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Abstract: We consider grammar-based text compression with longest first substitution (LFS),

where non-overlapping occurrences of a longest repeating factor of the input text are replaced

by a new non-terminal symbol. We present the first linear-time algorithm for LFS. Our al-

gorithm employs a new data structure called sparse lazy suffix trees. We also deal with a

more sophisticated version of LFS, called LFS2, that allows better compression. The first

linear-time algorithm for LFS2 is also presented.
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1. Introduction

Data compression is a task of reducing data description length. Not only does it enable us to save

space for data storage, but also it reduces time for data communication. This paper focuses on text

compression where the data to be compressed are texts (strings). Recent research developments show

that text compression has a wide range of applications, e.g., pattern matching [1, 2, 3], string similarity

computation [4, 5], detecting palindromic/repetitive structures [4, 6], inferring hierarchal structure of

natural language texts [7, 8], and analyses of biological sequences [9].
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Grammar-based compression [10] is a kind of text compression scheme in which a context-free gram-

mar (CFG) that generates only an input text w is output as a compressed form of w. Since the problem

of computing the smallest CFG which generates w is NP-hard [11], many attempts have been made to

develop practical algorithms that compute a small CFG which generates w. Examples of grammar-based

compression algorithms are LZ78 [12], LZW [13], Sequitur [7], and Bisection [14]. Approximation

algorithms for optimal grammar-based compression have also been proposed [15, 16, 17]. The first

compression algorithm based on a subclass of context-sensitive grammars was introduced in [18].

Grammar-based compression based on greedy substitutions has been extensively studied. Wolff [19]

introduced a concept of most-frequent-first substitution (MFFS) such that a digram (a factor of length 2)

which occurs most frequently in the text is recursively replaced by a new non-terminal symbol. He also

presented an O(n2)-time algorithm for it, where n is the input text length. A linear-time algorithm for

most-frequent-first substitution, called Re-pair, was later proposed by Larsson and Moffat [20]. Apos-

tolico and Lonardi [21] proposed a concept of largest-area-first substitution such that a factor of the

largest “area” is recursively replaced by a new non-terminal symbol. Here the area of a factor refers

to the product of the length of the factor by the number of its non-overlapping occurrences in the input

text. It was reported in [22] that compression by largest-area-first substitution outperforms gzip (based

on LZ77 [23]) and bzip2 (based on the Burrows-Wheeler Transform [24]) on DNA sequences. However,

to the best of our knowledge, no linear-time algorithm for this compression scheme is known.

This paper focuses on another greedy text compression scheme called longest-first substitution (LFS),

in which a longest repeating factor of an input text is recursively replaced by a new non-terminal symbol.

For example, for input text w = abaaabbababb$, the following grammar

S → BaaABA$;

A → abb;

B → ab,

which generates only w is the output of LFS.

In this paper, we propose the first linear-time algorithm for text compression by LFS substitution.

A key idea is the use of a new data structure called sparse lazy suffix trees. Moreover, this paper

deals with a more sophisticated version of longest-first text compression (named LFS2), where we also

consider repeating factors of the right-hand of the existing production rules. For the same input text

w = abaaabbababb$ as above, we obtain the following grammar:

S → BaaABA$;

A → Bb;

B → ab.

This method allows better compression since the total grammar size becomes smaller. In this paper, we

present the first linear-time algorithm for text compression based on LFS2. Preliminary versions of our

paper appeared in [25] and [26].
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Related Work

It is true that several algorithms for LFS or LFS2 were already proposed, however, in fact none of

them runs in linear time in the worst case. Bentley and McIlroy [27] proposed an algorithm for LFS,

but Nevill-Manning and Witten [8] pointed out that the algorithm does not run in linear time. Nevill-

Manning and Witten also claimed that the algorithm can be improved so as to run in linear time, but

they only noted a too short sketch for how, which is unlikely to give a shape to the idea of the whole

algorithm. Lanctot et al. [28] proposed an algorithm for LFS2 and stated that it runs in linear time, but a

careful analysis reveals that it actually takes O(n2) time in the worst case for some input string of length

n. See Appendix for our detailed analysis.

2. Preliminaries

2.1. Notations

Let Σ be a finite alphabet of symbols. We assume that Σ is fixed and |Σ| is constant. An element

of Σ∗ is called a string. Strings x, y, and z are said to be a prefix, factor, and suffix of string w = xyz,

respectively.

The length of a string w is denoted by |w|. The empty string is denoted by ε, that is, |ε| = 0. Also, we

assume that all strings end with a unique symbol $ ∈ Σ that does not occur anywhere else in the strings.

Let Σ+ = Σ∗\{ε}. The i-th symbol of a string w is denoted by w[i] for 1 ≤ i ≤ |w|, and the factor of

a string w that begins at position i and ends at position j is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|.

For convenience, let w[i : j] = ε for j < i, and w[i :] = w[i : |w|] for 1 ≤ i ≤ |w|. For any strings

x,w, let BPw(x) denote the set of the beginning positions of all the occurrences of x in w. That is,

BPw(x) = {i | x = w[i : i + |x| − 1]}.

We say that strings x, y overlap in w if there exist integers i, j such that x = w[i : i + |x| − 1],

y = w[j : j + |y| − 1], and i ≤ j ≤ i + |x| − 1 or j ≤ i ≤ j + |y| − 1.

