
Abstract 

Ross M. McConnell* 

The transitive orientation problem is the problem of 

assigning a direction to each edge of a graph so that the 
resulting digraph is transitive. A graph is a comparability 
graph if such an assignment is possible. We describe an 
O(n + m) algorithm for the transitive orientation problem, 
where n and m are the number of vertices and edges of the 
graph; full details are given in [IS]. This gives linear time 
bounds for maximum clique and minimum vertex coloring 
on comparability graphs, recognition of two-dimensional 
partial orders, permutation graphs, cointerval graphs, and 
triangulated comparability graphs, and other combinatorial 
problems on comparability graphs and their complements. 

1 Introduction 

A partial order may be viewed as a transitive directed 
acyclic graph. A comparability graph is the graph 
obtained by ignoring the edge directions of a transitive 
directed acyclic graph; it gives the comparability rela- 
tion for a partial order. It is well known that every par- 
tial order is the intersection of a set of total orders [8]. A 
two-dimensional partial order is a partial order that 
is the intersection of two linear orders, and a permuta- 
tion graph is the corresponding comparability graph. 
If a is a permutation of a set V, the permutation graph 
corresponding to w is the graph on V where a pair of 
nodes is adjacent if and only if the relative order of the 
pair is inverted by the permutation. These classes of 
graphs and partial orders arise in many combinatorial 
problems. For a survey, see [12, 191. 

The previous algorithms for transitive orientation 
took O(na) [25], O(6m) [ll, 13, 221, or O(rz + mlogn) 
time [17], where 6 is the maximum degree of any 
vertex in the graph. Our algorithm produces a linear 
extension of the transitive orientation, that is, a total 
ordering of the nodes such that whenever b is a successor 
of a in the ordering, (b, a) is not an edge in the 
transitive orientation. Like the O(n2> algorithm of [25], 
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the algorithm fails to recognize whether a graph is a 
comparability graph. The algorithm is useful because 
it makes it possible to solve a number combinatorial 
problems on comparabibty graphs where recognition is 
not necessary. It either provides a certificate that its 
answer to the problem is correct, or it demonstrates 
that the input graph is not a comparability graph. It 
fails to recognize comparability graphs only because it 
sometimes provides a solution and certificate even when 
the input graph is not a comparability graph. 

A key element in some of these corollary results is 
that if G is a graph whose complement is a comparabil- 
ity graph, the algorithm can produce a linear extension 
of a transitive orientation of the complement of G in 
time that is linear in the size of G, not in the size of the 
complement. Given any linear order R on the vertices of 
a graph G, we may find for any node II the number k of 
predecessors in R that are adjacent in G. The number 
of predecessors of ‘u in R that are nonadjacent in G may 
be found by subtracting k from the number of predeces- 
sors of v in R. Symmetric computations can be made 
for successors. These observations give the following: 

PROPOSITION 1.1. If G is a comparability graph, then 
it takes O(n+m) time to find the number of predecessors 
and sz1ccessors of each vertez of G in a transitive 
orientation of G. If G is a co-comparability graph, 
then it takes O(n + m) time to find the number of 
predecessors and successors of each vertez of G in a 
transitive orientation of the complement of G. 

The following are problems that may be solved in 
linear time using the decomposition algorithm. The 
bounds are new, except in the case of interval graph 
recognition. 

1. Recognition of permutation graphs and two- 
dimensional partial orders: Recognition of par- 
tial orders of dimension k, where k is greater than 
two, is NP complete [29]. Recognition of two- 
dimensional partial orders clearly reduces to recog- 
nition of permutation graphs. Previous O(n3) 
and O(n’) algorithms for the problems have been 
given [4, 22, 25, 241. We recognize permutation 
graphs by finding two total orders, R and R’, whose 
intersection is the partial order given by a transitive 
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orientation of G. We use the well-known character- 
ization that G is a permutation graph iff G and its 
complement B are both transitively orientable 1221. 
The rank of a node in R is one plus the number of 
its predecessors in a transitive orientation of G plus 
the number of its predecessors in a transitive ori- 
entation of its complement, Reversing the linear 
extension of the transitive orientation of the com- 
plement and repeating the operation gives the rank 
of each node in R’. A linear time bound follows 
from Proposition 1.1. Verifying that the graph is 
a permutation graph thus reduces to verifying that 
the intersection of the computed orders R and R’ 
is, in fact, the assumed transitive orientation of G, 
which is easily performed in time that is linear in 
the size of G. 

