemma 4.1.1

−cA−1b ∈ R+ since c ∈ R
1×n
+ , b ∈ Rn

+

d − cA−1b ∈ R+ since d ∈ R+

and since

d − cA−1b 6= 0,

then

d − cA−1b > 0.

The result for f − cA−1eω follows in the same fashion.

−A−1 ∈ R
n×n
+ by Lemma 4.1.1

−cA−1eω ∈ R+ since c ∈ R
1×n
+ , eω ∈ Rn

+

f − cA−1b ∈ R+ since f ∈ R+.

Next, we provide an important assumption which will be commonly used in the sequel.

The assumption is needed in order to ensure that the steady state value of the input is

nonnegative, under the choice of the reference signals and the unmeasurable disturbances
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of the plant. If this assumption was not true, then clearly one cannot attempt to satisfy

any sort of nonnegativity of the input.

Assumption 4.1.1. Given the plant (4.1) assume that d − cA−1b 6= 0. Also, assume the

sets Ω and Yref are chosen such that for all yref ∈ Yref and all ω ∈ Ω, the steady state of

the input

uss :=
cA−1eωω − fω + yref

d − cA−1b
(4.2)

has the property uss > 0.

The steady state xss and yss are defined next.

Definition 4.1.1. Consider the plant (4.1) under Assumption 4.1.1. Define

xss := −A−1(buss + eωω) (4.3)

and

yss := cxss + duss + fω. (4.4)

Under Assumption 4.1.1 we can make the following claim.

Lemma 4.1.3. Consider the plant (4.1). If Assumption 4.1.1 holds, then

xss ≥ 0 and yss ≥ 0.

Proof. It follows that

−A−1 ∈ R
n×n
+ by Lemma 4.1.1

−A−1(buss + eωω) ∈ R
n
+ since b ∈ Rn

+, uss > 0, eω ∈ Rn
+, ω ∈ Ω ⊂ R+.
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Similarly for yss.

Let us now shift to a discussion of Assumption 4.1.1.

4.1.1 Discussion of Assumption 4.1.1

Assumption 4.1.1 provides an algebraic expression for uss. It would be of great interest

to actually know how large or small the disturbances can be in order for Assumption

4.1.1 to hold, i.e. what are the feasible sets Yref and Ω such that (4.2) holds. In this

subsection, we consider the latter problem of finding the feasible sets Yref and Ω.

First, recall where (4.2) comes from, i.e.

ẋ = 0 = Axss + buss + eωω (4.5)

e = yref − y = 0 = cxss + duss + fω − yref . (4.6)

Taking equation (4.5) and isolating it for xss we obtain:

xss = −A−1buss − A−1eωω. (4.7)

Now, substituting equation (4.7) into equation (4.6) and isolating for uss results in:

uss =
cA−1eωω − fω + yref

d − cA−1b
. (4.8)

From above and the fact that we need uss > 0, we obtain

cA−1eωω − fω + yref

d − cA−1b
> 0

or cA−1eωω − fω + yref > 0

or yref − (f − cA−1eω)ω > 0 (4.9)
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since, d − cA−1b > 0 by Lemma 4.1.2 (provided d − cA−1b 6= 0), resulting in:

(yref , ω) ∈ (Yref , Ω) := {(ξ1, ξ2) ∈ R+ × R+ | ξ1 − (f − cA−1eω)ξ2 > 0} (4.10)

Remark 4.1.1. The last inequality (4.9) brings out numerous answers regarding the posi-

tive steady-state assumption on the input presented in Assumption 4.1.1; namely,

(a) if no disturbances are present then the steady-state uss assumption holds for all

yref > 0.

(b) if the tracking signal is omitted and only positive disturbances are considered, then

the assumption on uss will not hold, i.e. if yref = 0 and ω 6= 0, then uss < 0 and

the steady-state assumption will not be valid2.

(c) in the case of unmeasurable/measurable disturbances, we can also deduce that

if the disturbances are small in comparison to the tracking signal, i.e. yref >

(f − cA−1eω)ω, then the assumption on uss will hold true.

Note that if the system matrices are known, then one can use (4.10) directly to find

Yref and Ω.

Assumption 4.1.2. Note that a necessary result, coming from equation (4.9), for Assump-

tion 4.1.1 to hold is that yref − fω > 0; thus, without loss of generality, we can assume

in the remainder of this chapter that f = 0.

4.2 Servomechanism Problem: unmeasurable distur-

bances and nonnegative input

With the plant and assumptions presented in the latter section, we now introduce the ser-

vomechanism problem for SISO positive LTI systems under unmeasurable disturbances,

2we are of course assuming that f − cA−1eω 6= 0
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measurable reference tracking signals, and nonnegative input control. In this section, we

also consider positive LTI systems under the assumption that the mathematical model

of the system can be described by a positive LTI model (4.1), but is unknown3.

The positive servomechanism problem of interest in this section is stated below.

Positive LTI

System

+

yref

LTI
Controller

u

ω

e y

xc(0)

Figure 4.1: Closed-loop LTI system.

Problem 4.2.1. Consider the plant (4.1) where the disturbance ω is unmeasurable, the

tracking signal yref is measurable, and the initial condition x0 ∈ Rn
+. Assume that As-

sumption 4.1.1 holds true.

Find an LTI controller connected as in the diagram (Figure 4.1) such that the closed-loop

system satisfies

(a) asymptotic stability in the sense of Lyapunov with respect to the origin, and for

every yref ∈ Yref , ω ∈ Ω, with the initial condition of the controller xc(0) having

the property that u(0) ∈ R+

(b) the states x(t) ≥ 0, output y(t) ≥ 0, and input4 u(t) > 0 ∀ t; and

(c) tracking of the reference signal occurs, i.e. e(t) = yref − y(t) → 0, as t → ∞. In

addition,

3i.e., no numerical values of A, B, C, D, E, F are known
4if u(t) ≥ 0 for all time t ∈ [0,∞), then x(t) and y(t) will be nonnegative for all time by definition of

positive systems
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(d) assume that a controller has been found so that conditions (a), (b), (c) are satisfied;

then for all perturbations of the nominal plant model which maintain properties

(a) and (b), it is desired that the controller can still achieve asymptotic tracking

and regulation, i.e. the controller is robust and property (c) still holds.

In Problem 4.2.1, it is to be noted in Assumption 4.1.1 that the two assumptions

made are both necessary conditions for a solution to exist to Problem 4.2.1, since the

condition d−cA−1b 6= 0 is a necessary condition for there to exist a solution to the robust

servomechanism problem [17], and since uss > 0 is clearly a necessary condition.

The following Tuning Regulator (TR) of interest will now be defined:

η̇ = ǫ(yref − y), η(0) > 0 and fixed

u = η
, (4.11)

with ǫ ∈ (0, ǫ∗], ǫ∗ > 0 to be shown to exist. Notice that

u(0) = η(0) > 0.

Lemma 4.2.1. Set TR (4.11) as the LTI controller and plant (4.1) as the positive LTI

system in Figure 4.1. Assume d − cA−1b 6= 0. Then there exists an ǫ+ > 0 such that for

all ǫ ∈ (0, ǫ+] the closed-loop matrix:






A b

−ǫc −ǫd




 (4.12)

is stable.

Proof. By [17] there exists an
ǫ

d − cA−1b
such that for all ǫ ∈ (0, ǫ/(d − cA−1b)] the

closed-loop matrix (4.12) is stable. Now, set

ǫ+ =
ǫ

d − cA−1b
.
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Notice that if TR (4.11) is the LTI controller and the plant (4.1) is the positive LTI

system in Figure 4.1, then the signals x, u, η, y, e depend on t and ǫ. For convenience,

the dependence on ǫ will be understood, i.e., instead of x(t, ǫ) we’ll simply write x(t),

and similarly for y, u, e, and η through the remainder of the thesis. Of course, if ǫ is

fixed the dependence disappears.

The main result of this section is given next.

Theorem 4.2.1. Consider system (4.1). Then for all x(0) ∈ Rn
+ there exists an ǫ∗(x(0), η(0)) >

0 such that for all ǫ ∈ (0, ǫ∗(x(0), η(0))] the controller (4.11) solves5 Problem 4.2.1.

Through the remainder of this section ǫ∗(x(0), η(0)) will be denoted by simply ǫ∗.

The proof is given next.

Proof. The closed-loop system of the plant and the controller is given in Figure 4.2. The

Positive LTI

System

+

yref
1

s
ǫ u = η

ω

Figure 4.2: Closed-loop LTI system.

closed-loop system is LTI and by Lemma 4.2.1 there always exists an ǫ+ > 0 such that

∀ ǫ ∈ (0, ǫ+] the closed-loop matrix is stable. This implies that all the conditions of

Problem 4.2.1 will hold true if the nonnegativity condition (b) holds true. Through the

remainder of the proof we assume ǫ ∈ (0, ǫ+].

Let us recall the two key assumptions:

5Notice that the result, along with all similar results in the thesis, states that we might have to
find a separate ǫ∗ for different initial conditions x(0), i.e. one ǫ∗ will not necessarily work for all initial
conditions x(0), it may have to be re-tuned.
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1. u(0) = η(0) > 0 (by the definition of the TR controller (4.11));

2. uss > 0 ⇒ ηss > 0 (since u = η and uss > 0).

First, by the definition of positive LTI systems we know that if u(t) ≥ 0 for all t, then

the states x(t) and the outputs y(t) also remain nonnegative for all t. Let us show now

that there exists an ǫ∗ ≤ ǫ+ such that for all ǫ ∈ (0, ǫ∗], u(t) > 0 for all t under the two

assumptions listed above. However, since

u(t) = η(t), ∀ t

then it is sufficient to show that

η(t) > 0, ∀ t.

In order to prove the above, we use the results of singular perturbation. The closed-loop

system with the tuning regulator (4.11) is of the form:






ẋ

η̇




 =






A b

−ǫc −ǫd











x

η




 +






eω 0

−ǫf ǫ











ω

yref




 . (4.13)

Now, since the equilibrium (xss, ηss), which depends on ω, yref , is independent of ǫ, we

can transform the system as needed, i.e. let z = x − xss and q = η − ηss in (4.13),

resulting in the new system






q̇

ż




 =






−ǫd −ǫc

b A











q

z




 . (4.14)

Notice that if q(t, ǫ) + ηss > 0 for all t, then η(t) > 0 for all t.

Next, let us scale the derivatives by ǫdt = dτ (i.e. scaling of time ǫt = τ) resulting in
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the transformed system






⊙
q

ǫ
⊙
z




 =






−d −c

b A











q

z




 , (4.15)

with ǫ
⊙
q = q̇ and ǫ

⊙
z = ż.

Notice that if q(τ, ǫ)+ηss > 0 for all τ , then q(t, ǫ)+ηss > 0 for all t, and consequently

η(t) > 0 for all t. Therefore, it remains to show that indeed q(τ, ǫ) + ηss > 0 for all τ .

Our model (4.15) now satisfies the singular perturbation model. In order to use the

singular perturbation (SP) results, we must show that all assumptions of SP hold true.

However, as (4.15) is linear and time invariant, and the boundry-layer model is

ṗ = Ap

with A stable, it suffices to show that the reduced model (given below) yields exponential

stability. Now by setting ǫ = 0 we obtain z = h(q) = −A−1bq, and since A is Hurwitz,

h(q) exists and is unique. Next, by substituting h(q) into
⊙
q we obtain the reduced model:

⊙
q = −dq + cA−1bq = −(d − cA−1b)q, where by Lemma 4.1.2 (d − cA−1b) > 0.

Denote the solution of
⊙
q = −(d − cA−1b)q by q(τ), which is clearly exponentially stable

(as needed by SP) and monotonic. Thus, by SP we have:

q(τ, ǫ) − q(τ) = O(ǫ) ∀τ

uniformly in τ , where

q(τ) = e−(d−cA−1b)τq(0) and

q(τ) + ηss = ηss + e−(d−cA−1b)τq(0)
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with q(0) = q(0) = η(0) − ηss by definition. Now, since η(0) > 0, then there exists an

ǫ∗ ≤ ǫ+ such that q(τ, ǫ) + ηss > 0 for all ǫ ∈ (0, ǫ∗] since q(τ) + ηss is monotonically

approaching ηss.

This completes the proof.

The latter problem can be interpreted as the tracking and disturbance rejection prob-

lem under nonnegative control for positive LTI plants experiencing unmeasurable con-

stant nonnegative disturbances.

Before we depart this section, we consider a Corollary to Theorem 4.2.1 with the

extra assumption that 0 ≤ u(t) ≤ u, u > 0 fixed, for all t ∈ [0,∞) and where η(0) in

(4.11) is fixed such that 0 ≤ η(0) ≤ u (recall u = η).

Corollary 4.2.1. Consider system (4.1) and controller (4.11) where 0 < η(0) < u, 0 <

uss < u, u > 0 fixed. Then for all x(0) ∈ Rn
+ there exists an ǫ∗(x(0), η(0)) > 0 such that

for all ǫ ∈ (0, ǫ∗(x(0), η(0))] the controller (4.11) solves Problem 4.2.1 with condition (b)

replaced by

(b’) the states x(t) ≥ 0, output y(t) ≥ 0 and input 0 < u(t) < u.

The latter Corollary simply states that we would like to bound our input signal both

from below by zero and from above by some constant u.

Proof. The proof follows a similar argument as the proof of Theorem 4.2.1. The main

difference is in the two key assumptions:

1. 0 < u(0) = η(0) < u ;

2. 0 < uss < u ⇒ 0 < ηss < u (since u = η and 0 < uss < u).

Now, recall the SP result of the previous proof under time scaling (i.e. ǫt = τ):

q(τ, ǫ) − q(τ) = O(ǫ) ∀τ
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uniformly in τ , where

q(τ) = e−(d−cA−1b)τq(0) and

q(τ) + ηss = ηss + e−(d−cA−1b)τq(0)

with q(0) = q(0) = η(0) − ηss by definition. Now, since 0 < η(0) < u, then there exists

an ǫ∗ ≤ ǫ+ such that q(τ, ǫ) + ηss > 0 for all ǫ ∈ (0, ǫ∗] since q(τ) + ηss is monotonically

approaching ηss. Moreover, due to the signal being monotonic we can also conclude that

q(τ, ǫ) + ηss < u.

This completes the results of this section.

4.3 Servomechanism Problem: measurable distur-

bances and nonnegative input

In this subsection, we tackle the servomechanism problem under measurable disturbances

for unknown positive LTI systems.

The goal of this section will be to take advantage of the measurable disturbances via

the use of feedforward controllers and tuning regulators introduced in Section 2.3. Thus,

along with a modified solution to Problem 4.2.1, we will introduce a second problem

which solely solves the servomechanism problem without the robust property6. The new

non-robust servomechanism problem is outlined below.

Problem 4.3.1. Consider the plant (4.1) where the disturbance ω is measurable, the track-

ing signal yref is measurable, and the initial condition x0 ∈ Rn
+. Assume that Assumption

4.1.1 holds true.

6introduced in Problem 4.2.1 (d)
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u Positive

LTI System

yLTI

Controller

yref

ω

Figure 4.3: Open-loop LTI control.

Find an LTI controller connected as in Figure 4.3 such that the open-loop system for

every yref ∈ Yref , and every ω ∈ Ω satisfies

(a) the states x(t) ≥ 0, output y(t) ≥ 0, and input u(t) ≥ 0 ∀ t; and

(b) ensures tracking of the reference signal, i.e. e(t) = yref − y(t) → 0, as t → ∞.

Notice that the main difference between Problem 4.3.1 and Problem 4.2.1 is the

restriction of u(t) ≥ 0 instead of u(t) > 0 and the omission of point (d) from Problem

4.3.1, i.e. the need for robustness.

Next, we will show that Problem 4.3.1 can be solved by using a feedforward compen-

sator, and thereafter, we show that Problem 4.2.1 under measurable disturbances can

be solved by using a combination of a feedforward compensator and a tuning regulator.

Note that the use of a feedforward compensator was not feasible in the previous section,

as unmeasurable disturbances were considered.

Theorem 4.3.1. Consider system 4.1. The feedforward compensator (4.16) solves Problem

4.3.1 for all x(0) ∈ Rn
+.

u =
cA−1eωω − fω + yref

d − cA−1b
(4.16)

Proof.

Condition (b) holds since u is set to uss. Condition (a) can be guaranteed if the control
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input u(t) ≥ 0 for all time. However, the feedforward compensator (2.9) has the property

that:

u = uss ≥ 0,

which will guarantee nonnegativity of the states and outputs for all time.

Notice that if in Problem 4.3.1 we set Yref = R+ and Ω = R+, then we can set the

feedforward controller to

u =
cA−1eωω − fω + yref

d − cA−1b
if uss ≥ 0 (4.17)

u = 0 else

resulting in the controller (4.17) turning itself off whenever a negative steady state of the

input appears.

Feedforward compensators are an effective tool to solve the tracking and regulation

problem, and have the advantage of providing “a fast speed of response” [17]. How-

ever in practice, due to possible changes to the parameters of the plant, lack of precise

measurements, etc., feedforward controllers in general may lead to unsatisfactory track-

ing/regulation. Thus, in practice, if the disturbances are measurable, one may wish to

apply both the tuning regulator (4.11) and the feedforward controller (4.16) simultane-

ously to control the system7, i.e. we can use the control law:

u = uff + utr, (4.18)

where uff is the feedforward compensator (4.16) and utr is the tuning regulator (4.11).

Remark 4.3.1. In this section and the previous, we considered nonnegative control. It is

vital to point out that if nonnegative control does not solve the tracking and disturbance

7assuming uss > 0
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rejection problem, then it does not mean that a bidirectional or nonpositive type of con-

troller will not do the job. Namely, we may still be able to find a controller that has

a bidirectional output and still maintains nonnegativity of the states and output. For

example, if one considers cooling a house in the summer with a heater, then clearly the

physics will not permit lowering of the temperature; however, an air conditioner will do

the job. Thus we tackle the problem of using negative control in the next section.

4.4 Servomechanism Problem: Bidirectional Control

The results presented in the previous sections have provided solutions to the servomech-

anism problem for systems with measurable and unmeasurable disturbances using non-

negative control. In real life systems, nonnegativity of states occurs quite often; however,

the need for the input u to be also nonnegative may not always be a necessity, as was

also pointed out in [23]. In this section, we drop the assumption of nonnegativity of the

input. Our focus will be to solve the servomechanism problem using bidirectional control,

subject to nonnegativity of the states and outputs of the system.

A new steady state value is defined first. Let the steady state of the open loop positive

LTI system (4.1) be defined as

xss := −A−1eωω (4.19)

Let us restate Assumption 4.1.1 under the assumption that only the steady state of

the output and states (xss, xss, and yss) must be nonnegative.

Assumption 4.4.1. Given the plant (4.1) assume that d − cA−1b 6= 0. Also, assume the

sets Ω and Yref are chosen such that for all yref ∈ Yref and all ω ∈ Ω, the steady state of

the output yss (4.4) and the states of the closed-loop xss (4.3) and open-loop xss are all

positive.

We will assume in this section that Yref and Ω are defined as in Assumption 4.4.1.
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Next, a restatement of Problem 4.2.1 under the latter assumption is outlined.

Problem 4.4.1. Consider the plant (4.1) where the disturbance ω is unmeasurable, the

tracking signal yref is measurable, and the initial condition x(0) = xss. Assume that

Assumption 4.4.1 holds true.

