
 

  

 

Aalborg Universitet

Linear Time Varying Approach to Satellite Attitude Control Using only Electromagnetic
Actuation

Wisniewski, Rafal

Publication date:
1997

Document Version
Også kaldet Forlagets PDF

Link to publication from Aalborg University

Citation for published version (APA):
Wisniewski, R. (1997). Linear Time Varying Approach to Satellite Attitude Control Using only Electromagnetic
Actuation.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 16, 2022

https://vbn.aau.dk/da/publications/320b14d0-9c2d-11db-8ed6-000ea68e967b


LINEAR TIME VARYING APPROACH TO SATELLITE ATTITUDE CONTROL USING

ONLY ELECTROMAGNETIC ACTUATION

Rafał Wiśniewski

Aalborg University, Department of Control Engineering,

Bajers Vej 7, DK-9220 Aalborg Ø, Denmark. raf@control.auc.dk

Abstract

Recently small satellite missions have gained considerable interest due to low-cost launch op-

portunities and technological improvement of micro-electronics. Required pointing accuracy of

small, inexpensive satellites is often relatively loose, within a couple of degrees. Application of

cheap, lightweight, and power efficient actuators is therefore crucial and viable. This paper dis-

cusses linear attitude control strategies for a low earth orbit satellite actuated by a set of mutually

perpendicular electromagnetic coils. The principle is to use the interaction between the Earth’s

magnetic field and the magnetic field generated by the coils. A key challenge is the fact that

the mechanical torque can only be produced in a plane perpendicular to the local geomagnetic

field vector, therefore the satellite is not controllable when considered at fixed time. Availability

of design methods for time varying systems is limited, nevertheless, a solution of the Riccati

equation gives an excellent frame for investigations provided in this paper. An observation that

the geomagnetic field changes approximately periodically when a satellite is on a near polar

orbit is used throughout this paper. Three types of attitude controllers are proposed: an infinite

horizon, a finite horizon, and a constant gain controller. Their performance is evaluated and

compared in the simulation study of the realistic environment.

Introduction

The work is motivated by the Ørsted satellite mission. The Ørsted satellite is a 60 kg auxiliary

payload scheduled to be launched by a MD-Delta II launch vehicle in the late 1997 into a 450

x 850 km orbit with a 96 degree inclination. The purpose of the Ørsted satellite is to conduct a

research program in the discipline of the magnetic field of the Earth. When the satellite is firmly

stabilized and the ground contact is established, an
�✂✁

long gravity gradient boom is deployed.

The boom carries the scientific instruments that must be displaced from the electro-magnetic

disturbances present in the main body of the satellite.

Stabilization of the Ørsted satellite is accomplished by active use of a set of mutually perpendic-

ular coils called magnetorquers. The interaction between external magnetic field of the Earth

and the magnetic field generated in the magnetorquers produces a mechanical torque, which

is used to correct the attitude. Magnetic control systems are relatively lightweight, require low

power and are inexpensive, however they can only be applied for the satellites on relatively high

inclined orbits. The Ørsted’s coils are mounted in the x, y, and z facets of the main body. A

maximum producible magnetic moment is 20 ✄✆☎✞✝ . The maximum mechanical torque produced

by the magnetorquers is approximately ✟✡✠☞☛✍✌✡✎✏✟✒✑✔✓✂✕ ✁
above the equator, and ✎✖✠✘✗✙✌✒✎✚✟✡✑✔✓✂✕ ✁

above the Poles.

After boom deployment the nominal operation phase controller is activated. The satellite shall
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be three axis stabilized with its boom pointing outwards. Formally, a coordinate system fixed

in the satellite structure shall coincide with a reference coordinate system fixed in orbit. The

pointing accuracy is required to be within 10 degrees in pitch, roll, and 20 degrees in yaw.

There is extensive literature covering satellite attitude control design. Most of the algorithms

assume application of reaction wheels and/or thrusters for three axis stabilization, though. Atti-

tude control with sole use of magnetorquers has the significant challenge that the system is only

controllable in two axes at any time with the axes being perpendicular to the local geomagnetic

field vector.

The number of internationally published papers on magnetic attitude control is still rather small.

