
Abstract

Ross M. McConnell*

The transitive orientation problem is the problem of

assigning a direction to each edge of a graph so that the
resulting digraph is transitive. A graph is a comparability
graph if such an assignment is possible. We describe an
O(n + m) algorithm for the transitive orientation problem,
where n and m are the number of vertices and edges of the
graph; full details are given in [IS]. This gives linear time
bounds for maximum clique and minimum vertex coloring
on comparability graphs, recognition of two-dimensional
partial orders, permutation graphs, cointerval graphs, and
triangulated comparability graphs, and other combinatorial
problems on comparability graphs and their complements.

1 Introduction

A partial order may be viewed as a transitive directed
acyclic graph. A comparability graph is the graph
obtained by ignoring the edge directions of a transitive
directed acyclic graph; it gives the comparability rela-
tion for a partial order. It is well known that every par-
tial order is the intersection of a set of total orders [8]. A
two-dimensional partial order is a partial order that
is the intersection of two linear orders, and a permuta-
tion graph is the corresponding comparability graph.
If a is a permutation of a set V, the permutation graph
corresponding to w is the graph on V where a pair of
nodes is adjacent if and only if the relative order of the
pair is inverted by the permutation. These classes of
graphs and partial orders arise in many combinatorial
problems. For a survey, see [12, 191.

The previous algorithms for transitive orientation
took O(na) [25], O(6m) [ll, 13, 221, or O(rz + mlogn)
time [17], where 6 is the maximum degree of any
vertex in the graph. Our algorithm produces a linear
extension of the transitive orientation, that is, a total
ordering of the nodes such that whenever b is a successor
of a in the ordering, (b, a) is not an edge in the
transitive orientation. Like the O(n2> algorithm of [25],

‘Amherst college. Current address: Department of Com-
puter Science, Willamcttc University, Salem, OR 97302 USA, rm-
cconne~willamctte.edu. Supportedin part by the graduate school
“Algoritbmische Diskrete Mathcmatik”, which is supported by
the Deutscbe Forschungsgemeinschaft, grant WE 1265/2-l

IDepartment of Computer Science, Vanderbilt University,
Nashville, TN 37235 USA, spin@vuse.vanderbilt.edu

Linear-Time Transitive Orientation

Jeremy P. Spinradt

the algorithm fails to recognize whether a graph is a
comparability graph. The algorithm is useful because
it makes it possible to solve a number combinatorial
problems on comparabibty graphs where recognition is
not necessary. It either provides a certificate that its
answer to the problem is correct, or it demonstrates
that the input graph is not a comparability graph. It
fails to recognize comparability graphs only because it
sometimes provides a solution and certificate even when
the input graph is not a comparability graph.

A key element in some of these corollary results is
that if G is a graph whose complement is a comparabil-
ity graph, the algorithm can produce a linear extension
of a transitive orientation of the complement of G in
time that is linear in the size of G, not in the size of the
complement. Given any linear order R on the vertices of
a graph G, we may find for any node II the number k of
predecessors in R that are adjacent in G. The number
of predecessors of ‘u in R that are nonadjacent in G may
be found by subtracting k from the number of predeces-
sors of v in R. Symmetric computations can be made
for successors. These observations give the following:

PROPOSITION 1.1. If G is a comparability graph, then
it takes O(n+m) time to find the number of predecessors
and sz1ccessors of each vertez of G in a transitive
orientation of G. If G is a co-comparability graph,
then it takes O(n + m) time to find the number of
predecessors and successors of each vertez of G in a
transitive orientation of the complement of G.

The following are problems that may be solved in
linear time using the decomposition algorithm. The
bounds are new, except in the case of interval graph
recognition.

1. Recognition of permutation graphs and two-
dimensional partial orders: Recognition of par-
tial orders of dimension k, where k is greater than
two, is NP complete [29]. Recognition of two-
dimensional partial orders clearly reduces to recog-
nition of permutation graphs. Previous O(n3)
and O(n’) algorithms for the problems have been
given [4, 22, 25, 241. We recognize permutation
graphs by finding two total orders, R and R’, whose
intersection is the partial order given by a transitive

19

20

orientation of G. We use the well-known character-
ization that G is a permutation graph iff G and its
complement B are both transitively orientable 1221.
The rank of a node in R is one plus the number of
its predecessors in a transitive orientation of G plus
the number of its predecessors in a transitive ori-
entation of its complement, Reversing the linear
extension of the transitive orientation of the com-
plement and repeating the operation gives the rank
of each node in R’. A linear time bound follows
from Proposition 1.1. Verifying that the graph is
a permutation graph thus reduces to verifying that
the intersection of the computed orders R and R’
is, in fact, the assumed transitive orientation of G,
which is easily performed in time that is linear in
the size of G.

