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Abstract A circular-arc model M is a circle C together with a collection A of arcs
of C. If A satisfies the Helly Property then M is a Helly circular-arc model. A (Helly)
circular-arc graph is the intersection graph of a (Helly) circular-arc model. Circular-
arc graphs and their subclasses have been the object of a great deal of attention in the
literature. Linear-time recognition algorithms have been described both for the gen-
eral class and for some of its subclasses. However, for Helly circular-arc graphs, the
best recognition algorithm is that by Gavril, whose complexity is O(n3). In this arti-
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cle, we describe different characterizations for Helly circular-arc graphs, including a
characterization by forbidden induced subgraphs for the class. The characterizations
lead to a linear-time recognition algorithm for recognizing graphs of this class. The
algorithm also produces certificates for a negative answer, by exhibiting a forbidden
subgraph of it, within this same bound.

Keywords Algorithms · Circular-arc graphs · Forbidden subgraphs · Helly
circular-arc graphs

1 Introduction

An interval graph is the intersection graph of a set of intervals of a line. That is,
given a set of intervals of a line, one may construct the corresponding interval graph
by making a vertex of each of the intervals, and an edge between each pair of inter-
vals that intersects. Interval graphs arise in scheduling problems, where the intervals
represent time intervals occupied by tasks and the edges represent scheduling con-
flicts. Natural optimization problems correspond to finding a maximum independent
set or a minimum coloring of the interval graph.

Before the structure of DNA was well-understood, the problem of recognizing
whether a given graph is an interval graph played a role in establishing its linear
topology. Seymour Benzer [1] developed a means of damaging connected regions
in copies of viral DNA using X-ray photons. He created a graph where the vertices
were a few scores of the damaged regions and the edges were damaged regions that
contained a common gene, indicating an intersection of the damaged regions in the
genome. The vast majority of graphs with this many vertices are not interval graphs,
so by showing that the procedure gave rise to an interval graph, he provided com-
pelling evidence that the fragments were segments of a substrate that has a linear
topology.

This prompted interest in algorithms for recognizing whether a given graph G is
an interval graph, and for characterizing properties that distinguish interval graphs
from other graphs. A characterization of interval graphs as those that do not con-
tain one of two forbidden types of subgraphs was given by Lekkerker and Boland in
1962 [12]. The first linear-time recognition algorithm was given in 1974 by Booth
and Lueker [2].

Let a clique of a graph denote a maximal set of pairwise adjacent vertices. Booth
and Lueker’s algorithm is based on the characterization of interval graphs as exactly
those graphs whose cliques have the consecutive-ones property, that is, that there
exists a way to linearly order the cliques so that, for each vertex, the cliques that
contain the vertex are consecutive in the ordering.

There are two natural generalizations of interval graphs to the circle. The first is to
generalize the characterization of interval graphs as the intersection graph of intervals
on a line. This gives rise to the circular-arc (CA) graphs, which are the intersection
graphs of arcs on a circle. A circular-arc (CA) model of a circular-arc graph G

is a set of arcs whose intersection graph is G. They have attracted much interest
since their first characterization by Tucker, almost forty years ago [20]. The interest
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in circular-arc graphs has continued through the present. For instance, recent books
such as those by Kleinberg and Tardos [11] and Spinrad [19] dedicate a fair number of
pages to this class. Some of the motivations for studying circular-arc graphs are their
rich structure, in addition to their applications in cyclic scheduling problems, such as
those that arise in traffic light scheduling, in assignment of variables to registers in
loops, and in other areas. See [6, 18].

Unfortunately, circular-arc graphs lack many of the convenient combinatorial
properties of interval graphs. For instance, a circular-arc graph can have an expo-
nential number of cliques, while the consecutive-ones characterization of interval
graphs constrains them to have at most n cliques, where n is the number of vertices.
When Booth and Lueker formulated their linear-time algorithm for recognizing in-
terval graphs, Booth conjectured that recognition of circular-arc graphs would turn
out to be NP-complete. This was proved false by Tucker [21], who gave an O(n3)

algorithm. However, despite a great deal of work on recognition algorithms over the
years, they resisted linear-time recognition until quite recently (McConnell [16, 17],
Kaplan and Nussbaum [9]), partly because of failure to possess many of the combi-
natorial properties available to algorithms on interval graphs.

The second natural generalization of interval graphs has the advantage of capturing
more of these structural properties of interval graphs, while retaining the relevance to
many cyclic scheduling problems. This generalization is based on the second charac-
terization of interval graphs, as the graphs whose cliques have the consecutive-ones
property. The cliques of a graph have the circular-ones property if there is a way
to assign them a cyclic order such that, for every vertex, the cliques that contain the
vertex are consecutive in the cyclic order. A graph G is a Helly circular-arc (HCA)
graph if it has this property.

The Helly circular-arc graphs are a special case of circular-arc graphs. Two ver-
tices are adjacent if and only if they are contained in a common clique. Treating the
consecutive block of cliques containing a vertex v as v’s “arc” on the circle, one
obtains a set of circular arcs whose intersection graph is exactly G. Such a model
is called a Helly circular-arc (HCA) model. Analogously to the consecutive-ones
property that characterizes interval graphs, the circular-ones property constrains them
to have at most n cliques, and it forces the arcs to observe the Helly property, which
is that any set of pairwise intersecting arcs has a nonempty intersection. Illustrations
are given below in the figures. It is not hard to see that, conversely, the Helly property
forces the cliques of the represented graph to have the circular-ones property; it can
be obtained from a model that has the Helly property by finding the common inter-
section of the arcs in each clique, and ordering the cliques in the order in which these
intersection points appear around the circle.

Helly circular-arc graphs were introduced in the 1970’s by Gavril [5], who de-
scribed a recognition algorithm that requires O(n3) time, and that is based on the
circular-ones property. (See also Golumbic [6], Spinrad [19]).

Let n be the number of vertices and m the number of edges of a graph. In this
paper, we propose the following results (parts of the results of the present paper were
presented in the extended abstract in [13]):

1. A simple characterization of the ways that the Helly property can be violated in a
CA model.
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2. Characterizations of those CA graphs that are HCA graphs, including one by for-
bidden subgraphs.

3. An O(n) recognition algorithm for models that have the Helly property.
4. A recognition algorithm for HCA graphs, with complexity O(m). The time re-

duces to O(n) if the graph is already given by any of its CA models.
5. Certificates for the recognition of Helly models. That is, if the given model M is

not Helly, then we exhibit a simple minimal non Helly submodel of it, in O(n)

time.
6. Certificates for the recognition of HCA graphs. That is, if the given graph is HCA

then we exhibit a Helly model of it, and if the graph is a CA graph but not HCA
then a forbidden induced subgraph is displayed by the algorithm. Again, the time
bound is O(n), if the graph is given by any of its CA models.

In order to achieve the above O(n) time bounds, we employ special functions on
arcs of a circle. That is, given an arc Ai of a CA model M, these functions compute
the arc of M with the extremes in a desired position in relation to Ai . We believe
that these functions might be useful as a tool for solving other problems involving
CA models.