Let #occw(x) denote the possible maximum number of non-overlapping occurrences of x in w. If

#occw(x) ≥ 2, then x is said to be repeating in w. We abbreviate a longest repeating factor of w to an

LRF of w. Remark that there can exist more than one LRF for w.

Let Σ and Π be the set of terminal and non-terminal symbols, respectively, such that Σ ∩ Π = ∅.

A context-free grammar G is a formal grammar in which every production rule is of the form A → u,

where A ∈ Π and u ∈ (Σ ∪ Π)∗. Let u = xBy and v = xβy with x, y, β ∈ (Σ ∪ Π)∗ and B ∈ Π. If

there exists a production rule B → β in G, then v = xβy is said to be directly derived from u = xBy by

G, and it is denoted by u ⇒G v. If there exists a sequence w0, w1, . . . , wn such that wi ∈ (Σ ∪ Π)∗ and

u = w0 ⇒G w1 ⇒G · · · ⇒G wn = v,

then we say that v is derived from u. The length of a non-terminal symbol A, denoted |A|, is the length of

the string z ∈ Σ∗ that is derived from the production rule A → v. For convenience, we assume that any

non-terminal symbol A in G has |A| positions. The size of the production rule is the number of terminal

and non-terminal symbols v contains.
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Figure 1. STree(w) with w = ababa$. Solid arrows represent edges, and dotted arrows are

suffix links.
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2.2. Data Structures

Our text compression algorithm uses a data structure based on suffix trees [29]. The suffix tree of

string w, denoted by STree(w), is defined as follows:

Definition 1 (Suffix Trees) STree(w) is a tree structure such that: (1) every edge is labeled by a non-

empty factor of w, (2) every internal node has at least two child nodes, (3) all out-going edge labels of

every node begin with mutually distinct symbols, and (4) every suffix of w is spelled out in a path starting

from the root node.

Assuming any string w terminates with the unique symbol $ not appearing elsewhere in w, there is

a one-to-one correspondence between a suffix of w and a leaf node of STree(w). It is easy to see that

the numbers of the nodes and edges of STree(w) are linear in |w|. Moreover, by encoding every edge

label x of STree(w) with an ordered pair (i, j) of integers such that x = w[i : j], each edge only needs

constant space. Therefore, STree(w) can be implemented with total of O(|w|) space. Also, it is well

known that STree(w) can be constructed in O(|w|) time (e.g. see [29]).

STree(w) for string w = ababa$ is shown in Figure 1. For any node v of STree(w), str(v) denotes

the string obtained by concatenating the labels of the edges in the path from the root node to node v.

The length of node v, denoted len(v), is defined to be |str(v)|. It is an easy application of the Ukkonen

algorithm [29] to compute the lengths of all nodes while constructing STree(w). The leaf node ℓ such

that str(ℓ) = w[i :] is denoted by leaf i, and i is said to be the id of the leaf. Every node v of STree(w)

except for the root node has a suffix link, denoted by suf (v), such that suf (v) = v′ where str(v′) is a

suffix of str(v) and len(v′) + 1 = len(v). Linear-time suffix tree construction algorithms (e.g., [29])

make extensive use of the suffix links.
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A sparse suffix tree [30] of w ∈ Σ∗ is a kind of suffix tree which represents only a subset of the

suffixes of w. The sparse suffix tree of w ∈ (Σ∪Π)∗ represents the subset {w[i :] | w[i] ∈ Σ} of suffixes

of w which begin with a terminal symbol. Let ℓ be the length of the LRFs of w. A reference node of the

sparse suffix tree of w ∈ (Σ ∪ Π)∗ is any node v such that len(v) ≥ ℓ + 1, and there is no node u such

that str(u) is a proper prefix of str(v) and len(u) ≥ ℓ + 1.

Our algorithm uses the following data structure.

Definition 2 (Sparse Lazy Suffix Trees) A sparse lazy suffix tree (SLSTree) of string w ∈ (Σ ∪ Π)∗,

denoted by SLSTree(w), is a kind of sparse suffix tree such that: (1) All paths from the root node to

the reference nodes coincide with those of the sparse suffix tree of w, and (2) Every reference node v

stores an ordered triple 〈min(v), max(v), card(v)〉 such that min(v) = minBPw(str(v)), max(v) =

maxBPw(str(v)), and card(v) =
∣

∣BPw(str(v))
∣

∣.

SLSTree(w) is called “lazy” since its subtrees that are located below the reference nodes may not

coincide with those of the corresponding sparse suffix tree of w. Our algorithms of Section 3. run in

linear time by “neglecting” updating these subtrees below the reference nodes.

Proposition 1 For any string w ∈ Σ∗, SLSTree(w) can be obtained from STree(w) in O(|w|) time.

Proof. By a standard postorder traversal on STree(w), propagating the id of each leaf node. ¤

Since STree(w) can be constructed in O(|w|) time [29], we can build SLSTree(w) in total of O(|w|)

time.

3. Off-Line Compression by Longest-First Substitution

Given a text string w ∈ Σ∗, we here consider a greedy approach to construct a context-free grammar

which generates only w. The key is how to select a factor of w to be replaced by a non-terminal symbol

from Π. Here, we consider the longest-first-substitution approach where we recursively replace as many

LRFs as possible with non-terminal symbols.