Find an LTI controller connected as in the diagram (Figure 4.1) such that the closed-loop

system satisfies

(a) asymptotic stability in the sense of Lyapunov with respect to the origin, and for

every yref ∈ Yref , ω ∈ Ω, with the initial condition of the controller xc(0) having

the property u(0) ∈ R+

(b) the states x(t) ≥ 0 and output y(t) ≥ 0, ∀ t; and

(c) tracking of the reference signal occurs, i.e. e(t) = yref − y(t) → 0, as t → ∞. In

addition,

(d) assume that a controller has been found so that conditions (a), (b), (c) are satisfied;

then for all perturbations of the nominal plant model which maintain properties

(a) and (b), it is desired that the controller can still achieve asymptotic tracking

and regulation, i.e. the controller is robust and property (c) still holds.

The solution to the latter problem is given next. The result is stated as a corollary

to Theorem 4.2.1.

Corollary 4.4.1. Consider system (4.1) under Assumption 4.4.1. Then there exists an ǫ∗

such that for all ǫ ∈ (0, ǫ∗] the tuning regulator (4.11) solves Problem 4.4.1.

Notice that a necessary result for Corollary 4.4.1 above is the need to have ω 6= 0, as

if ω = 0, then the results for Problem 4.2.1 suffice, i.e. bidirectional control only needs

to be considered when ω 6= 0.

This completes this section.
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4.5 Implementation

In the remainder of this chapter, implementation of the theory presented in the previous

sections is considered. In particular, we deal with the situation when the assumption

uss > 0 made in Theorem 4.2.1 does not hold, and in this case we consider tuning

clamping regulators (TcR) and reset tuning clamping regulators (RTcR) to prevent the

input signals from going negative.

First, however, we consider two results. The first result pertains to Figure 4.4, while

the second to Figure 4.5.

yref

uout(uin) = 0
e uin uout

y

−

ω

LTI

Controller
Positive

LTI System

Figure 4.4: Implementation system 1.

yref

uout(uin) = u
e uin uout

y

−

ω

LTI

Controller
Positive

LTI System

Figure 4.5: Implementation system 2.

ǫ 1

s
e uin

Figure 4.6: LTI controller.
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Theorem 4.5.1. Consider the system of Figure 4.4 where the positive LTI system is repre-

sented as (4.1) and where the block diagram of Figure 4.6 represents the LTI controller.

Assume yref ∈ R+, ω ∈ R+, and d − cA−1b 6= 0.

Then, for all ǫ > 0, and all x(0) ∈ Rn
+ there exists a t∗(x(0), ǫ) ≥ 0 such that for all

t ∈ [t∗(x(0), ǫ),∞)

uin(t) > 0

if and only if

uss > 0.

Proof. The overall system is:

ẋ = Ax + eωω

u̇in = ǫ(yref − y)

y = cx + fω.

As t → ∞ we have

x → xss = −A−1eωω since A is stable.

Recall,

xss = −A−1(buss + eωω).

Thus, we can rewrite xss as

xss = xss + A−1buss.
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Next, since x → xss as t → ∞ then

u̇in = ǫ(yref − y)

u̇in → ǫ(yref − cxss − fω) as t → ∞

ǫ(yref − cxss − fω) = ǫ(yref − cxss − d(0) − fω)

= ǫ(yref − c(xss + A−1buss) − d(0) − fω)

= ǫ(yref − c(xss + A−1buss) − d(uss − uss) − fω)

= ǫ(yref − cxss − duss − fω) + ǫ(d − cA−1b)uss)

= 0 + ǫ(d − cA−1b)uss

Thus, clearly since the derivative tends to ǫ(d− cA−1b)uss > 0 ⇐⇒ uss > 0 there exists

a t∗(x(0), ǫ) ≥ 0 such that for all t ∈ [t∗(x(0), ǫ),∞)

uin(t) > 0

We now come back to the system of Figure 4.5 and present a corollary to the latter

theorem.

Corollary 4.5.1. Consider the system of Figure 4.5 where the positive LTI system is repre-

sented as (4.1) and where the block diagram of Figure 4.6 represents the LTI controller.

Assume yref ∈ R+, ω ∈ R+, and d − cA−1b 6= 0, and let u > 0 be a fixed constant.

Then, for all ǫ > 0, and all x(0) ∈ Rn
+ there exists a t∗(x(0), ǫ) ≥ 0 such that for all

t ∈ [t∗(x(0), ǫ),∞)

uin(t) < u

if and only if

uss < u.
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The proof follows similar guidelines as in the proof of Theorem 4.5.1 and is omitted.

Next, from the results of Theorem 4.2.1 and Theorem 4.5.1 we propose a tuning

clamping regulator (TcR), which clamps all negative input signals at zero or employs the

TR whenever the input signal is positive. The TcR is presented below.

η̇ = ǫ(yref − y), η(0) = 0

u = k(η)η
, (4.20)

where

k(η) =







0 η ≤ 0

1 η > 0

The introduction of the TcR is necessary as in Theorem 4.2.1 we do not know how small

the ǫ∗ should be; moreover, since we are dealing with unknown systems we may not know

a priori if the steady state of the input uss is actually positive. However, by Theorem

4.5.1 we can deduce that under the TcR controller if uss ≤ 0, then our controller will

“shut itself off” in finite time and remain shut off and if uss > 0 we know that there

exists a time t∗(x(0), ǫ) such that the trajectory will return to the linear region. We note

that under the circumstances of unknown plants this is the best that any LTI controller

placed in the feedback loop can do.

The next result takes into account the information presented by Corollary 4.2.1,

Theorem 4.5.1, and Corollary 4.5.1.

In the TcR controller a two step process was proposed. Basically, if the control input

results in a negative value, we simply clamp the control input and allow the tuning

regulator to continue working until it finally comes back to positivity (which was shown

to occur by Theorem 4.5.1). A potential problem with the above approach is that the

servo compensator (integrator) may output excessively large values for the servo state

(η) and thus result in possibly undesirable “reset windup” like behavior in the response
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of the system. Below, we provide a control strategy, for Problem 4.2.1 with the same

assumptions of unknown LTI plant, and unmeasurable disturbances, that incorporates

anti-reset windup under a saturation constraint. This controller will be referred to as the

Reset Tuning clamping Regulator (RTcR).

if ((0 < u < u) or

η̇ = ǫ(yref − y) (u = 0 and e > 0) or

(u = u and e < 0))

η̇ = 0 else,

(4.21)

with

u = k(η)η, 0 < η(0) < u and fixed

where

k(η) =







0 η ≤ 0

1 0 < η < u

u/η η ≥ u

Both the TcR and the RTcR controllers use the theoretical results of this chapter to

implement controllers that will be used in (simulated) examples in this chapter and on

experimental results in Chapter 9.

Finally, it must be pointed out that clamping, saturation, and reset-windup type

controllers can also be used to obtain nonpositive inputs, under the assumption that the

steady state of the input uss is negative.

We now turn our attention to several examples.
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4.6 Examples

In this section, we illustrate the results presented in this chapter via several examples.

The first example describes the monitoring and controlling the depth of anesthesia

in surgery and illustrates all results of the chapter. The problem has been originally

considered by Haddad et al. [37].

Example 4.6.1. The use of propofol as an intravenous anesthetic is common for both

induction and maintenance of general anesthesia [27]. An effective patient model for the

disposition of propofol is based on a three-compartmental mammillary model, see Figure

4.7 [53], [2]. The three-compartmental mammillary system provides a pharmacokinetic

model for a patient, describing the distribution of propofol into the central compartment

and the other various tissue groups of the body. The mass balance equations for the

compartmental system yield [37]:

F12

F21

F31

F13

F01

u := continuous infusion

Compartment 1

Compartment 2 Compartment 3

where Fij = fijxj

Figure 4.7: Three compartmental mammillary model.

ẋ1 = −(f01 + f21 + f31)x1 + f12x2 + f13x3 + u

ẋ2 = f21x1 − f12x2 (4.22)

ẋ3 = f31x1 − f13x2
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where the states are masses in grams of propofol in the respective compartments. The

input u is the infusion rate in grams/min of the anesthetic propofol into the first com-

partment. The rate constant f11 ≥ 0 is in min−1 and represents the elimination rate

from the central compartment, while the rate constants fij ≥ 0, which are also in min−1,

characterize drug transfer between compartments. It has been pointed out in [37] that

the rate constants, although nonnegative, can be uncertain due to patient gender, weight,

pre-existing disease, age, and concomitant medication. It has also been pointed out in

[37], [86] that 2.5-6 µg/ml blood concentration levels of propofol are required during the

maintenance stage in general anesthesia.

In [37] the assumption made was that a 70 kg patient was treated with propofol

concentration levels of 4µg/mol, which led to the desired tracking value for x1 = 44.52mg.

It has also been pointed out that the values of fij in (4.22) may be uncertain and difficult

to estimate; this however causes no problem since a mathematical model of the system

is not required.

Our system matrices for (4.22) become:

A =









−(f01 + f21 + f32) f12 f31

f21 −f12 0

f31 0 −f13









, B =









1

0

0









For our simulations, we will use the the parameters in Table 4.1, presented in [34]. Note

that these parameters are not used in our controller design for this example. The table

presents two sets of data; in order to show that our controller works for uncertain systems,

we will alternate between the two sets. It will be assumed that the desired set point is

yref = 45.

In addition to the model above, we assume that a disturbance exists, and that it

affects the input to the first compartment, see Figure 4.8. With the disturbance in place,
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Table 4.1: Pharmacokinetic parameters [34]

Data f01 f21 f12 f31 f13

1 0.152 0.207 0.092 0.040 0.0048
2 0.119 0.114 0.055 0.041 0.0033

our system model becomes:

ẋ =









−(f01 + f21 + f31) f12 f13

f21 −f12 0

f31 0 −f13









x +









1

0

0









u +









eω

0

0









ω, y = [1 0 0]x.

The simulation given by Figure 4.9 and Figure 4.10 show the response of y = x1 and

F12

F21

F31

F13

F01

u := continuous infusion

Compartment 1

Compartment 2 Compartment 3

eωω := constant disturbance

Figure 4.8: Three compartmental mammillary model with disturbance.

u with ǫ = 0.1 for the TR controller (4.11) where η(0) = 10−10 (the reason the initial

condition is so small, but positive, is to abide to the TR initial condition constraint of

η(0) > 0), and where for t ∈ [0, 50min) data 1, from Table 4.1, is used with eωω = 0.5;

at t = 50min the system switches to data 2 with eωω = 0.5, and finally at t = 100min

the system undergoes a further disturbance with eωω = 1.5. It is seen that satisfactory

tracking and regulation occurs.

△

Our next example considers a set of water tanks.
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Figure 4.9: Output response for Example 4.6.1.
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Figure 4.10: Control input for Example 4.6.1.
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Example 4.6.2. The following plant, which is a stable compartmental system, has been

taken from [30] pg.105. Consider the reservoir network of Figure 4.11, with u as the input

flow rate of water and ω an input flow disturbance. The system is of dimension 6, as we

assume the pump dynamics can be neglected. As pointed out in [30], the dynamics of

each reservoir can be captured by a single differential equation:

ẋi = −αixi + v, αi > 0, i = 1, ..., 6,

where xi represents the depth of the water in each reservoir.

u + ω

γ 1− γ

φ 1− φ

1 2

3

4

5

6

pump

Figure 4.11: System set up for Example 4.6.2.

Consider the case where γ = 0.5, φ = 0.9, α1 = 2, α2 = 1.7, α3 = 1.5, α4 = 1, α5 = 2,

and α6 = 2. This results in the following system:
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ẋ =



















−2 0 0 0 2 0

0 −1.7 0 0 0 0

2 1.7 −1.5 0 0 0

0 0 0.15 −1 0 0

0 0 0 1 −2 0

0 0 1.35 0 0 −2



















x +



















0.5

0.5

0

0

0

0



















(u + ω),

y = [0 0 0 0 0 1]x.

Assume now that we would like to track the reference input yref = 1, subject to the

disturbance ω = 0.5. For simulation purposes we assume x0 = [2 4 1 0.5 0.5 2]. In

this case, the application of the TcR controller (4.20) with ǫ = 0.5, solves the tracking

problem. Note that condition (4.10) holds for this problem; however, the information

was not used in order to implement the controller (4.20). Figure 4.12 illustrates both the

output y and the input u. The plots of the states x are omitted, however, it is easy to

deduce that they are nonnegative as u ≥ 0, ∀t ≥ 0.

△

The final example of this chapter illustrates the servomechanism problem under a

negative control input.

Example 4.6.3. The system considered in this example has been taken from [5].

The interior temperature of an electrically cooled oven is to be controlled by varying

the input u to the jacket. Let the heat capacities of the oven interior and of the jacket be

c2 and c1, respectively, let the interior and exterior jacket surface areas be a1 and a2, and

let the radiation coefficient of the interior and exterior jacket surfaces be r1 and r2. If the

external temperature is T0, the jacket temperature T1 and the oven interior temperature
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Figure 4.12: Output and input response for Example 4.6.2.

is T2, then the behaviour for the jacket is described by:

c1Ṫ1 = −a2r2(T1 − T0) − a1r1(T1 − T2) + u + a3ω

where ω is a disturbance, and for the oven interior:

c2Ṫ2 = a1r1(T1 − T2).

By setting the state variables to be the excess of temperature over the exterior, i.e.

x1 := T1 − T0 and x2 := T2 − T0



Chapter 4. Servomechanism Problem: SISO tuning regulators 102

results in the system:

ẋ =






−(a2r2+a1r1)
c1

(
a1r1

c1

)

(
a1r1

c2

) (
−a1r1

c2

)




x +






1
c1

a3

c1

0 0











u

ω






Assume that the values of the constants above are chosen such that c1 = c2 = 1, a1 =

a2 = a3 = 1 and r1 = r2 = 1, and that the disturbance vectors are eωω = [3 0]T and

fω = 0, then:

ẋ =






−2 1

1 −1




x +






1

0




u +






3

0




ω, y = [1 0]x.

We will now show that if the temperature excess in the jacket is initially zero, then we can

maintain nonnegativity of the states and output, along with obtaining tracking control

by using the tuning regulator. In this example we’ll assume that we want to regulate y

to yref = 1, i.e. the desired temperature excess should be 1◦C higher in the jacket than

the outside.

First, it is easy to show that the A matrix is stable, i.e.

σ(A) = {−2.618,−0.382}, and that the assumptions of Corollary 4.4.1 hold; in particular,

that xss > 0. We will also introduce clamping with nonpositive control. In this case,

the application of controller (4.11) with ǫ = 10 will suffice. Figure 4.13 and Figure 4.14

illustrate the states x and the input u, for the case of yref = 1, with zero initial conditions.

△

4.7 Conclusion

In this chapter we have discussed the tuning regulator robust servomechanism problem

for SISO positive LTI systems. We note that the necessary and sufficient conditions
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Figure 4.13: State response for Example 4.6.3.
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Figure 4.14: Input response for Example 4.6.3.
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for the positive servomechanism problem are: d − cA−1b 6= 0 (which can be checked by

Procedure 2.3.1) and uss > 0. The condition of d−cA−1b 6= 0 is equivalent to stating that

the zeros of (c, A, b, d) exclude 0 since we are tracking/rejecting constant disturbances.

It must be pointed out that the results presented in this chapter for unknown mathe-

matical models are highly realistic and robust. This is illustrated via experimental results

at the conclusion of the dissertation.



Chapter 5

Servomechanism Problem:

SISO LTQcR

In this chapter the servomechanism problem which was outlined by Problem 4.2.1 is

considered. In particular, we consider Problem 4.2.1 under a nonnegative optimal control

approach. Unlike in the previous chapter, here we assume that the plant model is known

(i.e. we know the numerical values of (A, b, c, d)); in this case, we show, via a simulation

example, that our results for tracking and disturbance rejection may be significantly

improved over those presented for unknown models of Chapter 4 with the use of a Linear

Tuning Quadratic clamping Regulator (LTQcR). However, unlike the case of standard

LTI systems, we show that an arbitrarily fast response, as for example in perfect control

type behaviour [20] for minimum phase systems, may not be attained.

The chapter is organized as follows. The system plant and the problem statement

are restated, and the Linear Tuning Quadratic Regulator (LTQR) approach is defined.

Section 5.2 provides the main results of the chapter based on nonnegative LTQR control.

The chapter then shifts to an implementation discussion of a Linear Tuning Quadratic

clamping Regulator (LTQcR) and a Reset Linear Tuning Quadratic clamping Regulator

(RLTQcR), after which, a comparison of the TcR and the RLTQcR controllers is carried

105
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out. Concluding remarks finalize the chapter.

5.1 Preliminaries

In this section, we restate the details of the plant and the problem of interest introduced

in Chapter 4.

Throughout this chapter we consider the following plant:

ẋ = Ax + bu + eωω

y = cx + du + fω

e := y − yref

(5.1)

where A is an n× n Metzler stable matrix, b ∈ Rn
+, c ∈ R

1×n
+ , d ∈ R+, eω ∈ Rn

+, f ∈ R+;

the signal yref ∈ Yref ⊂ R+ is a constant, as is ω ∈ Ω ⊂ R+. The sets Yref and Ω are

defined as in Assumption 4.1.1 of the previous chapter. The plant being considered is

identical to the one presented in Chapter 4 equation (4.1) and is reintroduced here for

ease of reference. The only difference made is in the definition of the error e = y − yref .

The reason for doing this is to ease in the proof of the main result of this chapter.

With the above plant restated, we outline the problem of interest. Unlike in the

previous chapter, where the control strategy was nonnegative and/or bidirectional, here

we deal with nonnegative inputs only.

The positive servomechanism problem of interest in this section is stated below.

Problem 5.1.1. Consider the plant (5.1) where the disturbance ω is unmeasurable, the

tracking signal yref and the state x are measurable, and the initial condition x0 ∈ Rn
+.

Assume that Assumption 4.1.1 holds true.

Find an LTI controller connected as in the diagram (Figure 5.1) such that the closed-loop

system satisfies
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yref e u y

−

ω

LTI

Controller

Positive
LTI System

x

xc(0)

Figure 5.1: Closed-loop LTI system.

(a) asymptotic stability in the sense of Lyapunov with respect to the origin, and for

every yref ∈ Yref , ω ∈ Ω, with the initial condition of the controller xc(0) having

the property u(0) ∈ R+

(b) the states x(t) ≥ 0, output y(t) ≥ 0, and input u(t) > 0 ∀ t; and

(c) tracking of the reference signal occurs, i.e. e(t) = y(t) − yref → 0, as t → ∞. In

addition,

(d) assume that a controller has been found so that conditions (a), (b), (c) are satisfied;

then for all perturbations of the nominal plant model which maintain properties

(a) and (b), it is desired that the controller can still achieve asymptotic tracking

and regulation, i.e. the controller is robust and property (c) still holds.

In the previous chapter, necessary conditions for Problem 5.1.1 were obtained (d −

cA−1b 6= 0 and uss > 0), below we make a remark regarding these conditions.

Remark 5.1.1. Throughout this chapter we will assume that the above necessary condi-

tions hold true (i.e. we assume Assumption 4.1.1 holds true for the remainder of this

chapter). Additionally, all definitions introduced in Chapter 4 carry over to this chapter.

The main distinction between Chapter 4 and the present chapter is the fact that

here we assume the system model is known, i.e. the matrices (A, b, c, d) are given to the
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designer. This assumption will allow us to discuss less restrictive control strategies in the

hope of improving the transient response and settling time of those given in the previous

chapter. In particular, our focus will be to concentrate on a linear quadratic approach

to Problem 5.1.1.