Most of them deal with momentum desaturation of reaction wheel systems. The available lit-

erature on magnetorquing for three axis stabilization of satellites includes Ref.1, where a con-

figuration with two magnetic coils and a reaction wheel were analyzed. The problem of three

axis control using only electromagnetic coils was addressed in Ref.2, where the linearized time

varying satellite motion model was approximated by a linear time invariant counterpart. An-

other linear approach was given in Ref.3. The desired control torque was defined first and then

the actual magnetic generated control torque was derived. Three-axis stabilization with use of

magnetic torquing of a satellite without appendages was treated in Ref.4, where sliding control

law stabilizing a tumbling satellite was proposed. An approach for three-axis magnetic sta-

bilization of a low earth near polar orbit satellite based on Lyapunov theory was presented in

Ref.5. Last but not least, a rule-based fuzzy controller was presented in Ref.6

The first part of this study addresses linearization technique for a LEO satellite motion. It

is shown that a satellite on a near polar orbit actuated by a set of perpendicular magnetorquers

may be considered as a periodic system. In the subsequent sections three types of controllers are

design: an infinite horizon, a finite horizon, and a constant gain controller. Their performance

is evaluated in the simulation study of the realistic environment.

Satellite Linear Model

The satellite considered in this study is modeled as a rigid body in the Earth gravitational field

influenced by the aerodynamic drag torque and the control torque generated by the magnetor-

quers. The attitude is parameterized by the unit quaternion providing a singularity free repre-

sentation of the kinematics. The details about mathematical modeling of a LEO satellite can be

found in Ref.7. In this article only a satellite linear model will be investigated.

It has been already mentioned that the control torque, ✛✢✜✤✣✦✥★✧ , of the magnetic actuated satellite

always lies perpendicular to the geomagnetic field vector, ✩ , furthermore a magnetic moment,✪ , generated in the direction parallel to the local geomagnetic field has no influence on the

satellite motion. This can be explained by the following equality✛✫✜✤✣✦✥★✧✭✬✯✮ ✪✱✰✳✲✱✪✵✴✷✶✹✸ ✩✺✬ ✪✵✴✻✸ ✩✽✼ (1)

where ✪✱✰ is the component of the magnetic moment, ✪ , parallel to ✩ , whereas ✪✾✴ is perpen-

dicular to the local geomagnetic field.

Concluding, the necessary condition for power optimality of a control law is that the magnetic

moment lies on a 2-dimensional manifold perpendicular to the geomagnetic field vector.

Consider the following mapping ✿✪❁❀❂ ✪ ❃❄✪ ✬ ✿✪ ✸ ✩❅ ✩ ❅ ✼ (2)
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where
✿✪ represents a new control signal for the satellite. Now, the magnetic moment, ✪ , is

exactly perpendicular to the local geomagnetic field vector and the control theory for a system

with unconstrained input
✿✪ can be applied. The direction of the signal vector

✿✪ (contrary to✪ ) can be chosen arbitrary by the controller. From practical point of view, the mapping (2)

selects the component of
✿✪ which is perpendicular to the local geomagnetic field vector.

The linear model of the satellite motion is given in terms of the angular velocity and the first

three components of the attitude quaternion. Linearization of the angular velocity is common-

place and based on the first order extension of the Taylor series. Linearization of the attitude

quaternion is quite different due to the multiplicative transformation is needed to describe suc-

cessive rotations. Consider two rotations, the first one from an orbit fixed coordinate system

(OCS) to a reference coordinate system (RCS) ❆ , the second from RCS to a satellite fixed coor-

dinate system (SCS) ❇❈❊❉ ✬●❋❈❊❉✞❇❋ ❉ ✼ (3)

where
❇❋ ❉ , ❋❈ ❉ ,

❇❈ ❉
mean the quaternion mapping from RCS to SCS, the quaternion OCS to

RCS, and the quaternion transforming OCS to SCS, respectively.
❇❋ ❉ can be considered as a

small perturbation from the reference ❍■✟❏✟✆✟❑✎▼▲❖◆ . According to Ref.8❇❋ ❉ ✬
P◗◗◗◗❘ ❙❯❚❲❱✚❳❩❨❭❬❫❪✝❙ ✝ ❱✚❳❩❨❭❬❫❪✝❙ ✓ ❱✚❳❩❨❭❬❫❪✝❴▼❵❯❱✒❬❫❪✝

❛❝❜❜❜❜❞ ✼ (4)

thus for small ❡ ❇❋ ❉❣❢
P◗◗◗❘ ❤❥✐ ❚❤❥✐ ✝❤❥✐ ✓✎

❛❝❜❜❜❞❣❦ ❧ ❤ ❉✎♥♠ ✠ (5)