Example. Let w = abaaabbababb$. At the beginning, the grammar is of the following simple form

S → abaaabbababb$, where the right-hand of the production rule consists only of terminal symbols

from Σ. Now we focus on the right-hand of S which has two LRFs aba and abb. Let us here choose abb

to be replaced by non-terminal A ∈ Π. We obtain the following grammar: S → abaaAabA$; A → abb.

The other LRF aba of length 3 is no longer present in the right-hand of S. Thus we focus on an LRF ab

of length 2. Replacing ab by non-terminal B ∈ Π results in the following grammar: S → BaaABA$;

A → abb; B → ab. Since the right-hand of S has no repeating factor longer than 1, we are done.

Let w0 = w, and let wk denote the string obtained by replacing an LRF of wk−1 with a non-terminal

symbol Ak. LRF (wk−1) denotes the LRF of wk−1 that is replaced by Ak, namely, we create a new

production rule Ak → LRF (wk−1). In the above example, w0 = w = abaaabbababb$, LRF (w0) =

abb, A1 = A, w1 = abaaAabA$, LRF (w1) = ab, A2 = B, and w2 = BaaABA$.

Due to the property of the longest first approach, we have the following observation.
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Observation 1 Let A1, . . . , Ak ∈ Π be the non-terminal symbols which replace LRF (w0), . . . , LRF (wk−1),

respectively. For any 1 ≤ i ≤ k, the right-hand of the production rule of Ai contains none of A1, . . . , Ai−1.

In what follows, we will show our algorithm which outputs a context-free grammar which generates

a given string. Our algorithm heavily uses the SLSTree structure.

3.1. How to Find LRF (wk) Using SLSTree(wk)

In this section, we show how to find an LRF of wk from SLSTree(wk).

The next lemmas characterize an LRF of wk that is not represented by a node of SLSTree(wk).

Lemma 1 If an LRF x of wk is not represented by a node of SLSTree(wk), then maxBPwk
(x) =

minBPwk
(x) + |x|.

Proof. Let i = minBPwk
(x) and j = maxBPwk

(x). Since x is a repeating factor of wk, |BPwk
(x)| ≥ 2,

which means that i 6= j. If wk[i + |x|] 6= wk[j + |x|], then it contradicts the precondition that x is not

represented by a node of SLSTree(wk). Hence we have wk[i + |x|] = wk[j + |x|]. Moreover, since

x is an LRF of wk, we have j ≥ i + |x|. However, if we assume j > i + |x|, this contradicts the

precondition that x is an LRF of wk, since wk[i + |x|] = wk[j + |x|] and we obtain a longer LRF

wk[i : i + |x|] = wk[j : j + |x|]. Hence we have j = i + |x|. ¤

The above lemma implies that an LRF x is not represented by a node of SLSTree(wk) only if the

first and the last occurrences of x form a square xx in wk. For example, see Figure 1 that illustrates

SLSTree(w0) for w = ababa$. One can see that ab is an LRF of w0 but it is not represented by a node

of SLSTree(w0).

However, the following lemma guarantees that it is indeed sufficient to consider the strings repre-

sented by nodes of SLSTree(wk) as candidates for LRF (wk).

Lemma 2 Let x be an LRF of wk that is not represented by a node of SLSTree(wk). Then, there exists

another LRF y of wk that is represented by a node of SLSTree(wk) such that |x| = |y|. Moreover, x is

no longer present in wk+1 after a substitution for y (see also Figure 2).

Proof. Let i = minBPwk
(x) and j = maxBPwk

(x). It follows from Lemma 1 that j = i+ |x|. Suppose

that x is represented on an edge from some node s to some node t of STree(w). Let u = str(t). Then we

have BPwk
(x) = BPwk

(u). Let y be the suffix of u of length |x|. It is clear that i+|u|−|y|, j+|u|−|y| ∈

BPwk
(y). Since j = i + |x| = i + |y|, #occwk

(y) ≥ 2. Thus y is an LRF of wk. Since u is represented

by node t and i = minBPwk
(u) and j = maxBPwk

(u), we know that wk[i + |u|] 6= wk[j + |u|]. Hence

y is represented by a node of SLSTree(wk). Since x occurs only within the region wk[i : j + |u| − 1], x

does not occur in wk+1 after a substitution for y. ¤

In the running example of Figure 1, ba is an LRF of w0 that is represented by a node of SLSTree(w0).

After its two occurrences are replaced by a non-terminal symbol A1, then ab, which is an LRF of w0 not

represented by a node of SLSTree(w0), is no more present in w1 = aA1A1$.

After constructing SLSTree(w0) = SLSTree(w), we create a bin-sorted list of the internal nodes

of SLSTree(w) in the decreasing order of their lengths. This can be done in linear time by a standard
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Figure 2. Illustration for proof of Lemma 2. Since u is represented by a node of

SLSTree(wk), we know that wk[i + |u|] 6= wk[j + |u|].
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traversal on SLSTree(w). We remark that a new internal node v may appear in SLSTree(wk) for some

k ≥ 1, which did not exist in SLSTree(wk−1). However, we have that len(v) ≤ |LRF (wk−1)|. Thus, we

can maintain the bin-sorted list by inserting node v in constant time.

