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Abstract. In this paper we present a new algorithm for computing Max-
imally Stable Extremal Regions (MSER), as invented by Matas et al. The
standard algorithm makes use of a union-find data structure and takes
quasi-linear time in the number of pixels. The new algorithm provides
exactly identical results in true worst-case linear time. Moreover, the new
algorithm uses significantly less memory and has better cache-locality,
resulting in faster execution. Our CPU implementation performs twice as
fast as a state-of-the-art FPGA implementation based on the standard
algorithm.

The new algorithm is based on a different computational ordering
of the pixels, which is suggested by another immersion analogy than
the one corresponding to the standard connected-component algorithm.
With the new computational ordering, the pixels considered or visited at
any point during computation consist of a single connected component of
pixels in the image, resembling a flood-fill that adapts to the grey-level
landscape. The computation only needs a priority queue of candidate
pixels (the boundary of the single connected component), a single bit
image masking visited pixels, and information for as many components as
there are grey-levels in the image. This is substantially more compact in
practice than the standard algorithm, where a large number of connected
components must be considered in parallel. The new algorithm can also
generate the component tree of the image in true linear time. The result
shows that MSER detection is not tied to the union-find data structure,
which may open more possibilities for parallelization.

1 Introduction

Extraction of invariant regions has recently been the focus of intense study
[1,2,3,4,5,6,7,8,9,10,11,12], supporting a wide variety of applications such as
recognition, image retrieval, mosaicing, 3D reconstruction, tracking, robot nav-
igation and more. Testing in a common framework was enabled by Mikolajczyk
et al. [5] with a dataset that allows testing the repeatability of a region detec-
tor under disturbances such as blur, viewpoint change, zoom, rotation, lighting
changes and JPEG compression.

Maximally Stable Extremal Regions (MSER) described by Matas el al [3]
have become one of the commonly used region detector types, partly because of
their high repeatability and partly because they are somewhat complementary to
many other commonly used detectors [7,4,13]. They are viable with a relatively
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Fig. 1. The two immersion analogies. On the left, the standard immersion. On the
right, the immersion corresponding to the new linear time algorithm.

small number of regions per image, and are therefore well suited for large scale
image retrieval tasks [14,15]. They have also been used in recognition [16] as
well as tracking [11] and have been extended to color [17] and volumetric images
[18]. The detection has even been implemented on FPGA [19].

The standard algorithm for computing MSER follows the same lines as a very
popular flooding simulation algorithm for computing a watershed segmentation,
suggested in [20]. The watershed segmentation has a long history and has been
intensely studied, see [21] for a review. In the immersion analogy, Fig 1, the
grey-level profile of the image is imagined as a landscape height-map. The water
level is raised gradually until the whole landscape is immersed. In the standard
immersion analogy, the level is raised equally at all places in the landscape (im-
age). That is, one either thinks of the landscape as porous so that the water
level will be equal everywhere, or equivalently, imagines that a hole is pierced
in each local minimum of the landscape, allowing water to enter. The algorithm
keeps tracks of the connected components of water (connected components of
pixels) using a union-find data structure with path-compression. The union-find
data structure with path-compression supports quasi-linear time in the num-
ber of pixels [21,22,23]. More precisely, the time required can be shown to be
bounded by O(nα(n)), where n is the number of pixels and α(n) is the inverse
of the Ackermann function, whose value is smaller than 5 if n is of the order
1080. Hence the expression ’quasi-linear’ is well motivated, although a true lin-
ear time algorithm for the union-find problem to our knowledge requires limiting
assumptions such as for example the existence of a computer with log(n) word
length and incremental growing of the data structure [24].