As the result, the linearized equation of motion is♦♦✖♣ ❧ ❤rq❤ ❉ ♠ ✬ts ❧ ❤rq❤ ❉ ♠ ✲✱✉ ✮ ♣ ✶ ✜ ✿✪ ✼ (6)

where

s✈✬
P◗◗◗◗◗◗◗◗❘
✟ ✟ ✟ ✇✆☛❥①③②⑤④✒⑥ ✟ ✟✟ ✟ ①⑦②❲④✒⑧ ✟ ☛⑨①⑦②❲④✒⑧ ✟✟ ①⑦②⑤④✭⑩ ✟ ✟ ✟ ✟❚✝ ✟ ✟ ✟ ✟ ✟✟ ❚✝ ✟ ✟ ✟ ①③②✟ ✟ ❚✝ ✟ ✇✂①⑦② ✟

❛❝❜❜❜❜❜❜❜❜❞ ✼
④✒⑥❏✬♥❶ ⑧✂✇ ❶ ⑩❶ ⑥ ✼③④✒⑧❷✬♥❶ ⑩✽✇ ❶ ⑥❶ ⑧ ✼③④✭⑩✂✬♥❶ ⑥❸✇ ❶ ⑧❶ ⑩ ✼

✉ ✬
P◗◗◗◗◗◗◗◗❘
❹❫❺r❻❼❾❽✖❼ P◗❘ ✇❷❿➀✝⑧ ✇➁❿➀✝⑩ ❿➂⑥❥❿➂⑧ ❿➂⑥⑨❿➀⑩❿➂⑥⑨❿➀⑧ ✇❷❿➃✝⑥ ✇➁❿➀✝⑩ ❿➂⑧✚❿➀⑩❿➀⑥✏❿➃⑩ ❿➂⑧✚❿➀⑩ ✇❷❿ ✝⑥ ✇➁❿ ✝⑧

❛❝❜❞P◗❘ ✟ ✟ ✟✟ ✟ ✟✟ ✟ ✟
❛ ❜❞

❛❝❜❜❜❜❜❜❜❜❞ ✼➄
This transformation is used for the yaw reference

3



Bx

By

Bz

0 5 10 15
−6

−4

−2

0

2

4

6
x 10

−5

Orbits

Geomagnetic field [T]

Figure 1: The geomagnetic field vector in RCS propagated by a 10th order spherical harmonic

model during 24 h in May 1997.

where ①③② is the orbital rate, and ❶ ⑥➅✼ ❶ ⑧⑨✼ ❶ ⑩ are components on the diagonal of the inertia tensor➆
(the principal moments of inertia). The matrix ✉ ✮ ♣ ✶ comes from the double cross product

operation ✇❷✩❭✮ ♣ ✶✂✸ ✮❾✩✹✮ ♣ ✶❯✸➇✶ .
Based on the mathematical model provided in this section linear attitude control concepts will

be developed. Three controllers will be proposed: an infinite horizon, a finite horizon, and a

constant gain controller.

INFINITE HORIZON PERIODIC CONTROLLER

The geomagnetic field is essentially that of a magnetic dipole with the largest anomalies over

Brazil and Siberia. The geomagnetic field in RCS, has large y and z components, while the x

component is comparatively small. The rotation of the Earth is visible via fluctuations of the

geomagnetic field vector’s x component with the frequency ✎✏➈✖✗❯➉➊✎✏➈✖➋ ❵⑨➌➎➍r❱ , see Figure 1. The

following observation is used for the design of an attitude controller: the geomagnetic field on

a near polar orbit is approximately periodic with a period ➏➐✬➑✗⑨➒➓➈❥①✽➔ .
Due to periodic nature of the geomagnetic field, seen from RCS, the linearized model of the

satellite can be considered as periodic. It is though necessary to find an ideally periodic coun-

terpart of the real magnetic field of the Earth. This is done by averaging the geomagnetic field

over a time interval corresponding to a common period for the satellite revolution about the

Earth and the Earth’s own rotation. This interval for the Ørsted satellite conforms to ✕→✬➣✎✚➉✖➉
orbits.

Furthermore, the geomagnetic field is parameterized by the mean anomaly ↔ , since the geo-

magnetic field and the mean anomaly have the common period ➏✩➓↕➛➙❲➜✚✮❫↔ ✶ ✬ ✎✕ ➝➞➟➡➠ ❚ ✩❭✮❫↔ ✲ ❳✷➢ ➏ ✶ ✠ (7)

An averaged B-field vector ✩➤↕➛➙➥➜❥✮❫↔➦✮ ♣ ✶⑤✶ is depicted in Figure 2.
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Figure 2: An averaged B-field vector in RCS. Compare with the realistic magnetic field of the

Earth in Figure 1 .