Given a node s in the bin-sorted list, we can determine whether str(s) is repeating or not by using

SLSTree(wk), as follows.

Lemma 3 Let s be any node of SLSTree(wk) with len(s) ≤ |LRF (wk)| and let s1, . . . , sℓ be the children

of s. Then BPwk
(str(s)) is a disjoint union of BPwk

(str(s1)), . . . , BPwk
(str(sℓ)).

Proof. Clear from the definition of SLSTree(wk). ¤

Lemma 4 For any node s of SLSTree(wk−1) such that |LRF (wk)| ≤ len(s) ≤ |LRF (wk−1)|, it takes

amortized constant time to check whether or not str(s) is an LRF of wk.

Proof. Let s1, . . . , sℓ be the children of s. Then, str(s) is repeating if and only if

max{maxBPwk−1
(si) | 1 ≤ i ≤ ℓ} − min{minBPwk−1

(sj) | 1 ≤ j ≤ ℓ} ≥ len(s).

Remark that the values of minBPwk−1
(si) and maxBPwk−1

(si) are stored in node si and can be referred

to in constant time. Since the above inequality is checked at most once for each node s, it takes amortized

constant time. ¤

Suppose we have found an LRF of wk as mentioned above. In the sequel, we show our greedy strategy

to select occurrences of the LRF in wk to be replaced with a new non-terminal symbol.

The next lemma is essentially the same as Lemma 2 of Kida et al. [1].

Lemma 5 For any non-repeating factor x of wk, BPwk
(x) forms a single arithmetic progression.

Therefore, for any non-repeating factor x of wk, BPwk
(x) can be expressed by an ordered triple con-

sisting of minimum element minBPwk
(x), maximum element maxBPwk

(x), and cardinality
∣

∣BPwk
(x)

∣

∣,

which takes constant space.

Lemma 6 Let s be any node of SLSTree(wk) such that str(s) is an LRF of wk, and s′ be any child of

s. Then, BPwk
(str(s′)) contains at most two positions corresponding to non-overlapping occurrences

of str(s) in wk.
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Proof. Assume for contrary that BPwk
(str(s′)) contains three non-overlapping occurrences of str(s),

and let them be i1, i2, i3 in the increasing order. Then we have

i3 − (i1 + len(s) − 1) ≥ i3 − i2 ≥ len(s) ≥ 1,

which implies that wk[i1 : i1 + len(s)] and wk[i3 : i3 + len(s)] are non-overlapping. Moreover, since

len(s′) > len(s), we have wk[i1 : i1 + len(s)] = wk[i3 : i3 + len(s)]. However, this contradicts the

precondition that str(s) is an LRF of wk. ¤

From Lemma 6, each child s′ of node s such that str(s) is an LRF, corresponds to at most two non-

overlapping occurrences of str(s). Due to Lemma 3, we can greedily select occurrences of str(s) to

be replaced by a new non-terminal symbol, by checking all children s1, . . . , sℓ of node s. According to

Lemma 5, it takes amortized constant time to select such occurrences for each node s.

Note that we have to select occurrences of str(s) so that no occurrences of str(s) remain in the text

string, and at least two occurrences of str(s) are selected. We remark that we can greedily choose at

least max{2, #occ(str(s))/2} occurrences.

3.2. How to Update SLSTree(wi−1

k ) to SLSTree(wi
k)

Let L be the set of the greedily selected occurrences of LRF (wk) in wk. For any 0 ≤ i ≤ |L|, let wi
k

denote the string obtained after replacing the first i occurrences of LRF (wk) with non-terminal symbol

Ak+1. Namely, w0
k = wk and w

|L|
k = wk+1.

In this section we show how to update SLSTree(wi−1

k ) to SLSTree(wi
k). Let p be the beginning

position of the i-th occurrence in L. Assume that we have SLSTree(wi−1

k ), and that we have replaced

wi−1

k [p : p + |LRF (wk)| − 1] with non-terminal symbol Ak+1 such that |Ak+1| = |LRF (wk)|. We now

have wi
k, and we have to update SLSTree(wi−1

k ) to SLSTree(wi
k).

A naive way to obtain SLSTree(wi
k) is to remove all the suffixes of wi−1

k from SLSTree(wi−1

k ) and

insert all the suffixes of wi
k into it. However, since only the nodes not longer than LRF (wk) are important

for our longest-first strategy, only the suffixes wi−1

k [p−t :] such that 1 ≤ t ≤ |LRF (wk)| and wi−1

k [r] ∈ Σ

for any p − t ≤ r < p have to be removed from SLSTree(wi−1

k ), and only the suffixes wi
k[p − t :] have

to be inserted into the tree (see the light-shaded suffixes of Figure 3).

Lemma 7 For any t, let r be the shortest node of SLSTree(wi−1

k ) such that wi
k[p − t : p − 1] is a prefix

of str(r). Assume p − t = minBPwi−1

k

(str(r)).

1. If len(r) > |LRF (wk)| + t − 1, then there exists an edge in SLSTree(wi
k) from the root node to

leaf p−t labeled with wi
k[p − t :].

2. If len(r) ≤ |LRF (wk)| + t − 1, then there exists a node s in SLSTree(wi
k) such that str(s) =

wi
k[p− t : p−1] and s has an edge labeled with wi

k[p :] = Akw
i
k[p+ |Ak| :] and leading to leaf p−t.

