
IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 304026 (19pp) doi:10.1088/1751-8113/41/30/304026

Linear transformations and aberrations in continuous

and finite systems

Kurt Bernardo Wolf

Instituto de Ciencias Fı́sicas, Universidad Nacional Autónoma de México, Av. Universidad s/n,
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Abstract

In geometric optics there is a natural distinction between the paraxial and

aberration regimes, which contain respectively the linear and nonlinear

canonical transformations of position and momentum in the phase space.

In the Lie-theoretical presentation, linear inhomogeneous transformations

are generated by linear and quadratic functions of the phase space, while

aberrations of increasing order are generated by homogeneous functions with

higher powers of these coordinates. In a way parallel but distinct from the

Schrödinger quantization of continuous classical systems, we quantize the

geometric optical model into discrete, finite-dimensional systems based on

the Lie algebra su(2), whose wavefunctions are N-point signals, phase space

is a sphere and transformations are represented by the N × N unitary matrices

that form the group U(N). We factor this group into SU(2)-linear and nonlinear

unitary transformations of phase space and classify all its N2 − 4 aberrations.

This offers a new parametrization of U(N) based on a chosen SU(2) subgroup.

PACS numbers: 02.20.Qs, 42.15.Fr

1. Introduction

We are interested in describing the unitary transformations that can be performed on an N-point

signal, in particular when these transformations are modeled after geometric optical systems

whose paraxial action and aberrations are known [1, part 4]. Here we propose a classification

for the aberrations of finite systems as due to evolution by a basis of monomials in the classical

phase-space coordinates. These aberrations will respect conservation laws and belong to the

group U(N) of all N × N unitary matrices.

The analysis of finite systems can be made from several viewpoints and various purposes.

The fast Fourier transform algorithm (FFT) has provided an efficient way of computing results

and is thus favored for actual applications; the concomitant description of periodic signals
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is on a phase-space torus [2, 3], which has led to many proposals for non-standard quantum

dynamics [4, 5]. Another avenue of research on the phase-space representation for periodic

signals is contained in the works of Opatrný [6, 7] and of Alonso, Forbes et al [8–10], where

uncertainty measures are found which obey the complementarity principle for Fourier series

and finite Fourier transforms.

One obstacle to applying some of these models to optical parallel processors has been the

difficulty in establishing what a ‘paraxial régime’ is—including the (not unique) definition of a

one-parameter group of finite-dimensional fractional Fourier transform matrices [11, chapter

6]. This problem has been cut down computationally by Koç, Ozaktas et al [12] by sampling

the continuum definition and appropriately factoring all linear canonical transformations into

chirp, scaling and the FFT, so that the computational complexity remains ∼ N log2 N . Still,

it is fair to say that the processing of wavefields, sampled into finite signals, has remained

paraxial. Aberrations, understood as nonlinear canonical transformations of phase space, have

not been treated on a similar footing.

Our approach to representing finite signals and their transformations has been group-

theoretical, both in the classical model of geometric optics [1] and in the present su(2) model

for finite systems. Instead of quantizing a classical system á la Schrödinger through the

Heisenberg commutator of position and momentum operators, we use the Lie algebra su(2)

to define their finite quantization to N × N Hermitian matrices. The generators of su(2),

commonly associated with angular momentum and spin, are given new roles: they will stand

for the position, momentum and the (displaced) energy of a harmonic oscillator [13, 14]; thus

they will naturally have N equally-spaced eigenvalues. Finite quantization also entails a ‘meta-

phase space’ whose coordinates are these three variables [15]. When the number of points N

is fixed, this space can be reduced to the 2-sphere in R3 [16], with a Wigner quasi-probability

distribution function that shows these signals and serves to interpret their transformations in a

semiclassical way as flows on the sphere. Linear transformations are rigid su(2) rotations

of the sphere [17], while nonlinear transformations of this manifold are its aberrations

[18, 19].