5.2 Servomechanism Problem: LTQR approach

In this section, the solution to Problem 5.1.1 under the LTQR controller is presented.

The Linear Tuning Quadratic Regulator (LTQR) of interest in this section and through-

out this chapter is defined next.

The LTQR controller is given by:

η̇ = y − yref

u = [Kx Kη]






x

η




 , u(0) > 0 and fixed

, (5.2)

where Kx ∈ R1×n and Kη ∈ R are found by solving the expensive control problem [20],

[16]:
∫ ∞

0

ηT η + ρ2uTudτ (5.3)

where ρ > 0, for the system:






ẋ

η̇




 =






A 0

c 0











x

η




 +






b

d




u (5.4)

η = [0 1]






x

η




 (5.5)

with yref = 0 and ω = 0.

For convenience, since we will be interested in letting ρ → ∞, we re-write (5.3) as
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∫ ∞

0

ǫ2ηT η + uT udτ (5.6)

where ǫ > 0. In this case, since it has been assumed that A is stable and that d−cA−1b 6=

0, it directly follows that the system (5.4) has the property that

rank






A b

c d




 = n + 1

which implies it is stabilizable, and by inspection, (5.4) is detectable. This implies that

there exists a unique stabilizing optimal state feedback controller for (5.4) given by:

u = [Kx Kη]






x

η




 .

The latter control law can also be presented in a slightly different fashion, where

yref 6= 0 and ω 6= 0, which yields the same gain matrix as that of the control strategy

above. Thus, we can replace the latter with

∫ ∞

0

eT e + ρ2u̇T u̇dτ (5.7)

where ρ > 0, or
∫ ∞

0

ǫ2eT e + u̇T u̇dτ, (5.8)

where ǫ > 0 for the system:






ẍ

ė




 =






A 0

c 0











ẋ

e




 +






b

d




 u̇

e = [0 1]






ẋ

e





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and where

u̇ = [Kx Kη]






ẋ

e




 .

The above approach to the cheap control problem for LTI systems under constant

tracking and disturbance signals has been justified in [16].

The main result under the LTQR is presented next.

Theorem 5.2.1. Consider system (5.1). Then for all x(0) ∈ Rn
+ there exists an ǫ∗(x(0), u(0)) >

0 such that for all ǫ ∈ (0, ǫ∗(x(0), u(0))] the controller (5.2) solves Problem 5.1.1.

Through the remainder of this section, as was done in the previous Chapter, ǫ∗(x(0), η(0))

will be denoted by simply ǫ∗.

The proof is given next.

Proof. The closed-loop system of the plant and the controller is given in Figure 5.2. The

e u

x

Kη

η
1

s

Kx

+
yref Positve

LTI System

y

ω

−

Figure 5.2: Closed-loop LTI system.

resulting closed-loop system is LTI and by the existence of a unique linear quadratic

gain Kǫ := [Kx Kη] there always exists an ǫ+ > 0 such that ∀ ǫ ∈ (0, ǫ+] the closed-loop

matrix is stable. This implies that all the conditions of Problem 4.2.1 will hold true if the

nonnegativity condition (b) holds true. Through the remainder of the proof we assume

ǫ ∈ (0, ǫ+], and without loss of generality let us assume ǫ+ is fixed.

Let us recall the two key assumptions:
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1. u(0) > 0 (by the definition of the LTQR controller (5.2));

2. uss > 0 (by the choice of Yref and Ω).

First, by the definition of positive LTI systems we know that if u(t) ≥ 0 for all t, then

the states x(t) and the outputs y(t) also remain nonnegative for all t. Let us show now

that there exists an ǫ∗ ≤ ǫ+ such that for all ǫ ∈ (0, ǫ∗], u(t) > 0 for all t under the two

assumptions listed above.

Under the set up of the closed-loop system the steady states xss, uss are independent

of ǫ; therefore, using the results of the Appendix (Section 5.4), we can shift the closed-

loop system by setting z = x − xss and q = u − uss, to obtain the resultant closed-loop

system:






ż

q̇




 =






A b

ǫ(KxA − c) ǫ(Kxb − d)











z

q




 (5.9)

where [Kx Kη] = ǫ[Kx(ǫ) − 1], where limǫ→0Kx(ǫ) exists1.

For convenience, rewrite






q̇

ż




 =






ǫ(Kxb − d) ǫ(KxA − c)

b A











q

z




 , (5.10)

and note that if q(t, ǫ) + uss > 0 for all t, then u(t) > 0 for all t.

Next, let us scale the derivatives by ǫdt = dτ (i.e. scaling of time ǫt = τ) resulting in

the transformed system

1The dependence of Kx(ǫ) on ǫ will be dropped for the remainder of the thesis.
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




⊙
q

ǫ
⊙
z




 =






(Kxb − d) (KxA − c)

b A











q

z




 , (5.11)

with ǫ
⊙
q = q̇ and ǫ

⊙
z = ż.

Notice that if q(τ, ǫ)+uss > 0 for all τ , then q(t, ǫ)+uss > 0 for all t and consequently

u(t) > 0 for all t. Therefore, it remains to show that indeed q(τ, ǫ) + uss > 0 for all τ .

We now observe that we have transformed our system (5.11) into that of a singular

perturbation model (SP).

Next, we must show that all assumptions of singular perturbation hold true. However,

since (5.11) is linear and time invariant, and we are only interested in u, it suffices to show

that the reduced model (see below) yields exponential stability; all other assumptions

clearly hold, including the continuous differentiability with respect to ǫ of Kx around the

origin (see Section 5.4 for details) and the stability of the boundry-layer model, which is

ṗ = Ap

with A stable.

Next, by setting ǫ = 0 in (5.11) we obtain

z = h(q) = −A−1bq,

as A is Hurwitz, h(q) exists and is unique, and by substituting h(q) into
⊙
q we obtain the

reduced model:

⊙
q = (Kxb − d)q − (KxA − c)A−1bq

= −(d − cA−1b)q where by Lemma 4.1.2 (d − cA−1b) > 0.
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Denote the solution of
⊙
q = −(d − cA−1b)q by q(τ), which is clearly exponentially stable

(as needed by SP) and monotonic. Thus, by SP we have, as in Chapter 4:

q(τ, ǫ) − q(τ) = O(ǫ) ∀τ

uniformly in τ , where

q(τ) = e−(d−cA−1b)τq(0) and

q(τ) + uss = uss + e−(d−cA−1b)τq(0)

with q(0) = q(0) = u(0) − uss by definition. Now, since u(0) > 0, then there exists an

ǫ∗ ≤ ǫ+ such that q(τ, ǫ) + uss > 0 for all ǫ ∈ (0, ǫ∗] since q(τ) + uss is monotonically

approaching uss.

This completes the proof.

The latter problem can be interpreted as the tracking and disturbance rejection prob-

lem under nonnegative LTQR control for positive LTI plants experiencing unmeasurable

constant nonnegative disturbances.

Before we depart this section, we consider a Corollary to Theorem 5.2.1 with the

extra assumption that 0 ≤ u(t) ≤ u, u > 0 fixed, for all t ∈ [0,∞).

Corollary 5.2.1. Consider system (5.1) and controller (5.2) where 0 < u(0) < u, 0 < uss <

u, u > 0 fixed. Then for all x(0) ∈ R
n
+ there exists an ǫ∗(x(0), u(0)) > 0 such that for all

ǫ ∈ (0, ǫ∗(x(0), u(0))] the controller (5.2) solves Problem 5.1.1 with condition (b) replaced

by

(b’) the states x(t) ≥ 0, output y(t) ≥ 0 and input 0 < u(t) < u.

The latter Corollary simply states that we would like to bound our input signal both

from below by zero and from above by some constant u. The proof is omitted as it follows

similar guidelines as the results of Chapter 4 (see Corollary 4.2.1).
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A very interesting question now arises with the use of the controller that we proposed;

namely, how large can we make ǫ? Although our controller can be used to solve Problem

5.1.1, we do not have direct knowledge of how large our ǫ can be. In fact, we point out

in the next subsection that if we make ǫ too large then the control objective can in fact

no longer be satisfied.

5.3 Implementation

In the remainder of this chapter, implementation of the theory presented in the previ-

ous sections is considered. In particular, we consider linear tuning quadratic clamping

regulators (LTQcR) and reset linear tuning quadratic clamping regulators (RLTQcR) to

prevent the input signals from going negative.

First, however, we consider two results. The first result pertains to Figure 5.3, while

the second to Figure 5.4.

yref

uout(uin) = 0
e uin uout

y

−

ω

LTI

Controller
Positive

LTI System

x

Figure 5.3: Implementation system 1.

Theorem 5.3.1. Consider the system of Figure 5.3 where the positive LTI system is repre-

sented as (5.1) and where the block diagram of Figure 5.5 represents the LTI controller.

Assume yref ∈ R+, ω ∈ R+, and d − cA−1b 6= 0.

Then, for all ǫ > 0, and all x(0) ∈ Rn
+ there exists a t∗(x(0), ǫ) ≥ 0 such that for all

t ∈ [t∗(x(0), ǫ),∞)

uin(t) > 0
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yref

uout(uin) = u
e uin uout

y

−

ω

LTI

Controller
Positive

LTI System

x

Figure 5.4: Implementation system 2.

e uin

x

Kη

η
1

s

Kx

+

Figure 5.5: LTI controller.

if and only if

uss > 0.

Proof. The overall system is:

ẋ = Ax + eωω

u̇in = Kx(Ax + eωω) + Kη(y − yref)

y = cx + fω.

As t → ∞ we have

x → xss = −A−1eωω since A is stable.

Recall,

xss = −A−1(buss + eωω).

Thus, we can rewrite xss as

xss = xss + A−1buss.
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Next, since x → x as t → ∞ then

u̇in = Kxẋ + Kηė

= Kx(Ax + eωω) + Kη(y − yref)

u̇in → Kx(Axss + eωω) + Kη(cxss + d(0) − yref) as t → ∞

Kx(Axss + eωω) +

Kη(cxss + d(0) − yref) = Kx(0) + Kη(c(xss + A−1buss) + d(0) − yref)

= Kη(c(xss + A−1buss) + d(uss − uss) − yref)

= Kη(cxss + duss − yref) − Kη(d − cA−1b)uss)

= 0 + −Kη(d − cA−1b)uss

= ǫ(d − cA−1b)uss where from Section 5.4 Kη = −ǫ

Thus, clearly since the derivative tends to ǫ(d− cA−1b)uss > 0 ⇐⇒ uss > 0 there exists

a t∗(x(0), ǫ) ≥ 0 such that for all t ∈ [t∗(x(0), ǫ),∞)

uin(t) > 0.

We now come back to the system of Figure 5.4 and present a corollary to the latter

theorem.

Corollary 5.3.1. Consider the setup of Figure 5.4 where the positive LTI system is repre-

sented as (5.1) and where the block diagram of Figure 5.5 represents the LTI controller.

Assume yref ∈ R+, ω ∈ R+, and d − cA−1b 6= 0.

Then, for all ǫ > 0, and all x(0) ∈ Rn
+ there exists a t∗(x(0), ǫ) ≥ 0 such that for all

t ∈ [t∗(x(0), ǫ),∞)

uin(t) < u
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if and only if

uss < u.

The proof follows similar guidelines as the proof of Theorem 5.3.1 and is omitted.

Next, from the results of Theorem 5.2.1 and Theorem 5.3.1 we propose a linear tuning

quadratic clamping regulator (LTQcR), which clamps all signals at zero or employs the

LTQR whenever the input signal is positive. The LTQcR is presented below.

η̇ = y − yref

u = max{[Kx Kη]






x

η




 , 0}, u(0) > 0 and fixed

, (5.12)

where Kx and Kη are defined as in the LTQR (5.2).

The introduction of the LTQcR is necessary as in Theorem 5.2.1 we do not know how

small the ǫ∗ should be due to unmeasurable disturbances, thus, the input uss is actually

unknown. However, by Theorem 5.3.1 we can deduce that under the LTQcR controller if

uss ≤ 0, then our controller will “shut itself off” in finite time and remain shut off and if

uss > 0 we know that there exists a time t∗(x(0), ǫ) such that the trajectory will return

to the linear region.

The next result takes into account the information presented by Corollary 5.2.1,

Theorem 5.3.1, and Corollary 5.3.1.

In the case of the RTcR controller we implemented an “anti-reset” wind-up like be-

haviour. The proposed RLTQcR controller will serve the same purpose.

η̇ = y − yref if (u > 0) or (u = 0 and e ≤ 0)

η̇ = 0 otherwise

u = max{[Kx Kη]






x

η




 , 0}, u(0) > 0 and fixed

, (5.13)
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where, once again, Kx and Kη are defined as in the LTQR (5.2). The addition of u > 0

as in the RTcR can easily be incorporated and thus taking advantage of Corollary 5.3.1

(see Remark 5.3.1).

Both the LTcQR and RLTcQR controllers use the theoretical results of this chapter

to implement controllers that will be used in a simulated example in this chapter and on

experimental results in Chapter 9.

We now turn our attention to perfect LTI control and an illustrative example.

5.3.1 Perfect Control

In this section a discussion of perfect control [20] for positive LTI systems is considered.

Our focus will be to show, via an example, that one may not be able to obtain arbitrarily

good approximate error regulation with respect to (5.1) and (5.8), or more precisely we

may not be able to satisfy the conditions:

• limǫ→∞ e(t, ǫ) = 0, t > 0

• e(t, 0) = 0, t > 0

• e(t, ǫ) has no unbounded peaking as ǫ → ∞,

just as in the case of LTI systems [20]. In particular, we would like to provide an example

of where the controller with clamping (LTQcR, proposed in the previous subsection)

cannot achieve arbitrarily fast response as ǫ → ∞. The main goal of the example is to

show that we cannot simply take an LTI approach, where we design a gain matrix Kǫ,

then clamp the system, and expect things to be stable and have error regulation.

We provide an example of a fluid exchange system where our controller with clamping

fails to solve the servomechanism problem 5.1.1, as ǫ → ∞. It is worth pointing out that

the system in the example is minimum phase, which implies that in the LTI sense perfect

control can be attained!
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Let us consider the example of interest next.

Example 5.3.1. The following system (shown in Figure 5.6) has been introduced in the

previous chapter. The details of its setup can be found in Example 4.6.2.

u + ω

γ 1− γ

φ 1− φ

1 2

3

4

5

6

pump

Figure 5.6: System set up for Example 5.3.1.

Consider the case where γ = 0.5, φ = 0.7, α1 = 0.8, α2 = 0.7, α3 = 0.5, α4 = 1,

α5 = 2, α6 = 0.8, and ω = 0. Note that all the rates are measured in L/s. With the
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variables defined above we obtain the following system:

ẋ =



















−0.8 0 0 0 2 0

0 −0.7 0 0 0 0

0.8 0.7 −0.5 0 0 0

0 0 0.15 −1 0 0

0 0 0 1 −2 0

0 0 0.35 0 0 −0.8



















x +



















.5

.5

0

0

0

0



















u. (5.14)

y = [0 0 0 0 0 1]x.

It is easy to show that the above compartmental system is stable, as

σ(A) = {−0.8, − 0.2112, − 0.9924 ± 0.5249i, − 2.1039, − 0.7000}.

Also, the system is minimum phase (required to achieve perfect control [20]), where the

zeros are: −2, − 0.74667, − 1. Assume that the initial condition x0 = 0, and that

we would like to track the reference input yref = 1. By applying the LQcR controller

with ǫ = 1e3 we illustrate that the output y clearly is not tracking the desired reference

(see figure 5.7 for the output response). The input is shown in Figure 5.8. The above

example answers an interesting question, namely, perfect control using controller (5.12)

for minimum phase systems is not necessarily possible to obtain. Note: although the

choice of ǫ = 1 × 103 does not work, if one reduces this value (say to 1 × 102) Problem

5.1.1 now becomes solvable. The plots are shown in Figure 5.9 and 5.10; notice that

although the response is satisfactory for the problem statement, the result is excessively

oscillatory.

We now return to the same example under the RLTQcR (5.13).

We provide the response of the output and input in Figure 5.11 and Figure 5.12 for

the same choice of ǫ = 1e3.
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Figure 5.7: Output response for ǫ = 1e3.
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Figure 5.8: Input response for ǫ = 1e3.
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Figure 5.9: Output response for ǫ = 1e2.
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Figure 5.10: Input response for ǫ = 1e2.
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Figure 5.11: Output response with RLQcR control.
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Figure 5.12: Input response with RLQcR control.
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Notice the huge benefit of using the above RLTQcR controller over that of the LTQcR

(5.12). Additionally, we point out that the response of the RLTQcR controller is far

superior to that of the RTcR. The result for the RTcR, which yields the best settling

time for the same example, are provided in Figure 5.13. The overshoot is much lower,

but the settling time is six times slower than that of the RLQcR.
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Figure 5.13: Output response with reset anti-windup for TcR ǫ = 0.11.

△

Before we depart this section a remark regarding saturating signals is given.

Remark 5.3.1. If control signal saturation from above is to be considered then we can
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replace the RLQcR controller with

if ((0 < u < u) or

η̇ = y − yref (u = 0 and e < 0) or

(u = u and e > 0))

η̇ = 0 else,

(5.15)

with

u =







0 [Kx Kη][x η]T ≤ 0

[Kx Kη] [x η]T 0 < [Kx Kη][x η]T < u

u [Kx Kη][x η]T ≥ u

,

with 0 < u(0) < u and fixed.

This control strategy will play a crucial role in the experimental results presented at

the end of this thesis.

5.4 Appendix

In this section, we discuss some results that were used in this chapter without justification.

Some preliminary results are initially given. The ultimate goal of this introductory

material is to show that the optimal gain matrix Kǫ has the property that

Kǫ = [Kx Kη] = ǫK, (5.16)

where Kη = −ǫ and where the components of K are

K1r =

(
ζ0 + ζ1ǫ + ζ2ǫ

2 + ...

1 + γ1ǫ + γ2ǫ2 + ...

)
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with r ∈ {1, ..., n + 1}, ζi ∈ R, γj ∈ R ∀i, j ∈ {0, 1, 2, ...}. Note that K is continuously

differentiable with respect to ǫ near and at the origin!

The first introductory result is provided next.

Lemma 5.4.1. Let M ∈ R
n×n and N(ǫ) ∈ R

n×n with each element of N(ǫ) defined by

Nij(ǫ) =
αij

1 ǫ + αij
2 ǫ2 + ...

1 + βij
1 ǫ + βij

2 ǫ2 + ...

where αij
s ∈ R, βij

r ∈ R, and ǫ ∈ (0, 1), for all i, j, s, r ∈ {1, 2, ...}. Then the determinant

of M + N(ǫ) is

|M + N(ǫ)| =
α̃ij

0 + α̃ij
1 ǫ + α̃ij

2 ǫ2 + ...

1 + β̃ij
1 ǫ + β̃ij

2 ǫ2 + ...

with all constants defined as above, i.e. real, and α̃ij
0 ∈ R.

Moreover, if ǫ → 0 and if the determinant of M is nonzero, then α̃ij
0 6= 0.

Proof. We will prove the result via induction.

1. For n = 1 we have M ∈ R1×1, N(ǫ) ∈ R1×1 and |M + N(ǫ)|

= M +
α11

1 ǫ+α11
2 ǫ2+...

1+β11
1 ǫ+β11

2 ǫ2+...

=
M(1+β11

1 ǫ+β11
2 ǫ2+...)+(α11

1 ǫ+α11
2 ǫ2+...)

1+β11
1 ǫ+β11

2 ǫ2+...