Proof. Consider Case 1 (see also Figure 4). Since t ≥ 1, len(r) > |LRF (wk)|. Hence str(r) is a

non-repeating factor of wi
k. By Lemma 5, BPwi−1

k

(str(r)) forms a single arithmetic progression. Also,

since len(r) > |LRF (wk)|, maxBPwi−1

k

(str(r)) − minBPwi−1

k

(str(r)) ≤ |LRF (wk)|. Therefore, if
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Figure 3. LRF (wk) at position p of wi−1

k is replaced by non-terminal symbol Ak in wi
k.

Every wi−1

k [p − t :] is removed from the tree and every wi
k[p − t :] is inserted into the tree

(the light-shaded suffixes in the right figure). In addition, every wi−1

k [p + h :] for 1 ≤ h ≤

|LRF (wk)| − 1 is removed from the tree (the dark-shaded suffixes in the right figure).

w xk
p

k
i-1

p-t p+|LRF(wk)|-1

LRF(wk) Akw k
i

pp-t p+|LRF(wk)|-1

Figure 4. Illustration of Case 1 of Lemma 7.

r

leafp-t

wki-1[p-t:p-1]

|LRF(wk)|+t-1

leafp-t

wki[p-t:]

p − t = minBPwi−1

k

(str(r)), then BPwi

k

(wi
k[p − t :]) = {p − t}. Hence there exists an edge from the

root node to leaf p−t labeled with wi
k[p − t :] in SLSTree(wi

k).

Consider Case 2 (see also Figure 5). Let u = wi−1

k [p − t : p − 1] = wi
k[p − t : p − 1]. Then

|u| = t − 1. Since len(r) ≤ |LRF (wk)| + t − 1, and since r is not longer than the reference node in the

path spelling out uLRF (wk) from the root node of SLSTree(wi
k), there exists at least one integer m such

that m ∈ BPwi

k

(str(r)) and m /∈ BPwi

k

(uAk). Hence there exists a node s in SLSTree(wi
k) such that

str(s) = u and has an out-going edge labeled with wi
k[p :] = Akw

i
k[p + |Ak| :] and leading to leaf p−t.

¤

It is not difficult to see that the edge in each case of Lemma 7 does not exist in SLSTree(wi−1

k ). Hence

we create the edge when we update SLSTree(wi−1

k ) to SLSTree(wi
k).

The next lemma states how to locate node s of Case 2 of Lemma 7.

Lemma 8 For each t, we can locate node s such that str(s) = wi
k[p − t : p − 1] in amortized constant

time.

Proof. Let xp−t be the longest node in the tree such that str(xp−t) is a prefix of wi
k[p − t : p − 1].
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Figure 5. Illustration of Case 2 of Lemma 7.
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Akwki[p+|Ak|:]
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Consider the largest possible t and denote it by tmax. Since tmax ≤ |LRF (wk)|, the node xp−tmax
can

be found in O(|LRF (wk)|) time by going down the path that spells out wi
k[p− tmax : p−1] from the root

node (recall that Σ is fixed). Let z ∈ Σ∗ be the string such that str(xp−tmax
)z = wi

k[p − tmax : p − 1]. If

z 6= ε, then we create a new child node sp−tmax
of xp−tmax

such that str(sp−tmax
) = wi

k[p − tmax : p − 1].

Otherwise, we set sp−tmax
= xp−tmax

.

Now assume that we have located nodes xp−t and sp−t. We can then locate sp−t+1 as follows. Consider

node xp−t+1. Remark that str(suf (xp−t)) is a prefix of str(xp−t+1), and thus we can detect xp−t+1 in

O(|str(xp−t+1)| − |str(suf (xp−t))|) time by using the suffix link. After finding xp−t+1, we can locate or

create sp−t+1 in constant time.

The total time cost for detecting xp−t for all 1 ≤ t ≤ tmax is linear in

tmax
∑

t=2

(|str(xp−t+1)| − |str(suf (xp−t))|)

= |str(xp−1)| − |str(suf (xp−2))|

+ |str(xp−2)| − |str(suf (xp−3))|

· · · · · ·

+ |str(xp−tmax+1)| − |str(suf (xp−tmax
))|

= |str(xp−1)| − |str(suf (xp−tmax
))| + tmax − 2

= |str(xp−1)| − |str(xp−tmax
)| + tmax − 1

≤ tmax ≤ |LRF (wk)|.

Hence we can locate each sp−t in amortized constant time. ¤

Let v be the reference node in the path from the root to some leaf p−t. Assume that leaf p−t is removed

from the subtree of v, and redirected to node s in the same path, such that str(s) = wi
k[p − t : p − 1]. In

order to update SLSTree(wi−1

k ) to SLSTree(wi
k), we have to maintain triple 〈min(v), max(v), card(v)〉

for node v. One may be concerned that if p − t is neither min(v) or max(v) and card(v) ≥ 4 in
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Figure 6. Illustration of proof for Lemma 9.

str(v)

str(v)
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a' b'

m+|str(v)|-1

n+|str(v)|-1

w[a:b]

w[a': b']

w

SLSTree(wi−1

k ), the occurrences of str(v) in SLSTree(wi
k) do not form a single arithmetic progres-

sion any more. However, we have the following lemma. For any factor y of wi
k, let Deadwi

k

(y) =

BPwi−1

k

(y)\BPwi

k

(y), namely, Deadwi

k

(y) denotes the occurrences of y in wi−1

k that overlap with the i-th

greedily selected occurrence of LRF (wk) in wk.