2. Recognition of cointerval graphs and interva1
graphs: A graph is an interval graph if it is the
intersection graph of a set of intervals on the line.
A cointerval graph is the complement of an interval
graph. The bound for interval graph recognition
was previously known [2], but our algorithm gives
a novel approach. If the graph is a cointerval graph,
then we may find the number of predecessors and
successors of each node in a transitive orientation
of the graph, and if it is an interval graph, we may
do the same thing for a transitive orientation of
the complement, by Proposition 1.1. Ordering the
beginning points by number of predecessors and
endpoints by successors, then interleaving these
two lists, gives a set of intervals that realize the
graph. Verifying that the intervals realize the graph
gives the recognition algorithm, and this is easily
performed in time linear in the size of G.

3. Maximum clique and a minimum vertex
coloring in a comparability graph. Suppose
an orientation F of the edges of G is given by
our algorithm. It is an easy exercise to color
each vertex according to the length of the longest
directed path that begins at it in (V, F), using a
postorder operation during a depth-first search of

OW 1121. Th is g ives a coloring of the nodes of the
input graph such that no two adjacent nodes have
the same color. If G is a comparability graph, then
the longest path in the graph (V, F) is a clique of
G because of the transitivity of F. That the sizes
of the clique and the coloring are the same gives a
certificate of correctness. If the longest path is not
a clique, then the orientation is not transitive and
G is not a comparability graph.

4. Maximum independent set and minimum
clique cover in co-comparability graphs. A

5.

6.

2

graph is a co-comparability graph if its complement
is a comparability graph. (As we have seen, exam-
ples of co-comparability graphs are interval graphs
and permutation graphs.) Find a linear extension
of a transitive orientation of the complement of G.
Label each node 21 with the length of the longest
path in this oriented complement that begins at v.
To spend U(n+m) time, label nodes in order, start-
ing at the end of the linear extension. When node i
is reached, put it in bucket Ic, where Ic is the length
of the longest path that begins at i in the transitive
orientation of the complement. The bucket corre-
sponding to i is one plus the highest bucket num-
ber of it8 non-neighbor8 that are already in buckets.
This is found in time proportional to the number of
neighbors of i by marking the neighbors of i, then
searching downwards through the buckets, starting
at the highest nonempty bucket, for an unmarked
node.

Recognition of triangulated comparabihty
graphs [12]: A graph is SanguZated if every cy-
cle of size greater than three has a chord. Interval
graphs are an example. Triangulated comparability
graphs are the class where G is both triangulated
and a comparability graph. To recognize triangu-
lated comparability graphs, use the linear proce-
dure of [15], which assumes that a transitive orien-
tation is given.

Recognition of circular permutation
graphs [23]: A circular permutation graph is
a graph where each vertex of G corresponds to a
chord connecting two concentric circles, and where
two vertices are adjacent in the graph if and only
if the corresponding chords intersect each other.
Using our bounds for transitive orientation and
permutation-graph recognition, R. Sritharan has
obtained linear bounds for recognition of circular
permutation graphs [27].

Modular Decomposition

Let V(G) denote the vertices of a graph G. If X C
V(G), then G]X denotes the subgraph of G induced by
X. Sets X and Y overlap if they intersect, but neither
contains the other.

A module of an undirected graph G is a set X
of vertices such that for any 1: E V(G) - X, either
every element of X is adjacent to z or no element of
X is adjacent to a. V(G) and its singleton subsets are
trivial modules, and a graph is prime if it has no
other modules. It is degenerate if every subset of its
vertices is a module. The complete and ,edgeless graphs
are the only degenerate graphs.