The following is the plan of the paper. In the next section, we define a special fam-
ily of CA models and a special family of graphs in which the proposed characteriza-
tions are based. In Sect. 3, we characterize HCA models, while the characterizations
of HCA graphs are in Sect. 4. In Sect. 5, we define the above functions on the arcs of
a CA model, together with the algorithms for computing them. Section 6 describes
the construction of a special CA model that is employed in the recognition algorithm.
Section 7 contains the recognition algorithm for CA models, together with its cer-
tificates. Finally, in Sect. 8, we formulate the algorithm for recognizing HCA graphs
and exhibiting the corresponding certificates. Some additional remarks form the last
section. Other recent related work concerns recognition and characterization of other
special cases of circular-arc graphs that are generalizations of special cases of inter-
val graphs. The most common of these subclasses are the proper circular-arc graphs,
where there exists a circular-arc intersection model where no arc contains another,
(Deng, Hell and Huang [3], Kaplan and Nussbaum [10]), and the unit circular-arc
graphs, where there exists a model where all arcs have the same length, (Lin and
Szwarcfiter [14, 15], Kaplan and Nussbaum [10]).

2 Definitions

Let G be a graph, VG,EG its sets of vertices and edges, respectively, |VG| = n and
|EG| = m. Write e = vivj , for an edge e ∈ EG, incident to vi, vj ∈ VG. Denote
N(vi) = {vj ∈ VG|vivj ∈ EG} and N [v] = N(v) ∪ {v}, call vj ∈ N(vi) a neighbour
of vi and write d(vi) = |N(vi)|. A vertex v ∈ VG satisfying N [v] = VG is a universal
vertex of G.

A circular-arc (CA) model M is a circle C together with a collection A of arcs
of C. Write M = (C, A), and denote by |C| the length of C. In the special case where
there is a point of C that is not in any arc of A then M is an interval model, as the
circle can be cut at the point and rolled out on the line, together with its arcs, which
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become intervals. Unless otherwise stated, we always traverse C in the clockwise
direction. Each arc Ai ∈ A is written as Ai = si , ti , where si, ti ∈ C are the extreme
points of Ai , with si the left point and ti the right point of the arc, respectively, in
the clockwise direction. The extremes of A are those of all arcs Ai ∈ A. As usual,
without loss of generality, we assume that no single arc of A covers C, that no two
extremes of A coincide and that all arcs of A are open. Let us say that an arc of A
is universal when it intersects all other arcs of A. When traversing C, we obtain a
circular ordering of the 2n extreme points of A. These points are identified by the
integers 1, . . . ,2n in the ordering. Furthermore, we also consider a circular ordering
A1, . . . ,An of the arcs of A, defined by the corresponding circular ordering s1, . . . , sn
of their respective left points. In general, when dealing with a sequence x1, . . . , xt of
t objects that are circularly ordered, we assume that all the additions and subtractions
of the indices i of the objects xi are modulo t . Figure 1 illustrates two CA models,
with the ordering of their arcs.

In a model (C, A), the complement of an arc Ai = si , ti is the arc Ai = ti , si . The
complement of (C, A) is the model (C, A), where A = {Ai |Ai ∈ A}. Let us say that
an arc Aj ∈ A right overlaps the arc Ai ∈ A when sj ∈ Ai and tj ∈ Ai . Similarly,
Aj left overlaps Ai when tj ∈ Ai and sj ∈ Ai . See Fig. 2. In general, say that Aj

overlaps Ai if Aj either left overlaps or right overlaps Ai .

Fig. 1 Two circular-arc models

Fig. 2 A2 right overlaps A1
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Fig. 3 Two minimally non Helly models

In the model (C, A), a subfamily of arcs of A is intersecting when they pairwise
intersect. Note that A is Helly, when every intersecting subfamily of it contains a
common point of C. In this case, (C, A) is a Helly circular-arc (HCA) model. Not
all sets of arcs are Helly: three arcs can collectively cover the circle without all three
meeting at a common point. When A is not Helly, it contains a minimal non Helly
subfamily A′, that is, A′ is not Helly, but A′ \ Ai is so, for any Ai ∈ A′. The model
(C, A′) is then minimally non HCA. Figure 3 depicts two minimally non Helly mod-
els.

A Helly model associates each clique of the corresponding circular-arc graph with
a region of locally maximal coverage by arcs of A, and this gives a circular-ones
ordering of the cliques, hence its intersection graph is a Helly circular-arc graph.
Conversely, a circular-ones ordering of the cliques of a graph defines an HCA model:
each clique is assigned a point p on the circle, and each vertex v is represented by
an arc A that contains p if and only if v is a member of the clique corresponding
to p. This arrangement precludes a non-Helly subset of arcs, since they would imply
a clique that does not occupy a place in the circular-ones ordering.

A graph is a Helly circular-arc (HCA) graph iff there exists a Helly circular-arc
model for it. Note that this does not imply that all circular-arc models of an HCA
graph are Helly. As a simple example, the complete graph K3 is an HCA graph, since
it can be represented by three arcs that cover a common point, but it also has a CA
model consisting of three arcs that cover the circle without intersecting at a common
point.

Given a circular-arc model and a numbering {A1,A2, . . . ,An} of its arcs, denote
by vi ∈ VG the vertex of G corresponding to Ai ∈ A. Similarly, a Helly circular-arc
(HCA) graph is the intersection graph of some HCA model. In a HCA graph, each
clique Q ⊆ VG can be represented by a point q ∈ C that is common to all those
arcs of A that correspond to the vertices of Q. Clearly, two distinct cliques must
be represented by distinct points. Finally, two CA models are equivalent when they
share the same intersection graph.
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Let M = (C, A) be a CA model. We examine some subsequences of the extreme
points of M. An s-sequence (t-sequence) of M is a maximal sequence of consec-
utive left points (right points) of A in the circular ordering of C. Let an extreme
sequence mean an s-sequence or t-sequence. The 2n extreme points are then parti-
tioned into s-sequences and t-sequences, which alternate in C. For an extreme se-
quence E, the notations NEXT(E) and NEXT−1(E) represent the extreme sequences
that succeed and precede E in C, respectively. For an extreme point p ∈ A, denote
by SEQUENCE(p) the extreme sequence that contains p, while NEXT(p) means the
sequence NEXT(SEQUENCE(p)).

Throughout the paper, we employ operations on the CA models that modify the
arcs, while preserving equivalence. A simple example of such operations is to per-
mute the extremes of the arcs within a same extreme sequence.

Next, we define a special model of interest.
Let si be a left point of A and S = SEQUENCE(si). Let us say that si is sta-

ble when i = j or Ai ∩ Aj = ∅, for every tj ∈ NEXT−1(S). A model (C, A)

is stable when all of its left points are stable. Let tj be a right point of A and
T = SEQUENCE(ti). Let us say that tj is stable when i = j or Ai ∩ Aj = ∅, for
every si ∈ NEXT(T ).

Lemma 2.1 A model is stable precisely when all of its right points are stable.

As examples, the models of Figs. 1(a) and 1(b) are not stable, while those of
Figs. 4(b) and 5(b) are.

If M = (C, A) is a stable model and G the intersection graph of A, then let us
say that M is a stable model of G. We will employ stable models in the recognition
process of HCA graphs.

