
Chapter 59

Linear-Time Modular Decomposition and
Efficient Transitive Orientation of Comparability Graphs

Ross M. McConnell+

Abstract

A module of an undirected graph is a set X of nodes
such for each node x not in X, either every member of X is

adjacent to x , or no member of X is adjacent to x. There is

a canonical linear-space representation for the modules of a

graph, called the modular decomposition. The modular
decomposition facilitates solution of a number of combina-

torial problems on certain classes of graphs, and algorithms

for computing it have a lengthy history. Closely related to
modular decomposition is the transitive orientation prob-

lem, which is the problem of assigning a direction to each

edge of a graph so that the resulting digraph is transitive, if
such an assignment is possible. We give the lirst linear-time

algorithm for modular decomposition, and a new bound of
0 (ri +m logn) on transitive orientation and the problem of
recognizing permutation graphs and two-dimensional partial

orders.

1. Introduction

A comparabiliry graph [15] is the graph obtained by

ignoring the edge directions of a transitive dag (i.e. a partial
order). A 2-dimensional partial order [S] is any partial

order obtainable by intersecting two linear orders, and a
permuration graph [29] is the corresponding comparability
graph. These classes of graphs and partial orders arise in a

number of combinatorial problems and have applications in

+ Dept. of Computer Science. Campus Box 430. University of
Colorado. Boulder. CO 80309

$ Dept. of Computer Science, Vanderbilt University, Nashville.
TN 37235. J. Spinrad was supported by grant R592-9632 from the
National Security Agency.

Jeremy P. Spinradt

scheduling theory. The transitive orientation problem is the

problem of orienting the edges of a comparability graph so

that the result is a partial order. If such an orientation is

provided for a comparability graph, some important com-

binatorial problems become solvable in linear time.

The modular decomposition of a graph is an O(n +
m)-space representation of all congruence partitions on a

graph [26,27]. This decomposition is also known as subsri-

tution decomposition [26,27], prime tree &composition [111
and X-join decomposition [18]. A graph with only a trivial

modular decomposition is prime.

We give the first general linear-time algorithm for

computing the modular decomposition of an undirected

graph. There have been a number of O(n4) algorithms
[20,23]) O(n3) or O(nm) algorithms [2, 7, 12, 13, 18. 341,

and O(n2, algorithms [9, 24, 281 for graphs and special

cases of graphs. The cotree decomposition of cographs and

the series-parallel decomposition of series-parallel partial

orders are special cases on graphs and digraphs, respec-

tively, for which linear-time solutions have been given [4,

351. Most recently, O(n + mlogn) [6] and O(n +

ma(m ,n)) [32] algorithms have been developed for

undirected graphs, where a(m ,n) is the inverse of
Ackermann’s function [3]. We modify the algorithm of

[32] by replacing the “companion tree” data structure with

simpler techniques. We then modify this algorithm to get a
linear time bound.

We also give a simple node-sorting procedure that

gives a unified O(n + m logn) solution to transitive orienta-

tion and recognition of 2-dimensional partial orders and per-
mutation graphs, given the modular decomposition. The

536

LINEAR-TIME MODULAR DECOMPOSITION 537

same procedure recognizes arbitraty prime graphs without
the decomposition. The best previous bound for recognition

of 2diiensional partial orders and permutation graphs is

O(n2> [311. The previous algorithms for transitive orienta-
tion took either O(n2) time [31], or 0(&n) time [14,16,29],

where d is the maximum degree of a node in the graph. As

with the algorithm of [31]. our algorithm fails to recognize
when its input is not a comparability graph, and instead pro-
duces a non-transitive orientation of the graph. Surpris-

ingly, this is not a problem for many applications.

not distinguish any two of its members. X is a module if it
agrees on each member of no&set(G) - X. The trivial

modules of G are no&set (G), its singleton subsets, and the

empty set. A graph is prime if it has only trivial modules,
and degenerate if every subset of nodeset (G) is a module.

It is degenerate iff it is complete or edgeless.