The resultant linear periodic system is♦♦➅♣ ❧ ❤❯q❤ ❉ ♠ ✬➧s ❧ ❤❯q❤ ❉ ♠ ✲→➨✉ ✮❫↔ ✶ ✿✪ ✼ (8)

where ➨✉ ✮❫↔ ✶ is given in Eq. (8) after substituting the symbol ✉ ✮ ♣ ✶ for ➨✉ ✮❩↔ ✶ , and the compo-

nents of the vector ✩❭✮ ♣ ✶ for the components of ✩➩↕➛➙❲➜✚✮❫↔ ✶ .
The difference between the time varying matrix ✉ ✮ ♣ ✶ and the ideal periodic counterpart ➨✉ ✮❫↔➦✮ ♣ ✶⑤✶
used for the controller design is considered an additional external disturbance torque acting on

the satellite.

The controller gain is calculated from the steady state solution of the Riccati equation. Accord-

ing to Theorem 6.3 in Ref.9, if the pair ✮❩s➫✼ ➨✉ ✮❫↔ ✶❲✶ is stabilizable then there exists a stabilizing

symmetric periodic solution ➭➲➯➩✮ ♣ ✶ of the Riccati equation✇t➳➭✙➯➩✮ ♣ ✶ ✬ ➭✙➯➩✮ ♣ ✶ s ✲ s ◆ ➭✙➯➩✮ ♣ ✶ (9)✇ ➭✙➯➩✮ ♣ ✶✳➨✉ ✮❫↔ ✶❊➨✉ ◆ ✮❫↔ ✶ ➭❑➯➤✮ ♣ ✶❊✲➐➵ ✼
where ➵ is a positive definite matrix. The periodic solution of the Riccati equation, ➭✞➯➤✮ ♣ ✶ is

computed from the periodic extension of the steady state solution ➭➺➸➲✮ ♣ ✶➨➭✞✮ ♣ ✶ ✬♥➻ ➭✙➸➼✮ ♣ ✶ if ✟➼➽ ♣✹➾ ➏➚
otherwise

(10)

➭✙➯➩✮ ♣ ✶ ✬ ➸➞➪ ➠ ➔ ➨➭✞✮ ♣ ✇➹➶➘➏ ✶ ✠ (11)

The solution ➭✍➸➲✮ ♣ ✶ is calculated using backward integration of the Riccati equation for an

arbitrary positive definite final condition. This solution converges to the periodic solution. The

matrix function ➭✍➸➲✮ ♣ ✶ corresponding to one orbital passage is stored in the computer memory,

and then used for the subsequent orbits.
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Figure 3: The time history of the (1,1) component of ➭➼➯ . Notice that ➭✍➯ has a period equivalent

to the orbit period.

An example of the periodic matrix function ➭➼➯➩✮ ♣ ✶ is illustrated in Figure 3. ➭➲➯➩✮ ♣ ➔ ✶ at fixed

time
♣ ➔ is a 6 x 6 positive definite matrix. The figure depicts the time history of ➴➇➯➤✮➥✎r✼✚✎ ✶ , which

is typical for the diagonal components. Off-diagonal components change their amplitudes be-

tween positive and negative values.

Again, the mean anomaly ↔ can be used for parameterization of ➭➷➯➩✮❩↔ ✶ , since both ➭❑➯➤✮ ♣ ✶ and↔➦✮ ♣ ✶ are T-periodic. Furthermore, the controller gain matrix is also T-periodic and parameter-

ized with respect to M ➬ ➯➤✮❫↔ ✶ ✬➮✇ ✉ ✮❫↔ ✶ ➭❑➯➤✮❫↔ ✶ ✠ (12)