2. Recognition of cointerval graphs and interva1 
graphs: A graph is an interval graph if it is the 
intersection graph of a set of intervals on the line. 
A cointerval graph is the complement of an interval 
graph. The bound for interval graph recognition 
was previously known [2], but our algorithm gives 
a novel approach. If the graph is a cointerval graph, 
then we may find the number of predecessors and 
successors of each node in a transitive orientation 
of the graph, and if it is an interval graph, we may 
do the same thing for a transitive orientation of 
the complement, by Proposition 1.1. Ordering the 
beginning points by number of predecessors and 
endpoints by successors, then interleaving these 
two lists, gives a set of intervals that realize the 
graph. Verifying that the intervals realize the graph 
gives the recognition algorithm, and this is easily 
performed in time linear in the size of G. 

3. Maximum clique and a minimum vertex 
coloring in a comparability graph. Suppose 
an orientation F of the edges of G is given by 
our algorithm. It is an easy exercise to color 
each vertex according to the length of the longest 
directed path that begins at it in (V, F), using a 
postorder operation during a depth-first search of 

OW 1121. Th is g ives a coloring of the nodes of the 
input graph such that no two adjacent nodes have 
the same color. If G is a comparability graph, then 
the longest path in the graph (V, F) is a clique of 
G because of the transitivity of F. That the sizes 
of the clique and the coloring are the same gives a 
certificate of correctness. If the longest path is not 
a clique, then the orientation is not transitive and 
G is not a comparability graph. 

4. Maximum independent set and minimum 
clique cover in co-comparability graphs. A 

5. 
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graph is a co-comparability graph if its complement 
is a comparability graph. (As we have seen, exam- 
ples of co-comparability graphs are interval graphs 
and permutation graphs.) Find a linear extension 
of a transitive orientation of the complement of G. 
Label each node 21 with the length of the longest 
path in this oriented complement that begins at v. 
To spend U(n+m) time, label nodes in order, start- 
ing at the end of the linear extension. When node i 
is reached, put it in bucket Ic, where Ic is the length 
of the longest path that begins at i in the transitive 
orientation of the complement. The bucket corre- 
sponding to i is one plus the highest bucket num- 
ber of it8 non-neighbor8 that are already in buckets. 
This is found in time proportional to the number of 
neighbors of i by marking the neighbors of i, then 
searching downwards through the buckets, starting 
at the highest nonempty bucket, for an unmarked 
node. 

Recognition of triangulated comparabihty 
graphs [12]: A graph is SanguZated if every cy- 
cle of size greater than three has a chord. Interval 
graphs are an example. Triangulated comparability 
graphs are the class where G is both triangulated 
and a comparability graph. To recognize triangu- 
lated comparability graphs, use the linear proce- 
dure of [15], which assumes that a transitive orien- 
tation is given. 

Recognition of circular permutation 
graphs [23]: A circular permutation graph is 
a graph where each vertex of G corresponds to a 
chord connecting two concentric circles, and where 
two vertices are adjacent in the graph if and only 
if the corresponding chords intersect each other. 
Using our bounds for transitive orientation and 
permutation-graph recognition, R. Sritharan has 
obtained linear bounds for recognition of circular 
permutation graphs [27]. 

Modular Decomposition 

Let V(G) denote the vertices of a graph G. If X C 
V(G), then G]X denotes the subgraph of G induced by 
X. Sets X and Y overlap if they intersect, but neither 
contains the other. 

A module of an undirected graph G is a set X 
of vertices such that for any 1: E V(G) - X, either 
every element of X is adjacent to z or no element of 
X is adjacent to a. V(G) and its singleton subsets are 
trivial modules, and a graph is prime if it has no 
other modules. It is degenerate if every subset of its 
vertices is a module. The complete and ,edgeless graphs 
are the only degenerate graphs. 
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If X and Y are disjoint modules in G, then either G. 
XxY CEor(XxY)nE=0. Thus,ifPisapartition 
of vertices of G, the relationship of the members of 7J is M2: Internal nodes are labeled prime or degener- 

itself given by a graph, denoted G/P. ate, and for each degenerate node U, the mem- 

Let T be a tree whose leaves are the nodes of a bers of chi2drew (U) are modules in G(U and 

graph. Think of each node as synonymous with the set (GIU)/chiZdrenT(U) is complete or edgeless. - - _ _ 
consisting of its leaf descendants. The children of a node 
U are denoted childrem( Label the internal nodes 
of T as prime or degenerate. This is a partitive tree 
corresponding to a family 3 of sets of vertices, where 
the members of 3 are the nodes of the tree, as well as 
those sets that are a union of children of a degenerate 
node. The appendix gives an illustration. 