The following problems can be solved on comparabil-
ity graphs in O(n + m logn) time as a result of these bounds.
1) Maximum clique: Transitively orient G and find the

longest path in the result. If this longest path corresponds to

a clique of G then it is a maximum clique, even if G is not a

comparability graph. 2) Recognition of cointerval graphs

[151: Transitively orient G and determine whether the result

is an interval order. 3) Recognition of chordal comparabil-
ity graphs 1151: Use the linear procedure of [22], which

assumes that a transitive orientation is given. 4) Recogni-

tion of circular permutation graphs [303: In 1331 it is shown
that an upper bound on recognition of circular permutation

graphs is given by the bounds on transitive orientation and

permutation graph recognition.

To recognize a permutation graph in O(n + m logn)
time, we use the well-known characterization that G is a

permutation graph iff G and its complement 5 are both
transitively orientable [15]. This approach initially appears

unpromising; simply constructing C requires n(n2, time.

Using this approach with “forcing” algorithms for transitive
orientation such as those of [16,29, 141 would take O(n3)

time even on sparse graphs, since the complement must be

oriented.

M&ring [25] gives a survey of NP-complete and

other problems in graph theory and scheduling theory that
may be solved more efficiently if the graph is non-prime

and the decomposition is given. On graphs of bounded

decomposition diameter [19], which are a generalization of
cographs and series-parallel partial orders, many of these

problems may be solved in linear time if modular decompo-

sition is linear, although the constant of proportionality is

exponential in the bound on the diameter.

Before giving the solution, we give the algorithm for

orienting a comparability graph G = (VJZ). Given modular
decomposition, transitive orientation, and recognition of 2-
dimensional-partialorders and permutation graphs reduce

to the special cases of these problems on prime graphs [17,
311. We restrict our attention to prime graphs, and use the

following idea, which is based on set partitioning [l].

Beginning with the partition (V - (v), (v)) , we repeatedly
partition classes according to adjacency to a node w not in

the classes. To get an O(n + mlogn) bound, we use w only

if the size of the class that currently contains it is at most
half the size of its class the last time it was used. This

ensures that the adjacency list for w is traversed only

O(logn) times. A list of eligible classes can be maintained
during computation to avoid searching for them. For rea-

sons that will be made clear shortly, the partition classes are
kept in an ordered list. The procedure follows:

NODE-PARTITION(G , v)

2. Transitive Orientation and Recognition of Permu-

tation Graphs

We assume that the adjacency-list representation is
used for graphs. If G is a graph or digraph, the set of nodes
of G is denoted nodeset (G). A node x distinguishes nodes
y and z if x is adjacent to exactly one of them or if exactly
one of them is adjacent to x. A set X agrees on x if x does

Let L be the ordered list (V - (v) , (v)).
Lastused [VI = Lastused [V-(v)] = =
while there is partition class X such that IX] I

lastused [Xl / 2
Lasnlsed [Xl = IX I
For each node w in X

For each class Y other than X
tinguished by w

Let Yt be the members of Y

whose members are dis-

that are adjacent to w .

538 MCCONNELL AND SPINRAD

Remove Y 1 from Y
IfX occursafter Y inL

Insert Yt as a new class in L immediately in front
OfY.

else
Insert Yr as a new class in L immediately behind
Y.

Let lastused[Y1] := lastllsed[Y]
return (L)

If G is prime, the procedure terminates when all par-

tition classe$ are singletons. For the proof, we show that the

largest class Y in the final partition is a module, hence a sin-

gleton set. For any x E V - Y, x is in a class X that is no

larger than Y. Thus, X is at most half as large as the last

class that contained both X and Y, so its members have

been used to partition a class containing Y at some point

since X and Y were split apart. Y must agree on x, so Y is

a module.

To ensure that when the adjacency list for w is

traversed, at most constant time is spent on each member of

the list, it suffices to keep the members of each partition

class in a doubly-linked list, and to label each node with the

class to which it belongs. When a node x is visited in w’s

adjacency list, its class Y is retrieved, and x is removed

from Y and installed in YI. Old partition classes that

become empty are deleted. The remaining lists give the new

It is also necessary to determine which of two parti-

tion classes occurs before the other in NODE-PARTITION.

To do this, associate a subinterval of (1,2, n) with each

paritition class by labeling the class with the first and last

elements in the subinterval. Initially (1,2, n-1) is asso-

ciated with V - (v) , and (n) is associated with (v) . When

Y1 is removed from Y, associate either the first or last]Yr]

elements of Y’s interval with Y 1, depending on whether Y 1

goes before Y in L. Associate the remainder of the interval

with the remaining portion of Y. The intervals for any two

partition classes then indicate which precedes the other in L.