In this paper, an algorithm is presented that can compute MSER and the
so-called the component tree (of connected components as they evolve during
the flooding), all in true linear time in the number of pixels. Perhaps even more
importantly, the algorithm works with a single connected component of pixels,
resulting in less memory usage and faster execution. The algorithm is natural
and simple, sharing many properties with the previous algorithm, but with one
critical difference. Instead of flooding the image with the same water level every-
where, the flooding occurs as if the landscape was opaque and water is being
poured on at some arbitrarily selected point (pixel), see Fig. 1. The water first
fills up the basin where water is poured on, and then spills over to other parts
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Fig. 2. Typical progress stages for the algorithm on the first pass. The top left pixel is
used as the source pixel. The flooding occurs, with preference for dark regions, MSER
are detected in the process, and eventually the whole image is flooded. The process
will then be repeated with preference for bright regions.

of the landscape as they become accessible to the current body of water. That
is, the flooding occurs in a very physically plausible manner. The water adapts
to the actual landscape and remains one connected component connected to the
point where it is being poured onto the landscape. The algorithm keeps track of
the ’downhill stream’ of water, which at any time amounts to information for at
most as many pixel components as there are grey-levels in the image. When the
downhill stream finds a minimum, the water starts filling it up, and when it fills
back up, the corresponding pixels are processed for MSER.

Thus, the progress of the algorithm can be roughly described as a physical
flood-fill adapting to the landscape, see Fig 2. In the following section, we will
first give an algorithm overview, followed by algorithm details and a description
of a recommended actual implementation.
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2 Algorithm Overview

In this section we will give a high-level description of the algorithm. For simplic-
ity, we will work on the dark to bright pass. Note however that in reality, the
MSER detection algorithm is simply carried out twice, one from dark to bright
and one from bright to dark (with the landscape flipped upside down).

2.1 Basic Definitions

Let the image I consist of n pixels indexed by the variable x. Let each pixel be
assigned the grey-level value f(x), taken from a set of m linearly ordered grey-
level values. Let also the pixels be assigned some neighboring relation encoded by
the function N(x), where N(x) denotes the set of pixels neighboring pixel x. An
example is a two-dimensional image with four-connected pixels taking on grey-
levels [0, . . . , 255]. The generalization to arbitrary undirected finite connected
graphs is straightforward.

A path from a pixel x to y is a sequence of pair-wise neighboring pixels starting
with x and ending with y. A connected set X is a set of pixels that has a path
entirely within X between any pair of pixels in X . A minimum is a connected
set X of pixels with equal grey-level values, such that no pixel in X is connected
to a pixel outside X with equal or smaller grey-level value. A sub-level set, pa-
rameterized by grey-level y, is the set of pixels {x ∈ I | f(x) ≤ y} with grey-level
smaller than or equal to y. As we trace through the sub-level sets by varying
the grey-level from dark to bright, we get a sequence of sets on which we can
(in principle) perform connected component analysis on. The way the connected
components evolve defines a tree, which we will refer to as the component tree,
defined roughly as follows. When a new component appears from one grey-level

Grey-Level

0

255

Fig. 3. The component tree with corresponding grey-levels. The nodes of the tree are
drawn as vertical boxes where the vertical extent of the box shows the grey-level life
span of each component.
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Fig. 4. The data-structures. Pixel status is shown on the top right. The source pixel
is marked S. The current pixel is marked C. The pixels waiting in the heap of bound-
ary pixels (left) are marked with circles. The pixels that belong to a component on
the component stack (bottom) are marked with their component number. A detected
MSER is shown by a dashed ellipse. Pixels that have been fully processed are marked
with an X. Note how the stack holds components with decreasing grey-level.

to the next (in the sense that we get a component that consist entirely of pix-
els that were not in the previous sub-level set), this component of pixels is a
minimum, which is made into a leaf node. When, as we increase the grey-level
threshold, two or more components become joined into one, the joined compo-
nent is assigned a new node and made into a parent of the original nodes. This
process continues until the whole image is one component, which corresponds to
the root node.