Lemma 9 Let v be any reference node of SLSTree(wi
k) such that #occwi

k

(str(v)) = 1. For any integer

m,n, if m, n ∈ BPwi

k

(str(v)), then there is no integer r such that m < r < n and r ∈ Deadwi

k

(str(v)).

(See Figure 6).

Proof. Assume for contrary that there exists integer r such that r ∈ Deadwi

k

(str(v)) and m < r < n.

Since r ∈ Deadwi

k

(str(v)), there exist integers a, b such that a ≤ r ≤ b, and b − a + 1 = 2|LRF (wk)|.

For any integer j such that a ≤ j ≤ b and j ∈ BPwi−1

k

(str(v)), we have j ∈ Deadwi

k

(str(v)). Since

m,n /∈ Deadwi

k

(str(v)), m < a < b < n. As str(v) is non-repeating, n < m + len(v) − 1. Since

m < a < b < m+ len(v)−1, w[a : b] is a factor of str(v). Therefore, there exist two integers a′, b′ such

that w[a′ : b′] = w[a : b]. Since m < a < b < n < a′ < b′ < n + len(v) − 1, w[a : b] is repeating and

|w[a : b]| = b − a + 1 = 2|LRF (wk)| > |LRF (wk)|. It contradicts that LRF (wk) is an LRF of wk. ¤

Recall that p is the beginning position of the i-th largest greedily selected occurrence of LRF (wk)

in wk. Also, for any 1 ≤ t ≤ |LRF (wk)| such that wi−1

k [r] ∈ Σ for every p − t ≤ r < p, we have

removed leaf p−t from the subtree rooted at the reference node v and have reconnected it to node s such

that str(s) = wi
k[p − t : p − 1]. According to the above lemma, if min(v) < p − t < max(v), leaf j for

every p − t ≤ j ≤ max(v) is removed from the subtree of v. After processing leaf p−t, then max(v) is

updated to p − t − d where d = (min(v) + max(v))/card(v) is the step of the progression, and card(v)

is updated to (max(v) − (p − t))/d + 1.

Notice that leaf p+h for every 0 ≤ h ≤ |LRF (wk)| − 1 has to be removed from the tree, since

wi
k[p + h] /∈ Σ and therefore this leaf node should not exist in SLSTree(wi

k) (see the dark-shaded

suffixes of Figure 3). Removing each leaf can be done in constant time. Maintaining the information

about the triple for the arithmetic progression of the reference nodes can be done in the same way as

mentioned above.

The following lemma states how to locate each reference node.

Lemma 10 Let p be the i-th greedily selected occurrence of LRF (wk) in wk. For any integer ℓ such

that wi−1

k [ℓ] ∈ Σ, let v(ℓ) denote the reference node of SLSTree(wi−1

k ) in the path from the root spelling

out suffix wi−1

k [ℓ :]. For each j such that p − |LRF (wk)| ≤ j ≤ p + |LRF (wk)| − 1, we can locate the

reference node v(j) in amortized constant time.
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Figure 7. The left figure illustrates how to find v(j) from v(j − 1). The right one illustrates

a special case where v(j) = leaf j . Once v(j) = leaf j , it stands that v(k) = leaf k for any

j ≤ k ≤ p − 1.

u(j-1)

v(j-1)

|LRF(wk)|

leafj-1 leafj

v(j)

|LRF(wk)|

leafj-1

leafj  = v(j)

leafp-1 = v(p-1)

Ah 

u(j-1)

v(j-1)

|LRF(wk)|

w[p-1]

Ah

Proof. Let ℓ = |LRF (wk)|. We find v(p − ℓ) by spelling out wi−1

k [p − ℓ :] from the root in O(ℓ) time,

since there can be at most ℓ + 1 nodes in the path from the root to v(p − ℓ).

Suppose we have found v(j − 1). We find v(j) as follows. Let u(j − 1) be the parent node of

v(j − 1). We have len(u(j − 1)) ≤ ℓ and len(v(j − 1)) ≤ ℓ + 1. We go to suf (u(j − 1)). Since

len(suf (u(j − 1))) + 1 = len(u(j − 1)), we have len(suf (u(j − 1))) ≤ ℓ + 1. Thus, we can find

v(j) by going down the path starting from suf (u(j − 1)) and spelling out wi−1

k [j − 1 + len(u(j − 1)) :

j − 1 + len(v(j − 1))] = wi−1

k [j + len(suf (u(j − 1))) : j − 1 + len(v(j − 1))]. (See also the left

illustration of Figure 7).

A special case happens when there exists a node s in the path from the root to leaf j , such that

len(s) = ℓ and the edge from s in the path starts with some non-terminal symbol Ah with h < k.