In section 2 we give the geometric optical model, recalling the classification of

linear transformations and Hamilton–Lie aberrations; these provide the factored-product

parametrization of the canonical transformations of the phase space. A similar approach

is taken in section 3 on a three-dimensional space whose commuting variables satisfy su(2)

under Poisson-like brackets. In section 4 we provide the su(2) model for N-point finite

systems and their linear transformations based on the geometric model of the previous section;

here, the phase space is a sphere. su(2) aberrations are introduced and studied in sections 5

and 6; they are elements of the cover algebra su(2) in an N×N Hermitian matrix representation,

and generate the group U(N) of all unitary signal transformations. To see how these

transformations act on signals we must briefly recall the su(2) Wigner function on the sphere

in section 7, which is further detailed in the appendix. With these tools we show the first

few aberrations of a rectangle signal in section 8 and offer some conclusions and matters for

further research in section 9.

2. Canonical maps of the phase plane

In plane geometric optics, with the phase-space coordinates of position and momentum

(q, p) ∈ R2, one introduces the basic Poisson bracket {q, p}Pb = 1, and defines those

transformations that preserve it as canonical. For instance, translations are generated by the

Poisson operator of momentum {p, ◦}Pb = −∂q through its Lie exponential, whose canonical
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action on functions of the phase-space coordinates is

exp(α{p, ◦}Pb) : f (q, p) = f (q−αp, p). (1)

Generally, inhomogeneous linear transformations of phase space are generated by the

Poisson operators of functions that are linear and quadratic in these variables respectively,

exponentiated into the operators of translation and linear action,

T (v1, v2) := exp{v1q + v2p, ◦}Pb, (2)

L(u1, u2, u3) := exp{u1q
2 + u2qp + u3p

2, ◦}Pb. (3)

In particular, the Poisson operator of 1
2
p2 generates (Fresnel) free flight, pq generates

squeezing, 1
2
q2 a thin (Fresnel) lens, and the motion in a harmonic waveguide is generated by

the classical oscillator Hamiltonian,

hosc(q, p) := 1
2
(p2+q2). (4)

Beyond quadratic functions, {f (q, p), ◦}Pb will generate nonlinear transformations of the

(q, p)-plane—aberrations—that conserve Poisson brackets and are thus canonical [20], and

whose lines of flow on phase space (q, p) ∈ R2 are f (q, p) = constant. In [21], [1, part 4]

aberrations were classified by the basis of monomial functions

Mk,m(q, p) := qk−mpk+m

{

for rank k ∈
{

0, 1
2
, 1, 3

2
, . . .

}

,

and weight m ∈ {k, k−1, . . . ,−k}. (5)

When k = 1
2

and 1, the Poisson operators {Mk,m, ◦}Pb generate the translations and linear

transformations in (2) and (3). For k > 1 they generate nonlinear transformations—

aberrations—of integer order A = 2k − 1 � 2.

In figure 1, we show the linear action and aberrations on a patch of phase space generated

by each of the (Poisson operators of the) monomials Mk,m(q, p) in (5). As noted above, the

lines of flow in these aberrations are Mk,m(q, p) = constant, as shown in figure 2 for the

A = 3 (k = 2) quintuplet of aberrations. Except for the straight lines when m = ±k, the lines

of flow are like hyperbolas, with different asymptotic powers and directions of flow. Some

of these aberrations correspond closely to the traditional Seidel nomenclature: all m = k

monomials generate spherical aberrations (of orders A = 2k − 1), m = k − 1 generate the

comas, m = −k + 1 the distortions and m = −k the pocuses [21].

The factored product order parametrization proposed by Dragt et al [22, 23] for geometric

optical canonical transformations on the two-dimensional phase space is based on the

monomials (5); this is the k → ∞ limit of

C(A) = exp

(

k
∑

m=−k

Ak,m{Mk,m, ◦}Pb

)

× · · · (6)

× exp
(

3/2
∑

m=−3/2

A 3
2
,m{M 3

2
,m, ◦}Pb

)

(7)

× L(A1,−1, A1,0, A1,1) (8)

=:

1
∏

κ=k

> exp(Aκ,· · {Mκ,·, ◦}Pb), (9)

where (8) are the three linear transformations in (3), (6)–(7) are the 2k2 +3k−5 = 1
2
A2 + 5

2
A−3

aberrations, and in (9) the symbol �>
κ orders the factors by decreasing values of κ from k to 1 in

3
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Figure 1. Monomial aberrations of the two-dimensional classical phase-space plane (q, p) ∈ R2,

classified by aberration order A = 2k−1 (rank k) and weight m (|m| � k). At k = 0 is the

unit map; the two translations (2) have rank k = 1
2

(A = 0); the three linear transformations (3)

have rank k = 1 (A = 1). Nonlinear canonical transformations are shown for aberration orders

A = 2, 3 (k = 3
2
, 2).

q

p

Figure 2. Lines of flow in the five third-order aberrations of the previous figure (rank k = 2, A = 3).