=
M+(α11

1 +Mβ11
1 )ǫ+(α11

2 +Mβ11
2 )ǫ2+...

1+β11
1 ǫ+β11

2 ǫ2+...
.

This completes the case for n = 1.

2. Next, assume n = k holds true.
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3. Let’s now show that the result also holds for n = k + 1. Define

M + N(ǫ) :=












a11 a12 ... a1(k+1)

a21 a22 ... a2(k+1)

...
. . .

...

a(k+1)1 a(k+1)2 ... a(k+1)(k+1)












.

The determinant becomes:

|M + N(ǫ)| = a11

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a22 ... a2(k+1)

...
. . .

...

a(k+1)2 ... a(k+1)(k+1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+ ...

+(−1)1+na1(k+1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a21 ... a2k

...
. . .

...

a(k+1)2 ... a(k+1)k

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

It is now easy to deduce that all determinants above are of size k, and since addition

and multiplication are the only operations involved, the result follows.

The second statement: if ǫ → 0 and the determinant of M is nonzero, then α̃ij
0 6= 0,

is a direct result of the above proof and matrix perturbation theory [81].

Remark 5.4.1. Notice from the above result, under the assumption that the determinant

of M is nonzero, that the inverse of the matrix (M +N(ǫ))−1, where ǫ → 0, always exists;

and moreover, all components will be of the form given by

aǫ
ij =

αij
0 + αij

1 ǫ + αij
2 ǫ2 + ...

1 + βij
1 ǫ + βij

2 ǫ2 + ...
.

We now come back to showing that

Kǫ = [Kx Kη] = ǫ[Kx Kη].
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where limǫ→0[Kx Kη] exists. First, let’s show that

Kη = −ǫ.

Recall that in order to obtain the gain matrix Kǫ and consequently Kη we need to solve

the continuous algebraic Riccati equation for (5.8):

ÃT P + PÃ − PB̃R−1B̃T P + Q = 0 (5.17)

with R−1 = 1,

Q =






0 0

0 ǫ2




 ,

Ã =






A 0

c 0




 , B̃ =






b

0




 .

P =






P11 P12

P T
12 P22




 ,

with appropriate dimensions. Moreover,

Kǫ = [Kx Kη] = −B̃P ⇒ Kx = −bT P11 Kη = −bT P12.

By manipulation of (5.17) we obtain

P T
12bb

T P12 = ǫ2,
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but P T
12b = bT P12 (note, they are scalars) so we have

(bT P12)
2 = ǫ2

(Kη)
2 = ǫ2

Kη = ±ǫ

Let us show that Kη must be negative (i.e. Kη = −ǫ). In order to show that Kη < 0,

we will use one key result for stable Metzler matrices, which is justified by Lemma 3.2.1.

Namely, every principal submatrix of a stable Metzler matrix is itself stable. First,

without loss of generality let’s consider the case when ǫ → 0; then the determinant of

the closed-loop matrix is

det






A + bKx bKη

c + dKx dKη












> 0, n odd

< 0, n even
,

since Kǫ = [Kx Kη] → 0 for ǫ → 0 and the closed loop matrix must be stable by lqr

design. Now, notice that if

det






A b

c d












< 0, n odd

> 0, n even
, (5.18)

then

det






A + bKx b

c + dKx d












< 0, n odd

> 0, n even

for sufficiently small Kx. However, if the above is true then since

det






A + bKx bKη

c + dKx dKη




 = Kηdet






A + bKx b

c + cKx d





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it follows that Kη < 0. Therefore, it suffices to show that (5.18) holds true. We will show

this by induction.

(1) Let’s show that (5.18) holds true for k = 1, 2. In this case (5.18) claims that the

result should be negative for k = 1 and positive for k = 2. Indeed the determinant

for k = 1 is equal to Ad−bc < 0, since A is a negative scalar and all other variables

are positive. Note that bc 6= 0 because (d − cA−1b) 6= 0.

In the case of k = 2, we have (along the last row)

det






A b

c d




 = c1(a12b2 − a22b1) − c2(a11b2 − a21b1) + d × det(A)

≥ 0.

The summation along the last row is nonnegative by the assumption that A is stable,

and all other matrices (b, c, d) are nonnegative. The result that the determinant

is positive follows from the assumption that (d − cA−1b) 6= 0. This concludes both

k = 1 and k = 2.

(2) Assume that (5.18) holds true for k = n − 1 for both n odd and even.

(3) Let’s now show that (5.18) holds true for k = n. Let’s compute the determinant

by going along the last row of the matrix






A b

c d




 .

Now notice that

det






A b

c d




 =
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n∑

i=1

(−1)n+1+ici × det(Ai) + d × det(A),

where Ai = 

















a11 a12 ... a1(i−1) a1(i+1) ... a1n b1

a21 a22 ... a2(i−1) a2(i+1) ... a2n b2

...
...

...
...

...

ai1 ai2 ... ai(i−1) ai(i+1) ... ain bi

...
...

...
...

...

an1 an2 ... an(i−1) an(i+1) ... ann bn



















and where, by rearrangement, det(Ai) = (−1)n−i multiplied by the determinant of


























a11 ... a1(i−1) a1(i+1) ... a1n b1

a21 ... a2(i−1) a2(i+1) ... a2n b2

...
...

...
...

a(i−1)1 ... ... ... ... a(i−1)n bi−1

a(i+1)1 ... ... ... ... a(i+1)n bi+1

...
...

...
...

an1 ... an(i−1) an(i+1) ... ann bn

ai1 ... ai(i−1) ai(i+1) ... ain bi


























but the latter rearrangement (which we will refer to as A∗
i ) is just in the form of k = n−1

which by assumption holds true or is equal to zero. Thus, we have

det






A b

c d




 =

n∑

i=1

−ci × det(A∗
i ) + d × det(A),

which is positive if n is even or negative if n is odd. Hence, indeed Kη < 0 and by the

results presented thus far

Kη = −ǫ.
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With the knowledge above we now move to study the result for Kx. For convenience, but

without loss of generality, we assume d = 0. Here we use the help of [87]. In [87] it has

been pointed out how one can recursively find the nonnegative symmetric and unique P

that solves (5.17) by following the steps:

1. Choose K1 so that Ã + B̃K1 is stable.

2. Having chosen K1, ..., Kk obtain Pk from

(Ã + B̃Kk)
T Pk + Pk(Ã + B̃Kk) + Q + KT

k Kk = 0 (5.19)

3. Define Kk+1 := B̃T Pk.

We will show the result for Kx = ǫKx holds true by induction with

K1 = [0 − ǫ].

By the discussion of Chapter 4 (and [17]) we know that there exists an ǫ∗ such that for

all ǫ ∈ (0, ǫ∗] K1 stabilizes Ã. Also, K1 clearly satisfies (5.16). Therefore, we have a

starting point for our algorithm above. In order to show the desired result we must show

that the desired result holds for Pk.

For Kk+1 = [Kx
k+1 Kη

k+1] we have (5.19):

(Ã + B̃Kk)
T Pk + Pk(Ã + B̃Kk) = −




KT

k Kk +






0 0

0 ǫ











For convenience, we let

Pk =






P1 P0

P0′ P2




 ,

where P1 ∈ Rn×n, P0 ∈ Rn×1 and P2 ∈ R1×1. Notice that Kx
k+1 = −bT P1 and Kη

k+1 =
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−bT P0. Here we are solely interested in Kx
k+1 since we already know the value of Kη

k+1

for all k.

By simplification we arrive at the result that

(A + bKx
k )T P1 + P1(A + bKx

k ) + (5.20)

cT P0′ + P0c + (Kx
k )T (Kx

k ) = 0,

with

P0 = (A + bKx
k )−T (−cT P2 + ǫP1b + ǫ(Kx

k )T ) (5.21)

and

P2 =
ǫ − bT (A + bKx

k )−T [ǫP1b + ǫ(Kx
k )T ]

−c(A + bKx
k )−1b

. (5.22)

Next, by induction we are interested in showing that P1 is in the form of ǫ(M +N(ǫ))

(defined in Lemma 5.4.1) for all k.

By induction, let i = 1. From (5.20)-(5.22) and simplification we have:

(AT P1 + P1A) + cT P0T + P0c = 0

with

P0 = ǫ

(

A−T P1b +
A−T cT

cA−1b
−

A−T cT bT A−T P1b

cA−1b

)

.

With the use of Lemma 5.4.1 and existence of P1 the result follows for i = 1 since we

have to solve an equation of the form:





















matrix









︸ ︷︷ ︸

constant

+ǫ









matrix









︸ ︷︷ ︸

constant





















p11

...

pnn









= ǫ









vector









︸ ︷︷ ︸

constant

,
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where P1 has been represented as a vector [p11 ... pnn]
T .

Next, continuing by induction we assume the result holds for i = k−1 and show that

it holds for i = k + 1. However, we have already simplified the results for (5.20)-(5.22)

with i = k and we can deduce that indeed P1 is of the form represented by ǫ(M + N(ǫ))

and hence

Kx = ǫKx

for some Kx with appropriate dimensions, with the property that limǫ→0Kx(ǫ) exists.

5.5 Conclusion

In this chapter, we have presented a new type of LQ approach that includes a clamping

controller and an anti-reset windup clamping control, which may highly improve on the

response of the controllers presented in Chapter 4. In order to facilitate the improvement

in transient response, we made the extra assumption that the model of the system is

known a priori, which was not done in Chapter 4.



Chapter 6

Servomechanism Problem:

MIMO tuning regulators

6.1 Introduction

In this chapter we study the servomechanism problem for MIMO positive LTI systems. In

particular, this chapter considers the tracking problem of nonnegative constant reference

signals for stable known and unknown MIMO positive LTI systems under measurable

and unmeasurable disturbances. The chapter extends the results of the SISO case of

Chapter 4 to MIMO positive systems.

This chapter is organized as follows. The problem statement is redefined first and

a very interesting existence condition is then outlined. The main discussion on the

servomechanism problem for unknown MIMO positive LTI systems under nonnegative

control and measurable disturbances is then considered; thereafter, we tackle the same

problem under nonnegative control and unmeasurable disturbances. The chapter is fi-

nalized with an extension to the discrete-time positive LTI systems case, and several

interesting comments.

135
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6.2 Preliminaries

The plant of interest is given first:

ẋ = Ax + Bu + Eω

y = Cx + Du + Fω

e := yref − y

(6.1)

where A is an n × n Metzler stable matrix, B ∈ R
n×m
+ , C ∈ R

r×n
+ , D ∈ R

r×m
+ , E ∈ R

n×q
+ ,

F ∈ R
r×q
+ ; the signal yref ∈ R

r
+ is a constant, as is ω ∈ R

q
+. Assume m = r, i.e., the

number of inputs is equal to the number of outputs.

First, we extend the result of Lemma 4.1.2 for d − cA−1b and f − cA−1eω to the

multi-variable case.

Corollary 6.2.1. Consider the system matrices of the plant (6.1). Then,

D − CA−1B ∈ R
r×m
+

and

F − CA−1E ∈ R
r×q
+ .

Proof.

−A−1 ∈ R
n×n
+ by Lemma 4.1.1

−CA−1B ∈ R
r×m
+ since C ∈ R

r×n
+ , B ∈ R

n×m
+

D − CA−1B ∈ R
r×m
+ since D ∈ R

r×m
+

The result for F − CA−1E follows in the same fashion.

Next, we provide an important assumption which will be commonly used throughout

this chapter and the next. The assumption is needed in order to ensure that the steady
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state value of the input exists and that the transmission zeros of the plant exclude the

origin.

Assumption 6.2.1. Given the plant (6.1) assume that rank(D − CA−1B) = r.

The latter assumption implies that the inverse

(D − CA−1B)−1

exists.

Next we redefine the steady state uss, xss and yss for the MIMO case.

Definition 6.2.1. Consider the plant (6.1) under Assumption 6.2.1. Define

uss := (D − CA−1B)−1yref − (D − CA−1B)−1(F − CA−1E)ω (6.2)

Kr := (D − CA−1B)−1 (6.3)

Kd := −(D − CA−1B)−1(F − CA−1E) (6.4)

xss := −A−1(Buss + Eω) (6.5)

and

yss := Cxss + Duss + Fω. (6.6)

From the above definitions, we can conclude that

uss = Kryref + Kdω.
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If we assume that uss ∈ R
m
+ , then we can make the following claim. The result is stated

as a corollary to Lemma 4.1.3.

Corollary 6.2.2. Consider the plant (6.1). If uss ∈ Rm
+ , then

xss ≥ 0 and yss ≥ 0.

Proof. It follows that

−A−1 ∈ R
n×n
+ by Lemma 4.1.1

−A−1(Buss + Eω) ∈ R
n
+ since B ∈ R

n×m
+ , uss ∈ Rm

+ , E ∈ R
n×q
+ , ω ∈ R

q
+.

Similarly for yss.

Let us now shift to a discussion of the servomechanism problem for MIMO positive

LTI systems.

6.3 Servomechanism Problem: measurable distur-

bances and nonnegative control

In this section the main ideas behind the servomechanism problem under measurable

disturbances are considered. First, two problems of interest associated with measurable

disturbances are introduced. Second, a crucial outcome is obtained, which was not as

evident for the SISO case, i.e. we point out that for positive systems one, in general,

cannot solve the tracking problem with nonnegative control inputs for all tracking and

disturbance signals, i.e., for all

yi
ref ∈ Y i

ref := [0, yi
ref ], i = 1, ..., r where yi

ref > 0

ωi ∈ Ωi := [0, ωi], i = 1, ..., Ω where ωi > 0.
(6.7)
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Until otherwise stated, in this chapter, assume Yref and Ω are defined as above.

With the latter result in mind, we then restrict the tracking and disturbance signals to

a feasible set and solve the servomechanism problem for unknown stable MIMO positive

LTI systems.

Next, we introduce two problems of interest. The first problem considers unknown

plants1, which do not experience any perturbations. The second problem considers un-

known plants that may experience perturbations.

The new non-robust servomechanism problem for MIMO is outlined below.

u Positive

LTI System

yLTI

Controller

yref

ω

Figure 6.1: Open-loop MIMO LTI control.

Problem 6.3.1. Consider the plant (6.1) where the disturbance ω is measurable, the track-

ing signal yref is measurable, and the initial condition x0 ∈ R
n
+. Assume that Assumption

6.2.1 holds true.

Find an LTI controller connected as in the diagram (Figure 6.1) such that the controlled

system for every yref ∈ Yref , and every ω ∈ Ω has the property:

(a) the states x(t) ≥ 0, output y(t) ≥ 0, and input u(t) ≥ 0 ∀ t; and

(b) tracking of the reference signal occurs, i.e. e(t) = yref − y(t) → 0, as t → ∞.

The second problem considers plants that may undergo some perturbations.

1once again by unknown we mean that the numerical knowledge of the matrices is not known, but
we do assume that the plant is a stable positive LTI system.
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Problem 6.3.2. Consider the Problem 6.3.1 with the additional requirement that if an

LTI controller has been found so that conditions (a), (b) are satisfied, then for all per-

turbations of the nominal plant model which maintain properties (a) and (b) of Problem

6.3.1, it is desired that the controller can still achieve closed-loop stability and asymptotic

tracking and regulation.

We now illustrate that both Problem 6.3.1 and Problem 6.3.2 are in general unattain-

able under the restriction of nonnegative control of the input. The first step in showing

the latter is the presentation of one key result from matrix theory and Lemma 4.1.1

(which is restated for quick reference).

Lemma 6.3.1 ([72]). If a nonnegative matrix A is square and nonsingular, then its inverse

A−1 is also nonnegative if and only if A is a monomial matrix.

Lemma 6.3.2 ([55]). Let A be a Metzler matrix; then −A−1 exists and is a nonnegative

matrix if and only if A is Hurwitz.

We are now ready to state the first major result. The following observation with

respect to Problem 6.3.1 and Problem 6.3.2 is obtained.

Theorem 6.3.1. Assume that the disturbances ω are measurable and that the plant model

(6.1) is completely known; then:

[i] A necessary condition for a solution to Problem 6.3.1 and Problem 6.3.2 to exist is

that rank(D − CA−1B) = r (Assumption 6.2.1).

[ii] Assume that m = r = 1 and that condition [i] above holds; then if Kdω = 0 there

exists a solution to Problem 6.3.1 and Problem 6.3.2, and if Kdω 6= 0 with yref = 0, there

exists no solution to Problem 6.3.1 or Problem 6.3.2 (consistent with Assumption 4.1.1).

[iii] Otherwise generically, for almost all plant parameters of model (6.1) there exists no

solution to Problem 6.3.1 or Problem 6.3.2.

Proof. The necessary condition follows from LTI systems (i.e. no transmission zeros at

the origin see Chapter 2), so we will concentrate on [ii] and [iii]. A necessary result for
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Problem 6.3.1 and Problem 6.3.2 to hold is the need for the steady-state value of the

input uss := u(∞) to be nonnegative. We now show that this in general does not hold.

Recall that from (6.1) the control steady-state uss is given by

uss = Kryref + Kdω. (6.8)

From Corollary 6.2.1, we can conclude that the matrices (D−CA−1B) and (F −CA−1E)

are nonnegative, which implies that if m = r = 1 and Kdω = 0 that uss = Kryref > 0 for

yref > 0, and that the feedforward controller u = Kryref (which is simply the feedforward

controller of Chapter 4) solves Problem 6.3.1. Next, assume that r > 1. In order to have

a nonnegative uss we need the inverse of (D − CA−1B) (i.e. Kr) to be nonnegative if

Kdω = 0, since yref is nonnegative. Notice that by Lemma 6.3.1 this holds if and only if

(D−CA−1B) is a monomial matrix, which generically is not the case, i.e. (D−CA−1B)

is a monomial matrix if and only if (D − CA−1B)−1 is a monomial matrix which is true

if and only if

[0 I]






A B

C D






−1

[0 I]T or [0 I]

adj






A B

C D






det






A B

C D






[0 I]T (6.9)

is monomial, where det






A B

C D




 6= 0 follows from the assumption that rank(D −

CA−1B) = r. It directly follows now that the class of parameters of (C, A, B, D) which

results in (6.9) being monomial is a hypersurface in the parameter space of (A, B, C, D)

[22].

Also, notice that if yref = 0, then uss = Kdω and there never exists a case when all

entries of Kd are positive, by a similar argument as above.
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Assume now that r = 1, and that yref = 0. In this case, unless Kdω = 0, uss = Kdω

is negative for all ω > 0, which implies that there exists no solution to Problem 6.3.1 (as

we have already commented on in the SISO case of Chapter 4).

Theorem 6.3.1 is an important result, as it tells us that if tracking/disturbance rejec-

tion is considered for positive systems (Definition 2.2.1) then in general no solution exists

for the class of signals considered in (6.7). Although it may appear that Problem 6.3.1

(and Problem 6.3.2) is restrictive, there are still many subclasses of tracking and distur-

bance signals that can be considered. We will concentrate on these subclasses for the

remainder of the chapter. In particular, the above result leads us to two new restricted

problems in which we want to find the largest subclass of signals yref ∈ Yref ⊂ Rr
+ and

ω ∈ Ω ⊂ R
q
+ such that the two problems, given above, can be solved.

Problem 6.3.3. Obtain the largest subclass of tracking signals yref ∈ Yref ⊂ R
r
+ and

disturbance signals ω ∈ Ω ⊂ R
q
+ such that Problem 6.3.1 is solvable.

Next, we show that Problem 6.3.3 can be solved by using a feedforward compensator.