Next, define a special family of graphs. An obstacle is a graph H containing a
clique Kt ⊆ VH , t ≥ 3, whose vertices admit a circular ordering v1, . . . , vt , such that
each edge vivi+1, i = 1, . . . , t , satisfies:

Fig. 4 An obstacle and its non Helly stable model
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Fig. 5 Another obstacle and its non Helly stable model

(i) N(wi) ∩ Kt = Kt \ {vi, vi+1}, for some wi ∈ VH \ Kt , or
(ii) N(ui)∩Kt = Kt \ {vi} and N(zi)∩Kt = Kt \ {vi+1}, for some adjacent vertices

ui, zi ∈ VH \ Kt .

As examples, the graphs of Figs. 4(a) and 5(a) are obstacles.
We will show that the obstacles form a family of forbidden induced subgraphs for

a CA graph to be HCA.

3 Characterizing HCA Models

In this section, we describe a characterization and a recognition algorithm for HCA
models. The characterization is as follows:

Theorem 3.1 A CA model M = (C, A) is HCA if and only if the following two
conditions are met:

(i) if three arcs of A cover C then two of these three arcs also cover it;
(ii) the intersection graph of (C, A) is chordal.

Proof By hypothesis, M is a HCA model. Condition (i) is clear, otherwise M can
not be HCA. Suppose Condition (ii) fails. Then the intersection graph Gc of (C, A)

contains an induced cycle Cc , with length k > 3. Let A′ ⊆ A be the set of arcs of
A, corresponding to the vertices of Cc , and A′ ⊆ A the sets of the complements of
the arcs Ai ∈ A′. First, observe that no two arcs of A′ cover the circle, otherwise
Cc would contain a chord. Consequently, A′ consists of k arcs circularly ordered as
A1, . . . ,Ak and satisfying: Ai ∩ Aj 	= ∅ if and only if Ai,Aj are consecutive in the
circular ordering. In general, comparing a model (C, A) to its complement model
(C, A), we conclude that two arcs of A intersect if and only if their complements in
A are either disjoint or intersect without covering the circle. Consequently, A′ must
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be an intersecting family. On the other hand, the arcs of A′ can not have a common
point p ∈ C. Otherwise p 	∈ Ai , for all Ai , meaning that the arcs of A′ do not cover
the circle, contradicting Cc to be an induced cycle. The absence of a common point in
A′ implies that A is not a Helly family, a contradiction. Then (ii) holds. The converse
is similar. �

The following characterizes minimally non Helly models.

Corollary 3.1 A model (C, A) is minimally non HCA if and only if

(i) A is intersecting and covers C, and
(ii) two arcs of A cover C precisely when they are not consecutive in the circular

ordering of A.

Theorem 3.1 leads directly to a simple algorithm for recognizing Helly models,
as follows. Given a CA model M = (C, A), verify if M satisfies Condition (i) and
then if it satisfies Condition (ii). Clearly, M is HCA if and only if both conditions
are satisfied. Next, we describe methods for checking them. Let G be the intersection
graph of A.

For Condition (i), we search directly for the existence of three arcs Ai,Aj ,Ak ∈ A
that cover C, two of them not covering it, i < j < k. Observe that there exist such
arcs if and only if the circular ordering of their extremes is si, tk, sj , ti , sk, tj . For each
Ai ∈ A, we repeat the following procedure, which looks for the other two arcs Aj ,Ak

whose extreme points satisfy this ordering. Let L1 be the list of extreme points of the
arcs contained in (si , ti), in the ordering of C. First, remove from L1 all pairs of
extremes sq, tq of a common arc. Let L2 be the list formed by the other extremes
of the arcs represented in L1. That is, sq ∈ L1 if and only if tq ∈ L2, and tq ∈ L1 if
and only if sq ∈ L2, for any Aq ∈ A. Clearly, the extreme points that form L2 are
all contained in ti , si , and we consider them in the circular ordering of C. Denote
by FIRST(L1) and LAST(L2) the first and last extreme points of L1 and L2, in the
considered orderings, respectively. Finally, iteratively perform the steps below, until
either L1 = ∅, or FIRST(L1) = tk and LAST(L2) = tj , for some j, k.

if FIRST(L1) is a left point sq then remove sq from L1 and tq from L2
if LAST(L2) is a left point sq then remove sq from L2 and tq from L1

If the iterations terminate because L1 = ∅ then there are no two arcs that together
with Ai satisfy the above requirements, completing the computations relative to Ai .
Otherwise, the arcs Ak and Aj whose right points are FIRST(L1) and LAST(L2),
form together with Ai a certificate for the failure of Condition (i). Each of the n

lists L2 needs to be sorted. There is no difficulty to sort them all together in time
O(m) at the beginning of the process using a radix sort. The computations relative to
Ai require O(d(vi)) steps where d(vi) is the degree of vi in G. That is, the overall
complexity of checking Condition (i) is O(m).

For Condition (ii), the direct approach would be to construct the model (C, A),
its intersection graph Gc and apply a chordal graph recognition algorithm to decide
if Gc is chordal. However, the number of edges of Gc could be O(n2), breaking the
linearity of the proposed method. Alternatively, we check whether the complement
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Gc of Gc is co-chordal. Observe that two vertices of Gc are adjacent if and only if
their corresponding arcs in A cover the circle. Consequently, the number of edges
of Gc is at most that of G, i.e. ≤ m. Since co-chordal graphs can be recognized in
linear-time (Habib, McConnell, Paul and Viennot [7]), the complexity of the method
for verifying Condition (ii) is O(n + m).

Consequently, HCA models can be recognized in O(n + m) time. In Sect. 7, we
describe a more efficient algorithm that recognizes HCA models in O(n) time.

4 Characterizing HCA Graphs

In this section, we describe the proposed characterizations for HCA graphs.

Theorem 4.1 The following conditions are equivalent for a CA graph G.

(a) G is HCA.
(b) G does not contain obstacles as induced subgraphs.
(c) All stable models of G are HCA.
(d) One stable model of G is HCA.

Proof (a) ⇒ (b): By hypothesis, G is HCA. Since HCA graphs are hereditary, it is
sufficient to prove that no obstacle H is a HCA graph. By contrary, suppose H admits
a HCA model (C, A). Let Kt be the core of H . By definition of an obstacle, there is a
circular ordering v1, . . . , vt of the vertices of Kt that satisfies Conditions (i) or (ii) of
it. Denote by A′ = {A1, . . . ,At } ⊆ A the family of arcs corresponding to Kt . Define
a clique Ci of H , for each i = 1, . . . , t , as follows. If Condition (i) is satisfied then
Ci ⊇ {wi} ∪ Kt \ {vi, vi+1}, otherwise Condition (ii) is satisfied and Ci ⊇ {ui, zi} ∪
Kt {vi, vi+1}. Clearly, all cliques C1, . . . ,Ct are distinct, because any two of them
contain distinct subsets of Kt . Since H is HCA, there are distinct points p1, . . . , pt ∈
C, representing C1, . . . ,Ct , respectively. We know that vi ∈ Cj if and only if i 	=
j − 1, j . Consequently, pj ∈ Ai if and only if i 	= j − 1, j . The latter implies that
p1, . . . , pt are also in the circular ordering of C. On the other hand, because Kt is
a clique distinct from any Ci , there is also a point p ∈ C representing Kt . Try to
locate p in C. Clearly, p lies between two consecutive points pi−1,pi . Examine the
vertex vi ∈ Kt and its corresponding arc Ai ∈ A′. We already know that p ∈ Ai , while
pi−1,pi 	∈ Ai . Furthermore, because t ≥ 3, there is j 	= i − 1, i such that pj ∈ Ai .
Such situation can not be realized by arc Ai . Then (C, A) is not HCA, a contradiction.