As the components evolve, we can also keep track of component information,
which will differ dependent on what we wish to extract. For example, it could
consist of a linked list of the pixels in the component. It could also just consist
of the first and second order moments of the regions, which can in principle
be encoded by six sums

∑
1,

∑
x,

∑
y,

∑
xx,

∑
xy,

∑
yy over the pixels in the

component (although for numerical reasons, it is better to center these moments
on something close to the centroid of the region). This is the output we need
if we wish to turn the MSER into elliptical regions at the end of detection. An
MSER is a component for which the relative growth-rate attains a minimum,
see Matas [3] for further details.

2.2 Basic Algorithm

We will now describe the algorithm from an abstract point of view. See Sec-
tion 2.3 on how to accomplish the steps efficiently, and Section 3 for analysis.
The algorithm needs the following data-structures:
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Fig. 5. State graph for the algorithm

– A binary mask of accessible pixels. These are the pixels to which the water
already has access.

– A priority queue of boundary pixels, where priority is minus the grey-level.
These pixels can be thought of as partially flooded pixels in the sense that
water has access to the pixel in question, but has either not yet entered, or
not yet explored all the edges out from the pixel. Along with the pixel id,
an edge number indicating the next edge to be explored can be stored.

– A stack C of component information. Each entry holds the pixels in a compo-
nent and/or the first and second order moments of the pixels in the compo-
nent, as well as the size history of the component and the current grey-level
at which the component is being processed. The maximum number of entries
on the stack will be the number of grey-levels.

During execution of the algorithm, the components in the component info stack
C may not correspond to components in the component tree. Rather, there
will a number of components representing the ’down-stream’ of water streaming
downhill towards a minimum, where each component is the set of pixels at a
single grey-level that is part of the down-stream. A single component represents
the pixels covered by the water currently filling back out of a minimum. The
algorithm in a sense has two states, one where the down-stream is flowing down-
hill in search of a minimum, and one where a minimum has been found, and the
water level is currently rising out of it.
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Fig. 6. The state of the component stack just before a merge of two components. The
water has filled up one basin (dark blue component) and returned out of it to spill over
into a second (light blue component) and the bright component is just about to merge
with the dark component. Notice the textured components that are waiting as part of
the ’downhill stream’ of water.

To execute the algorithm, a pixel from which flooding will proceed is arbitrary
chosen. This pixel can be thought of as the point at which water is being poured
on, and the output result will be the same regardless of which pixel is selected,
so we may simply pick the upper left corner of the image. We will refer to this
as the source pixel. The algorithm is as follows, see also Fig 5:

1. Clear the accessible pixel mask, the heap of boundary pixels and the compo-
nent stack. Push a dummy-component onto the stack, with grey-level higher
than any allowed in the image.

2. Make the source pixel (with its first edge) the current pixel, mark it as
accessible and store the grey-level of it in the variable current level.

3. Push an empty component with current level onto the component stack.
4. Explore the remaining edges to the neighbors of the current pixel, in order,

as follows: For each neighbor, check if the neighbor is already accessible. If it
is not, mark it as accessible and retrieve its grey-level. If the grey-level is not
lower than the current one, push it onto the heap of boundary pixels. If on
the other hand the grey-level is lower than the current one, enter the current
pixel back into the queue of boundary pixels for later processing (with the
next edge number), consider the new pixel and its grey-level and go to 3.

5. Accumulate the current pixel to the component at the top of the stack (water
saturates the current pixel).

6. Pop the heap of boundary pixels. If the heap is empty, we are done. If the
returned pixel is at the same grey-level as the previous, go to 4.

7. The returned pixel is at a higher grey-level, so we must now process all
components on the component stack until we reach the higher grey-level.
This is done with the ProcessStack sub-routine, see below. Then go to 4.
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Fig. 7. For a ridge pixel, it is important for theoretical correctness of the algorithm
that water is not allowed to ’spill’ simultaneously into several directions. Therefore, if
a lower pixel is found as any of the neighbors of a pixel, the current pixel has to be
stacked for later and the newly found pixel tended to fully before proceeding to the
other neighbors.

The ProcessStack sub-routine is as follows:
Sub-routine ProcessStack(new pixel grey level)

1. Process component on the top of the stack. The next grey-level is the mini-
mum of new pixel grey level and the grey-level for the second component on
the stack.