Namely, wi
k[j + ℓ] = Ah. Due to the property of the longest first approach, we have |Ah| ≥ ℓ. Thus

vj = leaf j . Moreover, for any j ≤ k ≤ p − 1, v(k) = leaf k. (See also the right illustration of Figure

7). It is thus clear that each v(k) can be found in constant time. Since |Ah| ≥ ℓ = LRF (wk), the leaves

corresponding to wi−1

k [p + x − 1 :] with 1 ≤ x ≤ ℓ do not exist in SLSTree(wi−1

k ). ¤

From the above discussions, we conclude that:

Theorem 1 For any string w ∈ Σ∗, the proposed algorithm for text compression by longest first substi-

tution runs in O(|w|) time using O(|w|) space.

Pseudo-codes of our algorithms are shown in Algorithms 1, 2, and 3.

3.3. Reducing Grammar Size

In the above sections we considered text compression by longest first substitution, where we construct

a context free grammar G that generates only a given string w. By Observation 1, for any production rule

Ak → xk of G, xk contains only terminal symbols from Σ. In this section, we take the factors of xk into

consideration for candidates of LRFs, and also replace LRFs appearing in xk. This way we can reduce
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Algorithm 1: Recursively find longest repeating factors.

Input: String w ending with a unique symbol

Output: Set of grammar rules which produce w, greedily selected by substituting longest repeating

factors

SLSTree := sparse lazy suffix tree of w; bins := bin-sorted nodes; len := |w|; rules := ∅;1

while true do2

while (n = bins.getNextOfLength(len)) = null do3

if len ≤ 2 then return rules;4

foreach x ∈ bins(len) do update x.min, x.max, x.card from children;5

len-- ;6

update n.min, n.max, n.card from children;7

if n.max − n.min ≥ n.pathlen /* n is repeating factor */ then8

nonTerm := new non-terminal symbol;9

rules := rules ∪ {nonTerm → n.path };10

gso := getGreedilySelectedOccurrences(n);11

updateSLSTree(w, n.pathlen, nonTerm, gso, SLSTree, bins);12

13

14

Algorithm 2: updateSLSTree

Input: (w, LRFlen, nonTerm, gso, SLSTree, bins)

foreach occpos ∈ gso do1

for pos = max{1, occpos − LRFlen} to min{|w|, occpos + LRFlen − 1} do2

v := find first node on path to leaf pos such that v.pathlen > LRFlen;3

delete leaf pos; maintain v.card, v.min, v.max;4

if pos < occpos && notDead(pos) then5

s := find/create node on path to leaf pos such that s.pathlen = occpos − pos;6

if s was newly created then bins(s.pathlen).addNode(s);7

recreate leaf pos:〈min, max, card〉 = 〈pos, pos, 1〉; add edge (s, nonTerm, pos);8

if pos > occpos then w[pos] = •; markDead(pos);9

w[occpos] := nonTerm; markDead(occpos);10

return11
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Algorithm 3: getGreedilySelectedOccurrences

Input: LRFnode

Output: Set of greedily selected occurrences of LRFnode.path

gso := ∅;1

foreach c ∈ LRFnode.children do2

occ := 0;3

if notDead(c.min) then occ := c.min ;4

else occ := find first occurrence of LRFnode.path after c.min+endOfDeadArea[c.min];5

if occ 6= 0 && notDead(occ+LRFnode.pathlen−1) then6

gso := gso ∪ {occ};7

for pos = occ to occ+LRFnode.pathlen−1 do8

markEndOfDeadArea(pos, occ+LRFnode.pathlen−1);9

occ := occ + LRFnode.pathlen ;10

if notDead(occ) && notDead(occ+LRFnode.pathlen−1) then gso := gso ∪ {occ};11

12

return gso;13

the total size of the grammar. In so doing, we consider an LRF of string zk = wk$0x1$1 · · · xk$k, where

z0 = w0 = w and each $i appears nowhere else in zk.

Example. Let w = w0 = z0 = abaaabbababb$0. We replace an LRF abb with A, and obtain the

following grammar: S → abaaAabA$0; A → abb. Then, w1 = abaaAabA$0 and LRF (z0) =

abb. Now, z1 = abaaAabA$0abb$1. We replace an LRF ab of z1 with a non-terminal B, getting

S → BaaABA$0; A → Bb; B → ab. Then, w2 = BaaABA$0 and LRF (z1) = ab. Now, z2 =

BaaABA$0Bb$1ab$2. Since there is no LRF of length more than 1 in z2, we are done.

We call this method of text compression LFS2.

Theorem 2 Given a string w, the LFS2 strategy compresses w in linear time and space.

Proof. We modify the algorithm proposed in the previous sections. If we have a generalized SLSTree

for set {wk, x1$1, . . . , xk$k} of strings, we can find an LRF of zk = wkx1$1 · · · xk$k. It follows from the

property of the longest first substitution strategy that |xi| ≥ |xj| for any i < j. Therefore, any new node

inserted into the generalized SLSTree for {wk, x1$1, . . . , xk−1$k−1} is shorter than the reference nodes

of the tree. Thus, using the Ukkonen on-line algorithm [29], we can obtain the generalized SLSTree

of {wk, x1$1, . . . , xk$k}, by inserting the suffixes of each xk$k into the generalized SLSTree of {wk,

x1$1, . . . , xk−1$k−1} in O(|xk$k|) time. It is easy to see that the total length of x1$1, . . . , xk$k, . . . is

O(|w|). ¤

4. Conclusions and Future Work

This paper introduced a linear-time algorithm to compress a given text by longest-first substitution

(LFS). We employed a new data structure called sparse lazy suffix trees in the core of the algorithm.