Implementation

The mean anomaly dependent control gain matrix

➬ ➯➤✮❫↔ ✶ is computed off-line and stored in

the computer memory. The control signal
✜ ✿✪ ✮ ♣ ✶ is then calculated according to✿✪ ✮ ♣ ✶ ✬ ➬ ➯➩✮❩↔ ✶ ❧ q ❇ ❋ ✮ ♣ ✶❉ ✮ ♣ ✶ ♠ ✼ (13)

wehere
q ❇ ❋ is the angular velocity of the satellite relative to RCS,

❉ ✮ ♣ ✶ is the vector part of the❇❋ ❉ ✮ ♣ ✶ . Finally, the magnetic moment, ✪ ✮ ♣ ✶ is obtained by✪ ✮ ♣ ✶ ✬ ✿✪ ✮ ♣ ✶✹✸ ✩✹✮ ♣ ✶❅ ✩❭✮ ♣ ✶ ❅ ✠ (14)

Another option is to represent

➬ ➯➩✮❫↔ ✶ in terms of the Fourier coefficients, benefiting in a reduc-
tion of the data stored. A satisfactory approximation of the gain matrix

➬ ➯ has been obtained
with 16th order Fourier series, see Figure 4. The required capacity of computer memory given
in floating point numbers is➱✾✃➃❐➼❒❰❮❰Ï❄ÐtÑ✢Ò➓Ó ❒ ➜❩✧☞➜ÕÔ⑦Ö▼✣Ø× ➟ ÖÚÙ➩Û Ò③Ü ❮✚Ýr✃➀❮ßÞ ②❫à➃✥ ➟ ➜❩✥á×Õ➜❩✥ ➟ ➜❫×â✳ã ❐❏äæåèç❾é✒ê❭ë❫ç❾❐➷✃ ì
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Figure 4: An approximation of the (1,1) component of the gain matrix
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➬ ➯ and its Fourier approximation reaches 1.5 per cents at

most.
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Figure 5: Performance of the infinite horizon controller for a satellite modeled as a linear object.

The simulation is carried out for “ideally periodic” geomagnetic field. The initial attitude is➉➅✟ ♦ ❙❰í pitch, ✇❸➉➅✟ ♦ ❙❰í roll and
� ✟ ♦ ❙❰í yaw.
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Figure 6: Performance of the infinite horizon controller for the Ørsted satellite on a circular

orbit. The initial attitude is the same as in Figure 5. The steady state attitude error is below✎ ♦ ❙❰í .
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Figure 7: Performance of the infinite horizon controller for the Ørsted satellite on its elliptic or-

bit. The initial attitude is the same as in Figure 5. The satellite is influenced by the aerodynamic

drag for normal solar activity. The attitude error is below î ♦ ❙❰í of pitch and roll. Yaw varies

within ☛ ♦ ❙❰í .
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For example with a sampling time of 10 sec and the orbital period 6000 sec , then 172800

floating point memory is required.

Simulation results of the infinite horizon attitude control are presented in Figure 5, 6 and 7.

Figure 5 illustrates performance of the attitude controller for the linear model of the satellite

motion with an ideally periodic geomagnetic field simulator. Figure 6 depicts performance

of the infinite horizon attitude controller for the Ørsted satellite in a circular orbit. In Figure

7, the Ørsted satellite is simulated in its elliptic orbit. The satellite motion is affected by the

aerodynamic drag for normal solar activity. Additionally, the realistic geomagnetic field is

applied in both Figs. 6 and 7.

Disturbances due to eccentricity of the orbit and the aerodynamic drag torque act in the pitch

direction. Therefore, both the first component of the quaternion and the first component of the

angular velocity, which for small angles correspond to the pitch and pitch rate, are punished

slightly more than the remaining components of the state. A diagonal weight matrix ➵ with

the diagonal ❍➡✎✏✟✆☛✆☛✙✎✚✟✆☛❏☛❯▲ ◆ has been implemented for both linear and nonlinear models of the

satellite. Initial values of the attitude are the same in both examples corresponding to ➉➅✟ ♦ ❙❰í
pitch, ✇❷➉✖✟ ♦ ❙❰í roll, and

� ✟ ♦ ❙❰í yaw.

The simulations show that the controller is stable for a wide range of operating points, also very

much outside the reference. The result of the disturbance torque due to a difference between

the geomagnetic field and its periodic counterpart implemented in the attitude controller is the

steady state attitude error seen in Figure 6. Performance of the infinite horizon attitude con-

troller for the Ørsted satellite affected by the aerodynamic torque is illustrated in Figure 7. The

attitude error is î ♦ ❙❰í of pitch and roll, whereas yaw angle varies within ☛ ♦ ❙❰í . The satellite mo-

tion is influenced here by a moderate aerodynamic drag torque corresponding to normal solar

activity. The aerodynamic drag is equal ✟✡✠✘ïð✎✏✟ ✑✔ñ ✕ ✁ at perigee.