2. If new pixel grey level is smaller than the grey-level on the second component
on the stack, set the top of stack grey-level to new pixel grey level and return
from sub-routine (This occurs when the new pixel is at a grey-level for which
there is not yet a component instantiated, so we let the top of stack be that
level by just changing its grey-level.

3. Remove the top of stack and merge it into the second component on stack
as follows: Add the first and second moment accumulators together and/or
join the pixel lists. Either merge the histories of the components, or take the
history from the winner. Note here that the top of stack should be considered
one ’time-step’ back, so its current size is part of the history. Therefore the
top of stack would be the winner if its current size is larger than the previous
size of second on stack.

4. If(new pixel grey level>top of stack grey level) go to 1.

Here, the implementation of how to process a component follows the same lines
as the standard algorithm, and depends on the information one wants about an
MSER. It entails determining if a relative growth rate minimum has occurred,
and if so, harvesting the required information from the component and declaring
an MSER detected. The data-structure of a component holds information about
the previous sizes of the component, and at which grey-levels they occurred.
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Fig. 8. The heap of boundary pixels can be efficiently implemented by a binary bitmask
with number of grey-level bits, where bits are set if there are pixels at that grey-level,
and a system of stacks, one for each grey-level.

It is immaterial to the result which order is used to explore the edges of a
particular pixel, but it is important that if a lower grey-level pixel is found at
the end of one of the edges, this pixel is tended to before any further edges are
explored, see Fig 7. The reason is that otherwise water could enter a ’ridge’ pixel
that has several edges to lower grey-level pixels from distinct basins, and water
would ’spill’ into both basins simultaneously if we are not careful to process one
of the edges first and fully saturate it before moving to the next edge. In practice,
it is possible that this would not be a common problem, it would perhaps just
make the algorithm ’myopic’ in the sense that water could ’tunnel’ through
ridges, but by carefully saturating the edges in the correct order, our result will
adhere exactly to the strict definition of MSER.

2.3 Implementation Details

In this section we give some implementation details. For efficiency, we imple-
mented the heap of boundary pixel as a system of stacks of pixels at various
grey-levels, see Fig 8. A bitmask is keeping track of which out of the 256 grey-
levels have pixels waiting. This allows us to use a single instruction to find
which is the smallest (or largest) occupied grey-level by using a machine in-
struction that retrieves the id number of the least significant or most signif-
icant bit set (for x86 platforms bsf and bsr, or the more general 64-bit com-
pliant BitScanForward, BitScanReverse). This is of course limited to as many
grey-levels as the processor word-length, but for 256 grey-levels we simply chain
multiple such instructions. This is essentially a way to get the hardware to do
the work, and lower the time it takes to push and pop from the heap. This
time is inherently constant with regards to the number of pixels, and loga-
rithmic in the number of grey-levels. We also perform an explicit check for
current grey-level before doing the general pop. This can be done since the
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grey-level is never smaller than the current. When it is equal, which is common,
some work can be saved.

The heap could be dynamically allocated and implemented as linked lists, but
we prefer to count the number pixels at each grey-level in a single pre-sweep of
the image, just like the standard algorithm does. This allows us to both pre-
allocate and use fixed arrays for the stacks without stacks ever running into one
another. The total number of entries in the stacks is the number of pixels plus
the number of grey-levels (due to one stop-element for each stack).

Finally, to avoid having to perform explicit checks for the image boundary, a
border of one pixel around the image is used, and the accessible mask is always
set when a sweep starts. This can actually be implemented without explicitly
sweeping the mask except for in a detector initialization step, since the sweep
sets the whole mask. We then simply flip the border bits and invert the meaning
of the mask on the dark-to-bright sweep, finally leaving the mask in its original
state.