Theorem 6.3.2. Problem 6.3.3 is solvable if and only if

(yref , ω) ∈ Yref × Ω := {(yref , ω) ∈ R
r
+ × R

q
+ | Kryref ≥ −Kdω component-wise}.(6.10)

Moreover, it suffices to use the following feedforward compensator in Figure 6.1

u = Kryref + Kdω (6.11)

as the control input.

Proof.
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(⇒) Since Problem 6.3.3 is solvable, then

uss = Kryref + Kdω which implies component-wise:

0 ≤ Kryref + Kdω or that:

Kryref ≥ −Kdω

(⇐) We will show that using the feedforward controller all conditions of Problem 6.3.3

hold. Condition (a) and (c) hold since u is set to uss. Condition (b) can be guaran-

teed if the control input u ≥ 0 component-wise for all time. However, the feedforward

compensator (2.9) has the property that:

u = uss ≥ 0,

which will guarantee nonnegativity of the states and outputs, thus solving Problem 6.3.3

with Yref × Ω defined by (6.10).

Feedforward compensators are an effective theoretical tool to solve the tracking and

regulation problem. However in practice, due to possible changes to the parameters of the

plant, feedforward controllers in general may lead to unsatisfactory tracking/regulation.

Thus, just as in the case of SISO systems, we will consider perturbations to the plant

model with the use of a tuning regulator in the next section.

Before departing this section we make the following assumption, which parallels As-

sumption 4.1.1 of Chapter 4 and considers the results of this section.

Assumption 6.3.1. Given the plant (6.1). Assume Assumption 6.2.1 holds true. Also,

assume the sets Ω and Yref are chosen such that

(yref , ω) ∈ Yref × Ω := {(yref , ω) ∈ R
r
+ × R

Ω
+ | Kryref > −Kdω component-wise}.(6.12)
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The latter assumption is nothing else but a positivity constraint on the steady state

input uss.

6.4 Servomechanism Problem: unmeasurable distur-

bances and nonnegative control

In this section, the focus shifts toward solving the servomechanism problem under un-

measurable disturbances and nonnegative control inputs. In particular, we return to

Problem 6.3.1 under the more realistic case of unmeasurable disturbances. The motiva-

tion for assuming that the model of the plant is unknown is that: (i) often this in fact is

the case, particularly for industrial systems, and (ii) since there are no assumptions made

on the plant model other than it be open-loop stable, the resultant controller obtained,

which uses on-line-tuning of a single parameter, is highly robust just like in the case of

SISO systems of Chapter 4.

The main problem of interest in this section is provided next.

Positive LTI

System

+

yref

LTI
Controller

u

ω

e y

xc(0)

Figure 6.2: Closed-loop LTI system.

Problem 6.4.1. Consider the plant (6.1) where the disturbance ω is unmeasurable, the

tracking signal yref is measurable, and the initial condition x0 ∈ Rn
+. Assume that As-

sumption 6.3.1 holds true.
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Find an LTI controller connected as in the diagram (Figure 6.2) such that the closed-loop

system satisfies

(a) asymptotic stability in the sense of Lyapunov with respect to the origin, and for

every yref ∈ Yref , ω ∈ Ω, the initial condition of the controller xc(0) chosen such

that u(0) ∈ R+

(b) the states x(t) ≥ 0, output y(t) ≥ 0, and input u(t) > 0 ∀ t; and

(c) tracking of the reference signal occurs, i.e. e(t) = yref − y(t) → 0, as t → ∞. In

addition,

(d) assume that a controller has been found so that conditions (a), (b), (c) are satisfied;

then for all perturbations of the nominal plant model which maintain properties

(a) and (b), it is desired that the controller can still achieve asymptotic tracking

and regulation, i.e. the controller is robust and property (c) still holds.

Next, for quick reference, the MIMO Tuning Regulator (TR) of interest in this section

is provided.

η̇ = ǫ(yref − y)

u = Krη, u(0) > 0 and fixed
, (6.13)

where Kr = (D − CA−1B)−1with ǫ ∈ (0, ǫ∗], ǫ∗ > 0 to be shown to exist.

We now solve Problem 6.4.1 with the use of the TR controller.

Theorem 6.4.1. Consider system (6.1). Then for all x(0) ∈ Rn
+ there exists an ǫ∗(x(0), u(0)) >

0 such that for all ǫ ∈ (0, ǫ∗(x(0), u(0))] the controller (6.13) solves Problem 6.4.1.

Through the remainder of this section ǫ∗(x(0), u(0)) will be denoted by simply ǫ∗.

The proof is given next.

Proof. The closed-loop system of the plant and the controller is given in Figure 6.3. The
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Positive LTI

System

+

yref
1

s
ǫ

ω

Kr

η u ye

Figure 6.3: Closed-loop LTI system.

closed-loop system is LTI and by [17] there always exists an ǫ+ > 0 such that ∀ ǫ ∈ (0, ǫ+]

the closed-loop matrix is stable. This implies that all the conditions of Problem 6.4.1

will hold true if the nonnegativity condition (b) holds true. Through the remainder of

the proof we assume ǫ ∈ (0, ǫ+].

Let us recall the two key assumptions:

1. u(0) > 0 (by the definition of the TR controller (6.13));

2. uss > 0 (by Assumption 6.3.1).

First, recall that by the definition of positive LTI systems we know that if u(t) ≥ 0

for all t, then the states x(t) and the outputs y(t) also remain nonnegative for all t. Let

us show now that there exists an ǫ∗ ≤ ǫ+ such that for all ǫ ∈ (0, ǫ∗], u(t) > 0 for all t

under the two assumptions listed above. However, since

u(t) = Krη(t), ∀ t

then

u̇ = Krη̇ = ǫKr(y − yref), ∀ t.

In order to prove the above, we use the results of singular perturbation (SP). The
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closed-loop system with the tuning regulator (6.13) is of the form:






ẋ

u̇




 =






A B

−ǫKrC −ǫKrD











x

u




 +






E 0

−ǫKrF ǫKr











ω

yref




 . (6.14)

Now, since the equilibrium (xss, uss), which depends on ω, yref , is independent of ǫ, we

can transform the system as needed, i.e. let z = x − xss and q = u − uss in (6.14),

resulting in the new system






q̇

ż




 =






−ǫKrD −ǫKrC

B A











q

z




 . (6.15)

Notice that if q(t, ǫ) + uss > 0 for all t, then u(t) > 0 for all t.

Next, let us scale the derivatives by ǫdt = dτ (i.e. scaling of time ǫt = τ) resulting in

the transformed system






⊙
q

ǫ
⊙
z




 =






−KrD −KrC

B A











q

z




 , (6.16)

with ǫ
⊙
q = q̇ and ǫ

⊙
z = ż.

Notice that if q(τ, ǫ)+uss > 0 for all τ , then q(t, ǫ)+uss > 0 for all t and consequently

u(t) > 0 for all t. Therefore, it remains to show that indeed q(τ, ǫ) + uss > 0 for all τ .

Our model (6.16) now satisfies the singular perturbation model. In order to use the

singular perturbation (SP) results, we must show that all assumptions of SP hold true.

However, as (6.16) is linear and time invariant, and the boundry-layer model is

ṗ = Ap

with A stable, it suffices to show that the reduced model (given below) yields exponential
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stability. Now by setting ǫ = 0 we obtain z = h(q) = −A−1Bq, and since A is Hurwitz,

h(q) exists and is unique. Next, by substituting h(q) into
⊙
q we obtain the reduced model:

⊙
q = −KrDq − Kr(CA−1B)q = −q.

Denote the solution of
⊙
q = −q by q(τ), which is clearly exponentially stable (as needed

by SP) and monotonic. Thus, by SP we have:

q(τ, ǫ) − q(τ) = O(ǫ) ∀τ

uniformly in τ , where

q(τ) = e−τq(0) and

q(τ) + uss = uss + e−τq(0)

with q(0) = q(0) = u(0) − uss by definition. Now, since u(0) > 0, then there exists an

ǫ∗ ≤ ǫ+ such that q(τ, ǫ) + uss > 0 for all ǫ ∈ (0, ǫ∗] since q(τ) + uss is monotonically

approaching uss.

This completes the proof.

Before completing this section, we consider a Corollary to Theorem 6.4.1 with the

extra assumption that 0 ≤ u(t) ≤ u, u ∈ interior(Rn
+) fixed, for all t ∈ [0,∞) and where

u(0) in (6.13) is fixed such that 0 ≤ u(0) ≤ u.

Corollary 6.4.1. Consider system (6.1) and controller (6.13) where 0 < u(0) < u, 0 < uss <

u, u ∈ interior(Rn
+) fixed. Then for all x(0) ∈ Rn

+ there exists an ǫ∗(x(0), u(0)) > 0 such

that for all ǫ ∈ (0, ǫ∗(x(0), u(0))] the controller (6.13) solves Problem 6.4.1 with condition

(b) replaced by

(b’) the states x(t) ≥ 0, output y(t) ≥ 0 and input u(t) has the property 0 < u(t) < u.
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The latter Corollary simply states that we would like to bound our input signal both

from below by zero and from above by some constant u.

Proof. The proof follows a similar argument as the proof of Theorem 6.4.1.

We note that in the proof we let ǫ∗ → 0. Clearly, we do not actually require ǫ∗ → 0

to obtain the needed result. Note, the interested reader can refer to [17] to observe how

“on-line tuning” can be used to find the ideal ǫ∗; although our clamping controller is

different, the procedure is the same.

In the next section we take the results of this section into consideration and provide

a clamping controller that parallels the SISO results of Chapter 4.

6.5 Implementation

Here we present a clamping controller that utilizes the discussion of Section 4.5. All

results of Section 4.5 carry over to the MIMO case with the TR controller (6.13) of this

chapter. Thus, under Section 4.5 and the TR (6.13) we provide a MIMO tuning clamping

regulator (TcR) and an accompanying example next.

η̇ = ǫ(yref − y), η0 = 0

u = α(η)Krη
, (6.17)

where

α(η) =







0 if ∃ i ∈ {1, ..., r} such that (Krη)i ≤ 0,

1 otherwise

We now provide an example.
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Example 6.5.1. The following plant is a stable compartmental system, which has been

used during the SISO case. However, here in order to illustrate the MIMO case, we insert

an additional input and output into the system. Thus, consider the reservoir network

of Figure 6.4; recall that each reservoir is identified by a number (1, 2, ..., 6) where the

water storage level (x1, x2, ..., x6) is a state of the system. Also γ and φ are the splitting

coefficients of the flows at the branching points. The system is of order 6 and the input

into the reservoir is in (L/s).

u1 + ω

γ 1− γ

φ

1− φ

1 2

3

6 4

5

pump

u2

Figure 6.4: System set up for Example 6.5.1.

Consider the case where γ = 0.5, φ = 0.7, α1, ..., α6 = 0.8, 0.7, 0.5, 1, 2, 0.8. Note
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that all the rates are also measured in L/s. This results in the following MIMO system:

ẋ =



















−0.8 0 0 0 2 0

0 −0.7 0 0 0 0

0.8 0.7 −0.5 0 0 0

0 0 0.15 −1 0 0

0 0 0 1 −2 0

0 0 0.35 0 0 −0.8



















x +



















0.5 0

0.5 0

0 0

0 0

0 0

0 1



















u + [0.5 0.5 0 0 0 0]T ω

Also, assume the output y is of the form

y =






0 0 1 0 0 0

1 0 0 0 0 1




x

Next, assume that the initial condition xi0 = 0 (L) ∀i = 1, ..., 6, i.e. initially there is no

water in the tanks, ω = 0.5 (L/s), and that the tracking signal is yref = [5 5]T (L).

We now proceed to find the controller (6.11), which will solve the problem under the

assumption that the disturbance ω is measurable. First we obtain Kr by Procedure 2.3.1.

By applying u1 = 1 and u2 = 1 in steady state, we obtain:

Kr =






2.8571 0

2.4107 1.2500






−1

=






0.3500 0

−0.6750 0.8000




 .

In similar fashion, we can obtain the gain matrix

Kd =






−0.5

0




 .
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Now, it is easy to see that

uss = Kryref + Kdω = [1.5 0.625]T > 0,

and therefore by Theorem 6.3.2 we can proceed to use the feedforward controller to solve

Problem 6.3.3. Figure 6.5 illustrates the simulated input response, while Figure 6.6 shows

the output y.

0 10 20 30 40 50 60 70 80

0.8

1

1.2

1.4

1.6

1.8

2

time (s)

in
p

u
t

input u 

Figure 6.5: Input response for Example 6.5.1.

△

Next, we revisit the latter example under unmeasurable disturbances. In this case

only the MIMO TcR controller will be used.

Example 6.5.2. Consider the plant of Example 6.5.1 with initial conditions x0 =

[2 2 2 2 2 2] and under the use of the TcR controller. In particular, we set ǫ = 0.1,

and obtain the following results via Figure 6.7 and Figure 6.8.
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0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

time (s)

o
u

tp
u

t 
(L

)

output y

Figure 6.6: Output response for Example 6.5.1.
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Figure 6.7: Input response for Example 6.5.2.
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4.5

5
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time (s)
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t 
(L

)

output y

Figure 6.8: Output response for Example 6.5.2.

△

The TcR controller will be used on experimental results discussed in Chapter 9.

6.6 Discrete Time Control of Positive Systems

In this section, we would like to point out that all of our results for continuous TR control

can be transferred to the discrete-time case. The main distinction of course being that

the system plant (6.1) has to be discretized (A, B, C, D, E, F ) → (Ad, Bd, Cd, Dd, Ed, Fd)

(note that for positive LTI discrete systems Ad is a nonnegative matrix and not a Metzler

matrix like in the case of continuous systems) and instead of the continuous control strat-

egy, discrete control must be implemented. This translates to the following replacements:

Kr replaced by Kd
r = (Dd + Cd(I − Ad)

−1Bd)
−1

Kd replaced by Kd
d = −(Dd + Cd(I − Ad)

−1Bd)
−1(F + C(I − Ad)

−1Ed);

note that although the structure of Kd
r and Kd

d may seem different, the result is actually
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the same, i.e. Kr = Kd
r and Kd = Kd

d . The second replacement is with respect to the

controller given by (6.13), which is now replaced by

Eq.(6.13) ⇒ ηk+1 = ηk + ǫ(yref − yk), (6.18)

uk = Kd
r ηk, u0 > 0

(6.19)

Similar exchanges can also be made in the SISO case of Chapter 4. Once again we

note that the proof of the TR controller involved the use of singular perturbation re-

sults, and the proof of the corresponding discrete results can likewise be captured in the

discrete-time case as well, by using the two-time scaling results of discrete-time singu-

lar perturbation, with the use of [67], [54], i.e. all continuous-time case results can be

extended to the discrete-time case.

6.7 Conclusion

In this chapter we have discussed a variation of the servomechanism problem for stable

unknown MIMO positive linear systems. In particular, we have fully extended the results

of the SISO case from Chapter 4 to the multi-variable case. The shift now turns to the

extension of the SISO LTQcR controller to the MIMO case, which we tackle in the next

chapter.



Chapter 7

Servomechanism Problem:

MIMO LTQcR

In the single-input single-output (SISO) case both the tuning regulator (TR) and the

linear tuning quadratic regulator (LTQR) were introduced to deal with the servomech-

anism problem. In Chapter 6 the results of the tuning regulator for SISO systems were

extended to the MIMO case; here in this chapter we successfully extend the results on

the SISO LTQR control of Chapter 5 to the MIMO case. The focus of this chapter, just

like in the SISO LTQR case, will be on control strategies which incorporate the LTQR

controller under nonnegative inputs.

This chapter is organized into the following sections. The first section presents pre-

liminary results, where the MIMO plant of interest is reintroduced along with the ser-

vomechanism problem for MIMO systems. The MIMO linear tuning quadratic regulator

(LTQR) is then defined and the main theoretical results behind the LTQR control law for

MIMO positive LTI systems are presented. The chapter concludes with an application of

the optimal control strategy to one of the examples originally presented in the previous

chapter, when the MIMO tuning clamping regulator was used.

156
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7.1 Preliminaries

Throughout this section we revisit the plant (6.1), which is reintroduced next.

The plant of interest is given first:

ẋ = Ax + Bu + Eω

y = Cx + Du + Fω

e := y − yref

(7.1)

where A is an n × n Metzler stable matrix, B ∈ R
n×m
+ , C ∈ R

r×n
+ , D = 0, E ∈ R

n×q
+ ,

F ∈ R
r×q
+ ; the signal yref ∈ Yref is a constant, as is ω ∈ Ω, where Yref and Ω have been

defined in Assumption 6.3.1. Assume m = r, i.e., the number of inputs is equal to the

number of outputs.

The robust servomechanism problem of interest in this chapter is outlined below and

deals strictly with nonnegative inputs. The problem, just like the plant above, has been

originally presented in Chapter 6 (see Problem 6.4.1) and is presented here for quick

reference.

yref e u y

−

ω

LTI

Controller

Positive
LTI System

x

xc(0)

Figure 7.1: Closed-loop LTI system.

Problem 7.1.1. Consider the plant (7.1) where the disturbance ω is unmeasurable, the

tracking signal yref and the states x are measurable, and the initial condition x0 ∈ Rn
+.
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Assume that Assumption 6.2.1 holds true.

Find an LTI controller connected as in the diagram (Figure 7.1) such that the closed-loop

system satisfies

(a) asymptotic stability in the sense of Lyapunov with respect to the origin, and for

every yref ∈ Yref , ω ∈ Ω, with the initial condition of the controller xc(0) such that

u(0) ∈ R+

(b) the states x(t) ≥ 0, output y(t) ≥ 0, and input u(t) > 0 ∀ t; and

(c) ensures tracking of the reference signal, i.e. e(t) = y(t) − yref → 0, as t → ∞. In

addition,

(d) assume that a controller has been found so that conditions (a), (b), (c) are satisfied;

then for all perturbations of the nominal plant model which maintain properties

(a) and (b), it is desired that the controller can still achieve asymptotic tracking

and regulation, i.e. the controller is robust and property (c) still holds.

The main distinction between Chapter 6 and the present chapter is the fact that here

we assume the system model is known, i.e. the matrices (A, B, C, D) are given to the

designer. This assumption will allow us to discuss less restrictive control strategies in the

hope of improving the transient response and settling time of those given in the previous

chapter.

7.2 Servomechanism Problem: MIMO LTQR approach

In this section, the solution to Problem 7.1.1 under the MIMO Linear Tuning Quadratic

Regulator (LTQR) controller, which is presented below, is outlined.
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The MIMO LTQR controller is given by:

η̇ = y − yref

u = [Kx Kη]






x

η




 , u(0) > 0 and fixed

, (7.2)

where Kx ∈ Rm×n and Kη ∈ Rm×r (Kǫ = [Kx Kǫ]) are found by solving the quadratic

control problem:
∫ ∞

0

ǫ2ηT Qη + uTudτ (7.3)

where ǫ > 0 and Q = ((−CA−1B)−1)T ((−CA−1B)−1) , for the stabilizable and dete-

tectible system:






ẋ

η̇




 =






A 0

C 0











x

η




 +






B

D




u

η = [0 Ir]






x

η






The latter control law can also be presented in a slightly different fashion, which

yields the same gain matrix as that of the control strategy above, i.e. we can replace

(7.3) with
∫ ∞

0

ǫ2eT Qe + u̇T u̇dτ, (7.4)

where ǫ > 0 for the system:






ẍ

ė




 =






A 0

C 0











ẋ

e




 +






B

D




 u̇

e = [0 Ir]






ẋ

e





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and minimizing (7.4), we obtain the optimal controller

u̇ = Kǫ[ẋ
T eT ]T ,

or by

u = Kxx + Kηη.