21

If X and Y are disjoint modules in G, then either G.
XxY CEor(XxY)nE=0. Thus,ifPisapartition
of vertices of G, the relationship of the members of 7J is M2: Internal nodes are labeled prime or degener-

itself given by a graph, denoted G/P. ate, and for each degenerate node U, the mem-

Let T be a tree whose leaves are the nodes of a bers of chi2drew (U) are modules in G(U and

graph. Think of each node as synonymous with the set (GIU)/chiZdrenT(U) is complete or edgeless. - - _ _
consisting of its leaf descendants. The children of a node
U are denoted childrem(Label the internal nodes
of T as prime or degenerate. This is a partitive tree
corresponding to a family 3 of sets of vertices, where
the members of 3 are the nodes of the tree, as well as
those sets that are a union of children of a degenerate
node. The appendix gives an illustration.

The family of modules of G is given by a unique
partitive tree; this tree is the modular decomposi-
tion. If a node U is labeled degenerate in the tree, then
(G(U)/chiZdrem(U) is a degenerate graph, and if it is

The linear-time modular decomposition algorithm
of [17] first computes a Pa tree, which is an Ml
tree. It modifes the Ml tree to yield an M2 tree,
and then modifies the M2 tree to get the modular
decomposition. These trees have the property that the
family of sets represented by each tree is a subfamily
of the family represented by its predecessor. The
transitive orientation algorithm that we describe here
takes an approach that closely parallels the steps of that
decomposition algorithm.

labeldd prime, then this quotient is a prime graph.
The modular decomposition has been generalized to

3 Overview of the Algorithm

k -aary relations, hypergraphs, and other structures [20, We now describe a procedure called vertex partition-

28, 10, 11. Algorithms for computing it have a lengthy ing for transitively orienting a comparability graph.

history [14,3,21, 9, 16, 17, 6, 71; o(n+m) bounds were We assume without loss of generality that the graph

obtained recently [17, 6, 71. is prime, as described above. We begin with a start-

An edge (a, b) is contained in a module X if both of ing partition P = ((v}, V - {v)} of the vertices of G.

a and b are members of X. The edges that are contained We then refine ‘P inductively as follows. Select a pivot

in X may be oriented without regard to the orienta- vertex x. Select a set Q of partition classes that do

tion of those edges that are not contained in X, except not contain Z, and split each member Y E & into two

that one must ensure that cycles do not form. This classes Y, and Y,, which are the members of Y that are

allows application of a divide-and-conquer strategy to adjacent and nonadjacent to CC, respectively. This gives

the transitive orientation problem, using the modular a refinement of P whenever some member of & contains

decomposition tree as a guide in breaking up the prob- both neighbors and non-neighbors of x. Since the graph

lem into smaller subproblems. This eventually reduces is prime, there exists for every non-singleton Y E P a

the problem to that of finding a transitive orientation of pivot z E V(G) -Y that properly splits Y. Thus, there

the quotient (G(U)/chiZdrem(U) for each node U in the exists a sequence of operations that refines P until each

modular decomposition tree. However, if U is labeled p artition class is a singleton set.

degenerate, then any linear ordering of the nodes of this Here is how the procedure may be used to produce

quotient will do, since (GJU)/childrew(U) is complete a linear extension of a transitive orientation of G. Select

or edgeless. Thus, the entire problem reduces to that an arbitrary vertex v. Keep the partition classes in

of finding a transitive orientation of a prime graph [19]. an ordered list L, which is initially (iv}, V - (II)).

Henceforth, we may assume without loss of generality Whenever a partition class Y is split into two classes

that the graph we need to orient is prime, since modular by a pivot vertex 2, let the two new classes occupy

decomposition may be obtained in linear time. consecutive positions at the location in ,C previously

We will use not just the modular decomposition, occupied by Y. If x was in a class that precedes Y in L,

but a more general class of partitive trees that we call then let Y, occupy the earlier of the two new positions,

M trees. These are partitive trees where the modules and if x was after Y, then let Y,, occupy the later of the

of the graph are a subfamily of the set family the tree new positions. The appendix gives an illustration.

represents. In particular, we use the following classes of
M trees:

PROPOSITION 3.1. Let G be a prime comparability
graph. If v is selected arbitrarily in VertexPartition,
then when the procedure halts, the member of the right-

Ml: Internal nodes are labeled prime or degenerate, most partition C&ZSS in L is a sink in a transitive ori-
and for each degenerate node U, there exists a set of entation of G. If v is selected to be a node that is a
representatives from all members of childrem sink in a transitive orientation of G, then when the pro-
that induces a complete or an edgeless subgraph in cedure halts, L gives a Zinear eztension of a transitive

22

orientation of G.