From left to right: weights m = 2, 1, 0, −1,−2 (spherical aberration, coma, astigmatism curvature

of field, distortion, pocus).

steps of 1
2
. One can consistently truncate the aberration order and thus have a finite-parameter

group of transformations. The aberration coefficients can be organized as a list of lists,

A ≡ {Aκ}kκ=1 ≡
{

{Aκ,m}κm=−κ

}k

κ=1
, (10)

which are available for axis-symmetric systems (where only odd aberration orders appear),

such as free flight, centered polynomial-profile refracting surfaces and anharmonic waveguides

[1, chapter 13], complemented by their concatenation product law, for aberration orders up to

seven.
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q p

λ

Figure 3. The sphere (13) in the classical meta-phase space (q, p, λ) ∈ R3, with Cartesian axes

of position q, momentum p, and (displaced) energy λ. At the ‘bottom pole’ λ ≈ −r the tangent

(q, p)-plane is the phase space of paraxial geometric optics.

3. Canonical maps on the classical sphere

Now consider a classical system with three real observables, (q, p, λ) ∈ R3, that we call

position, momentum and energy (whose zero value can be adjusted). We let these three

quantities satisfy the su(2) Berezin brackets:

{λ, q}B = p, {p, λ}B = q, {q, p}B = λ. (11)

Berezin brackets can be realized by differential operators with the same properties as Poisson

brackets. The first and second brackets in (11) are the geometric and dynamic Hamilton

equations for the harmonic oscillator, with h = λ + constant being the Hamiltonian. The third

bracket—between position and momentum—is non-standard; it determines the su(2) finite

oscillator model [14], which is well known under the guise of quantum angular momentum

theory [24].

Linear functions of q, p, λ generate the SU(2) Lie group of operators

R(v) := exp{v1q + v2p + v3λ, ◦}B, (12)

which in the three-dimensional space of Cartesian coordinates (q, p, λ) produce rigid rotations

of all spheres

q2 + p2 + λ2 = r2, (13)

of radius r, shown in figure 3. We call these transformations SU(2)-linear, and refer to

(q, p, λ) ∈ R3 as the su(2) meta-phase space.

Non-rigid transformations of sphere (13) are generated by nonlinear differentiable

functions f (q, p, λ) through their exponentiated Berezin operators

Sf (α) := exp(α{f (q, p, λ), ◦}B). (14)

Such transformations preserve the Berezin brackets (11), and will be said to be SU(2)-

canonical; a basis for these is the monomials {qapbλc, ◦}B, which form under commutation

the infinite-dimensional Lie algebra su(2). The flow lines of the meta-phase space under (14)

are the intersection of the spheres r = constant with the family of surfaces f (q, p, λ) =
constant.

Following the rather evident classification of the monomials (5) into multiplets of 2k + 1

aberrations for each rank k ∈
{

0, 1
2
, 1, . . .

}

, and being aware that the powers of λ will be

curtailed on the sphere by (13) to be 0 or 1, we propose the following linearly independent

monomials, labeled by m, to generate the su(2) aberrations of orders A = 2k,

5
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M0
k,m(q, p) := pk+mqk−m, m ∈ {−k,−k+1, . . . , k}, (15)

M1
k,m(q, p, λ) := λM0

k−1/2,m(q, p), m ∈
{

−k+ 1
2
,−k+ 3

2
, . . . , k− 1

2

}

. (16)

The generic appearance of the flow lines generated by these monomials on the sphere should

coincide, within a neighborhood of the bottom pole of figure 3, with the flow of figure 2.

The flows of the generic M0
k,±k aberrations wring the sphere along p = constant and q =

constant circles respectively; for −k < m < k, both the maximal circles q = 0 and p = 0

are lines that divide the sphere into four quadrants whose flows do not mix. The difference

between M0
k,m(q, p) in (15) and M1

k,m(q, p, λ) in (16) lies in the fact that the latter divide the

flow into octants of the sphere, since the λ = 0 maximal circle is now also a line of flow. In a

neighborhood of the top pole of figure 3 therefore, the flows on the sphere will be opposite to

those on the bottom pole.