For a detailed description on (7.3) and its use in LTI systems under constant tracking

and constant disturbances see [16].

The main difference between the SISO LQTR and the MIMO LQTR control is the

choice of Q in the optimization function. The choice of Q = ((−CA−1B)−1)T ((−CA−1B)−1) >

0 will play a major role in the proof of the results for the MIMO LTQcR extension.

Remark 7.2.1. Notice that clearly, by definition of the optimization integral, as

ǫ → 0 Kǫ = [Kx Kη] → 0.

The main result under the MIMO LTQR is presented next.

Theorem 7.2.1. Consider system (7.1). Then for all x(0) ∈ Rn
+ there exists an ǫ∗(x(0), u(0)) >

0 such that for all ǫ ∈ (0, ǫ∗(x(0), u(0))] the controller (7.2) solves Problem 7.1.1.

Through the remainder of this section, as was done in the previous Chapter, ǫ∗(x(0), η(0))

will be denoted by simply ǫ∗.

The proof is given next.

Proof. The closed-loop system of the plant and the controller is given in Figure 7.2. The

closed-loop system is LTI and by the existence of a unique linear quadratic gain Kǫ there

always exists an ǫ+ > 0 such that ∀ ǫ ∈ (0, ǫ+] the closed-loop matrix is stable. Thus,

once again if the nonnegativity condition (b) of Problem 7.1.1 holds true we can satisfy

all other conditions of Problem 7.1.1. Through the remainder of the proof we assume
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e u

x

Kη

η
1

s

Kx

+
yref Positve

LTI System

y

ω

−

Figure 7.2: Closed-loop LTI system.

ǫ ∈ (0, ǫ+]; however, since we are considering a linear quadratic problem, ǫ+ can be chosen

arbitrarily. Without loss of generality let us assume ǫ+ is fixed.

Let us recall the two key assumptions:

1. u(0) > 0 (by the definition of the MIMO LTQR controller);

2. uss > 0 (by the choice of Yref and Ω).

First, by the definition of positive LTI systems we know that if u(t) ≥ 0 for all t, then

the states x(t) and the outputs y(t) also remain nonnegative for all t. Let us show now

that there exists an ǫ∗ ≤ ǫ+ such that for all ǫ ∈ (0, ǫ∗], u(t) > 0 for all t under the two

assumptions listed above.

Under the set up of the closed-loop system the steady states xss, uss are independent

of ǫ therefore we can shift the closed loop system by setting z = x− xss and q = u− uss,

which results in:






ż

q̇




 =






A B

KxA + KηC KxB











z

q




 (7.5)

=






A B

ǫ(KxA + KηC) ǫKxB











z

q




 . (7.6)

Note we assume that Kǫ = [Kx Kη] = ǫ[Kx Kη], where limǫ→0Kx(ǫ) is finite (comment
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re Kη is made below); this assumption is justified at the end of the proof in Remark

7.2.2.

For convenience, rewrite






q̇

ż




 =






ǫKxB ǫ(KxA + KηC)

B A











q

z




 . (7.7)

Notice that if q(t, ǫ) + uss > 0 for all t, then u(t) > 0 for all t.

Next, let us scale the derivatives by ǫdt = dτ (i.e. scaling of time ǫt = τ) resulting in

the transformed system






⊙
q

ǫ
⊙
z




 =






KxB KxA + KηC

B A











q

z




 , (7.8)

with ǫ
⊙
q = q̇ and ǫ

⊙
z = ż.

Notice that if q(τ, ǫ)+uss > 0 for all τ , then q(t, ǫ)+uss > 0 for all t and consequently

u(t) > 0 for all t. Therefore, it remains to show that indeed q(τ, ǫ) + uss > 0 for all τ .

We have now transformed our model (7.8) into that of the singular perturbation model

(SP). As the result parallels that of the SISO LQTR case we shift our attention to the

reduced model only:

⊙
q = −Kr(−CA−1B)q = −q,

where Kη = −Kr (see Remark 7.2.2). Denote the solution of
⊙
q = −q by q(τ), which is

clearly exponentially stable (as needed by SP) and monotonic. Thus, by SP we have:

q(τ, ǫ) − q(τ) = O(ǫ) ∀τ
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uniformly in τ , where

q(τ) = e−τq(0) and

q(τ) + uss = uss + e−τq(0)

with q(0) = q(0) = u(0) − uss by definition. Now, since u(0) > 0, then there exists an

ǫ∗ ≤ ǫ+ such that q(τ, ǫ) + uss > 0 for all ǫ ∈ (0, ǫ∗] since q(τ) + uss is monotonically

approaching uss.

We now justify our result for Kx and Kη.

Remark 7.2.2. Next, we show that as ǫ → 0

Kη = ǫKη = −ǫKr,

with Kη = −Kr = (−CA−1B)−1 (recall in this chapter we assume D = 0).

The gain matrix [Kx Kη] can of course be obtained from the solution of the ARE

ÃT P + PÃ − PB̃R−1B̃T P + Q̃ = 0, (7.9)

which is related to (7.3), where

Ã =






A 0

C 0




 , B̃ =






B

0




 , R−1 = I,

Q̃ =






0 0

0 ǫ2((−CA−1B)−1)T ((−CA−1B)−1)




 ,

and

P =






P11 P12

P T
12 P22




 .
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Therefore, the gain matrix can be expressed as

Kǫ = [Kx Kη] = −B̃T P (7.10)

= −[BT 0]






P11 P12

P T
12 P22




 (7.11)

= −[BT P11 BT P12]

and by definition of the control problem is unique.

Notice that the closed loop matrix with the control in place is:






A + BKx BKη

C 0




 . (7.12)

Additionally, by manipulating (7.9) we can obtain

P0TBBT P0 = ǫ2Q

(Kη)
T (Kη) = [ǫ(−CA−1B)−1]T [ǫ(−CA−1B)−1].

Now, one solution to the above equation is

Kη = −ǫ(−CA−1B)−1. (7.13)

However, from Chapter 6 and [17] (with D = 0) we know that as ǫ → 0 the control

gain (7.13) will stabilize (7.12) and since the LQ problem has a unique solution, then

(7.13) must be the only possible solution for Kη. Therefore, indeed as ǫ → 0 we have

Kη = −Kr = (−CA−1B)−1.

It now remains to show that

Kx = ǫKx, (7.14)
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where the components of Kx are of the form

krs =

(
ζ0 + ζ1ǫ + ζ2ǫ

2 + ...

1 + γ1ǫ + γ2ǫ2 + ...

)

r, s ∈ {1, ..., m(n)}

with ζi ∈ R, γj ∈ R ∀i, j ∈ {0, 1, 2, ...}. Note that Kx is continuously differentiable and

well defined with respect to ǫ, near and at the origin.

The process for proving the result is identical to the case of SISO LQTR control,

except for the recursive algorithm of [87], given below

1. Choose K1 so that Ã + B̃K1 is stable.

2. Having chosen K1, ..., Kk obtain Pk from

(Ã + B̃Kk)
T Pk + Pk(Ã + B̃Kk) + Q + KT

k Kk = 0 (7.15)

3. Define Kk+1 := B̃T Pk,

instead of

K1 = [0 − ǫ]

for the SISO case, we start with

K1 = [0 − ǫ(−CA−1B)−1].

for the MIMO case. The remainder of the result for showing that

Kx → ǫKx, as ǫ → 0.

is identical to the SISO LQTR case of Chapter 5.

This completes the proof.
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In the case of SISO LQTR control a Corollary to Theorem 5.2.1 with the extra

assumption that 0 ≤ u(t) ≤ u, u > 0 fixed, for all t ∈ [0,∞) was introduced. The same

result of bounding the input signals can be extended to the results of this chapter with

the new MIMO LQTR controller. In similar fashion the results of clamping signals at

zero and at some upper value of u > 0 can also be done. The details of the extension of

the Corollary and the results on bounding the signals are omitted.

Next, the linear tuning quadratic clamping regulator (LTQcR) for MIMO plants is

defined. This control law will be used in the example presented in the sequel and in the

experimentation of Chapter 9.

η̇ = y − yref ; u = α[Kx Kη][x η]T , u(0) > 0 (7.16)

α =







0 if ∃ i ∈ {1, ..., r} s.t ([Kx Kη][x η])i ≤ 0,

1 otherwise

where Kx ∈ Rm×n and Kη ∈ Rm×r are found in the same fashion as the LTQR control

approach.

7.3 LTQcR MIMO example

In this section we illustrate the results of this chapter via an example. In particular, we

consider an example that was tackled in Chapter 6 and show the improvement of the

current control strategy.

Example 7.3.1. Consider the system of Example 6.5.2, i.e. consider the system of

reservoirs of Figure 7.3, note that each reservoir is identified by a number (1, 2, ..., 6)
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where the water storage level (x1, x2, ..., x6) is a state of the system. Also γ and φ are

the splitting coefficients of the flows at the branching points. The system is of order 6,

as we assume the pump dynamics can be neglected. As pointed out in [30], the dynamics

of each reservoir can be captured by a single differential equation:

ẋi = −αixi + v + eiω, z = αixi

for all i = 1, ..., 6, where xi is the water storage (in L) and α > 0 is the ratio between

outflow rate z and storage, with eiω being the disturbance rate into the storage. The

input into the reservoir is designated by v and is in (L/s).

u1 + ω

γ 1− γ

φ

1− φ

1 2

3

6 4

5

pump

u2

Figure 7.3: System set up for Example 7.3.1.

Consider the case where γ = 0.5, φ = 0.7, α1, ..., α6 = 0.8, 0.7, 0.5, 1, 2, 0.8. Note

that all the rates are measured in L/s. This results in the following system:
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ẋ =



















−0.8 0 0 0 2 0

0 −0.7 0 0 0 0

0.8 0.7 −0.5 0 0 0

0 0 0.15 −1 0 0

0 0 0 1 −2 0

0 0 0.35 0 0 −0.8



















x

+



















0.5 0

0.5 0

0 0

0 0

0 0

0 1



















u + [0.5 0.5 0 0 0 0]T ω (7.17)

y =






0 0 1 0 0 0

1 0 0 0 0 1




x (7.18)

It is now desired to solve Problem 7.1.1 for this system, where unlike Chapter 6, we

assume that the knowledge of the reservoir model (7.17)-(7.18) is now available.

Assume the initial condition and the disturbance, just like in the previous chapter,

is x0 = [2 2 2 2 2 2] and ω = 0.5, respectively. Additionally, assume that we would

like to track the reference input yref = [5 5]T . With the choice of ǫ = 10, the desired

result is obtained. Figure 7.4 illustrates the simulated input response; Figure 7.5 shows

the output y response; and Figure 7.6 shows the states response. Notice that all inputs,

outputs, and states are nonnegative.

Notice that the clamping on the control input occurs initially (0-3 seconds). There-

after, the LTQR takes over and tracking occurs rather quickly in comparison to the
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0

0.5
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3.5
inputs u

time (s)

u

u1

u2

Figure 7.4: Input response for Example 7.3.1.
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outputs y

time (s)

y

y2

y1

Figure 7.5: Output response for Example 7.3.1.
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0 5 10 15 20 25 30
0

1

2

3

4

5

6
states x1,...,x6

time (s)

x

x3

x6

x1

x2

x4

x5

Figure 7.6: State response for Example 7.3.1.

example presented in Chapter 6. The simulation diagrams from Chapter 6 for both the

input and output have been reproduced for quick reference in Figure 7.7 and Figure 7.8,

respectively.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
inputs u

time (s)

u

u1

u2

Figure 7.7: Input response for Example 6.5.2.
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time (s)
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y2

y1

Figure 7.8: Output response for Example 6.5.2.

△

7.4 Conclusion

In this chapter, the results of LTQR for SISO were extended to the MIMO case. It was

shown that through a new choice of an optimizing matrix Q one was able to implement

the LQTR to solve the servomechanism problem under nonnegative control.



Chapter 8

Model Predictive Control (MPC)

In this dissertation we have considered the positive servomechanism problem for both

SISO and MIMO positive LTI plants. In the approach of the solution to the servomech-

anism problem we have implemented clamping type of controllers, as pointed out via

Chapters 4 - Chapter 7. This nonlinear constraint on the input to the system can also

naturally be considered via the use of Model Predictive Control (MPC), which we touch

upon in this chapter.

The interest in Model Predictive Control is quite overwhelming and one can simply

look at one of the recent conferences [12] and find numerous citations. For a very thorough

background into MPC and the literature associated with it, the interested reader is

referred to [62]. It is not our interest here to develop and overview what previous MPC

researchers have done, but rather to point out that via our results of the TR and LTQR

controllers, we will be able to provide a link between MPC control and TR (or LTQR)

control of the positive LTI servomechanism problem.

In short, Model Predictive Control (MPC) is based on optimal cost minimization of

a sampled data discrete-time system with a finite-horizon window and subject to linear

constraints which arise in the case of nonnegative inputs, e.g. u ≥ 0 component-wise, as

in this thesis. The MPC cost minimization is then treated via quadratic programming

172
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(QP) [62]. The potential problem that MPC carries is that this constrained QP problem

can be computationally intensive, and therefore for “fast” systems may result in no real-

time solution.

Before we leap into the control strategy for MPC, let us first recall several facts from

Chapter 6 about the transformation of the continuous TR control case to the discrete-

time case. The main distinction of course being that the system plant (6.1) has to be

discretized (A, B, C, D, E, F ) → (Ad, Bd, Cd, Dd, Ed, Fd) and instead of the continuous

control strategy, discrete control must be implemented. This translates to the following

replacements:

Kr replaced by Kd
r = (Dd + Cd(I − Ad)

−1Bd)
−1

Kd replaced by Kd
d = −(Dd + Cd(I − Ad)

−1Bd)
−1(F + C(I − Ad)

−1Ed);

note that although the structure of Kd
r and Kd

d may seem different, the result is actually

the same, i.e. Kr = Kd
r and Kd = Kd

d . The second replacement is with respect to the

controller given by (6.13), which is now replaced by

Eq.(6.13) ⇒ ηk+1 = ηk + ǫ(yref − yk), (8.1)

uk = Kd
r ηk, u0 > 0

Similar exchanges can be made in the SISO case of Chapter 4. Once again we note that

the proof of the TR controller involved the use of singular perturbation results, and the

proof of the corresponding discrete results can likewise be captured in the discrete-time

case as well, by using the two-time scaling results of discrete-time singular perturbation,

with the use of [67], [54], i.e. all continuous-time case results can be extended to the

discrete-time case.

Next, the control strategy for MPC, under linear discrete-time conditions, is outlined.

Consider the discretized system (6.1) constrained by ui ≥ 0 for all i = 1, ..., m; then,

minimize the following performance index and obtain the control u under MPC control
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[62], [19]:

JMPC =
N+1∑

k=1

ρη(k − 1)T η(k − 1) + [u(k) − u(k − 1)]T [u(k) − u(k − 1)]dτ

u(k) = Kxx(k) + Kηη(k) where (8.2)

η(k + 1) = η(k) + e(k − 1)

for a given ρ > 0, and under the nonnegative constraint ui ≥ 0 for all i = 1, ..., m, and a

window size N > 0.

Recall that we can always solve the positive robust servomechanism problem (Problem

6.3.2) using TR (or LTQR) control. However, if we consider Problem 6.3.2 under MPC

control with nonnegative inputs for known systems, then in general we will obtain an

improved transient response compared to the TR (or LTQR) control. This improvement

should not be surprising, since MPC gives the optimal controller subject to any input

constraints - unlike the results of TR (or LTQR). However, how can we justify that the

MPC approach may actually work?

Let us attempt to answer this question next. First, there are three necessary condi-

tions that must be satisfied for the MPC controller to work:

(i) there must exist a solution to the robust servomechanism problem for the system;

(ii) the steady-state feasibility conditions uss > 0, component-wise, must hold;

(iii) the window size N must be “large enough”.

To satisfy (i)-(iii) we apply the same conditions as we assumed in the case of TR

control, i.e. open loop plant stability, no transmission zeros present at one (or simply

(Dd + Cd(I − Ad)
−1Bd) being full rank), and the corresponding steady-state feasibility

conditions of nonnegativity. So if we assume that these conditions all hold for the MPC

problem just as they held for the TR control case, then:
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• if the window size of the performance index is “large enough” it is known, from

the MPC literature [60], that the MPC closed loop system will be stable, and that

for a given constant tracking and disturbance signal that the control signal has the

property that

lim
k→∞

u(k) = u

is a constant.

Thus, the only remaining item to show is that the MPC controller obtained, will

have the property that error regulation actually occurs. However, the MPC controller

obtained finds a discrete control signal u (8.2) which minimizes the performance index

subject to control input constraints (nonnegative). We know that there exists a control

signal corresponding to the controller TR (8.1) which satisfies the linear constraints and

results in error regulation, and so we have an existence result which states that there

exists a control signal which provides error regulation and stability for Problem 6.3.2.

Thus, if we start the MPC problem out with a discrete-time version of TR (8.1), then

there always exists a solution to the MPC problem since we can set our performance

index in such a way (specifically ρ → 0 in (8.2)) that will result in arbitrarily small gains

for the uMPC (8.2), knowing that when the MPC gain is zero, then the TR is the solution.

In practice, for sufficiently small ρ > 0, the MPC controller obtained indeed has the

property that error regulation actually occurs, but not necessarily for large ρ.

The existence result that MPC control can be used for sufficiently small ρ is important

for the study of positive LTI systems.

Let us now illustrate a comparison of the TR controller and the MPC controller.

Example 8.0.1. Let us revisit the system of Example 6.5.2. The system is depicted in

Figure 8.1.

Consider the case where γ = 0.5, φ = 0.7, α1, ..., α6 = 0.8, 0.7, 0.5, 1, 2, 0.8. This
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u1 + ω

γ 1− γ

φ

1− φ

1 2

3

6 4

5

pump

u2

Figure 8.1: System set up for Example 8.0.1.

results in the following system:

ẋ =



















−0.8 0 0 0 2 0

0 −0.7 0 0 0 0

0.8 0.7 −0.5 0 0 0

0 0 0.15 −1 0 0

0 0 0 1 −2 0

0 0 0.35 0 0 −0.8



















x +



















0.5 0

0.5 0

0 0

0 0

0 0

0 1



















u + [0.5 0.5 0 0 0 0]T ω

y =






0 0 1 0 0 0

1 0 0 0 0 1




 x (8.3)

It is easy to verify that the above compartmental system is stable, as σ(A) = {−0.8, −
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0.21, − 0.99 ± 0.52i, − 2.10, − 0.70} and that

rank(D − CA−1B) = rank






2.86 0

2.41 1.25




 = 2 (8.4)

⇒ Kr =






0.35 0

−0.675 0.8




 . (8.5)

It is now desired to solve Problem 6.3.2 for this system, where it is assumed that knowl-

edge of the reservoir model (7.17)-(7.18) is available.

Assume that the initial condition x0 = [1.2 0.6 1.8 0.9 0 0.6] and ω = 0.1. Addi-

tionally, assume that the tracking reference is yref = [1 2]T . Now setting ǫ = 0.1 for

our (discretized) TR controller (8.1) with an employed clamp, the following result is ob-

tained. Figure 8.2 illustrates the simulated input response, while Figure 8.3 shows the

output y.
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u
ts

 u

u1

u2

Figure 8.2: Input response for Example 8.0.1 under TcR (6.17).
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Figure 8.3: Output response for Example 8.0.1 under TcR (6.17).