3 Analysis

An informal analysis for the algorithm is straightforward. It is easy to see that
only one copy of a pixel can ever be on the heap of boundary pixels, and that a
pixel can only return onto the heap at most as many times as it has neighbors.
Moreover, the components that are processed must have at least one new pixel
in them, so the total amount of component processing is linear in the number
of pixels. As it takes at most log(m) time to enter or pop a pixel from the heap,
the worst case execution time is therefore bounded by

O((n + e) log(m)), (1)

where n is the number of pixels, m the number of grey-levels, and e is the number
of edges in the image graph (such as e ≈ 2n for four-connected images). If we
regard m and the connectivity as constants, this simply amounts to O(n), linear
time.

The memory usage is roughly a four-byte integer per pixel, which allows both
the heap of boundary pixels, the accessible mask bit and the edge number to
be stored while allowing a sufficient number of bits for the pixel coordinates.
Storage for only m components is required (apart of course from the storage
required by detected MSER, which would clearly be needed for any algorithm.

4 Experimental Validation

As the results of our detector are the same as the original MSER detector, which
has been found in several studies to have excellent repeatability, our experimental
focus is on execution time. As a reference, the recent paper [19] reports on
an FPGA implementation with careful attention to detail, but based on the
standard union-find algorithm, performing at 25 fps on images up to 350 × 350
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Fig. 9. Execution time as a function of image size on square images ranging from
one pixel to one mega-pixel. Curves are shown, from fastest to slowest: for a blank
image and an image filled with ramps (blue and black, almost identical), a pixel-size
checkerboard pattern (thin green line), natural image (thick black line) and a random
image (thin red line). Note the completely linear timings, which include both passes.

pixels or 54 fps detection on image streams with 320 × 240 pixels resolution.
These execution times are for a single pass, so with both passes (bright-to-dark
and dark-to-bright), this corresponds to 1.5 or 2 mega-pixel per second. Our
implementation of the new algorithm, which is relatively carefully written but
not fully optimized, is running at least twice as fast as this, at around 5 mega-
pixel per second on a single core consumer grade CPU.

We ran experiments with single-threaded code on a laptop with 3GB of RAM
and an Intel T7400 2.16GHz processor. To try to show the ’best’ and ’worst’ re-
alistic performance of the algorithm, we give execution times with respect to the
number of pixels in Fig 9 for various synthetic images and natural images. To avoid
process scheduling noise, results were produced by running five independent times
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Fig. 10. Actual execution times up to ten mega-pixel. A tiny amount of curvature can
be perceived, but the performance is very close to the theoretical linear.
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Fig. 11. A scatter plot of execution times with respect to number of pixels for a number
of randomly selected photographs with random resolution. Note the clear linear trend
of around five mega-pixel per second.

and taking the fastest run. Blank or smooth images execute the fastest, while com-
pletely random images execute the slowest. There is approximately a factor two
difference between the two, which likely is connected to how many times each pixel
is put back on the heap. It is worth noting that random images and checkerboard
images are particularly challenging to the standard algorithm since it causes half
as many concurrent components as there are pixels in the image. A natural image is
typically somewhere in between. To provide a reproducible reference speed-curve,
the natural image curve in this figure was produced by running on the 512 × 512
Lena image wrapped endlessly. The linearity persists to very large images, Fig 10
shows the timings up to ten mega-pixel.

A more general measurement of execution time for natural images is shown in
Fig 11, where the execution times for randomly selected images of varying size are
given. Note the clear linearity and the typical speed of roughly 5 mega-pixel per
second on natural images.

5 Conclusions

We have described a new MSER detection algorithm, which runs in linear time
and behaves like a true flood-fill, meaning a flood-fill where the next pixel filled
must be the lowest point accessible so far. The performance tests validate the
linear run-times and indicate the speed on a single core consumer grade CPU to
be at around five mega-pixels per second for natural images, roughly the pixel
rate of a PAL TV signal and more than twice as fast as a very recent FPGA
implementation. The algorithm shows that MSER detection does not necessarily
need the union-find implementation commonly used for watershed segmentation.
This allows true linear time and opens up for further studies into parallelization
of the algorithm.
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