We also gave a linear-time algorithm for LFS2 that achieves better compression than LFS.



Algorithms 2009, 2 1443

A related open problem is the following: Does there exist a linear time algorithm for text compres-

sion by largest-area-first substitution (LAFS)? The algorithm presented in [21] uses minimal augmented

suffix trees (MASTrees) [31] which enable us to efficiently find a factor of the largest area. The size

of MASTrees is known to be linear in the input size [32], but the state-of-the-art algorithm of [32] to

construct MASTrees takes O(n log n) time, where n is the input text length. Also, the algorithm of [21]

for LAFS reconstructs the MASTree from scratch, every time a factor of the largest area is replaced by a

new non-terminal symbol. Would it be possible to update a MASTree or its relaxed version for following

substitutions?
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Appendix

In this appendix we show that the algorithm of Lanctot et al. [28] for LFS2 takes O(n2) time, where

n is the length of the input string.

Consider string

w = w0 = z0 = aaaaaaabbbbbaaaabbbbbcaaaaaaaa$.

The Lanctot algorithm constructs a suffix tree of w, constructs a bin-sorted list of internal nodes of the

tree, and updates the tree in a similar way to our algorithm in Section 3.3.. However, a critical difference

is that any node v of their tree structure does not store an ordered triple 〈min(v), max(v), card(v)〉 such

that min(v) = minBPw(str(v)), max(v) = maxBPw(str(v)), and card(v) =
∣

∣BPw(str(v))
∣

∣.

See Figure 8 which illustrates the suffix tree of w.

A bin-sorted list of internal nodes of STree(w) in decreasing order of their length is as follows:

9 : aaaabbbbb

8 : aaabbbbb

7 : aabbbbb, aaaaaaa

6 : abbbbb, aaaaaa

5 : bbbbb, aaaaa

4 : bbbb, aaaa

3 : bbb, aaa

2 : bb, aa

1 : b, a

In [28], Lanctot et al. do not mention how they find occurrences of each node in the sorted list. Since

they do not have an ordered triple 〈min(v), max(v), card(v)〉 for each node v, the best possible way is to

traverse the subtree of v checking the leaves in the subtree. Now, for the first LRF-candidate aaaabbbbb,

we get positions 4 and 13 and find out that LRF (w) = LRF (z0) = aaaabbbbb. Then we obtain

w1 = aaaAAcaaaaaaaa$,

where A is a new non-terminal symbol that replaces LRF (z0) = aaaabbbbb.
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Figure 8. STree(w) with w = aaaaaaabbbbbaaaabbbbbcaaaaaaaa$.
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Now see Figure 9 which illustrates a generalized sparse suffix tree for

z1 = aaaAAcaaaaaaaa$aaaabbbbb#.

To find LRF (z1), we check the nodes in the list as follows.

• Length 8. The generalized suffix tree has no node representing aaabbbbb, and hence it is not an

LRF.

• Length 7. Since node aaaaaaa exists in the generalized suffix tree, we traverse its subtree and find

2 occurrences 23 and 24 in z1. However, it is not an LRF of z1. The other candidate aabbbbb does

not have a corresponding node in the tree, so it is not an LRF, either.

• Length 6. Node aaaaaa exists in the generalized suffix tree and we find 3 occurrences 23, 24 and

25 in z1 by traversing the tree, but it is not an LRF. The tree has no node corresponding to abbbbb,

hence it is not an LRF.

• Length 5. Node aaaaa exists in the generalized suffix tree and we find 4 occurrences 23, 24, 25

and 26 in z1 by traversing the tree, but it is not an LRF. There is no node in the tree corresponding

to bbbbb.
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Figure 9. Generalized sparse suffix tree of z1 = aaaAAcaaaaaaaa$aaaabbbbb#.
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• Length 4. Node aaaa exists in the generalized suffix tree and we find 5 occurrences 23, 24, 25, 26

and 27. Now 23 and 27 are non-overlapping occurrences of aaaa, and hence it is an LRF of z1.

Focus on the above operations where we examined factors of lengths from 7 to 5. The total time cost

to find the occurrences for the LRF-candidates of these lengths is proportional to 2 + 3 + 4, but none of

them is an LRF of z1 in the end.

In general, for any input string of the form

w = a
2k−1

b
k+1

a
k
b

k+1
ca

2k$,

the time cost of the Lanctot algorithm for finding LRF (z1) is proportional to

2 + 3 + · · · + k =
(k − 1)(k + 2)

2
.

Since k = O(|w|) = O(n), the Lanctot algorithm takes O(n2) time.

In his PhD thesis [33], Lanctot modified the algorithm so that all the occurrences of each candidate

factor in w are stored in each element of the bin-sorted list (Section 3.1.3, page 55, line 1). However,

this clearly requires O(n2) space. Note that using a suffix array cannot immediately solve this, since the

lexicographical ordering of the suffixes can change due to substitution of LRFs, and no efficient methods

to edit suffix arrays for such a case are known.
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On the contrary, as shown in Section 3., each node v of our data structure stores an ordered triple

〈min(v), max(v), card(v)〉, and our algorithm properly maintains this information when the tree is up-

dated. Using this triple, we can check in amortized constant time whether or not each node in the

bin-sorted list is an LRF. Hence the total time cost remains O(n).
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