Next, we consider the same tracking system, but under MPC control (8.2) with sam-

pling interval h = 1s and window size of N = 15. The initial conditions, disturbances,

and tracking signals are identical to the TR example above. We illustrate the results

of MPC with ρ = 105 (8.2) via Figure 8.4 and Figure 8.5 for both inputs and outputs,

respectively.

△

Notice that both controllers, TR (with a clamp) and MPC, employ a clamping for

the first ≈ 17s. This clamp is a direct result of the nonnegativity constraint placed on

the control input. It is observed on comparing Figure 8.5 with Figure 8.3, that the MPC

controller is some four-times faster than the TcR controller, which shows the advantage

of having a system’s model.

Next, we shift our attention to experimental results.
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Figure 8.4: Input response for Example 8.0.1 under MPC (8.2).
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Figure 8.5: Output response for Example 8.0.1 under MPC (8.2).



Chapter 9

Servomechanism Problem:

Experimental Results

This chapter illustrates, via an experimental study of an experimental industrial hydraulic

system (MARTS) [18], the effectiveness, ease and robustness of the set of controllers

presented in Chapter 4 - Chapter 7.

The main purpose of this study is to show that with no mathematical model of a

system, or with a very crude approximation, the tuning clamping regulator (TcR) and

the linear tuning quadratic clamping regulator (LTQcR) can robustly solve the problem

of tracking a reference signal under disturbances and system changes, i.e. for large per-

turbations1 of the nominal plant model the TcR and the LTQcR can achieve asymptotic

reference tracking regulation and disturbance rejection as defined by the servomechanism

problem of this thesis.

The interest of this chapter will not be focused on the technicalities of the experimental

setup or identification of the model, but rather we concentrate on how well the TcR and

the LTQcR perform and abide to robustness issues. All the control laws used within

this chapter are definitely tested, as the “waterworks experiment” incorporates nonlinear

1that do not destabilize the system

180
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effects of the plant, actuator valve dynamics, time-delays, as well as sizing effects due to

actuator valve constraints [18].

This chapter is organized as follows. The experimental setup is described first, fol-

lowed by the main experimental results, simulations, and discussion on the:

• SISO TcR results

• SISO LTQcR results

• MIMO TcR and LTQcR results.

Concluding remarks finalize the chapter.

9.1 Experiment: waterworks

The purpose of this section is to introduce an experimental waterworks setup for which

the control strategies of the previous chapters will be tested on. All details of the setup

and industrial components used within the experiment (see Figure 9.1) are provided next.

A more in-depth summary has also been given in [18].

The entire waterworks apparatus has been assembled from industrial components; this

includes the actuators, sensors, valves, piping, and all digital communication. We note

that the actuators (valves) are controlled by compressed air, and all signal communication

between the actuators/sensors to the digital computer are obtained by commercial current

variation (4ma to 20ma) techniques [18], and controlled within the loop by voltages (0V

to 10V ). Although all components used are industrial, we have chosen to incorporate a

standard personal computer running MATLAB Version 7.2.0.232 (R2006a) to carry out

all real-time control. Below is a full list of components used within the experiment.

• 1 personal computer with an AMD Athlon(tm) 64 Processor 3200+ and 896 RAM
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• 2 PCI-DAS6014 Analog and Digital I/O Boards

• 2 Foxboro Model V4A 1/2 inch Body H Needle Diaphram Control valve C/W I/P

Transducer Model E69-BIIQ-R-S

The I/P transducer is of the equal % type (3psi = 4 ma and 15 psi = 20 ma)

• 2 Taylor Model B 3401T 1/2 inch Differential Pressure Transmitter

• 1 Foxboro (Canada) Model E13-DL-I KAL2 Differential Transmitter and Model

IFO-F2-S1 Integral Orifice Manifold Assembly in-lin type. This flow meter has a

range of O to 2 (US) gallons/ rein

• 2 ASCO solenoid valves. These solenoids are 100 V(AC) on/off 1/4 inch size and

are activated by a voltage 3 to 32 V DC to the solid state relay

• 1 Compressed Air Regulator Model 2515346 (from Canox Toronto)

• 2 Magnetic Drive Pumps Model 13-874-11 (from Fisher Scientific). The pumps are

1/12 HP, 1/2 in in/out and can deliver 32 l/rein at 10 head

• 4 Solid state relay model EOM1DE42 (5VDC) (from Electrosonic)

• 1 24V power supply model HPFSO24O1O (from Electrosonic)
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• 1 Disk Drive power supply model CP206-A (from Active Components, Toronto)

• Hammond power supply HPFT 00512015 (from Electrosonic).

The apparatus (Figure 9.1) consists of four water tanks, interconnected via numerous

piping and valves, where the water circulates between the tanks and can be controlled

via two digitally controlled valves (we will only be interested in using one valve for the

SISO constraint of our theory and both valves for the MIMO case) that provide water

inflow into two upper tanks. An overview diagram of the system is provided, see Figure

9.2. The experimental apparatus has numerous valves which can be opened/closed to

increase/decrease the water flow between respective tanks during the experimentation;

thus, allowing for major perturbation of the system model. Moreover, unmeasurable

disturbances are present within the apparatus; in particular a water inflow disturbance

is available via a digital on/off control input (both are not measured during experimen-

tation). The only measurements taken during the experimentation are that of the height

of the water in Tank 1 (for the SISO case) and Tank 1/Tank 2 (for the MIMO case) - see

Figure 9.2 - via a sensor which provides a voltage level (varying from 1V corresponding

to near empty, to 5V near full, with a 1V increase/decrease representing approximately

2.4L of water rise/drop) and the valve control voltage (0V corresponding to nearly closed

and 10V corresponding to fully open) of the input into Tank 1/Tank 2 (Valve A1 and

A2, in Figure 9.2).

Note: by inspection since the system is compartmental and stable the setup yields a

positive system, as desired.

The focus now turns to experimental results.
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9.2 SISO TcR experimental results

Throughout this section we refer to Figure 9.2, under the assumption that u2 is turned

off, and with the valve settings as indicated in Table 9.1. The goal will be to illustrate

the theory behind the tuning clamping regulator via the use of various perturbations

and disturbances on the nominal plant, which is represented by Case 1 from Table 9.1.

In all cases, the initial level of Tank 1 is equal to x0 = 4.4V , and the initial condition

of the servo compensator is η0 ≈ 0 (unless stated otherwise). In Table 9.1 “on” (“off”)

represents that a valve is open (closed).

Table 9.1: Experimental Cases

Case A1 A2 B C D E F G ω1 ω2

1 on off off off on off off on small none
2 on off off on on on off on small none
3 on off off on on on on on small small
4 on off on on on on on on small small
5 on off on on on on on on large large

9.2.1 Experiment I: Case 1 of Table 9.1

In the first experiment we consider Case 1 under various initial conditions and ǫ values,

i.e. various water levels of Tank 1 and for different types of tuning parameters. In

particular, we consider the cases of the

(a) clamping controller (4.20) with ǫ = 0.07, yref = 2V (Figure 9.3), which results in a

settling time of ≈ 16.5 minutes (991 sec).

(b) tuning clamping regulator (4.21) with u = 10, ǫ = 0.07, yref = 2V (Figure 9.4),

which results in a settling time of ≈ 15 minutes (897 sec); and
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(c) tuning clamping regulator (4.21) under an extra feedforward term uff = kyref

where k = 2.5, with u = 10, ǫ = 0.07, yref = 2V (Figure 9.5), which results in a

settling time of ≈ 12 minutes (720 sec).

We note that in the case of initial condition x0 = 0 the two cases (a) and (b) are

identical, as no clamping occurs, while case (c) outperforms both (a) and (b) cases. In

general, we found that for various initial conditions the tuning clamping regulator with

the addition of the extra feedforward works best, i.e. has best %OS and settling times.

9.2.2 Experiment II: Case 1,2,3,4 of Table 9.1

Next, we put the above tuning clamping regulator with the addition of the extra feed-

forward term to the test by considering numerous perturbations into the system, as

described in Table 9.2. In particular, we consider the case of

u = 10

x0 = 3.53V

ǫ = 0.07

yref = 2V,

under the transitions of Table 9.2, where Case 1 occurs during the time period 0 < t <

26min, Case 2 occurs during the time period 26 < t < 53min, Case 3 occurs during

the time period 53 < t < 67min, and Case 4 occurs during the time period t > 67min.

Figure 9.6 illustrates the results.

It is to be noted that no adjustments to the controller are made during experimen-

tation and no model is ever used to obtain the control law. Note that saturation has

played a key role in this set up.
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Table 9.2: Purturbation experiment

Time (min) Current Case

0 Case 1
≈ 26 Case 2
≈ 53 Case 3
≈ 67 Case 4.

9.2.3 Experiment III: Case 1,2,3,4,5 of Table 9.1

In this experiment we repeat Experiment II of the previous subsection and at approxi-

mately 75 minutes add a large disturbance, described by the addition of Case 5 of Table

9.1 to Table 9.2, coming into both Tank 1 and Tank 2. The point of this experiment is

to show that if the steady state uss does not abide to Assumption 4.1.1, and no solution

exists, then the proposed TcR controller will turn itself off. Figure 9.7 illustrates the

results.

In these experiments, we have used the tuning clamping regulator to illustrate ex-

perimentally the servomechanism problem for unknown stable positive systems, i.e. a

positive system whose mathematical model is unknown. The main contribution of the

tuning clamping regulator is its ability to provide a solution to the servomechanism prob-

lem for stable positive systems provided a solution exists; if no solution exists under the

saturation constraints then the tuning clamping regulator will shut itself off whenever the

disturbances are too large. The use of the regulator is straight forward and very practical

from the perspective of cost and validation of a solution. Once a solution exists under

the tuning clamping regulator, then more in-depth studies can be carried out to improve

the results via better controllers, e.g. faster settling times. In the next section we test

the SISO LTQcR approach and carry out a comparison to the results of this section.
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9.3 SISO LTQcR experimental results

The main purpose of this section is to show that with a very crude mathematical model

of the system, the LTQcR control strategy, presented in Chapter 5, can robustly solve the

problem of tracking a reference signal under disturbances and system changes, i.e. for

large perturbations that do not destabilize the system the LTQcR regulator can achieve

asymptotic reference tracking regulation. More importantly, we also illustrate the latter

results via the experimental setup of Section 9.1 where it is shown that the LTQcR out-

performs the tuning clamping regulator that was tested in the previous section. However,

note that unlike the tuning clamping regulator, the LTQcR does use a crude approxi-

mation of the system model. It is shown in this section that the extra information used

within the design of the LTQcR regulator leads to improvements within settling time

(in some situations of ≈ 10-fold) and overshoots (in some situations ≈ 3-fold) of the

experimental results, while maintaining all robustness properties. We note that the main

purpose of this section, just like the previous, is to check out the theory in an experimental

setting.

Here we test the RLTQcR and compare the results to the tuning clamping regulator

of the previous section.

9.3.1 Experimental results

Throughout this subsection we refer to Figure 9.2 and Table 9.3. Our goal will be

to illustrate the theory behind the LTQcR via the use of various perturbations and

disturbances on the nominal plant, which is represented by Case 1 from Table 9.3 (or

Table 9.1 in the previous section).

Before we begin the discussion on the experimental results we present a crude model

approximation of the waterworks. This approximation (1D model) has been obtained

via experimental measurements of the tuning clamping regulator of the previous section.
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In Section 9.2 the waterworks setup was controlled via the use of a tuning clamping

regulator, which saturated at zero, thus the control law was off for a certain amount

of time allowing us to measure the dominant eigenvalue of the system: approximately

−0.00891. The resultant system modeled by Case I in Table 9.3, can thus be represented

by:

ẋ = −0.00891x + u (9.1)

y = x.

The model is clearly a very crude approximation and if simulated will not exactly resemble

that of the plant. Note that not even steady-state experiments have been performed for

the latter approximation. However, our goal here is not to identify the mathematical

model, but rather to show how powerful Problem 5.1.1 is (especially the importance

of Problem 5.1.1 (d)), and to illustrate the use of the LTQcR designing controllers for

positive systems. We illustrate the effectiveness of the RLTQcR controller next.

First, we set the initial level of Tank 1 equal to x0 = 4.4V (this is done in order to

replicate the initial conditions of the TcR approach of the previous section) and then

run the experiment with the RLTQcR control under u = 10, ǫ = 50, yref = 2V (see

Figure 9.8). Notice that the settling time of approximately 2.5 minutes (148 sec) for the

RLTQcR, clearly outperforms the results of the TcR or the RTcR.

We note that in the case of initial condition x0 = 0 (1V reading) the tuning clamping

regulator cases (a) and (b) are identical, and turn out to have a settling time of approx-

imately 12 minutes, while the LTQcR control results in a settling time of approximately

2 minutes (121 sec); see Figure 9.9.

In general, we found that for various initial conditions the RLTQcR works best, i.e.

has best %OS and settling times, however it does incorporate a crude mathematical

model into the design, while the tuning clamping regulator, although conservative, uses
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Table 9.3: Experimental Cases

Case A B C D E F G ω1 ω2

1 on off off on off off on small none
2 on off on on on off on small none
3 on off on on on on on small small
4 on on on on on on on small small
5 on on on on on off on small small
6 on off off on on off on small small
7 on on on on on on on large large

no mathematical model for the control design.

9.3.2 Experiment II

Next, we put the RLTQcR controller to the test by considering numerous perturbations

into the system, just as we did for the tuning case. We consider the case of

u = 10

x0 = 3.60V

ǫ = 50

yref = 2V,

under the transitions of Table 9.4.

Figure 9.10 illustrates the results of the RLTQcR controller, while Figure 9.11 shows

the results of the tuning clamping regulator (4.21) for a similar perturbation configuration

(see Table 9.2). Notice that the RLTQcR outperforms the tuning clamping regulator.

Also, it is worth pointing out that saturation has played a key role in this set up.
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Table 9.4: Purturbation experiment

Time (min) Current Case

0 Case 1
≈ 8.5 Case 2
≈ 15 Case 3
≈ 19 Case 4
≈ 28 Case 5
≈ 32 Case 6

9.3.3 Experiment III

In this experiment we repeat Experiment II of the previous subsection and at approxi-

mately 38 minutes add a large disturbance coming into both Tank 1 and Tank 2, i.e. we

add Case 7 of Table 9.3 into Table 9.4. The point of this experiment is to show that if

the steady state uss does not abide to Assumption 4.1.1, then the controller shuts itself

off; we have also seen this effect in the TcR case of the previous section. Figure 9.12

illustrates the results of the LTQcR while Figure 9.13 illustrates the tuning regulator

control law.

In conclusion, we note that in general if the disturbance of the system is too large,

then the tuning clamping regulator (and the linear tuning quadratic clamping regulator)

will shut itself off.

9.4 MIMO TcR and LTQcR: experimental results

The main purpose of this section is to extend the experimental results of Section 9.2

and Section 9.3 to the MIMO TcR and the MIMO LTQcR case. The interest is to solve

the positive servomechanism problem under MIMO control strategies of the TcR and

the LTQcR. Here, we once again refer to Figure 9.2, under the assumption that both u1

and u2 are at our disposal and the water levels to control are those of tank 1 and tank
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2. Table 9.5 outlines the experiments that have been performed. The goal will be to

illustrate the theoretical results of the MIMO tuning clamping regulator and the MIMO

linear tuning quadratic clamping regulator (Chapter 6 and Chapter 7). In all cases, the

initial condition of the servo compensator is η(0) ≈ 0.

Table 9.5: Experimental Cases

Case A1 A2 B C D E F G ω1 ω2

1 on on off on on on off on small small
2 on on on on on on off on small small
3 on on on on on on on on small small
4 on on on on on on on on large large

First the TcR control approach is considered.

The MIMO TcR was defined in Chapter 6 and is given below for convenience.

Controller 9.4.1. Due to unmeasurable disturbances on the system the controller used

in this section will be:

η̇ = ǫ(yref − y), η0 = 0

u = αKη
, (9.2)

where K = (D − CA−1B)−1 and

α =







0 if ∃ i ∈ {1, ..., r} such that (Kη)i ≤ 0,

1 otherwise

In this case, to implement the controller we have to determine K = (D−CA−1B)−1;

this can be done using Algorithm 2.3.1, in which case, we perform two steady state

experiments on the plant to obtain this gain (K).
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Using Algorithm 2.3.1, we first take

u = [7 0]T ,

where u1 = 7. Second, we take

u = [0 6]T ,

where u2 = 6. The resultant steady-state response with u1 and u2 as above was

y1 = [3.08 1.71]T

and

y1 = [1.06 4.13]T .

Two of the steady state responses are captured in Figures 9.14-9.15.

Next, by Algorithm 2.3.1, we obtain the gain matrix K1:

K1 =






7 0

0 6






−1 




3.08 1.06

1.71 4.13






=






0.440 0.177

0.244 0.688




 ,

which results in

K = K−1
1 =






2.650 −0.680

−0.941 1.694




 .
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From the above result we can estimate our system A matrix as:

A = −K =






−2.650 0.680

0.941 −1.694






since

K = (−CA−1B)−1 = −A,

where C = B = I2×2. As a result an approximate model of this (stable) system is:

ẋ =






−2.650 0.680

0.941 −1.694




 +






1 0

0 1




 (9.3)

y = x (9.4)

with x = [x1 x2]
T being the water levels of tanks one and two, respectively. This model

will be used when the MIMO LTQcR control implementation will be considered.

First, we illustrate, via experimental results, the MIMO TcR control on the water-

works setup.

9.4.1 MIMO TcR: Experiments

In the first set of experiments we consider Case 1 of Table 9.5 and illustrate the results

obtained for different values of ǫ in the control law (9.2). Throughout these first set of

experiments

y1
ref = 2V

and

y2
ref = 3V,

and the initial condition of the servo compensator is zero (η(0) = 0).

The results are described next:
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(a) The first experiment uses the MIMO TcR controller (9.2) with ǫ = 0.05, yref =

[2 3]T , and with initial conditions of the tanks being: tank 1 (1.372V ) and tank 2

(1.716V ). Figure 9.16 shows that with the choice of ǫ = 0.05 a resultant settling

time of approximately 1445 seconds and %OS = 37% is attained. Figure 9.17 gives

the corresponding input response.

(b) The second experiment uses the MIMO TcR controller (9.2) with ǫ = 0.02, yref =

[2 3]T , and with initial conditions of the tanks being: tank 1 (1.06V ) and tank 2

(1.70V ). Figure 9.18 shows that with the choice of ǫ = 0.02 the resultant settling

time of approximately 1190 seconds is attained, and Figure 9.19 gives the input

response.
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PC real-time control

Waterworks

Interfacing Hardware

Figure 9.1: Experimental setup of the waterworks.
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Figure 9.2: Diagram of the waterworks.

Figure 9.3: Experiment 1: Clamping controller (4.20).
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Figure 9.4: Experiment 1: Tuning clamping regulator (4.21).

Figure 9.5: Experiment 1: Tuning clamping regulator (4.21) + uff .
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Figure 9.6: Experiment 2: Tuning clamping regulator (4.21) + uff under perturbations.