The following procedure solves the transitive orienta-

tion problem.

NODE-SORT (G)

Select a node v .
L i := NODE-PARTITION(G ,v).
Let (x) be the tirst partition class L 1.
Ls := NODEPARTITION(G ,xX).
ReturnLs

If G is a graph, let PC denote the transitive dag that

results when the edges of G are oriented. If (x y) and (u ,z)

are undirected edges of G , but (x ,z) is not, then the orienta-

tion of (x y) forces the orientation of (y ,z). We say that

(x,y)forces ols).

Lemma 2.1: If G is a prime comparability graph,

No~~~~oRTret~rn~a tOpdOgicalsortofP~.

Proof: Note that v and x are adjacent, since x is a

member of the first partition class in L after the first parti-

tion. During the first run of NODE-PARTITION, x is

always in the first class in L. Suppose (VJ) is initially

oriented toward x. From the forcing relation, it follows by

induction on successively smaller classes that contain x that

if X is a class containing x, all edges between V - X and x

must be oriented toward x . The final such class is (x), so x

is a sink in any transitive orientation. Applying this fact and

the forcing relation in a similar way during the second parti-

tion shows that all edges are oriented from earlier to later

classes in L. 0

This solves the transitive orientation problem by giv-

ing a topological sort of PG. Returning to the problem of

recognizing permutation graphs, we note that all operations

in NODE-SORT involve division of classes into neighbors

and non-neighbors. These steps can be performed on c

without constructing G; the roles “neighbor” and “non-

neighbor” are simply reversed from their.status in G , and all

LINEAR-TIME MODULAR DECOMPOSITION 539

operations can be run with the adjacency list representation

of G . This gives a topological sort of P,- in O(n + m logn)

time.

To complete the permutation graph recognition algo-

rithm, we sort the nodes of G with an O(nlogn) comparison

sort as follows. If two nodes being compared are adjacent,

use their order in the topological sort for G, and use their

order in the topological sort for c otherwise. This gives

one of the two linear orders whose intersection gives PG.

Reversing one of the two topological sorts and performing

the comparison sort again gives the other. It is then a sim-

ple exercise in list manipulation to find in O(n + m) time

whether the intersection of these two lists does, in fact,

correspond to PG. This gives O(n + m logn) permutation-

graph recognition. Two-dimensional partial order recogni-

tion is carried out the same way, except that the transitive

orientation of G is already provided.

The 0 (n logn) sort in this last procedure can be

replaced with the following 0 (n +m) procedure, which

shows that the only bottleneck for linear-time transitive

orientation is the NODE-PARTITION procedure. Let v be

a node of G , and let X be the nodes of G that are adjacent

to v in G and that precede v in the topological sort of PG.

Let Y be the nodes of G that are adjacent to v and that pre-

cede v in the topological sort of P,-. Let Z be the nodes of

G that are nonadjacent to v an that precede v in the topo-

logical sort of Pg. X and Y are easily found in time propor-

tional to the number of neighbors of v in G . IZ] is obtained

by subtracting]Y I from the number of nodes that precede v

in the topological sort of PC. X u Z are the nodes that pte-

cede v in one of the two linear orders whose intersection

gives G , so the position of v in this linear order is given by

Vr I +]Z I + 1. Since v ‘s position in the linear order may thus

be found in time proportional to the number of neighbors of

v , this gives an O(n +m) algorithm for constructing the

linear order.

Before leaving NODE-SORT. we make a final obser-

vation. Prime graph recognition by methods that are

simpler than those for full modular decomposition was

investigated in [5]. NODE-SORT gives an alternative

method. The procedure fails if one of the calls

NODE-PARTlTION fails to return all singletons.

Lemma 2.2: An arbitrary graph is prime iff it is con-

nected and NODE-SORT does not fail.