The family of modules of G is given by a unique 
partitive tree; this tree is the modular decomposi- 
tion. If a node U is labeled degenerate in the tree, then 
(G(U)/chiZdrem(U) is a degenerate graph, and if it is 

The linear-time modular decomposition algorithm 
of [17] first computes a Pa tree, which is an Ml 
tree. It modifes the Ml tree to yield an M2 tree, 
and then modifies the M2 tree to get the modular 
decomposition. These trees have the property that the 
family of sets represented by each tree is a subfamily 
of the family represented by its predecessor. The 
transitive orientation algorithm that we describe here 
takes an approach that closely parallels the steps of that 
decomposition algorithm. 

labeldd prime, then this quotient is a prime graph. 
The modular decomposition has been generalized to 

3 Overview of the Algorithm 

k -aary relations, hypergraphs, and other structures [20, We now describe a procedure called vertex partition- 

28, 10, 11. Algorithms for computing it have a lengthy ing for transitively orienting a comparability graph. 

history [14,3,21, 9, 16, 17, 6, 71; o(n+m) bounds were We assume without loss of generality that the graph 

obtained recently [17, 6, 71. is prime, as described above. We begin with a start- 

An edge (a, b) is contained in a module X if both of ing partition P = ((v}, V - {v)} of the vertices of G. 

a and b are members of X. The edges that are contained We then refine ‘P inductively as follows. Select a pivot 

in X may be oriented without regard to the orienta- vertex x. Select a set Q of partition classes that do 

tion of those edges that are not contained in X, except not contain Z, and split each member Y E & into two 

that one must ensure that cycles do not form. This classes Y, and Y,, which are the members of Y that are 

allows application of a divide-and-conquer strategy to adjacent and nonadjacent to CC, respectively. This gives 

the transitive orientation problem, using the modular a refinement of P whenever some member of & contains 

decomposition tree as a guide in breaking up the prob- both neighbors and non-neighbors of x. Since the graph 

lem into smaller subproblems. This eventually reduces is prime, there exists for every non-singleton Y E P a 

the problem to that of finding a transitive orientation of pivot z E V(G) -Y that properly splits Y. Thus, there 

the quotient (G(U)/chiZdrem(U) for each node U in the exists a sequence of operations that refines P until each 

modular decomposition tree. However, if U is labeled p artition class is a singleton set. 

degenerate, then any linear ordering of the nodes of this Here is how the procedure may be used to produce 

quotient will do, since (GJU)/childrew(U) is complete a linear extension of a transitive orientation of G. Select 

or edgeless. Thus, the entire problem reduces to that an arbitrary vertex v. Keep the partition classes in 

of finding a transitive orientation of a prime graph [19]. an ordered list L, which is initially (iv}, V - (II)). 

Henceforth, we may assume without loss of generality Whenever a partition class Y is split into two classes 

that the graph we need to orient is prime, since modular by a pivot vertex 2, let the two new classes occupy 

decomposition may be obtained in linear time. consecutive positions at the location in ,C previously 

We will use not just the modular decomposition, occupied by Y. If x was in a class that precedes Y in L, 

but a more general class of partitive trees that we call then let Y, occupy the earlier of the two new positions, 

M trees. These are partitive trees where the modules and if x was after Y, then let Y,, occupy the later of the 

of the graph are a subfamily of the set family the tree new positions. The appendix gives an illustration. 

represents. In particular, we use the following classes of 
M trees: 

PROPOSITION 3.1. Let G be a prime comparability 
graph. If v is selected arbitrarily in VertexPartition, 
then when the procedure halts, the member of the right- 

Ml: Internal nodes are labeled prime or degenerate, most partition C&ZSS in L is a sink in a transitive ori- 
and for each degenerate node U, there exists a set of entation of G. If v is selected to be a node that is a 
representatives from all members of childrem sink in a transitive orientation of G, then when the pro- 
that induces a complete or an edgeless subgraph in cedure halts, L gives a Zinear eztension of a transitive 
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orientation of G. 