A computational expense for the infinite horizon controller lies in the off-line numeric solu-

tion to the Riccati equation, but relatively large computer memory is required for keeping the

gain data for one orbit. The controller gives a nonzero steady state error also for simulations

without external disturbance torques. It is concluded that the infinite horizon magnetic con-

troller is applicable for missions with low pointing requirements. The steady state performance

could be improved by the finite horizon controller, which incorporates a realistic model of the

geomagnetic field. This type of a control law is discussed in the next section.

Finite Horizon Periodic Controller

The linearized model of the satellite motion is only approximately periodic. There is a certain

difference between the ideal periodic model of the geomagnetic field developed in the previous

section, and the real magnetic field of the Earth. The controller performance could be improved

by incorporating the time history of the real geomagnetic field into the controller structure. A

new attitude controller based on a transient solution of the Riccati equation is therefore investi-

gated.

The control algorithm is summarized as:

Procedure 1 1. Calculate the time varying solution of the Riccati differential equation in

the time interval
♣❭ò ✮❾ó➷✇✵➏ô✼⑤óæ▲✇ ➳➭✞✮ ♣ ✶ ✬➧s ◆ ➭✞✮ ♣ ✶✳✲ ➭➊✮ ♣ ✶ s♥✇õ➭➊✮ ♣ ✶➥✉ ✮ ♣ ✶➥✉ ◆ ✮ ♣ ✶ ➭✞✮ ♣ ✶❊✲➐➵ ✮ ♣ ✶ (15)
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Figure 8: Attitude control system based on finite horizon control.

with the final condition ➭➊✮❾ó ✶ ✬ö➭❑÷✖✠ (16)

2. Implement controller ✿✪ ✮ ♣ ✶ ✬✯✇ ✉ ◆ ✮ ♣ ✶ ➭✞✮ ♣ ✶ ❧ q ❇ ❋❉ ♠ (17)

for
♣➇ò ✮❾ó➼✇✵➏ô✼⑤óæ▲❫✠

3. Calculate magnetic moment from the equation✪ ✮ ♣ ✶ ✬ ✿✪ ✮ ♣ ✶✹✸ ✩❭✮ ♣ ✶❅ ✩❭✮ ♣ ✶ ❅ ✠
4. ó becomes ó ✲ ➏ .

5. go to 1.

It was stated in Ref.7 that if the difference ø➦✬ù➭✍÷ú✇✾➭➊✮❾óû✇ü➶✔➏ ✶ is positive semidefinite for➶✫ýt✟ then the procedure given above provides a stable control law (Theorem 3.4.2). The final

condition, ➭✍÷ is chosen sufficiently large such that ø is positive semidefinite independently on

the deviation of the geomagnetic field from its periodic model. It should be noted that the larger➭❑÷ , the larger is the control torque. The controller shall comply with the power constraints

imposed on the attitude control system, therefore the maximum value of the final condition

shall be confined. The final condition is considered as a design parameter, that can be iterated

by means of computer simulation.

The attitude control system based on the final horizon control is illustrated in Figure 8.

The orbit model provides position of the satellite in orbit in terms of longitude, latitude and

altitude. This information is used by the on board geomagnetic field model (here 10th order

spherical harmonic model). The Riccati equation is computed for the subsequent orbit. The

controller gain is computed and parameterized by the mean anomaly. The controller gain is

10
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Figure 9: Performance of the quasi periodic receding horizon controller for the Ørsted satellite

on circular orbit. The attitude converges asymptotically to the reference, i.e.
❇❋ ❉ ❂ ❍■✟❏✟✆✟✙✎❰▲ ◆ .

stored in a buffer. This procedure is activated once per orbit. The control gain matrix is taken

from the buffer on the basis of the mean anomaly associated with position of the satellite in

orbit. The controller gain is updated every sampling cycle, and is implemented in the control

loop.

Implementation

The quasi periodic receding horizon controller has been validated through computer simulation.

The results are depicted in Figures 9 and 10. Control parameters have been found empirically.

Weight matrix ➵ has been set to ✎✏✟✂þ❄ÿ✁�rÿ ✂ , and the final condition ➭➲÷ has been calculated from

the steady state solution: ➭➲÷❄✬➑➭➊✮❾ó ✶ ✬➮✗⑨➭❑➸➲✮✤ó ✶ . Initial values of the attitude have again been

assigned to ➉➅✟ ♦ ❙❰í pitch, ✇❷➉✖✟ ♦ ❙❰í roll and
� ✟ ♦ ❙❰í yaw.