Proofi The forcing relation is defined on arbitrary

graphs. If the subgraph induced by a module contains an

edge e , it contains all edges that are forced by e . The first

call to NODE-PARTITION demonstrates that any non-

singleton module contains v . The second demonstrates that

it contains x. NODE-SORT shows that the edge (VJ)

indirectly forces all others, so nodeset (G) is the only non-

singleton module if G is connected. 0

3. Overview of the Modular Decomposition Algo-

rithm

TwosetsX andY overlapiffx -Y,Y -X,&X A

Y are all nonempty. If G is a graph or digraph, and X c

nodeset (G), then the subgraph induced in G by X is

denoted G I X. If P is a partition of the nodes of G , a sys-

tern of representatives from P is a set consisting of one node

from each member of P. If each member of P is a module

of G , then P is called a congruence partition [26,271, and

every system of representatives induces an identical sub-

graph. This subgraph is denoted G / P. The image in G of

a set X of nodes of G / P is the union of the members of P

that are represented by the members of X . We make use of

two rules [26]. The modular subgraph rule is that if X is a

module in G, then the modules in G IX are those modules

of G that are subsets of X . The quotient rule is that a set of

nodesofG/P isamoduleinG /PiffitsimageinG isa

modulein G.

540 MCCONNELL AND SPINRAD

Let G be a directed graph. The component graph for

G [3] has one node for each strongly connected component.

If X and Y are two strongly connected components of G,

then (X ,Y) is an edge in the component graph if there is an

edge of G that goes from a member of X to a member of Y.

A partitive set family F on a universe U is a set fam-

ily such that U and its singleton subsets are members of F,

and whenever X and Y are overlapping members of F, then

XnY,XuY,X-Yand(X-Y)u(Y-X)amalso

members of F. A partitive family may be represented in

O(lUl) space as follows [26]. Let the members of the fam-

ily that overlap no other be nodes in the tree; the contain-

ment relation on those sets gives the ancestor relation in the

tree. The internal nodes may then each be labeled degen-

erate or prime so that X c U is a member of F iff it is a

node in the tree or a union of children of a degenerate node.

We will call this representation the partitive tree. The fam-

ily of modules of an undirected graph G is a partitive fam-

ily [26], and its modular decomposition is precisely its parti-

tive tree. The modular decomposition of G will be denoted

MD (G).

A union tree on universe U is any tree whose leaves

are the members of U. We will treat a node of the union

tree as synonymous with its set of leaf descendants. If U is

an internal node of a union tree T, childrenT denotes its

children. A partitive tree may be given by a union tree

whose nodes are labeled prime or degenerate.

A partitive tree T on the nodes of G is an M tree if

the modules of G are a subfamily of the partitive family it

represents. If T1 and T2 are pattitive trees, then T2 is

stronger than T1 if the partitive family it represents is a sub

family of the one that Tl represents. MD (G) is clearly the

strongest possible M tree. The algorithm starts with a weak

M tree called ap4 tree and computes a sequence of increas-

ingly stronger M trees until MD (G) is obtained. We distin-

guish two classes of M trees that characterize T during dif-

ferent phases of the refinement

Ml: Internal no&s are labeled prime or degenerate,

and for each &generate no& U, there exists a system of

representatives from childrenT children that induces a

degenerate subgraph in G .

M2: Internal nodes are labeled prime or &generate,

and for each degenerate no& U, the members of

childrenT are modules in G I U and (G I U) I

childrenT is degenerate.

Lemma 3.1: Let T be an M2 tree for an una’irected

graph G . A non-singleton set W of nodes of G is a member

of MD (G) tf and only tfit is either a member of T that is a

module or a maximal union of children of a &generate

node that is a module.

The proof follows from the fact that no module over-

laps any member of T or any member of the modular

decomposition.

In [32], a linear algorithm is given that computes a p4

tree, which is an Ml tree by Theorem 4 of that paper. By

Lemma 3.1, the modular decomposition may be computed

from an M2 tree T as follows. In [32], a simple O(m + n)

postorder traversal algorithm is given that may be used to

compute which members of a union tree T on nodeset (G)

are modules. These are members of the modular decompo-

sition by Lemma 3.1. The procedure also computes, for

each member X of T, a sorted “adjacency list” consisting of

the members of no&set(G) - X that are adjacent to every

member of X . By Lemma 3.1, radix sorting the adjacency

lists of modular children of a degenerate node gives the

remaining members of the decomposition; these are the

unions of children whose lists are not distinguished by the

sort. The sum of lengths of these lists is shown to be O(m),

so this radix sort on all degenerate nodes requires only

O(n + m) time.