Proof (sketch): If v is arbitrary, the invariant is 
maintained during the vertex partition that if. y is a 
vertex in the last partition class Y in L, then all edges 
from y to V(G) - Y are oriented toward y. This is seen 
with the following inductive argument. Let x be a pivot 
that splits Y into Y, and Y,. Suppose y E Y,. Then 
(c, y) is an edge of G. Since (z, y) is oriented toward y 
then so must any edge (z, y) such that z E Yn (otherwise 
(z, y) and (y,z) give a transitivity violation).. When v 
is a sink in a transitive orientation, a similar inductive 
argument is used to demonstrate the invariant that 
all edges connecting different partition classes must be 
oriented in the direction of the beginning of C. Q.E.D. 

By the proposition, a linear extension of a transi- 
tive orientation is obtained by performing selecting an 
arbitrary vertex v, performing a vertex partition on the 
initial partition ({v), V(G) - (v}) to identify a sink y, 
then performing a second vertex partition on the initial 
partition ((y), V(G) - (y}). 

To produce a linear extension of the transitive 
orientation of the complement of a graph, keep an 
ordered list of partition classes as above. Earlier, when 
a class Y split into Y, and Y,, we put Y, nearer the class 
containing the pivot vertex in L. Instead, we now put it 
farther than Y,. Since this is the only asymmetry in the 
treatment of edges versus nonedges in the statement of 
the algorithm, it follows that the modification yields an 
algorithm for transitively orienting the complement of 
the graph. 

4 Linear-Time Transitive Orientation 

To implement each Y E P, we use a doubly linked list 
of nodes, where each entry in the list also has a pointer 
to the head of the list. Using this data structure, it is 
easily seen that a bound of O(~N(Z)/) can be achieved 
for a pivot, by removing the members of Y, from Y as 
they are found in Z’S adjacency list and letting what 
remains of Y assume the role of Y,. 

It is also easily seen that after a pivot operation, one 
may delete the edges from a to members of & without 
affecting the results of any future pivots. The time spent 
traversing these elements in the adjacency list may be 
charged to their deletion. The only obstacle to a linear 
time bound is the time spent traversing elements in x’s 
adjacency list that go from x to vertices that are not in 
members of !J. Since & may not be chosen to contain 
a’s partition class, this obstacle cannot be dealt with in 
a straightforward way. 

A partition class Y is consistent with an M tree if 
it is either a node of the M tree or a union of children 
of a degenerate node of the M tree. A partition P of 

nodes of G is consistent with an M tree if each partition 
class is consistent with the tree. For an M tree T that 
appears during the decomposition algorithm, we give 
a resolving procedure, which is a procedure that 
generates pivot operations until P is consistent with T. 
If another pivot is then performed and some classes are 
split, we may again call the procedure to further refine 
P until it is again consistent with T. Here is a summary 
of how we use this idea to obtain the result. 

4.1 

(Sketched in Section 4.2) We give a resolving pro- 
cedure on the Ml tree, called Mlresolve. Using 
amortization arguments, it can be shown that the 
bound on the total time spent in any O(n+m) calls 
to the procedure is O(n + m). 

(Omitted for space reasons) Using Mlresolve as 
a subroutine, we derive a resolving procedure, 
Maresolve, on the M2 tree. The time bound on 
any O(n + m) calls to Maresolve is O(n + m). 

(Sketched in Section 4.1) Using Maresolve as a 
subroutine, we derive O(n+m) procedure that halts 
only when P is consistent with the modular decom- 
position tree of the graph. If the graph is prime, 
then P must consist of singleton sets. This gives 
a linear-time implementation of VertexPartition, 
hence a linear-time solution to the transitive orien- 
tation problem. 

Full details are given in [18]. 

Vertex partitioning, given M2resolve. 
In this section we show that the existence of 

M2resolve implies that VertexPartition may be per- 
formed in linear time. 

DEFINITION 4.1. A set W of vertices of G is split 
if it intersects more than one partition class of G. It 
is isolated if every member of P that intersects W is 
contained in W. 

REMARK 4.1. If T is un M tree, then after a resolving 
procedure halts on T, every split node of T is isolated. 