In the plane case with Poisson brackets {q, p}Pb = 1, the aberration order of the generator

{Mk,m, ◦}Pb is counted by APb = 2k − 1, because on the phase space the leading nonlinear

term in the exponential series (6), {Mk,m, w}Pb (w = q, p), is of polynomial degree 2k − 1.

On the sphere with Berezin brackets however, the leading term of the exponential series

of
{

Mσ
k,m, w

}

B
(w = q, p, λ) is of degree A ≡ AB = 2k; because the su(2) algebra is

semisimple, the degree is not reduced.

The classical su(2) model on the sphere described in this section is a deformation of the

geometric optical model on the plane revised in section 2. The former contracts to the latter

when the radius r of the sphere grows without bound. To show this, consider a neighborhood

of the bottom pole of the sphere (λ = h − r with h finite), and introduce the scaled variables

q̄ := q/
√

r, p̄ := p/
√

r that satisfy {q̄, p̄}B = 1; when r → ∞ the two standard brackets

in (11) remain as the classical harmonic oscillator equations, with the limiting Hamiltonian

function h = 1
2
(p̄2 + q̄2).

4. Finite N-point systems

The classification of linear transformations and aberrations on the sphere generated by the

basis of monomials (15)–(16) is the su(2) analog of the classification (5) for geometric optics

with Poisson brackets [21]. The classical model on the sphere will be now ‘su(2)-quantized’

into a finite system, and represented by finite matrices acting on column vectors.

The su(2) model for finite systems of N = 2j + 1 points postulates that the three

observables q, p, λ of the previous section are the spectra of the three generators of this algebra,

abstractly denoted by L1,L2,L3, with the su(2) commutation relations [Lk,Ll] = iεk,l,mLm

(k, l,m cyclic)—the same structure of (11), in a unitary irreducible representation j of this

algebra. Their correspondence with the physical observables will be:

position: Q = L1, (17)

momentum: P = L2. (18)

energy: H = L3 +
(

j+ 1
2

)

1, (19)

where 1 is the unit operator that enlarges su(2) to u(2) = u(1) ⊕ su(2). The ‘physical’

commutation relations characterizing this model are thus:

[H,Q] = iP, [P,H] = iQ, [Q,P] = i
[

H −
(

j+ 1
2

)

1
]

, (20)

6
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as in (11), but now the abstract generators act on N-point complex signals (N = 2j+1) as

N × N matrices. Let us agree to call L ≡ L3 = H −
(

j+ 1
2

)

1. In this representation, the

Casimir operator is a multiple of the identity,

Q2 + P2 + L2 = j (j+1)1. (21)

It follows from the theory of quantum angular momentum that the spectra of position {q},
momentum {p} and (displaced) energy {λ} are real, and intrinsically discrete, finite and equally

spaced: q, p, λ ∈ {−j,−j+1, . . . , j}. But while in angular momentum theory L ≡ L3 is

commonly represented by a diagonal matrix (classifying the 2j+1 states of the multiplet by

their ‘magnetic’ quantum number), in the su(2) model the signal points are numbered in the

eigenbasis of position Q, so that here L1 will be diagonal.

Denote the matrix representations of Q,P and L in (17)–(19) by Q = ‖Qq,q ′‖, P =
‖Pq,q ′‖ and L = ‖Lq,q ′‖, with the elements

Qq,q ′ = qδq,q ′ , q, q ′ ∈ {−j,−j+1, . . . , j}, (22)

Pq,q ′ = −i
(

1
2

√

(j−q)(j+q+1)δq+1,q ′ − 1
2

√

(j+q)(j−q+1)δq−1,q ′
)

, (23)

Lq,q ′ = 1
2

√

(j−q)(j+q+1)δq+1,q ′ + 1
2

√

(j+q)(j−q+1)δq−1,q ′ . (24)

These matrices are Hermitian, traceless and a basis to represent the algebra su(2). Observe, in

particular, the matrix representation of the momentum generator P in (23); its action Pf = f′

on a signal f = ‖fq‖ is −i times a weighted central derivative,

f ′
q = − 1

2
i(
√

(j−q)(j+q+1)fq+1 −
√

(j+q)(j−q+1)fq−1). (25)

Hence, while in continuous systems momentum generates translations in q ∈ R, in the su(2)

model it generates rotations around the p-axis of figure 3. In the latter, (25) shows that one

does not exceed the finite range of positions; for q = ±j the coefficient of the would-be

offending terms q = ±(j+1) is zero.