LINEAR-TIME MODULAR DECOMPOSITION 541

To complete the modular decomposition algorithm, it Lemma 4.2: If X is the union of a set X’ of nodes of

remains only to give an algorithm to compute an M2 tree G’u that are contained in a weak component of G’v , then X

from an Ml tree. Lemma 3.1 and the framework of Ml and is a module of G only tf X’ is a module of G’u, and X’ has

M2 trees replaces the companion tree structure of [32]. no outgoing edges in G’u .

4. Computing an M2 tree from an Ml tree in O(n + Because of space limitations, we omit the straightfor-

m u(m ,n)) time. ward proofs.

LetU beanodeinaunionueeT. ForasubfamilyF We now give REFINE(U), which is the basis of both

of chiidrenr (I/). we say we give F a new parent in T if we the O(n + m a(m ,n)) algorithm and the O(n + m) algo-

create a node Z. and surgically make Z be a child of U and rithm. We must maintain the invariant that after each

the parent of the members of F. We refine U with a tree T modification of the tree, it continues to be an M tree. By

by surgically replacing U and its children with a tree 7’ Proposition 4.1, we may give the members of each strong

whose root is U and whose leaves are the old children of U. component of GU a new parent that is prime. These new

A prime node in an Ml tree already satisfies the M2 pro- parents are the nodes of G’u. We may then give the

perty. To each degenerate node U in the Ml tree, we apply members of each weak component I of G’u a new degen-

an algorithm, REFINE(U). which refines U so that T is a erate parent, Zf , and, in turn, give all of these Zr nodes a

stronger Ml tree.

LetG beagraph,letT beanM1 treeonG,andlet

U be a degenerate node in T. Let Ff = (X: X E

childrenT and X agrees on each member of nodeset (G)

- U). The forcing graph Gu denotes a graph whose nodes

are the members of Ff , and where if Xr,Xs E Ff , then (X 1,

X2) is an edge iff Xi disagrees on some node in X2. We

denote with G’v the component graph of Gu , and view each

new degenerate parent ZO. We may then relabel U prime.

Suppose that for each Zf. we know a partitive tree T for a

partitive family on I that has as a subfamily those modules

of G’u] I that have no outgoing edges in G’u I I. By

Lemma 4.2, we may refine Zl with T. In a postprocessing

pass, those nodes of the refinement that have only one child

may be collapsed to give an equivalent partitive tree.

Since U is degenerate, the tree is initially an Ml tree,

node of G’u as the union of the corresponding nodes of GU .

The algorithm for computing all forcing graphs on the

p4 tree is given in [32], and is a variant of the postorder

algorithm for computing which members of a union tree are

modules. The sum of nodes in all forcing graphs is O(n),

and the sum of edges is O(m). Their component graphs can

thus be computed in O(n + m) time [33.

and the final tree is still an M tree, it follows that the final

tree is a stronger Ml tree. It remains to specify how to find

the tree T for refining Zl. Note that G’u is a dag. If T is

found with the following procedure, the result of applying

REFINE(U) to each degenerate node U in an Ml tree is an

M2 tree.

DAGTREE (G)

Proposition 4.1: Let U be a degenerate no& in an Ml (G is a weakly-connected dag. Compute a partitive family

tree T . A union X of two or more members of chiidrenr (U) on nodes of G that has as a subfamily those modules of G
that have no outgoing edges.)

is a module of G only ifX is a union of nodes of G’u andX

does not overlap the union of a weak component of G’v. Number the nodes of G in reverse topological order, where
1 is a sink and n is a source. Let Gi denote the subgraph

542 MCCONNELL AND SPINRAD

induced by the nodes (12. i). Process the nodes in
ascending order. When node i is reached, we have already
computed a forest that gives DAGTREE (G’), for each sub-
graph G’ induced by a weakly connected component of
Gi-1. Create two new nodes, x and y . Label x prime and y
degenerate. Make y be the left child of x and let i be the
right child. For each edge (i j) of G, find the tree
corresponding to the weak component of Gi-1 that contains
j,andattachitasachildofy,ifthishasnotaheadybeen
done for that tree. If y has no children, remove it from the
me. After node II has been processed, collapse all nodes
from the tree that have only one child in order to produce an
equivalent partitive tree such that each node has at least two
children.