PROPOSITION 4.1. [26] Let T be a partitive tree on 
prime graph G. In O(n + m) time, we may label each 
node U of T with a vertez w that splits U. 

The procedure for performing the vertex partition 
employs a preorder traversal of the internal nodes of 
the M2 tree, starting at the children of the root. At 
each node U of the tree, a call is made to M2resolve. 
We then perform a pivot by choosing a pivot vertex 
x that is known to split U. If U’s parent is labeled 
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prime, let the partition classes that intersect U assume 
the role of Q in the pivot operation, and if U’s parent is 
labeled degenerate, let the set of partition classes that 
intersect the parent of U assume the role of Q. After this 
procedure halts, all members of P are either singleton 
sets or unions of leaf children of degenerate nodes, as 
we will show. A final pivot with each vertex t E V(G), 
setting & to be the members of ‘P that do not contain 
t, ensures that all members of P are singletons. 

To verify the correctness, note that after a call to 
Maresolve, every member of P is either a node of the 
tree or a union of children of a degenerate node. By 
induction on the depth of a node U in the tree, U’s 
parent is split, hence isolated by the call to Maresolve, 
when U is reached. Similarly, U is isolated if its parent 
is prime. Thus, IJ Q is either U or its parent, depending 
on whether the parent is prime. To obtain a linear time 
bound, we preprocess the adjacency lists by numbering 
the leaves of the M2 tree in depth-first order, and sort 
the adjacency lists of the nodes in this order. This 
ensures that each node of the tree, hence U &, occupies 
a contiguous interval in x’s adjacency list. The pivot at, 
U may be performed by traversing only that, interval, 
which is then deleted from z’s adjacency list. 

4.2 A resolving procedure on the Pa tree.In this 
section, we sketch how we derive the resolving procedure 
on the Ml tree. For an Ml tree, we use the Pa tree, 
which may be constructed in linear time and which 
is shown in [26] to satisfy the definition of an Ml 
tree. Any graph that has no prime induced subgraph 
has a modular decomposition tree whose nodes are all 
degenerate. Such a graph is a Cograph. The Cotree 
algorithm of [5] gives its modular decomposition. The 
children of the root of a cotree are the connected 
components either of the graph or of its complement 
(exactly one of these is disconnected), and the subtrees 
are the cotrees on the subgraphs induced by those 
components. A Pa is the four-vertex graph on vertex 
set, {a, b,c, o!} with edge set ((a, b), (b, c), (c,d)}. 

DEFINITION 4.2. If (a, b), (b, c), (c, d) is an induced Pa 
of a graph, then let A := N(b) - N(c) - N(d), B := 
(N(o) n N(C)) - N(d), c := (N(b) n N(d)) - N(O), 
D := N(c) - N(b) - N(a), U = (N(a) n N(b) II 
N(c) n N(d)) u (x(a) n N(b) n z(c) n F(d)), and let 
E=V-A-B-C-D-U. 

The following procedure defines a Pa-tree for a 
graph G. Because some steps of the procedure leave 
choices open, G can have many nonisomorphic Pa-trees. 

Function Createtree 

if G is a cograph then T := cotree (G) 

else 

let (a, b), (b, c), (c, d) be a P4 in G; 
select 3: E (a, b, c, d) 
T := Createtree(G/(U U {cc})); 

Let p be the leaf of T that corresponds to {x 
Label p prime 
forX=A,B,C,D,Edo 

TX := Createtree(GIX) 
make TX a child of p; 

return T; 

A universal pivot on vertex a is one where & is 
selected to be the members of P other than the one that 
contains a. 

PROPOSITION 4.2. Let a, b, c, d and A, B, C, D, E, U be 
as in Definition 4.2, and let e be an arbitrary member 
of E. Suppose {a, b, c, d, e} is not contained in a single 
partition class of P. Cycling through (a, b, c, d, e) four 
times, performing a universal pivot on each member of 
the sequence, refines P so that each member of the new 
partition is contained in one of {A, B, C, D, E, U). 

To make use of this observation, we use a tree that 
combines the recursion trees for Createtree and for 
Cotree. We will refer to this combined tree as the 
local tree. Let T’ be the recursion tree corresponding 
to an execution of Createtree. Next, replace each 
Createtree node with two nodes, p and s, make the 
former node’s children A, B, C, D, E into children of p, 
label p a P4 node, make p be a child of s, label a as an S 
node, and make U U {x) be the other child of s. Replace 
each leaf of T’ with the cotree that was generated at 
that leaf. Though the data structure representing the 
local tree uses O(1) space for each node, we may think 
of each node of the local tree as being the subset of 
V(G) corresponding to its leaf descendants. The sets of 
vertices passed to recursive calls are give by pointers in 
leaf descendants. 