(b) ⇒ (c): By hypothesis, G does not contain obstacles. Suppose to the contrary
that there exists a stable model (C, A) of G that is not HCA. Let A′ ⊆ A be a mini-
mally non Helly subfamily of A. Denote by A1, . . . ,At the arcs of A′ in the circular
ordering. Their corresponding vertices in G are v1, . . . , vt , forming a clique Kt ⊆ VG.
Let Ai,Ai+1 be two consecutive arcs of A′, in the circular ordering. By Corollary 3.1,
Ai,Ai+1 do not cover C. Denote T = SEQUENCE(ti+1) and S = SEQUENCE(si).
Because (C, A) is stable, S 	= NEXT(T ). Let S′ = NEXT(T ) and T ′ = NEXT−1(S).
Choose sz ∈ S′ and tu ∈ T ′. We know that Az does not intersect Ai+1, nor does Au in-
tersect Ai , again because the model is stable. Since sz and tu belong to the arc ti+1, si ,
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Fig. 6 A graph that is not CA
and has no obstacles

Corollary 3.1 implies that sz and tu are in Aj , for any Aj ∈ A′, Aj 	= Ai,Ai+1. De-
note by zi and ui the vertices of G corresponding to Az and Au, respectively. Examine
the following alternatives.

If zi and vi are not adjacent, rename zi as wi . Similarly, if ui and vi+1 are not
adjacent, let wi be the vertex ui . In any of these two alternatives, it follows that
N(wi) ∩ Kt = Kt \ {vi, vi+1}. The latter means that Condition (i) of the definition
of obstacles holds. When none of the above alternatives occurs, the arcs Az and Au

intersect, because sz precedes tu in (ti+1, si). That is, zi and ui are adjacent vertices
satisfying N(zi)∩Kt = Kt \ {vi+1} and N(ui)∩Kt = Kt \ {vi}. This corresponds to
Condition (ii) of the definition of an obstacle. Consequently, for any pair of vertices
vi, vi+1 ∈ Kt it is always possible to select a vertex wi 	∈ Kt , or a pair of vertices
zi, ui 	∈ Kt , so that the requirements are satisfied. That is, G contains an obstacle as
an induced subgraph. This contradiction means all stable models of G are HCA.

The implications (c) ⇒ (d) and (d) ⇒ (a) are trivial, meaning that the proof is
complete. �

We remark that the family of obstacles does not contain all the forbidden sub-
graphs for a HCA graph, but restricted to the class of CA graphs. Figure 6 shows a
graph that is not CA (and consequently not HCA), but does not contain obstacles.

5 Functions on Arcs

In this section, we describe some functions on graphs that will be employed in the
algorithms for constructing stable models and recognizing Helly models. First, we
define these functions and then describe algorithms for computing them. We consider
models (C, A ∪ B), where there are two families of arcs, A and B not necessarily
distinct. Define the following functions from B into A, such that, for xi, yi = Bi ∈ B

* CRA(Bi) is the arc Aj ∈ A properly contained in Bi , whose right point is closest
to yi .

* DRA(Bi) is the arc of A disjoint of Bi , whose left point is closest to yi .
* ORA(Bi) is the arc of A that right overlaps Bi , whose right point is farthest

from yi .
* OR′

A(Bi) is the arc of A that right overlaps Bi , whose right point is closest to yi .
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Fig. 7 Functions on arcs

In addition, define the functions CL, DL, OL and OL′ in a similar way as CR,
DR, OR and OR′ by exchanging the roles of left and right, as well as xi and yi . For
example, CLA(Bi) is the arc of A contained in Bi , whose left point is closest to xi .
When the codomain A is clear from the context, we may drop it from the notation,
for instance writing CR(Bi), instead of CRA(Bi).

For any of the above functions and for a given Bi ∈ B, if no arc of A exists that
satisfies it, then its value equals ∅.

On the example of Fig. 7, CR(Bi) = A3, DR(Bi) = A6, OR(Bi) = A5, OR′(Bi) =
A4, and OL(Bi) = ∅.

We describe a method for computing the function CRA(Bi), for all Bi ∈ B. Let
A = A1, . . . ,An and B = B1, . . . ,Bk , in circular ordering, where Aj = sj , tj and
Bi = xi, yi . Denote by T and Y the set of all right points tj ∈ Aj and yi ∈ Bi , respec-
tively.

Our proposed method is divided into two parts. First, we compute the CR function
for interval models. Then, we show how to transform a given CA model into an
interval model, such that the CR functions of the CA model can be deduced from that
of the interval model.

Next, we consider the first of the above parts. By hypothesis M = (C, A ∪ B) is
an interval model and the aim is to compute CRA(Bi), for each Bi ∈ B. The method
employs a list L, whose entries l ∈ L are the right points ti ∈ T and yi ∈ Y . Initially,
L consists of all the right points of T ∪ Y , in the same linear order as they appear
in M. The list is maintained in the decreasing order, that is, from right to left in
the interval model. For l ∈ L, LEFT(l) denotes the node of L that follows l, in the
decreasing order. Write LEFT(l) = ∅, if l is the last node. The values CR(Bi) are
computed while traversing L, as follows.

The arcs Bi ∈ B are considered in increasing order of xi . For each i, we traverse
a portion of L, in decreasing order, starting from yi , aiming to compute CR(Bi).
During the traversal, we ignore any right points yk ∈ Y that we come across. Suppose
the node l ∈ L is being visited. If l is a right point yp ∈ Y , do nothing and proceed to
LEFT(l). Otherwise, l is a right point tj ∈ T and discuss the alternatives.

Case 1: xi is at the left of sj .

Then Aj ⊆ Bi , and furthermore tj is closest possible to yi , since L is being traversed
in decreasing order. Consequently, CR(Bi) = Aj , terminating the computation rela-
tive to Bi .
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Case 2: sj is at the left of xi .

Then Aj 	⊆ Bi . Furthermore, Aj 	⊆ Bp , for any p > i, since we are considering the
arcs of B in increasing order of xi . Consequently, we can remove tj from L, without
affecting any further computations.

Finally, if l = ∅, then no arc Aj of A is contained in Bi , implying that CR(Bi) = ∅.
The above discussion leads to an algorithm for computing CR(Bi), for all Bi ∈ B,

as follows. Let M = (C, A ∪ B) be the given model. Initially, construct a list L

formed by all right points of M, in the order they appear in M, from right to left.
Then for i = 1, . . . , k, compute procedure VISIT(yi), below.

proc VISIT(l)

if l = ∅ then CR(Bi) := ∅
else if l ∈ Y then VISIT(LEFT(l))

else let l = tj ∈ T

if xi is at the left of sj then CR(Bi) := Aj

else remove tj from L

VISIT(LEFT(l))

Following the previous discussion, we conclude that the above procedure correctly
computes CR(Bi), for each Bi ∈ B, of an interval model (C, A ∪ B). For evaluating
the complexity, first note that each call of VISIT(l) requires no more than constant
time. So, the complexity of the algorithm corresponds to the number of calls of the
procedure. When l ∈ T , each call VISIT(l) terminates either with an assignment for
CR(Bi) or by removing some right point tj ∈ T from L. Consequently, the right
points l ∈ T contribute with O(n+ k) time to the complexity. However, the contribu-
tion of the right points l ∈ Y may reach O(k2), since the algorithm may re-visit long
sequences of right points yp ∈ Y .