Proof (sketch): If v is arbitrary, the invariant is
maintained during the vertex partition that if. y is a
vertex in the last partition class Y in L, then all edges
from y to V(G) - Y are oriented toward y. This is seen
with the following inductive argument. Let x be a pivot
that splits Y into Y, and Y,. Suppose y E Y,. Then
(c, y) is an edge of G. Since (z, y) is oriented toward y
then so must any edge (z, y) such that z E Yn (otherwise
(z, y) and (y,z) give a transitivity violation).. When v
is a sink in a transitive orientation, a similar inductive
argument is used to demonstrate the invariant that
all edges connecting different partition classes must be
oriented in the direction of the beginning of C. Q.E.D.

By the proposition, a linear extension of a transi-
tive orientation is obtained by performing selecting an
arbitrary vertex v, performing a vertex partition on the
initial partition ({v), V(G) - (v}) to identify a sink y,
then performing a second vertex partition on the initial
partition ((y), V(G) - (y}).

To produce a linear extension of the transitive
orientation of the complement of a graph, keep an
ordered list of partition classes as above. Earlier, when
a class Y split into Y, and Y,, we put Y, nearer the class
containing the pivot vertex in L. Instead, we now put it
farther than Y,. Since this is the only asymmetry in the
treatment of edges versus nonedges in the statement of
the algorithm, it follows that the modification yields an
algorithm for transitively orienting the complement of
the graph.

4 Linear-Time Transitive Orientation

To implement each Y E P, we use a doubly linked list
of nodes, where each entry in the list also has a pointer
to the head of the list. Using this data structure, it is
easily seen that a bound of O(~N(Z)/) can be achieved
for a pivot, by removing the members of Y, from Y as
they are found in Z’S adjacency list and letting what
remains of Y assume the role of Y,.

It is also easily seen that after a pivot operation, one
may delete the edges from a to members of & without
affecting the results of any future pivots. The time spent
traversing these elements in the adjacency list may be
charged to their deletion. The only obstacle to a linear
time bound is the time spent traversing elements in x’s
adjacency list that go from x to vertices that are not in
members of !J. Since & may not be chosen to contain
a’s partition class, this obstacle cannot be dealt with in
a straightforward way.

A partition class Y is consistent with an M tree if
it is either a node of the M tree or a union of children
of a degenerate node of the M tree. A partition P of

nodes of G is consistent with an M tree if each partition
class is consistent with the tree. For an M tree T that
appears during the decomposition algorithm, we give
a resolving procedure, which is a procedure that
generates pivot operations until P is consistent with T.
If another pivot is then performed and some classes are
split, we may again call the procedure to further refine
P until it is again consistent with T. Here is a summary
of how we use this idea to obtain the result.

4.1

(Sketched in Section 4.2) We give a resolving pro-
cedure on the Ml tree, called Mlresolve. Using
amortization arguments, it can be shown that the
bound on the total time spent in any O(n+m) calls
to the procedure is O(n + m).

(Omitted for space reasons) Using Mlresolve as
a subroutine, we derive a resolving procedure,
Maresolve, on the M2 tree. The time bound on
any O(n + m) calls to Maresolve is O(n + m).

(Sketched in Section 4.1) Using Maresolve as a
subroutine, we derive O(n+m) procedure that halts
only when P is consistent with the modular decom-
position tree of the graph. If the graph is prime,
then P must consist of singleton sets. This gives
a linear-time implementation of VertexPartition,
hence a linear-time solution to the transitive orien-
tation problem.

Full details are given in [18].

Vertex partitioning, given M2resolve.
In this section we show that the existence of

M2resolve implies that VertexPartition may be per-
formed in linear time.

DEFINITION 4.1. A set W of vertices of G is split
if it intersects more than one partition class of G. It
is isolated if every member of P that intersects W is
contained in W.

REMARK 4.1. If T is un M tree, then after a resolving
procedure halts on T, every split node of T is isolated.

PROPOSITION 4.1. [26] Let T be a partitive tree on
prime graph G. In O(n + m) time, we may label each
node U of T with a vertez w that splits U.