We label each node of the local tree with a repre- 
sentative vertex from the set that it represents. If the 
node is a cotree node, the representatives of its children 
are chosen to have minimum degree. If the node is a Pa 
node, the representatives of its children A, B, C, D are 
a, b, c, d, respectively, and the representatives of children 
E and U U {z} are chosen to have minimum degree. 
This is accomplished in linear time in postorder. We 
show in [18] that the degree sum of the representatives 
is O(n + m). 

DEFINITION 4.3. A set X coincides with the local 
tree if it satisfies the following conditions: 

1. For any P4 node P and its parent S, either X n P 
is empty, X n P = P, or X n S is contained in one 
of A, B, C, D, E. 
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2. For any cotree node W, X n W is either empty, a 
union of children of W, or contained in a child of 
W. 

A proof of the following proceeds by induction on 
the size of G [18]: 

LEMMA 4.1. P coincides with the local tree if and only 
if it is consistent with the corresponding Pa tree. 

After each pivot operation, one may maintain marks 
on the nodes of the tree that indicate whether they 
are split by the current partition P. The inductive 
procedure for doing this adds nothing to the asymptotic 
running time of the vertex partition. 

The resolving procedure for the P4 tree “processes” 
each split cotree or P4 node that has not been processed 
in the current call or in a previous call to the procedure. 
To process a Pa node, it performs four pivots on the 
representatives of its children, as described in Propo- 
sition 4.2. Degenerate nodes are also processed in this 
way, while S nodes are simply marked as processed after 
they are split. It halts only when all nodes are either un- 
split or processed. Split nodes are processed in a chain 
of ancestors, beginning at minimal split node in the tree, 
and ending at a child of a previously processed node. By 
induction on the height of a node in this chain, it may 
be shown that when a node is processed, the represen- 
tatives of its children do not all lie in the same partition 
class. Using Proposition 4.2, it can then be shown by 
induction that P coincides with the conditions of Defi- 
nition 4.3 at every processed node. The procedure halts 
only when every split cotree and P4 node has been pro- 
cessed, either in the current call or a previous call to the 
procedure, so by Lemma 4.1, it is consistent with the 
P4 tree when it halts. This establishes the correctness. 
The linear time bound for O(n + m) calls to the proce- 
dure follows from the O(n + zn) bound on the degree of 
a representative, summed over all representatives, and 
the fact that no node of the tree is processed more than 
once. 
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Appendix 

3 b c e f g 

Figure 1. A partitive tree on set {a, b, c, d, e, f, g}. The 
labels of the internal nodes stand for “degenerate” and 
“prime”. The “nodes” of the tree are {a), (b}, {c), 

14, telj {fl, -bh Ia, h ~1, {es f, glj Ia, 4 cl 4 e, f, 9). 
Additional sets in the set family represented by the 
tree are unions of children of degenerate nodes: {a, b), 

lb, ~1, (a, ~1, {a, 4 c, 4, (a, h c, en f, 9)s (4 e, I, 91. 
The modular decomposition is the representation of 
the modules of a graph with a partitive tree, 

A h IB h 

h 

I 

ab @ea befa 
c d I I f b 1 I I g b 

F d 
IG 

h le lgl flcl al@lb 

H 

Figure 2. Vertex partitioning. A. A prime com- 
parability graph G. B. A transitive orientation of G. 
Note that h is a source. C. The initial ordered partition 
‘P = ((h}, {a, b,c, d,e, f,g, h}). D. After a pivot on h. 
Since (a, b, c, d) is adjacent to h and h is earlier in the 
ordering, this subset goes after (e, f, 9). E. After a 
pivot on d. Since e is adjacent to d and d is later in 
the ordering, e goes before f and g. F. After a pivot 
on g. G. After a pivot on b. H. After a second pivot 
on d. This gives a linear extension (topological sort) of 
the transitive orientation of G in which h is a source. 
Every prime comparability graph has two transitive 
orientations; the transpose of this is the one where h is 
a sink. 