We can compute the CR values in O(n + k) time, by employing a variation of the
above algorithm. Basically, we use the same strategy, as for the previous algorithm.
However, we transform L into a list of right points tj ∈ T , together with subsets
Yp ⊆ Y of right points of Y , instead of simply right points tj ∈ T and together with
single right points yi ∈ Y . Each subset Yp is dynamically formed in L, by joining
in a single subset, all the right points belonging to two subsets Ya,Yb ⊆ Y that are
consecutive members of L. The construction of each Yp can be done by a disjoint
UNION operation Ya ∪ Yb . However, we would need to locate which subset Yp of L

contains a given right point yi ∈ Y . This can be achieved by a FIND(yi) operation.
Next, we incorporate the above changes in procedure VISIT .
The initial content of list L is the same as for the previous algorithm except each yi

is replaced by {yi} and the external calls become VISIT(FIND(yi)), for i = 1, . . . , k.
The procedure itself has to be modified only to handle this situation where l ⊆ Y .

The alterations are just to replace the statement (third line)

else if l ∈ Y then VISIT(LEFT(l))

by

else if l ⊆ Y then UNION(Yp, l)

VISIT(LEFT(l))

where Yp is the subset containing yi , and which has been determined by FIND(yi).
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Observe that all UNION operations are with two consecutive subsets of L. Con-
sequently, we can employ the UNION-FIND method of Gabow and Tarjan [4], as
described by Itai [8]. There are O(k) UNION’s and FIND’s. Consequently, the over-
all complexity of the algorithm for computing the CR function for an interval model
is O(n + k).

We remark that when A = B, we can compute the values CRA(Ai), for all Ai ∈ A,
in O(n) time, by a much simpler algorithm that employs no UNION-FIND structure.

Next, we consider the second part of our proposed method for computing the CR
function for general CA models, namely to derive a convenient interval model from
a general CA model, such that the CR function for this interval model would lead to
the CR function for the general one.

Let M = (C, A) be a CA model and A1, . . . ,An the arcs of A, in the circular
ordering. First, we bipartition the arcs of A into two kinds, relative to the left point s1
of A1. For Ai ∈ A, say that Ai is a forward arc when s1 	∈ Ai , otherwise s1 ∈ Ai and
Ai is a back arc. Note that A1 is a forward arc. Clearly, if A contains no back arcs
then M is already an interval model. Otherwise, construct a model M′ = (C′, A′),
as follows. Define |C′| = 2|C|, while the arcs of A′ are defined for each Ai ∈ A, as

• if Ai is a forward arc, then Ai corresponds to two arcs A′
i ,A

′′
i ∈ A′, such that,

A′
i = si , ti

A′′
i = si + |C|, ti + |C|

• if Ai is a back arc, then Ai corresponds to a single arc A′
i ∈ A′, such that,

A′
i = si, ti + |C|

and write A′−1
i = Ai .

See Fig. 8.
Observe that A′ has no back arcs, meaning that M′ is an interval model. Call M′

the associated (interval) model of M. There is no difficulty to construct M′ in O(n)

time, given M.
Next, let M = (C, A ∪ B) and its associated model M′ = (C′, A′ ∪ B′). As

usual, denote Bi = xi, yi , for Bi ∈ B. Suppose the CR function has been computed
for M′. That is, CRA′(B ′

i ) and CRA′(B ′′
i ) are known, for all B ′

i ,B
′
i ∈ B′. Denote by

CRA′(B ′
i )

−1 ∈ A, the arc of M corresponding to the arc CRA′(B ′
i ) ∈ A′ of M′. The

following theorem describes how these arcs are related.

Theorem 5.1 Let M = (C, A ∪ B) be a CA model, M′ = (C′, A′ ∪ B′) its associated
model and Bi ∈ B. Then CRA(Bi) = CRA′(B ′

i )
−1.

Proof Denote Aj = CRA(Bi). We compute Aj . Consider the alternatives.

Case 1: Bi is a forward arc.
Then Aj is also a forward arc, since Aj ⊆ Bi . Then M′ contains the arcs A′

j ,

A′′
j ∈ A′ and B ′

i ,B
′′
i ∈ B′. Furthermore, A′

j ⊆ B ′
i if only if A′′

j ⊆ B ′′
i . Conse-

quently, there is a one-to-one correspondence between the arcs Ap ∈ A contained
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Fig. 8 The interval model M′ = (C′, A′)

in Bi and the arcs A′
p ∈ A′ contained in B ′

i , preserving the circular ordering. That
is, A′

j = CRA′(B ′
i ).

Case 2: Bi is a back arc.
In this situation, we can partition the family of arcs Ap ∈ A contained in Bi =
xi, yi into three types, A1, A2, A3, as follows. The arcs of A1 are those contained
in the arc xi, s1, while A2 contains the arcs Ap , where sp ∈ xi, s1 and tp ∈ s1, yi .
Finally, A3 is formed by the arcs of A contained in s1, yi . Observe that the arcs
of A1 and A3 are all forward arcs, while those of A2 are back arcs. The following
properties can be shown to be true, for Aj ∈ A.

Aj ∈ A1 ⇔ A′
j ⊆ B ′

i and A′′
j ∩ B ′

i = ∅
Aj ∈ A2 ⇔ A′

j ⊆ B ′
i and B ′′

i = ∅
Aj ∈ A3 ⇔ A′′

j ⊆ B ′
i and A′

j ∩ B ′
i = ∅

It follows that CRA′(B ′
i ) must be the arc of A′ whose image in M is precisely

CRA(Bi), terminating the proof.
�

The algorithm for computing the CR function for M = (C, A ∪ B) can now be de-
scribed. Given M, construct its associated interval model M′ = (C′, A′ ∪ B′). Then
apply the algorithm formulated in this section for computing the CR function for M′,
obtaining the values CRA′(B ′

i ), for each B ′
i ∈ B′. The arcs B ′′

i ∈ B′ are disregarded.
Then convert each CRA′(B ′

i ) into CRA(Bi), by finding the image of CRA′(B ′
i ) in M.

The overall time bound is O(n + k).
Similarly, we can compute the CL function in O(n + k) time.



230 Algorithmica (2011) 59: 215–239

Function Condition

DRA(Bi) Aj and Bi are disjoint, and yi, sj is minimum
DLA(Bi) Aj and Bi are disjoint, and tj , xi is minimum
ORA(Bi) Aj right overlaps Bi , and yi, tj is maximum
OR′

A(Bi) Aj right overlaps Bi , and yi, tj is minimum
OLA(Bi) Aj left overlaps Bi , and sj , xi is maximum

Fig. 9 Some functions on arcs

The DR and DL functions can also be obtained in O(n + k) time by computing
the CL and CR functions for the complements Bi of the arcs Bi ∈ B, respectively,
according to the following lemma, whose proof is straightforward. The following
lemma is immediate.