Figure 9 depicts the Ørsted satellite motion on a circular orbit, i.e. there are no external dis-

turbances. The satellite attitude is seen to converge asymptotically to the reference. The per-

formance of the quasi periodic receding horizon controller for the satellite disturbed by the

aerodynamic torque is comparable with the performance of the infinite horizon controller, see

Figures. 10 and 7. This is due to the impact of the aerodynamic torque is seen to be much larger

than the influence of the torque due to the discrepancy between the geomagnetic field and its

periodic counterpart.

The steady state performance of the infinite horizon controller on a circular orbit is much better

than infinite horizon, however they are seen to have the same performance for a satellite in an

elliptic orbit effected by the aerodynamic drag. The computational burden for the finite horizon

controller is heavy due to the Riccati equation shall be solved on board (alternatively uploaded

to the on board computer during every ground station passage). Therefore, the infinite horizon

controller is preferable for the missions like Ørsted with low pointing accuracy. The necessary➄☎✄✝✆✟✞✠✆
is the ✡☞☛✌✡ unit matrix
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Figure 10: Performance of the quasi periodic receding horizon controller for the Ørsted satellite

on the elliptic orbit. The satellite is influenced by the aerodynamic torque. Efficiency of the

receding horizon is comparable with and the infinite horizon attitude controller in Figure 7 is

comparable.

computer power could be additionally limited if the constant controller was implemented, and

had the same performance as the time varying controllers. This issue is addressed in the next

section.

Constant Gain Control

Computation of the infinite and finite horizon attitude controllers are tedious and difficult to

implement on a real-time platform. A simple constant gain attitude controller could be an

alternative. This type of controller is investigated in this section.

The design algorithm consists of replacing the time varying parameters of the satellite by its

averaged values evaluated over a period of one orbit. This concept was first presented in Ref.2.

The theoretical basis of the method was given in Ref.7.

The time invariant counterpart of the time varying linearized satellite motion was♦♦➅♣ ❧ ❤❯q❤ ❉ ♠ ✬ts ❧ ❤❯q❤ ❉ ♠ ✲✾✉ ✿✪ ✼ (18)

where ✉ ✬ ✎➏ ✍ ◆② ➨✉ ✮❫↔➦✮ ♣ ✶⑤✶ ♦➅♣ ✼ (19)

and ➏ is the orbit period, and ➨✉ ✮❩↔ ✶ is the control matrix in Eq. (8).

A linear quadratic regulator (LQR) is used for the constant gain controller design. The system

is linear, time invariant and controllable thus a control law can be based on the solution of the
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Figure 11: Locus of the characteristic multipliers ✎➓✮✑✏ ✶ for ✏ changing from ✎ to
� ✟ is evaluated

for the closed loop system in Eq. (22).The satellite becomes unstable for ✏❭✬✓✒✖✗ , for ✏❭✬➮✎ � the

largest characteristic multiplier is closest to the origin.

steady state Riccati equation, see Ref.10. The optimal control is given by✿✪ ✬➮✇ ✉ ◆ ➭ ❧ ❤❯q❤ ❉ ♠ ✼ (20)

where ➭ satisfies the Riccati algebraic equation➭✹s ✲ s ◆ ➭➑✇ ➭ ✉➲✉ ◆ ➭ ✲➐➵ ✬ ➚ ✠ (21)

Once the control vector
✿✪ in Eq. (20) is calculated, the magnetic moment, ✪ is computed

according to Eq. (2).

Stability of the control law in Eqs. (20) and (2) for the time varying linear model of the satellite

in Eq. (6) is determined using Floquet theory, see Ref.11. This check is necessary, since sta-

bility of the time varying system and its time invariant counterpart are not equivalent. The time

invariant system is only the first order approximation of the time varying one, Ref.7. Further-

more, the sensitivities of those systems are not equivalent neither, e.g. the disturbance torque

acting on the satellite in the direction of yaw in a zone near the North nor South poles remains

unaffected by the attitude controller (due to lack of controllability), whereas it can be arbitrarily

damped by an LQ controller for the time invariant counterpart.