The procedure for performing the vertex partition
employs a preorder traversal of the internal nodes of
the M2 tree, starting at the children of the root. At
each node U of the tree, a call is made to M2resolve.
We then perform a pivot by choosing a pivot vertex
x that is known to split U. If U’s parent is labeled

23

prime, let the partition classes that intersect U assume
the role of Q in the pivot operation, and if U’s parent is
labeled degenerate, let the set of partition classes that
intersect the parent of U assume the role of Q. After this
procedure halts, all members of P are either singleton
sets or unions of leaf children of degenerate nodes, as
we will show. A final pivot with each vertex t E V(G),
setting & to be the members of ‘P that do not contain
t, ensures that all members of P are singletons.

To verify the correctness, note that after a call to
Maresolve, every member of P is either a node of the
tree or a union of children of a degenerate node. By
induction on the depth of a node U in the tree, U’s
parent is split, hence isolated by the call to Maresolve,
when U is reached. Similarly, U is isolated if its parent
is prime. Thus, IJ Q is either U or its parent, depending
on whether the parent is prime. To obtain a linear time
bound, we preprocess the adjacency lists by numbering
the leaves of the M2 tree in depth-first order, and sort
the adjacency lists of the nodes in this order. This
ensures that each node of the tree, hence U &, occupies
a contiguous interval in x’s adjacency list. The pivot at,
U may be performed by traversing only that, interval,
which is then deleted from z’s adjacency list.

4.2 A resolving procedure on the Pa tree.In this
section, we sketch how we derive the resolving procedure
on the Ml tree. For an Ml tree, we use the Pa tree,
which may be constructed in linear time and which
is shown in [26] to satisfy the definition of an Ml
tree. Any graph that has no prime induced subgraph
has a modular decomposition tree whose nodes are all
degenerate. Such a graph is a Cograph. The Cotree
algorithm of [5] gives its modular decomposition. The
children of the root of a cotree are the connected
components either of the graph or of its complement
(exactly one of these is disconnected), and the subtrees
are the cotrees on the subgraphs induced by those
components. A Pa is the four-vertex graph on vertex
set, {a, b,c, o!} with edge set ((a, b), (b, c), (c,d)}.

DEFINITION 4.2. If (a, b), (b, c), (c, d) is an induced Pa
of a graph, then let A := N(b) - N(c) - N(d), B :=
(N(o) n N(C)) - N(d), c := (N(b) n N(d)) - N(O),
D := N(c) - N(b) - N(a), U = (N(a) n N(b) II
N(c) n N(d)) u (x(a) n N(b) n z(c) n F(d)), and let
E=V-A-B-C-D-U.

The following procedure defines a Pa-tree for a
graph G. Because some steps of the procedure leave
choices open, G can have many nonisomorphic Pa-trees.

Function Createtree

if G is a cograph then T := cotree (G)

else

let (a, b), (b, c), (c, d) be a P4 in G;
select 3: E (a, b, c, d)
T := Createtree(G/(U U {cc}));

Let p be the leaf of T that corresponds to {x
Label p prime
forX=A,B,C,D,Edo

TX := Createtree(GIX)
make TX a child of p;

return T;

A universal pivot on vertex a is one where & is
selected to be the members of P other than the one that
contains a.

PROPOSITION 4.2. Let a, b, c, d and A, B, C, D, E, U be
as in Definition 4.2, and let e be an arbitrary member
of E. Suppose {a, b, c, d, e} is not contained in a single
partition class of P. Cycling through (a, b, c, d, e) four
times, performing a universal pivot on each member of
the sequence, refines P so that each member of the new
partition is contained in one of {A, B, C, D, E, U).

To make use of this observation, we use a tree that
combines the recursion trees for Createtree and for
Cotree. We will refer to this combined tree as the
local tree. Let T’ be the recursion tree corresponding
to an execution of Createtree. Next, replace each
Createtree node with two nodes, p and s, make the
former node’s children A, B, C, D, E into children of p,
label p a P4 node, make p be a child of s, label a as an S
node, and make U U {x) be the other child of s. Replace
each leaf of T’ with the cotree that was generated at
that leaf. Though the data structure representing the
local tree uses O(1) space for each node, we may think
of each node of the local tree as being the subset of
V(G) corresponding to its leaf descendants. The sets of
vertices passed to recursive calls are give by pointers in
leaf descendants.

We label each node of the local tree with a repre-
sentative vertex from the set that it represents. If the
node is a cotree node, the representatives of its children
are chosen to have minimum degree. If the node is a Pa
node, the representatives of its children A, B, C, D are
a, b, c, d, respectively, and the representatives of children
E and U U {z} are chosen to have minimum degree.
This is accomplished in linear time in postorder. We
show in [18] that the degree sum of the representatives
is O(n + m).