Lemma 5.1 Let M = (C, A ∪ B) be a CA model. Then DRA(Bi) = CLA(Bi) and
DLA(Bi) = CRA(Bi), for each Bi ∈ B.

Using similar methods, we can compute the functions OR,OR′,OL,OL′ in O(n+
k) time.

Finally, we mention that all of the functions described in this section can be com-
puted by direct methods in O(|E(G)|) time, where G is the intersection graph of the
given model.

In the next sections, we employ some of the above functions in the algorithms for
constructing stable models and recognizing HCA graphs. In particular, we make use
of the functions listed in Fig. 9. Let A, B be two families of arcs on a circle. Each
of the functions of Fig. 9 maps an arc xi, yi = Bi ∈ B into the arc sj , tj = Aj ∈ A,
satisfying the corresponding condition. When no arc of A exists that can satisfy the
required condition, then assign the function is assigned the value ∅.

6 Constructing Stable Models

In this section, we describe an algorithm for transforming a given model into a stable
model, equivalent to it. Such a transformation is required for applying the charac-
terization of HCA models in terms of stable models. Without loss of generality, we
assume that the given model has no universal arcs.

Let M = (C, A) be a CA model and A1, . . . ,An a circular ordering of the arcs
of A. The idea is to stretch as far as possible all the extremes of the arcs, while
preserving adjacencies. Define the following operations on the right and left points
of the arcs. We employ the functions DL and DR, described in Sect. 5.

STRETCH LEFT:
Compute Ap := DL(Ai), for each arc Ai ∈ A. Then move each si to the left,
so as to be just after tp .
STRETCH RIGHT:
Compute Ap := DR(Aj ), for each arc Aj ∈ A. Then move each tj to the right,
so as to be just before sp .
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The following lemmas are clear.

Lemma 6.1 Let M be a CA model with no universal arcs, tj a right point of it and
si ∈ NEXT(tj ). Then i 	= j .

Lemma 6.2 The operations STRETCH LEFT and STRETCH RIGHT preserve the
intersections of the arcs.

We transform a given model into a stable model by repeatedly applying the stretching
operations. We show that two applications of the operations, together with a reorder-
ing of the left points, are sufficient to leading to a stable model. The reordering is an
additional operation that permutes the left points belonging to a same s-sequence, as
follows.

REORDER:
Order the left points of each s-sequence S, so as to satisfy: si precedes sj precisely
when tj precedes ti , for all si , sj ∈ S.

Observe that after the REORDER operation, each set of arcs, having left point in
a same s-sequence, becomes linearly ordered by inclusion. The arcs in a same
s-sequence appear in decreasing order.

The algorithm for constructing stable models is described next. The input is a CA
model M = (C, A).

Algorithm 6.1 STABLE MODEL

1. STRETCH LEFT
2. REORDER
3. STRETCH RIGHT

Theorem 6.1 The above algorithm transforms M into an equivalent stable model.

Proof Let Mi be the model obtained by the algorithm, at the end of Step i, i =
1,2,3. By Lemma 6.2, the operations STRETCH RIGHT and STRETCH LEFT pre-
serve intersections. Clearly, so does REORDER. Hence all models Mi are equivalent
to M. We show that M3 is a stable model.

Since M has no universal arcs, the STRETCH LEFT operation assures that M1

has the following property (i): for each left point si ∈ S, there is some tj ∈ T , satis-
fying Ai ∩ Aj = ∅, for any s-sequence S of M1 and T = NEXT−1(S). Moreover, a
stronger fact holds. Let tp be the right point of T , such that Ap contains the mini-
mum number of sequences. It then follows from property (i) that Ap ∩Ai = ∅, for all
si ∈ S. Then M1 also satisfies the stronger property (ii): each t-sequence T contains
a stable right point.

In the sequel, the algorithm constructs M2. As a result, property (i) and (ii) are
preserved, since the REORDER operation only possibly permutes left points, within
a same s-sequence. However, the arcs whose left points belong to a same s-sequence
are now linearly ordered by inclusion, in decreasing order.
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Finally, the algorithm performs the STRETCH RIGHT operation and obtains M3.
Examine the extreme sequences of M3. Recall that each t-sequence T of M2 con-
tains a stable right point tp . Consequently, tp cannot be moved during the STRETCH
RIGHT operation, beyond its t-sequence. We can conclude that any s-sequence of
M3 is a subsequence of an s-sequence of M2. Additionally, tp is also stable in M3.
Consider any other right point tj of M2. Clearly, tj can have been moved, or not,
during the STRETCH RIGHT operation. Let si be the first left point of NEXT(tj )

in M3. Then Ai ∩ Aj = ∅. Because of the REORDER operation, all the left points sk
which lie after si in NEXT(tj ) satisfy Ak ⊂ Ai . Consequently, Ak ∩Aj = ∅, meaning
that t is stable. By Lemma 2.1, M3 is stable. �

Next, we determine the complexity of the algorithm. The STRETCH LEFT and
STRETCH RIGHT operations first require the computation of the DL and DR func-
tions. These can be done in O(n) time for all arcs, according to Sect. 5. After the
computation of the corresponding function, for all arcs, we know already to which
position each extreme point should be placed. Then all the movements can be per-
formed simply by rewriting the model, in the circular ordering, according to the re-
quirements. Consequently, moving all the extreme points also require O(n) time. The
REORDER operation can be performed in O(n) time. Employing sorting techniques,
all the left points can be ordered in O(n) time. Consequently, the overall time bound
is O(n).

Finally, we mention that handling universal arcs is simple. If the given model
M = (C, A) contains universal arcs, first we remove them. This can be done in O(n)

time, for example, by computing the DR(Ai) values, for each arc Ai ∈ A. Clearly,
Ai is a universal arc precisely when DR(Ai) = ∅. Let U be the set of universal arcs
of A, and M′ the stable model equivalent to (C, A \ U) constructed by the above
algorithm. A stable model equivalent to M can then be obtained as follows. For each
universal arc Ai ∈ U , include in M′, a new t-sequence Ti and a new s-sequence Si ,
containing solely ti and si , respectively, and satisfying S = NEXT(T ).

Corollary 6.1 Every CA graph admits a stable model.

7 Recognition of HCA Models

In this section, we describe an algorithm for recognizing HCA models that runs in
O(n) time. The algorithm is based on the characterizations of HCA models, given by
Theorem 3.1 and Corollary 3.1.

Let M = (C, A) be a CA model. A cover of M is a subset of arcs C ⊆ A con-
taining all points of C. Let us say that C is minimal when C \ {Ai} is not a cover, for
any Ai ∈ C . Following Sect. 3, we know that HCA models are exactly those whose
complements do not admit a minimal cover of size ≥ 3. We describe a method for
verifying whether a given model admits such a cover. The following definitions are
employed.

Let b ∈ C be a point of C, and B ⊆ A the set of arcs of A containing b. Clearly,
M − B = (C, A \ B) is an interval model. The family of minimal covers of size ≥ 3
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can be partitioned into three types relative to b. A type 1 cover is a minimal cover of
size ≥ 3 having exactly one arc of B. A type 2 cover has size = 3 and two arcs of B,
while a type 3 cover has size > 3 and also two arcs of B.