The Lie exponentials of the su(2) operators (17)–(19) generate the three one-parameter

subgroups of SU(2),

U1(α) = exp(−iαQ), U2(β) = exp(−iβP), U3(γ ) = exp(−iγL). (26)

In a definite representation, there correspond matrices (22)–(24), which are Hermitian and

traceless; it follows that the corresponding groups (26) will be of matrices that are unitary and

of unit determinant. Indeed, they can be expressed in closed form as Wigner Dj -matrices [24],

and thus provide the linear action of the group SU(2) on the column vector of N-point signals.

We incorporate into the algebra the commuting unit operator 1 (represented by 1) that is the

generator of overall signal phases exp(iφ1), and which is present in the classification (15) for

A = 0. We thus have the slightly larger algebra u(2) that generates the group of U(2)-linear

transformations of N-point signals.

In particular, this slightly larger group includes the fractional Fourier–Kravchuk transform,

generated by the number operator N := H − 1
2
1 = L + j1,

Kα := exp
(

−i 1
2
παN

)

= e−i 1
2
παj exp

(

−i 1
2
παL

)

, (27)

for continuous powers α modulo 4. Closed expressions for the N ×N matrix elements of (26)

are given in [13, 14, 17]; they will not be specifically needed here.

7
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5. Weyl-ordered aberrations

Beyond the rigid rotations of the classical sphere, the non-rigid transformations of this manifold

are generated by the monomial functions M
0,1
k,m in (15)–(16). Their corresponding su(2)-

quantized operators (17)–(19) will be elements of the universal cover algebra su(2). As in

any quantization scheme, there is an inherent ordering ambiguity [25]; we select the Weyl

ordering scheme: given a classical monomial qapbλc (a, b, c nonnegative integer powers) and

the noncommuting operators Q,P,L, one sums all their a +b+c permutations, and divides by

the factorial of this number. The finite quantization of a classical monomial function qapbλc

will be the Weyl-ordered operator {QaPbLc}W, and its representing matrices {QaPbLc}W. A

natural basis for u(2) is provided by (15)–(16), which will be denoted by

M
0,1
k,m :=

{

M
0,1
k,m(Q,P,L)

}

W
, (28)

and their representing N × N matrices by boldface.

The Weyl ordering is unique, it distributes with respect to summation, and has the

necessary properties that, when the operators are self-adjoint under some inner product (i.e.

their representing matrices are Hermitian), then also their Weyl-ordered product is self-adjoint

(and the matrices Hermitian); except for the monomials containing even powers of the matrices

(22)–(24), their Weyl-ordered products are also traceless. Another important property satisfied

only by the Weyl ordering of (15)–(16) is that the commutator of the operators M0,1
k,m ∈ su(2)

with any M
0,1
1/2,m ∈ u(2), is the same as the Berezin bracket of the corresponding classical

monomials. This correspondence holds because of the distributive property of the operators

and matrices, which ensures that the sum of all permutations of the elemental factors will

again be a sum of all their permutations, except for the one which has been replaced by its

commutator. From this follows that for each rank k we have a multiplet of aberrations that

transform linearly under the group U(2), with the same coefficients as their counterparts on

the classical sphere. In particular, the Fourier (–Kravchuk) transform of a monomial (29)–(29)

is obtained rotating the sphere in figure 3 around the λ-axis by 1
2
π , thus exchanging p �→ q

and q �→ −p. These properties are the analogs of similar results for geometric optics [26],

where the symplectic algebra sp(2, R) generates the linear transformations that conserve the

aberration orders, and Fourier transformation reflects the aberrations represented in figure 1

across a centered vertical line. However, the commutator between two higher-order elements

of su(2) will be generally different between Poisson and Berezin brackets, both in classical

and quantum realizations.