DAGTREE may be implemented as a series of O(n)

unions and O(m) finds, and thus requires O(n + m a(m ,n))

time [3]. An O(n + m a(m ,n)) time bound for REFINE if

DAGTREE is used follows easily from elements of the

proof of the time bound for the algorithm of [32].

In the refinement of U, let X be a degenerate node.

X istheunionofasetX’ofnodesofGtr. InGv]X’,the

sets of nodes that correspond to members of chiZdrenr(X)

are weakly-connected components. Thus, there are no

edges of Gu that go between members of childrenT(

Every node of GU that is contained in one child of X agrees

in G on every node in every other child of X. This, com-

bined with the fact that there is a system of representatives

from the nodes of Gu that induces a degenerate subgraph in

G ensures that (G] X) / childrenT is degenerate. Thus,

the tree obtained by applying REFINE to each degenerate

nodeofanMltreeisanM2tree.

5. Deriving an M2 tree from an Ml tree in O(n + m)

The obstacle to a linear-time algorithm is the

sequence of union and find operations executed in comput-

ing DAGTREE (G’“). Our approach is to replace

DAGTREE with the linear-time WEAK-TREE, below, to

compute a refinement T of Zl given in REFINE. The out-

put of WEAK-TREE still satisfies the requirements of T in

REFINE, so the resulting refinement is still a stronger Ml

tree. However, it is no longer guaranteed that all degenerate

nodes in the refinement satisfy the M2 property. To com-

pensate for this, we apply REFINE(Y) recursively to each

degenerate node Y that is not known to satisfy the M2 pro-

perty. Y is known to satisfy the M2 property if it was 20 in

a call to REFINE. This again guarantees that the end result

is an M2 tree. However, we are able to show that the time

spent in all recursive calls is O(n + m).

WEAK-TREE (G)

Run DAGTREE (G) with the following change. A tree in
the forest has a representative node. When node i is pro-
cessed, ignore all edges (i j) such that j is not the represen-
tative node of a current tree in the forest. Make i be the
representative of the new tree containing i. When node n
has been processed, there may be more than one tree in the
forest; in this case, create a node X , label it degenerate, and
make the trees in the forest its children.

When a node i is first processed in WEAK-TREE(G),

it becomes the representative for the tree in the forest on Gi

that contains it, and may be labeled with a pointer to the

root x of the current tree for that component in contstant

time. Once a representative ceases to be a representative, it

may not be a representative again. Thus, it may be marked

as a non-representative in constant time. It follows that

WEAK-TREE runs in linear time.

If Y is a degenerate node in the refinement of some

node U, there is not enough time to compute Gr from

scratch. Instead, we observe that Y is contained in a subtree

of the refinement of U that is a union tree on G”. We com-

pute the forcing graphs for nodes in this subtree recursively

from Grr. We thus modify our definition of what is meant

by the forcing graph. As before, the nodes of Gr are the

children of Y that agree in Gu on each node of G~J that is

disjoint from Y. If (Yi,Yz) are nodes of Gr, then (Yi,Ys) is

an edge of Gr if Y2 contains a node of Gu that distinguishes

the nodes of Go that are contained in Yi or if there is a

node U 1 of Gu that is contained in Y 1 and a no& U2 of Gu

LINEAR-TIME MODULAR DECOMPOSITION 543

that is contained in YZ such that (UI,U~) is an edge ifGu.

We will call Gu the parent graph of Gy. The itali-

cized condition is the only change, so the children graphs of

GU may be computed from GU with the same algorithm as

the one in [32] that computes forcing graphs from G , with

the trivial modification that incorporates this change and the

fact that Gv is directed. The forcing graph Gr still has the

same meaning: if a module contains Yr then it must also

contain Y 2 if (Y 1 ,Y2) is an edge of Gy.

The following establishes that when WEAK-TREE is

run on a weakly-connected component of G’u, it returns a

tree that satisfies the requirement on T that is given in

REFINE.

Lemma 5.1: If G is a weakly-connected dag, then the

family of modules of G that have no outgoing edges is a

subfamily of the partitive family represented by

WEAK-TREE (G).