Lemma 7.1 Any minimal cover of size ≥ 3 is either of type 1, 2 or 3.

Proof Let C be a minimal cover of size ≥ 3 of the model M = (C, A). Clearly, C
must contain some arc of B, otherwise it does not cover C. Suppose C has three
arcs B1,B2,B3 containing b. Without loss of generality, let B1 be the arc among
B1,B2,B3 having left point farthest from b, while B2 has its right point farthest
from b. Then B3 is contained in B1 ∪ B2, contradicting C to be minimal. �

We handle separately the types of covers and describe methods for recognizing
each of them. Some additional notation is needed.

The (right) overlap digraph of a model M = (C, A) is a digraph having as ver-
tices the arcs Ai ∈ A, and where there is a directed edge from Ai to Aj precisely
when Aj right overlaps Ai . Denote by F M the spanning subdigraph of the overlap
digraph of M, such that there is an edge from Ai to Aj in F M when Aj = ORA(Ai).
In case ORA(Ai) = ∅ then Ai , has no outgoing edges. Clearly, if M is an interval
model then F M is a directed rooted in-forest, called the longest right forest of M.
In this case, for Ai ∈ A denote by ROOT M(Ai) the arc of A that is the root of the
tree in F M that contains Ai . Figure 10(a) depicts a model M = (C, A) and a point
b ∈ C. Its overlap digraph is shown in Fig. 10(b), while Fig. 10(c) represents the
longest right forest of the interval model M′ = (C, A \ B), with B = {A6,A7}.

The following lemma is clear.

Lemma 7.2 Let M = (C, A) be an interval model, Ai ∈ A an arc of A, p ∈ C a
point located at the right of ti , and F M the longest right forest of M. Then the
overlap digraph of M has a path from Ai to some arc containing p if and only if
F M has such a path.

Fig. 10 An overlap digraph and a longest right forest
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In the sequel, we characterize the types of covers. Let M = (C, A) be a CA model,
b a point of C and B ⊆ A the set of arcs containing b. Denote A′ = A \ B and
M′ = (C, A′). Clearly, M′ is an interval model. For an arc Bi ∈ B, let xi and yi

denote its left and right points, respectively. Finally, let F M′ , be the longest right
forest of M′.

Start with type 1 covers.

Theorem 7.1 M has a type 1 cover if and only if for some Bi ∈ B,

ROOT M′(Aj ) ∩ Bi 	= ∅, such that

Aj = ORA′(Bi) 	= ∅.

Proof Let C = {Bi,A
′
1, . . . ,A

′
l} be a type 1 cover of M, in circular ordering,

Ai ∈ A′,Bi ∈ B. It follows that Aj = ORA′(Bi) 	= ∅, because A′
1 	= ∅. Also, l ≥ 2. In

a minimal cover, any two consecutive arcs must overlap. Consequently, the over-
lap digraph of M′ has a path from A′

1 to A′
l . On the other hand, Bi right over-

laps A′
l , while A′

1 right overlaps Bi . The latter implies xi ∈ A′
l \ A′

1. By apply-
ing Lemma 7.2, we conclude that F M′ also has a path from A′

1 to some arc con-
taining xi . On the other hand, Aj either contains or right overlaps A′

1. In addi-
tion, xi 	∈ ORA′(Bi). Consequently, F M′ must also contain a path from ORA′(Bi)

to some arc A′′ containing xi . Consequently, A′′ ∩ Bi 	= ∅. Furthermore, any an-
cestor Ak of A′′ in F M′ also intersects Bi , because tk ∈ xi, b and yi is at the
right of b in M. In particular ROOT M′(Aj ) also intersects Bi terminating the
proof.

Conversely, by hypothesis Aj = ORA′(Bi) 	= ∅ and ROOT M′(Aj ) ∩ Bi 	= ∅.
In addition, Aj \ Bi is maximum. See Fig. 11. Clearly, xi 	∈ Aj . Let Ak be
the nearest ancestor of Aj in F M′ containing xi . Clearly, Ak 	= Aj , because
xi 	∈ Aj .

Consequently, the arcs in the path of M′ from Aj to Ak , together with the arc Bi

form a type 1 cover of M. �

Next, we describe a characterization for type 2 covers.

Theorem 7.2 M has a type 2 cover if and only if for some Ai ∈ A′,

Fig. 11 A case of Theorem 7.1
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Fig. 12 A case of Theorem 7.2

y1 ∈ Ai, where

B1 = OR′
B(y2, ti) 	= ∅, and

B2 = OR′
B(Ai) 	= ∅.

Proof Let Ai,B
′
1,B

′
2 be a type 2 cover, in circular ordering, Ai ∈ A′ and B ′

1,B
′
2 ∈ B.

Then B ′
2 right overlaps Ai , implying that B2 = OR′

B(Ai) 	= ∅. Also, B ′
1 right overlaps

y′
2, ti meaning that it also right overlaps y2, ti , implying B1 	= ∅. Finally, y′

1 ∈ Ai ,
which means that y1 ∈ Ai , completing the proof. �

Conversely, assume the stated conditions hold. Then Ai right overlaps B2, and
B1 also right overlaps Ai . In addition, B1 and B2 do not intersect in Ai , because
B1 right overlaps y2, ti . Furthermore, B2 and B1 also overlap, because B1 ∩ B2 	= ∅,
si ∈ B2 \ B1 and ti ∈ B1 \ B2. We also know that B2 \ Ai is minimum, while B1 \ Ai

is maximum, from the definitions of functions OR and OR′, respectively. See Fig. 12.
Consequently, Ai,B1,B2 cover C and no two of these arcs do.

Below is a characterization for type 3 covers of CA models that do not admit
neither type 1 nor type 2 covers.

Theorem 7.3 Let M be a CA model, admitting neither type 1 nor type 2 covers.
Then M admits a type 3 cover if and only if for some Ai ∈ A′,

ROOT M′(Aj ) ∩ B1 	= ∅, where

Aj = ORA′(y2, ti) 	= ∅,

B1 = OLB(x2, si) 	= ∅, and

B2 = OR′
B(Ai) 	= ∅.

Proof Suppose M has a type 3 cover C and no type 1 nor type 2 covers. Let C be
formed by the arcs B ′

2,A
′
1 . . . ,A′

l ,B
′
1, in circular ordering, B ′

1,B
′
2 ∈ B, with A′

1 = Ai ,
and A′

k ∈ A′, 1 ≤ k ≤ l and l ≥ 2. Because B ′
2 left overlaps A′

1, we can conclude that
B2 	= ∅. Since si , y2 has minimum length, the left point of A′

2 is at the right of y2,
inside y2, ti . Consequently, Aj = ORA′(y2, ti) 	= ∅. Next, we discuss B1.