DEFINITION 4.3. A set X coincides with the local
tree if it satisfies the following conditions:

1. For any P4 node P and its parent S, either X n P
is empty, X n P = P, or X n S is contained in one
of A, B, C, D, E.

24

2. For any cotree node W, X n W is either empty, a
union of children of W, or contained in a child of
W.

A proof of the following proceeds by induction on
the size of G [18]:

LEMMA 4.1. P coincides with the local tree if and only
if it is consistent with the corresponding Pa tree.

After each pivot operation, one may maintain marks
on the nodes of the tree that indicate whether they
are split by the current partition P. The inductive
procedure for doing this adds nothing to the asymptotic
running time of the vertex partition.

The resolving procedure for the P4 tree “processes”
each split cotree or P4 node that has not been processed
in the current call or in a previous call to the procedure.
To process a Pa node, it performs four pivots on the
representatives of its children, as described in Propo-
sition 4.2. Degenerate nodes are also processed in this
way, while S nodes are simply marked as processed after
they are split. It halts only when all nodes are either un-
split or processed. Split nodes are processed in a chain
of ancestors, beginning at minimal split node in the tree,
and ending at a child of a previously processed node. By
induction on the height of a node in this chain, it may
be shown that when a node is processed, the represen-
tatives of its children do not all lie in the same partition
class. Using Proposition 4.2, it can then be shown by
induction that P coincides with the conditions of Defi-
nition 4.3 at every processed node. The procedure halts
only when every split cotree and P4 node has been pro-
cessed, either in the current call or a previous call to the
procedure, so by Lemma 4.1, it is consistent with the
P4 tree when it halts. This establishes the correctness.
The linear time bound for O(n + m) calls to the proce-
dure follows from the O(n + zn) bound on the degree of
a representative, summed over all representatives, and
the fact that no node of the tree is processed more than
once.

References

PI

PI

Paola Bonirroni. The (n - 2) property of primitive 2-
structures. In M. Venturini Zilli A.M. Msrchetti Spac-
camela, P. Mentrasti, editor, Proceedings of the Fourth
Italian Conference on Theoretical Computer Science,
pages 96-109. World Scientific, London, 1992.
S. Booth and S. Lueker. Testing for the consecutive
ones property, interval graphs, and graph planarity
using PQ-tree algorithms. J. Comput. Syst. Sci.,

P71

WI

WJI

13:335-379, 1976. PO1

PI

[41

[51

k31

[71

b31

PI

PO1

Nl

P4

[I31

P41

[I51

[161

B. Buer and RR. Mlihring. A fast algorithm for the
decomposition of graphs and posets. Mathematics of
Operations Research, 8:170-184, 1983.

C.J. Colbourn. On testing isomorphism of permutation
graphs. Networks, 11:13-21, 1981.
D.G. Corneil, Y. Perl, and L.K. Stewart. A linear
recognition algorithm for cographs. SIAM J. Comput.,
3:926-934, 1985.
A. Cournier and M. Habib. A new linear algorithm
for modular decomposition. In Sophie Tison, editor,
CAAP ‘94: 19th International Colloquium, Lecture
Notes in Computer Science, pages 68-02. Edinburgh,

UK, 1994.

E. Dahlhaus, J. Gusted& and R.M. McConnell. Effi-
cient and practical modular decomposition. Same vol-
ume.
B. Duschnik and E.W. Miller. Partially ordered sets.
Amer. J. Math., 63:600-610, 1941.
A. Ehrenfeucht, H.N. Gabow, R.M. McConnell, and
S.J. Sullivan. An O(n2) divide-and-conquer algorithm
for the prime tree decomposition of two-structures
and modular decomposition of graphs. Journal of
Algorithms, 16:283-294, 1994.
A. Ehrenfeucht and R.M. McConnell. A k-structure
generalieation of the theory of a-structures. Theoretical
Computer Science, 132:209-227, 1994.
M.C. Golumbic. The complexity of comparability
graph recognition and coloring. J. Combin. Theory
Ser. B, 22:68-a, 1977.

M.C. Golumbic. Algorithmic Graph Theory and Per-
fect Graphs. Academic Press, New York, 1980.
A. Gouil&-Houri. Caracterisation des graphes non
orient& dont on peut orienter les arrites de man&e
ir obtenir le graphe d’une relation d’ordre. C. R. Acad.
Sci. Paris, 254:1370-1371, 1962.