Sketch of proof: Let X be a module that has no outgo-

ing edge. Show that if X contains elements of two siblings

in the union tree produced by the algorithm, that X must

contain the two siblings. The lemma then follows, since

each prime node in the tree has only two children. q

After processing halts in REFINE, if Y is a degen-

erate node, then it was ZO in a call to REFINE(U) for some

formerly degenerate node U. The children of Y are the

weakly-connected components of Gu. By induction from

parent forcing graphs to their children, it is easily seen that

if Zi and Z2 are weakly-connected components of a forcing

graph, then the members of Zi x 22 are either all edges or

all non-edges in G . As in the previous section, this fact and

the fact that the unrefined tree was an Ml tree together

imply that Y satisfies the M2 property.

Theorem 5.2: Modular decomposition is computable

in O(n + m) time.

proof: Charge the operations in a call of REFINE(Y)

to the nodes and edges of Gy and to the children of Y that

are not nodes in Gy. No more than constant cost needs to

be charged to any of these items, since WEAK-TREE is

used instead of DAGTREE, and computation of forcing

graphs takes time proportional to their size. We thus get an

O(n + m) bound on the running time of all recursive calls

of REFINE if we can show that all recursively computed

forcing graphs together have O(n + m) nodes and O(m)

edges.

An edge (U 1 ,UZ) of a forcing graph Ga “reappears”

in a child graph Gy if it is one of the edges considered in

computing the existence of some edge (Yi,Yd in Gy. This

happens if one of Y 1 and Y 2 contains U 1 and the other con-

tains TJ2. An edge dies if it does not reappear, We show

that an edge of Gr is either the unique reappearance of at

least two edges of Gu, or else it dies. This halves the bound

on the total number of edges in forcing graphs with each

recursive generation, giving an O(m) bound on their

number.

If (Y 1 ,Y 2) and (Y2.Y 1) are both edges of GY, then they

die, since Y 1 and YZ are members of a strongly-connected

component of Gy, and thus become children of a prime

node with the next refinement of Y. When REFINE

operated on Gu, then in the refinement it produced, it either

made U2 be a child of a prime node, or made each sibling of

U2 in the refinement consist of nodes of G’v that had no

edge to UZ. If YZ = U2. then either of these conclusions

contradicts assumption that (Yr.Y$ is an edge in a child

graph of Gu. It follows that Ya is the union of at least two

nodes of Ga. (Yi,Yd must either be the unique reappear-

ance of at least two edges of Gu, or (Ya.Yi) is also an edge

of Gy, and thus dies.

544

Using the O(m) bound on the number of edges in all

forcing graphs, it is straightforward to give an G(n + m)

bound on the number of nodes, since isolated nodes in a

forcing graph become children of ZO in REFINE, for which

no forcing graph is computed.

Acknowledgments

The first author would like to thank Andnej Ehren-

feucht and Hal Gabow for enlightening discussions on this

topic.

[II

PI

131

[41

r51

161

[71

I31

PI

REFJXENCES

A.V. Aho, J.E. Hopcroft, and J.D. Ulhnan, The
Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Massachusetts, 1974.

H. Buer and R.H. Mting, A fast algorithm for the
decomposition of graphs and pose@, Math. Oper.
Res., 8 (1983), 170-184.

T.H. Cormen, C.E. Leiserson, R.L. Rivest, Afgo-
rithms, MJT Press, Cambridge, Massachusetts, 1990.

D.G. Come& Y. Per1 and L.K. Stewart, A linear
recognition algorithm for cographs, SIAM .Z. Comput,
14 (198!5),926-934.

A. Coumier and M. Habib, An efficient algorithm to
recognize prime undirected graphs, Rep. RR. LJRMM
No. 92-023., Laboratoire D’infonnatique, de Robo-
tique et de Microelectronique de Montpellier, Univer-
sity of Montpellier.

A. Coumier and M. Habib, An O(n + m logn) graph
substitution decomposition algorithm,forthcotitrg.

W.H. Cunningham, Decomposition of directed
graphs, SZAM J. Algebraic Discrete Methods, 3
(1982), 214-228.

B. Duschnik and E.W. Miller, Partially ordered sets,
Amer. J. Math., 63 (1941), 600-610.

A. Ehrenfeucht, HN. Gabow, R.M. McConnell and
S.J. Sullivan, An O(n2, divide-and-conquer algorithm
for the prime tree decomposition of 2-structures and
modular decomposition of graphs, Journal of Algo-

r.111

WI

[131

1143

1151

1161

r171

1181

WI

PO1

1211

MCCONNELL AND SPINRAD

duns, to appear.