First, suppose B1 = ∅. In this situation, B2 	= B ′
2 and y′

1 ∈ B2. Consequently,
B2 ⊇ B ′

1. The latter implies that some arc A′
k ∈ C \ B left overlaps B2, because C



236 Algorithmica (2011) 59: 215–239

is a cover. Choose A′
k , having minimum k. If k = 1 then A′

1 = Ai left overlaps and
right overlaps B2, a contradiction. For k > 1, B2,A

′
1, . . . ,A

′
k is a type 1 cover, again

a contradiction. Then B1 = ∅ can not occur. That is, B1,B2,Aj 	= ∅. It remains to
examine the root of the tree of F ′

M containing Aj .
In the sequel, let B1 = B ′

1. Then the cover B ′
2,A

′
1, . . . ,A

′
l ,B

′
1 implies that the

overlap digraph of M′ has a path from A′
x to B1, 1 ≤ x ≤ l. Consequently, the overlap

digraph has a path from Aj to B1. That is, F ′
M has a path from Aj to some arc

Ap ∈ A′, containing x1.
Finally, let B1 	= B ′

1, and we show that a similar fact holds. Compare the positions
in C of x1 and x′

1. First, suppose x′
1 is at the left of x1. Then B ′

1 ∩B2 = ∅, otherwise x1

is at the left of x′
1, because B1 left overlaps B2 and extends maximally to the left of x2.

However, B ′
1 and B2 intersect at b, which eliminates this alternative. Consequently,

x1 must be at the left of x′
1. Because C is a type 3 cover, x′

1 ∈ A′
l and the overlap

digraph of M′ has a path from A′
x to A′

l , 1 ≤ x ≤ l. If Aj ∩ B1 	= ∅ then F ′
M clearly

has a path from Aj to some arc Ap ∈ A′ containing x1. Otherwise, observe that since
C is a cover, the left point of A′

2 belongs to the arc y2, ti . Consequently the overlap
digraph of M also has a path from Aj to A′

l . By Lemma 7.2, F M′ has a path from
Aj to some arc Ap ∈ A′ containing x1.

Then Ap ∩ B1 	= ∅. If Ap = ROOT M′(Aj ) the proof is complete. Otherwise, let
Aq be a proper ancestor of Ap in F M′ . Since b ∈ B1, b 	∈ Ap,Aq and Ap ∩ B1 	= ∅,
it follows Aq ∩ B1 	= ∅. In particular, ROOT M′(Aj ) ∩ B1 	= ∅, as desired.

Conversely, by hypothesis ROOT M(Aj ) ∩ B1 	= ∅, with Aj ,B1,B2 having the
stated values. See Fig. 13, where the minimum and maximum follow from the def-
initions of functions OR′, OL and OR. Let C be the following sequence of arcs, in
circular ordering

B2,A
′
1, . . . ,A

′
k,B1,

where A′
1 = Ai , A′

2 = Aj and A′
2, . . . ,A

′
k is the path in F M′ from A′

2 to its nearest
ancestor A′

k that intersects B1, k ≥ 2. By hypothesis, ROOT M′(Aj )∩B1 	= ∅, which
implies that A′

2, . . . ,A
′
k exists. Furthermore, for 1 ≤ q ≤ k − 2, A′

q ∩ A′
q+2 = ∅, oth-

erwise A′
q+1 	= ORA′(A′

q), a contradiction. Also, B2 and A′
1 overlap by construction,

so does A′
1 and A′

2. On the other hand, A′
k must overlap B1, because of the minimal-

ity of k and considering that necessarily A′
k ∩ B2 = ∅, otherwise B2,A

′
1, . . . ,A

′
k is

a type 1 cover, a contradiction. Consequently, B2,A
′
1, . . . ,A

′
k,B1 is a type 3 cover

of M. �

Fig. 13 A case of Theorem 7.3
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The algorithm for deciding if a given CA model M contains a minimal cover of
size ≥ 3 consists of applying Theorems 7.1, 7.2 and 7.3, in this order, for verifying
if M contains a type 1, type 2 or type 3 cover. For recognizing if a given model M
is HCA, apply this algorithm to the complement model M of M. Then M is HCA
precisely when M does not contain covers of any types.

We describe the algorithm for recognizing the cover types. Given M = (C, A),
choose a point b ∈ C and construct the set B ⊆ A of the arcs containing b. Let A′ =
A \ B. Compute all the OR,OL and OR′ functions involved in Theorems 7.1, 7.2
and 7.3, using the algorithms of Sect. 5. Construct the longest right forest F M′ of
M′ = (C, A′). Then, for each Bi ∈ B, apply Theorem 7.1, looking for type 1 cover.
Afterwards, for each Ai ∈ A′ apply Theorem 7.2 for type 2 covers. If no cover has
been found so far then apply Theorem 7.3, for each Ai ∈ A′.

As for the complexity, first observe that there are O(n) values of functions OR,OL
and OR′ to be computed. By Sect. 5, all these values can be computed in O(n) time.
The construction of F M′ also takes O(n) time. Finally, each application of Theorems
7.1, 7.2 or 7.3 can be done in O(n) time.

As for finding negative certificates, it follows from Corollary 3.1 that the com-
plement of any of the cover types is a minimal violation for M being Helly. Con-
sequently, it represents a negative certificate, which can also be displayed in O(n)

time. The (converse) proofs of Theorems 7.1, 7.2 and 7.3 provide the details of the
algorithm for producing such negative certificates.

The validation of this certificate can be easily done in O(n) time, by finding the
complement M of M and checking if either the arcs of M form a cycle of length 3,
or a chordless cycle of length > 3.

8 Recognition Algorithm for HCA Graphs

We are now ready to formulate the algorithm for recognizing HCA graphs. Let G be
a graph.

1. Apply the algorithm [9, 17] to recognize whether G is a CA graph. In the affir-
mative case, let M be the model constructed by any of the algorithms. Otherwise
terminate the algorithm (G is not HCA).

2. Transform G into a stable model, applying the algorithm of Sect. 6.
3. Verify if M is a HCA model, applying the algorithm of Sect. 7. Then terminate

the algorithm (G is HCA if M is HCA, and otherwise G is not HCA).

The correctness of the algorithm follows directly from Theorem 4.1 and from the
correctness of the algorithms of Sects. 6 and 7.

Step 1 requires O(n + m) time, and Steps 2 and 3 terminate within O(n) time.
The algorithm constructs a HCA model of the input graph G, in case G is HCA. If

G is CA but not HCA, we can exhibit a certificate of this fact, by showing a forbidden
induced subgraph of G, that is, an obstacle. Such a forbidden induced subgraph can
be obtained in O(n) time from the negative certificate of the stable model of G not
being Helly, and following the proof (b) ⇒ (c) of Theorem 4.1.

The validation of this certificate follows from the validation of its corresponding
non Helly stable model, before described. In fact, we can exhibit both the forbidden
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subgraph and the non Helly submodel and in linear time confirm that the latter is a
model for the subgraph.

9 Conclusions

We have described new characterizations and a linear-time algorithm for recognizing
Helly circular-arc graphs. In case the given graph G is indeed a HCA graph, the
algorithm produces a HCA model for it. Otherwise, if G is a CA graph, but no HCA,
then the algorithm exhibits a certificate of this fact, in terms of a forbidden induced
subgraph. The complexity of the algorithm is O(n+m). However, if the input already
consists of a CA model of G, the complexity reduces to O(n).

However, except for its linear-time recognition and model construction, the same
as above is so far not known for the general class of circular-arc graphs. So, the
following open problems would be of interest.

1. Describe a characterization by forbidden induced subgraphs for circular-arc
graphs.

2. Describe an algorithm for finding a certificate for a graph not to be a circular-arc
graph.

3. Describe a linear-time algorithm for solving isomorphism of circular-arc graphs.
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