Figure 9.7: Experiment 3: Tuning clamping regulator (4.21) + uff under large distur-
bances.
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Figure 9.8: Experiment 1: LTQcR (5.15).
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Figure 9.9: Experiment 1: LTQcR (5.15) with V = 1.1 (empty tank).
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Figure 9.10: Experiment 2: LTQcR(5.15) under perturbations.
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Figure 9.11: Experiment 2: Tuning clamping regulator (4.21) with feedforward term
under perturbations.
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Figure 9.12: Experiment 3: LTQcR (5.15) under large disturbances and perturbations.
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Figure 9.13: Experiment 3: Tuning clamping regulator (4.21) + uff under perturbations.
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Figure 9.14: Steady state experiment 1: response of tank 1 (y1).
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Figure 9.15: Steady state experiment 2: response of tank 2 (y2).
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(a) Experiment 1: tank 1 (y1) response
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Figure 9.16: MIMO TcR Experiment 1: Output response with ǫ = 0.05 and initial
conditions of tanks: tank 1 (1.372V ) and tank 2 (1.716V )



Chapter 9. Servomechanism Problem: Experimental Results 204

0 500 1000 1500 2000
0

1

2

3

4

5

6

7

8

9

10

time (s)

u1

MIMO TcR: Experiment 1

(a) Experiment 1: input (u1) response
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(b) Experiment 1: input (u2) response

Figure 9.17: MIMO TcR Experiment 1: Input response with ǫ = 0.05 and initial condi-
tions of tanks: tank 1 (1.372V ) and tank 2 (1.716V )
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(a) Experiment 2: tank 1 (y1) response
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Figure 9.18: MIMO TcR Experiment 2: Output response with ǫ = 0.02 and initial
conditions of tanks: tank 1 (1.06V ) and tank 2 (1.70V )
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(a) Experiment 2: input (u1) response
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(b) Experiment 2: input (u2) response

Figure 9.19: MIMO TcR Experiment 2: Input response with ǫ = 0.02 and initial condi-
tions of tanks: tank 1 (1.06V ) and tank 2 (1.70V )

(c) The third experiment uses the MIMO TcR controller (9.2) with ǫ = 0.01, yref =

[2 3]T , and with initial conditions of the tanks being: tank 1 (1.06V ) and tank

2 (1.70V ). Figure 9.20 shows that with the choice of ǫ = 0.01 the resultant set-

tling time of approximately 1251 seconds is attained. Figure 9.21 gives the input

response.

(d) The fourth experiment uses the MIMO TcR controller (9.2) with ǫ = 0.02, yref =

[3.5 1.5]T , and with initial conditions of the tanks being: tank 1 (3.02V ) and tank

2 (3.34V ). In this case since the yref chosen does not abide to the steady-state

conditions of the input:

u(∞) = Kryref =






2.650 −0.680

−0.941 1.694




 [3.5 1.5]T = [8.255 − 0.753]T
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(a) Experiment 3: tank 1 (y1) response
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Figure 9.20: MIMO TcR Experiment 3: Output response with ǫ = 0.01 and initial
conditions of tanks: tank 1 (1.06V ) and tank 2 (1.70V )

the controller should turn off and remain turned off, as no solution to the problem of

the servomechanism exists. This is illustrated via Figure 9.25(a) (for t ∈ [0, 120])

for the input response into the system (clearly it remains shut off) and Figure

9.24(a) for the output, which slowly gets emptied. This experiment was run for 120

seconds after which the reference was switched back to yref = [2 3]T .

Note that our Kr has been found by experimentation and thus is merely an ap-

proximation, so one must be careful in examining the steady-state values before

implementation, e.g. if we consider yref = [3 2], the steady state result for u is

uss = [6.59 0.57]T ,

and since 0.57 is “small” and “close” to zero, one cannot be certain that the system
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Figure 9.21: MIMO TcR Experiment 3: Input response with ǫ = 0.01 and initial condi-
tions of tanks: tank 1 (1.06V ) and tank 2 (1.70V )

will actually track the designated reference.

(e) The fifth experiment takes the MIMO TcR (9.2) with ǫ = 0.02, yref = [2 3]T , and

initial conditions of tanks: tank 1 (3.02V ) and tank 2 (3.34V ). Figure 9.22 shows

that with the latter choice of ǫ = 0.02 the resultant settling time of approximately

1427 seconds is attained. Figure 9.23 shows the input response.

(f) The final experiment with respect to the MIMO TcR (9.2) case considers multiple

perturbations. In particular, this experiment begins at t = 120s (see point (f)

above) with Case 1 of Table 9.5 with and then transitions to Case 2 and onward.

The complete list of transitions is given below:

• Case 1: time ≈ 120 − 2550s

• Case 2: time ≈ 2551 − 3600s
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(a) Experiment 5: tank 1 (y1) response
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(b) Experiment 5: tank 2 (y2) response

Figure 9.22: MIMO TcR Experiment 5: Output response with ǫ = 0.02 and initial
conditions of tanks: tank 1 (3.02V ) and tank 2 (3.34V )

• Case 3: time ≈ 3601 − 5000s

• Case 4: time ≈ 5000 − 5150s

In this experiment we chose ǫ = 0.02, yref = [2 3]T , and initial conditions of tanks:

tank 1 (3.02V ) and tank 2 (3.34V ).

Figure 9.24 shows the output response and Figure 9.25 shows the input response.

Notice that for Case 4, the inputs get turned off as the disturbance gets too large

and no solution exists to the servomechanism problem.

Next, in order to validate the theoretical results of the MIMO LTQcR control strategy

two experimental results have been included. Recall, the MIMO LTQcR controller has

been defined in Chapter 7 by:
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Figure 9.23: MIMO TcR Experiment 5: Input response with ǫ = 0.02 and initial condi-
tions of tanks: tank 1 (3.02V ) and tank 2 (3.34V )

Controller 9.4.2. Assume rank(D − CA−1B) = r. Given ǫ > 0, the controller is

described by:

η̇ = y − yref ; u = α[Kx Kη][x η]T , u(0) > 0 (9.5)

α =







0 if ∃ i ∈ {1, ..., r} s.t ([Kx Kη][x η])i ≤ 0,

1 otherwise

where Kx ∈ Rm×n and Kη ∈ Rm×r are found by solving the LQ control problem:

∫ ∞

0

ǫ2eT Qe + u̇T u̇dτ (9.6)
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Figure 9.24: MIMO TcR Robustness Experiment: Output response with ǫ = 0.02 and
initial conditions of tanks: tank 1 (3.44V ) and tank 2 (3.51V )

with ρ > 0 and Q = ((D − CA−1B)−1)T (D − CA−1B)−1).

Next, two experimental simulations are presented under different values of ǫ (the ǫ

has been used for consistency with the other Chapters and is clear from the context of

discussion) for (9.5); see Figure 9.26 and Figure 9.28 for the output response and Figure

9.27 and Figure 9.29 for the corresponding inputs. Notice that the LTQcR results in a

faster settling time of approximately 990 seconds, but is nowhere close to the results of

the SISO RLTQcR control.
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Figure 9.25: MIMO TcR Robustness Experiment: Input response with ǫ = 0.02 and
initial conditions of tanks: tank 1 (3.44V ) and tank 2 (3.51V )
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Figure 9.26: MIMO LTQcR Experiment: Output response with ǫ = 2 and initial condi-
tions of tanks: tank 1 (1.95V ) and tank 2 (2.71V )
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(a) LTQcR Experiment: input 1 (u1) response

(b) LTQcR Experiment: input 2 (u2) response

Figure 9.27: MIMO LTQcR Experiment: Input response with ǫ = 2 and initial conditions
of tanks: tank 1 (1.95V ) and tank 2 (2.71V )
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(a) LTQcR Experiment: output 1 (y1) response

0 200 400 600 800 1000 1200 1400 1600
0.5

1

1.5

2

2.5

3

3.5

4

time (s)

out
put

 y2

LQcR: Experiment

(b) LTQcR Experiment: output 2 (y2) response

Figure 9.28: MIMO LTQcR Experiment: Output response with ǫ = 0.5 and initial
conditions of tanks: tank 1 (2.08V ) and tank 2 (2.29V )

9.5 Conclusion

In this chapter we have used both the TcR and the LTQcR to illustrate experimentally

the servomechanism problem for stable positive SISO and MIMO systems. In conclusion,

the tuning clamping regulator and the linear tuning quadratic clamping regulator have

justified the theoretical results of this dissertation; moreover, we can also conclude that

the TcR and the LTQcR can be easily implemented via Matlab real-time experimentation

and are very practical to use from the perspective of cost and validation of a solution. The

clear underlying problem with the current approach is the sluggishness of the response,

especially for the MIMO case. The SISO RLTQcR has generated extremely robust and

good response with the restrictions of saturation effects which were present on the system.
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Figure 9.29: MIMO LTQcR Experiment: Input response with ǫ = 0.5 and initial condi-
tions of tanks: tank 1 (2.08V ) and tank 2 (2.29V )

The next set of steps clearly point to trying to improve the performance of the MIMO

case, where possible anti-reset type behavior with some form of online self-tuning control

could be implemented. This, however, we leave for future considerations.



Chapter 10

Conclusions and Future Research

This dissertation has studied positive linear time-invariant (LTI) systems. In particular

the problems of state and output feedback stabilization, and the positive servomechanism

problem, for positive LTI systems have been discussed. The problem of stabilization has

also been extended to include results on the positive separation principle of LTI sys-

tems, i.e. the design of a state feedback stabilizing gain in conjunction with an observer

feedback. Following the problem of positive stabilization, the focal point of the disser-

tation shifted toward finding necessary and sufficient conditions for reference tracking

and disturbance rejection of stable positive LTI systems via robust control strategies,

i.e. the servomechanism problem for positive LTI systems. Once the necessary and suffi-

cient conditions were established, results on finding adequate control methodologies that

solve the servomechanism problem were outlined. Finally, the theoretical results were

verified via experimentation on a waterworks positive system composed of industrialized

components.

In the next two sections we summarize the results and contributions of the thesis and

discuss several extensions that may be of interest.

217
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10.1 Summary and Contributions

Chapter 2 has provided primarily the building blocks for the thesis. In this chapter Sec-

tion 2.1 defined all common terms and symbols used throughout the thesis. The chapter

then outlined positive systems and compartmental systems and any associated results

that were later needed in the dissertation. Next, a discussion of tuning regulators and

feedforward control was reviewed and finally Section 2.4 discussed singular perturbation

theory [45].

The contributions of Chapter 3 can be summarized as follows. The chapter was

divided into three sections. The first section illustrated introductory results by presenting

all definitions needed within the chapter. The second section of Chapter 3 outlined

feedback stabilization, observer design, and the separation principle for positive single-

input single-output (SISO) systems. The final section considered the latter problems

of feedback stabilization, observer design, and the separation principle for the case of

positive multi-input multi-output (MIMO) systems. In addition to the SISO and MIMO

results, Chapter 3 illustrated numerous examples that outlined key differences between

the single-input single-output case and the multi-input multi-output case.

Next, the focus shifted to the study of the tuning clamping regulator problem for

stable (un)known SISO positive LTI systems under unmeasurable and measurable dis-

turbances. In particular, existence conditions were provided, along with the actual control

law, which solve the servomechanism problem for constant tracking and (un)measurable

disturbance signals for unknown positive LTI systems. Chapter 4 not only considered

the problem from the viewpoint of tuning clamping regulators (TcR), but also from the

perspective of reset anti-windup tuning clamping regulators (RTCR). Finally, the chapter

concluded with results on bidirectional control inputs.

Chapter 5 was an extension to the tuning clamping regulator results of Chapter 4,

except unlike in the case of TcR control, in Chapter 5 it was assumed that the plant

model was known; in this case, it was shown that the results for tracking and distur-
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bance rejection can be significantly improved over those presented for unknown models

of Chapter 4. The new control law that was utilized with the extra information was

the linear quadratic clamping regulator (LQcR) and the reset linear quadratic clamping

regulator (RLQcR). In Chapter 5 we have also noted that arbitrarily fast response, as

for example in the case of perfect control type behaviour [20] for minimum phase LTI

systems, may not be attainable for positive LTI systems under nonnegative control.

The next two chapters, Chapter 6 and Chapter 7, studied the servomechanism prob-

lem for MIMO positive LTI systems. In particular, Chapter 6 considered the tracking

problem of nonnegative constant reference signals for stable known and unknown MIMO

positive LTI systems under measurable and unmeasurable disturbances under a new tun-

ing clamping regulator (TcR), and Chapter 7 extended the results of the SISO LQcR

case to the MIMO positive systems case.

In Chapter 8 a short discussion of an existence condition for MPC controllers con-

strained to positive LTI systems under the servomechanism problem was outlined. It was

shown via TcR or LQcR, that we can use MPC controllers to solve the servomechanism

problem under nonnegative inputs.

The final chapter under clamping type controllers consisted of an experimental study

of a waterworks setup [18], illustrating the effectiveness, ease and robustness of the set

of controllers presented in Chapter 4 - Chapter 7. The main purpose of this study was

to show that with no mathematical model of a system, or with only a very crude model

approximation, the tuning clamping regulator (TcR) and the linear quadratic clamping

regulator (LQcR) can robustly solve the problem of tracking a reference signals under

disturbances and system changes.
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10.2 Future Work

The evolution of the current research stemming from this dissertation can take on many

facets. The first, of many extensions, can be in the study of the positive decentralized

servomechanism problem. Namely, this dissertation provides answers only to the track-

ing and disturbance rejection problem using centralized control methods, which uses the

notion of one overall controller for the system; however, in many practical applications

centralized control may not always be considered as a feasible solution, and hence de-

centralized control must be considered. Decentralized control is applied in large-scale

applications where the notion of several controllers is used to manage an overall task.

Another important extension is that of anti-reset and self-tuning regulators for MIMO

positive systems. Throughout the experimental results it has become clear that the cur-

rent approach of TcR and LQcR, although feasible, lacks various performance properties,

e.g. settling time properties which are associated with reset windup. Therefore, it would

be of great benefit to consider not only anti-reset controllers, as in the SISO case, but also

self-tuning algorithms that would greatly improve various performance specifications.

Although this dissertation has already touched upon optimal control, the study is far

from complete. There are numerous open questions regarding optimal control and its role

within positive systems; and thus, a continuous study of robust constraint optimal-type

controllers for positive systems, for example a more in depth study of Model Predictive

Control (MPC), is needed. The importance of constrained optimal control in positive

systems is vital for future applications, especially in the biomedical field, which relies

heavily on constraints and changing environments. For example, an application of con-

strained optimal control can be considered in the study of automated drug infusion. This

problem, as already described in the introduction and covered in Chapter 4, still poses

numerous practical challenges; e.g. how will the controller be incorporated into a surgical

procedure and how will it fair in a real-life setup? The problem of infusing anesthesia

is not the only biomedical problem associated with positive systems; in fact, the control
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of insulin in diabetics, and many other drug related procedures can also be considered.

Currently the study of drug infusion is gathering interest within the biological systems

community, and since many of the questions are dependent on systems control theory

and positive systems, this area will continue to grow and pose interesting theoretical and

practical questions.



Appendix A

Counter Examples

This Appendix presents counter examples to three important papers in the field of stabi-

lization of positive linear systems. Each section of this Appendix is entitled by the title

of the paper under consideration.

A.1 Positive Linear Observers for Positive Linear

Systems [15]

In [15], the author claims that there exists a convergent positive linear observer (or by

duality stabilizing matrix) for a given LTI positive system if and only if Theorem 2 of

[15] holds true. The Theorem is repeated for completeness below.

Theorem A.1.1 ([15]). Given a Metzler matrix A ∈ Rn×n and a nonnegative matrix C ∈

R
p×n
+ , define a nonnegative matrix Eo ∈ R

n×p
+ such that the elements of the ith line of Eo

are solution of the following linear programming problem:

max
eij

p
∑

j=1

eijcji,

222
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subject to
p

∑

j=1

eijcjk ≤ aik, ∀ k 6= i.

In case this optimization problem is unbounded (cjk = 0, ∀ k 6= i), then any value of eij

such that
p

∑

j=1

eijcji > aii

is admissible.

Then there exists a convergent positive linear observer for the given system if and

only if λmax(A − EoC) < 0.

The constructed example below shows that the Theorem in [15] is incomplete. Let

A =









0.5 9 4

1 −1 1

0 0 −1









, C =






0 3 2

1 0 1




 .

By the algorithm presented in [15], we obtain the observer gain matrix:

L =






0 0.5 0

4 0 0






T

,

which results in the unstable closed loop matrix which is Metzler and is stable:

Ac =









0.5 9 4

1 −1 1

0 0 −1









−









0 4

0.5 0

0 0














0 3 2

1 0 1




 =









−3.5 9 0

1 −2.5 0

0 0 −1









,

with eigenvalues {−1, − 6.0414, 0.0414}. However, via the results of Chapter 3, we
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obtain a new stabilizing matrix:

L =






0 0 0

4 1 0






T

,

resulting in the new closed loop matrix which is Metzler and is stable.









−3.5 9 0

0 −1 0

0 0 −1









.

Another problem of Theorem A.1.1 of [15] is the fact that it confines the stabilizing

gain matrices to be nonnegative which, as pointed out in Chapter 3, is a result that must

be relaxed.

A.2 Stabilization of positive linear systems [23]

This paper presents results on stabilization of SISO positive linear systems with the

maximum eigenvalue of the linear system being at the origin. A significant statement of

the paper, which the authors prove incorrectly, is summarized below (Proposition 8 on

page 265 of the paper).

Proposition A.2.1 ([23]). Suppose that Ã is a singular compartmental and irreducible

matrix and that g̃ ∈ Rn
+. Then the pair (Ã, g̃) is stabilizable if and only if

g̃ 6= 0 and there exists at least one i ∈ 1, ..., n such that ∀j 6= i with g̃j 6= 0, also ãji 6= 0.(A.1)

Above, the word stabilization means the standard LTI stabilization and not the stabi-

lization we defined in Chapter 3, i.e. Proposition A.2.1 is stating that for the special class

of singular compartmental and irreducible matrices positive stabilization is equivalent to
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the standard stabilization of linear systems. We show that this is false by an example

below.

Consider the following two matrices

Ã =









−1 1 0

0 −1 1

1 0 −1









and

g̃ =









1

1

1









,

where Ã is an irreducible compartmental matrix with maximum eigenvalue at the

origin and g̃ is a nonnegative vector. Notice that

rank[Ã g̃] = 3,

i.e. the system is stabilizable in the linear system sense, yet no ks exists in order to make

Ã + g̃ks

Metzler stable, i.e. condition (12) in the paper (equation (A.1) above) does not hold.

This shows that Proposition 8 (Proposition A.2.1 above) is in fact false.
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A.3 Positive Observers for Linear Compartmental

Systems [25]

This paper presents results for constructing positive observers for LTI compartmental

systems. Once again by duality the construction of observers can be carried over to

positive stabilization for compartmental systems.

Here we present an example that shows the incorrectness of Theorem 3.13 in [25]. Due

to the overwhelming build up to the Theorem, we omit the Theorem itself and details

associated with it. The interested reader can refer back to [25] for completeness.

Theorem 3.13 on page 599 can be disproved by the following example. Take the

continuous LTI system with matrices1:

F =






−1 0

0 0






and

C = [1 1],

now this system has one trap2 and (F22, C2) = (0, 1), which satisfies modifiability3 as

per assumption of Theorem 3.13, yet there is no K that solves the problem, i.e. by the

stabilization results of Chapter 3 (see Theorem 3.2.1 with A = F T and b = CT ).

The following set of examples above has illustrated several important observations on

major papers on the subject of observer design for positive and compartmental systems.

In this thesis we have answered all these questions and more. For complete statements

of all the papers of this Appendix see [15], [23], and [25].

1note that the paper uses F instead of A due to the assumption that A is reduced to a special
structure form, which is represented with the matrix F

2see [25] for clarification
3see [25] for clarification
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