A. Ehrenfeucht and R.M. McConnell, A k-structure
generalization of the theory of 2-structures, Theoreti-
cal Computer Science, forthcoming.

A. Ehrenfeucht and G. Rozenberg, Theory of 2-
structures, part 2: representations through labeled tree
families, Theoretical Computer Science, 70 (1990).
305-342.

T. Gallai. Transitiv ore&are Graphen. Acta Math.
Acad. Sci. Hungar. Tom., 18 (1967), 25-66.

M. Golumbic, Comparability graphs and a new
matroid, J. Combin. Theory Ser. B, 22 (1977). 68-90.

M. Golumbic, The complexity of comparability graph
recognition and coloring, Computing, 18 (1977).
199-208.

M.C. Golumbic. Algorithmic Graph Theory and Per-
fect Graphs, Academic Press, New York, 1980.

A. GouiB-Houri, Caracterisation des graphes non
orient& dont on peut orienter les a&es de mat&e a
obtenir le graph d’une relation d’ordre, C. R. Acad.
Sci. Paris, 254 (1962). 1370-1371.

M. Habib, Comparability invariants, Annals Discrete
Math, 23 (1984). 331-386.

M. Habib and M.C. Maurer, On the X-join decompo-
sition for undirected graphs, Discrete Applied
Mathematics, l(l979). 201-207.

M. Habib and R.H. M&ing, On some complexity
propedies of N-free posets and posets of bounded
decomposition diameter, Discrete Appl. Mathematics,
12 (1985). 279-29 1.

L.O. James, R.G. Stanton, and D.D. Cowan, Graph
decomposition for undirected graphs, in 3rd South-
Eastern Conf. Combinatorics, Graph Theory and
Computing (P. Hoffman and R.B. Levow, eds.), pp.
281-290, Utilitas Mathematics, Winnipeg, 1972.

R. D. Lou, and M. Sarrafzadeh, Circular permutation
graph family with applications, Discrete Applied
Mathematics, 40 (1992), 433-457.

LINEAR-TIM.E MODULAR DECOMPOSITION

WI T. Ma and J. Spin&, Transitive closure for restricted
classes of partial orders, Order. 8 (1991), 175-183.

WI M.C. Maurer, “Joints et decompositions premi&es
dans les graphes,” These 3bme cycle, Universid de
Paris VI, 1977.

WI R.M. McConnell, An O(n2) incremental algorithm for
modular decomposition of 2-structures, submitted to
Algon’thmica.

WI R.H. M&ing, Algorithmic aspects of comparability
graphs and interval graphs, in: I. Rival, ed., Graphs
and Orders (D. Reidel, Boston, 1985), 41-101.

WI R.H. M&ring, Algorithmic aspects of the substitution
decomposition in optimization over relations, set sys-
tems and Boolean functions, Annals of Operations
Research, 4 (1985/6), 195-225.

WI R.H. M&ring and F.J. Radermacher, Substitution
decomposition for discrete structures and connections
with combinatorial optimization, Annals of Discrete
Mathematics, 19 (1984), 257-356.

1281 J.H. Muller and J. Spinrad, Incremental modular
decomposition, Journal of the ACM, 36 (1989). 1-19.

WI A. Pnueli, S. Even and A. Lempel, Transitive orienta-
tion of graphs and identification of permutation
graphs, Canad. J. Math., 23 (1971), 160-175.

[301 D. Rotem, and J. Urrutia, Circular permutation
graphs, Networks, 12 (1982). 429-437.

[311 J. Spinrad, On comparability and permutation graphs,
Siam J. Comput, 14 (1985), 658-670.

i.321 J.P. Spinrad, P4 trees and substitution decomposition,
Discrete applied mathematics, 39 (1992), 263-291.

R. Sritharan, A note on circular permutatation graphs,
forthcoming.

[331

1341

r351

(1982), 299-313.

G. Steiner, Machine scheduling with precedence con-
straints, Ph.D. Thesis, Department of Combinatorics
and Optimization, University of Waterloo, Waterloo,
Ont. (1982).

J. VaIdes. R.E. Tarjan, and EL Lawler, The recogni-
tion of series-parallel digraphs, SIAM J. Comput., 11

545