L.O. James, R.G. Stanton, and D.D. Cowan. Graph
decomposition for undirected graphs. In F. Hoffman
and R.B. Levow, editors, 3rd South-Eastern Conf.
Combinatorics, Graph Theory and Computing, pages
281-290. Utilitas Mathematics, Winnipeg, 1972.
T. Ma and J. Spinrad. Cycle-free partisl orders and
chordal comparability graphs. Order, 8:49-61, 1991.

R.M. McConnell. An O(n’) incremental algorithm
for modular decomposition of graphs and 2-structures.
Algorithmica, 14:229-248, 1995.
R.M. McConnell and J.P. Spinrad. Linear-time modu-
lar decomposition and efficient transitive orientation of
comparability graphs. In Proceedings of the Fifth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
pages 536-545. Arlington, Virginia, 1994.
R.M. McConnell and J.P. Spinrad. Modular decom-
position and transitive orientation. Technical Report
475/1995, Technische Universitiit Berlin, Fachbereich
Mathematik, 1995.
R.H. Mshring. Algorithmic aspects of comparability
graphs and interval graphs. In I. Rival, editor, Graphs
and Orders, pages 41-101. D. Reidel, Boston, 1985.
R.H. M&h&g. Algorithmic aspects of the substitu-

tion decomposition in optimization over relations, set
systems and boolean functions. Annals of Operations
Research, 4:195-225, 1985/6.

[21] J.H. Muller and J. Spinrad. Incremental moduiar
decomposition. Journal oj the ACM, 36:1-19, 1989.

[22] A. Pnueli, A. Lempel, and S. Even. Transitive orienta-
tion of graphs and identification of permutation graphs.
Canad. J. Math., 23:160-175, 1971.

[23] D. Rotem and J. Urrutia. Circular permutation
graphs. Networks, 12:429-437, 1982.

[24] J. Spinrad and J. Va.ldes. Recognition and isomor-
phism of two-dimensional partial orders.. In Proceed-
ings of tke 1 Uth Colloquium on Automata, Languages,
and Programming, Lecture Notes in Computer Science,
pages 676-686. Springer-Verlag, Berlin, 1983.

[25] J.P. Spinrad. On comparability and permutation
graphs. Sinm J. Cornput., l&658-670, 1965.

[26] J.P. Spinrad. F’s trees and substitution decomposition.
Discrete applied mathematics, 39:263-291, 1992.

[27] R. Sritharau. A linear time algorithm to recoguine cir-
c&r permutation graphs. Networks, page to appear.

[28] D. Wagner. Decomposition of k-ary relations. Discrete
Ma&.,81:303-322, 1990.

[29] M. Yannakakis. Th e complexity of the partial order
dimension problem. SIAM J. Algebraic and Discrete
Methods, 3:303-322, 1982.

Appendix

3 b c e f g

Figure 1. A partitive tree on set {a, b, c, d, e, f, g}. The
labels of the internal nodes stand for “degenerate” and
“prime”. The “nodes” of the tree are {a), (b}, {c),

14, telj {fl, -bh Ia, h ~1, {es f, glj Ia, 4 cl 4 e, f, 9).
Additional sets in the set family represented by the
tree are unions of children of degenerate nodes: {a, b),

lb, ~1, (a, ~1, {a, 4 c, 4, (a, h c, en f, 9)s (4 e, I, 91.
The modular decomposition is the representation of
the modules of a graph with a partitive tree,

A h IB h

h

I

ab @ea befa
c d I I f b 1 I I g b

F d
IG

h le lgl flcl al@lb

H

Figure 2. Vertex partitioning. A. A prime com-
parability graph G. B. A transitive orientation of G.
Note that h is a source. C. The initial ordered partition
‘P = ((h}, {a, b,c, d,e, f,g, h}). D. After a pivot on h.
Since (a, b, c, d) is adjacent to h and h is earlier in the
ordering, this subset goes after (e, f, 9). E. After a
pivot on d. Since e is adjacent to d and d is later in
the ordering, e goes before f and g. F. After a pivot
on g. G. After a pivot on b. H. After a second pivot
on d. This gives a linear extension (topological sort) of
the transitive orientation of G in which h is a source.
Every prime comparability graph has two transitive
orientations; the transpose of this is the one where h is
a sink.