The following closed-loop system is considered for the Floquet analysis♦♦✖♣ ❧ ❤❯q❤ ❉ ♠ ✬ ✮Õs♥✇ ➨✉ ◆ ✮❩↔➦✮ ♣ ✶❲✶ ➭ ✶ ❧ ❤rq❤ ❉ ♠ ✠ (22)

As seen from Eqs. (21) and (22) stability of the closed-loop system is dependent on the weight

matrix ➵ . Figure 11 depicts locus of the characteristic multipliers for ➵ ✮✔✏ ✶ ❦ ✏⑤þ❑ÿ✁�rÿ , where ✏
changes from ✎ to

� ✟✖✕ . The satellite becomes unstable for ✏➲✬✗✒✖✗ . For ✏➲✬ ✎ � , the largest

characteristic multiplier is closest to the origin.✘
The weight matrix ✙✛✚✢✜✤✣ acts on the state space ✥ ✦★✧✩✦✟✪✬✫✢✭ . ✦★✧ is provided in ✮✟✯✱✰✠✲★✳ and ✦✟✪ is given without

units.

13



pitch

roll 

yaw  

0 1 2 3 4 5 6 7 8
−200

−150

−100

−50

0

50

100

150

200

Orbits

[d
e

g
]

Figure 12: Performance of the constant gain controller for the Ørsted satellite on circular orbit,

i.e. without external disturbances. The weigh matrix, ➵ has value ✎ � ✌ þ❑ÿ✁�rÿ . Large amplitude of

the yaw oscillations is encountered. The initial attitude is ➉➅✟ ♦ ❙❰í pitch, ✇❸➉➅✟ ♦ ❙❰í roll and
� ✟ ♦ ❙❰í

yaw.

Notice that the averaged geomagnetic field is implemented for the Floquet analysis. Therefore,

an ultimate test is the simulation for the nonlinear model of the satellite in the realistic space

environment.

Validation

The constant gain control demonstrated stability for the entire envelope of the expected satellite

initial attitudes and angular velocities in the science observation mission phase. The control

parameter: the weight matrix, ➵ has been found empirically. Its value has been set to ✎ � ✌⑤þ✍ÿ✁�rÿ .
The simulation results for the Ørsted satellite on the circular orbit in Figure 12 show large

amplitude of yaw oscillations. A new diagonal weigh matrix with diagonal ❍✦✎ � ✎ � ï✖✟ú✎ � ✎ � ï✖✟⑨▲ ◆
is proposed. The amplitude of the yaw fluctuations is reduced, see Figure 13. The last Figure

14 illustrates the satellite motion on impact of the aerodynamic drag and the torque due to the

eccentricity of the Ørsted orbit. The performance of the constant gain controller is very much

the same as the infinite and finite horizon attitude controllers in Figures 7 and 10. They all have

low bandwidth with time constants of the order of one orbit. The attitude error of the constant

gain controller is within
� ♦ ❙❰í , which complies with required bond of ✴➲✎✏✟ ♦ ❙❰í of pitch and roll,✗r✟ ♦ ❙❰í of yaw. This controller is chosen for on board implementation due to its simplicity.

Conclusions

This paper presented work on the magnetic attitude control based on the steady state and the

transient solution of the Riccati equation. It was shown that a satellite on a near polar orbit actu-

ated by a set of perpendicular magnetorquers could be described by a set of periodic differential

equations. Three attitude controllers were designed: the finite horizon, the infinite horizon, and

the constant gain controller. The control strategies presented were evaluated in the simulation

study.

The performance of the designed controllers was comparable for a satellite in an elliptic orbit

effected by the aerodynamic drag. The computer expense was smallest for the constant gain
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Figure 13: Performance of the constant gain controller for Ørsted satellite on circular orbit. The

initial conditions are the same as in Figure 12. The diagonal weight matrix ➵ with diagonal❍➡✎ � ✎ � ïr✟❷✎ � ✎ � ï✖✟❯▲ ◆ is implemented. The amplitude of the yaw oscillation is reduced comparing

with. Figure 12.
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Figure 14: Performance of the constant gain controller for the Ørsted satellite on the elliptic

orbit influenced by the aerodynamic drag. The initial conditions are as in Figure 12. The

resultant attitude is within
� ♦ ❙❰í .
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controller, therefore it was chosen for on board implementation in the Ørsted satellite. This

controller was seen to be stable for a wide envelope of initial values of the attitude, though it

had inherently low bandwidth, with time constants on the order of one orbit.

This work is believed to contribute to application of the theory of periodic linear systems to

magnetic attitude control problem. It provides solution useful for small satellites with loose

requirements on pointing accuracy.
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