Yet, matrix representations of su(2) cannot lead to faithful matrix representations of

su(2) because the number of independent N × N Hermitian matrices cannot exceed N2. For

concreteness consider the case of N = 5-point systems, i.e., j = 2. The Lie algebra u(5) of

Hermitian matrices has dimension 52 = 25 while its linear subgroup u(2) has only 22 = 4, so

there should be 21 independent aberration generators to be found and classified. To see which

is the highest aberration that can be suffered by signals in such a system, consider the diagonal

position matrix Q in (22) and its successive powers Qn, starting with Q0 := 1. The first five

powers n = 0, . . . , 4 exhaust the five degrees of freedom of all diagonal matrices, and higher

powers will be linear combinations of the previous matrices; since any Hermitian matrix can

be diagonalized, this argument applies to any of them. Monomials of order higher than 4 in

the u(2) matrices will not be independent of the 25 5 × 5 Hermitian matrices provided by

(15)–(16).

For our 5-point system thus, the monomials that generate aberrations of orders 0 � A � 4

(integer and half-integer ranks 0 � k � 2), and of the weights m as specified in (15)–(16), can

8
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be organized writing their classical expressions in two ‘aberration pyramid’ patterns:

M0
k,m(q, p):

A = 0 1 k = 0

1 p q 1
2

2 p2 pq q2 1

3 p3 p2q pq2 q3 3
2

4 p4 p3q p2q2 pq3 q4 2

m = 2 3
2

1 1
2

0 − 1
2

−1 − 3
2

−2

(29)

M1
k,m(q, p, λ):

A = 1 λ k = 1
2

2 λp λq 1

3 λp2 λpq λq2 3
2

4 λp3 λp2q λpq2 λq3 2

m = 3
2

1 1
2

0 − 1
2

−1 − 3
2

(30)

The pyramid of aberrations (29) matches that shown in figure 1, while (30) repeats it

with an extra λ that only matters globally on the sphere; the first pyramid has 15 entries while

the second has 10, providing the 25 generators of u(5). These include for A = 0 the u(1)

phase, for A = 1 the three su(2)-linear generators, and for A = 2, 3, 4, the 5, 7, 9 distinct

aberrations.

The general case of u(2) ⊂ u(N),N = 2j+1, follows the patterns of (29)–(30) with the

entries being su(2)-quantized to the Weyl-ordered matrices M0
k,m and M1

k,m from (28). The

aberration orders present in U(N) are thus 0 � A � N−1 = 2j . Again, at the top A = 0

are the overall phases, and A = 1 contains the three SU(2)-linear transformations. At each

aberration order A there will be 2k+1 matrices M0
k,m and 2k matrices M1

k,m, summing to a total

of 2A+1 distinct aberrations at each order. In the first pyramid there are 1
2
N(N+1) generators,

while in the second there are 1
2
N(N−1); they sum of course the N2 generators of u(N).

We note that aberrations whose generators are represented by purely imaginary matrices

will generate—after exponentiation with a −i—real orthogonal matrices; these are elements

of the subgroup SO(N) ⊂ U(N), that has 1
2
N(N−1) parameters; these transformations leave

real signals real. Among the u(2) generator matrices in (22)–(24) only momentum P is purely

imaginary; it follows that among the aberrations in the pyramids (29)–(30), those containing

odd powers of p will generate all real orthogonal transformations in N-point signals.

We have already studied several transformations that follow the above classification. We

mentioned the Fourier–Kravchuk transform (linear, A = 1) generated by L [17]. A finite

Kerr Hamiltonian L + αL2 was considered in [27] to study the revivals of coherent states in

finite systems; because of (21), the Kerr anomaly L2 is an aberration of order A = 2 with a

phase. Also at A = 2 is the free Fresnel flight generated by 1
2
P2 = 1

2
M0

1,1 [18], and Fresnel

quadratic-phase lenses are generated by Q2 = M0
1,−1. Squeezing (scaling or magnification)

is generated by {PQ}W = M0
1,0. In [19] we also considered {PQL}W = M1

3/2,0 (A = 3),

noting that its action matches that of M0
1,0 at the bottom pole of figures 3, but divides the

global flow on the phase-space sphere into octants.
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6. The unitary aberration group

The factored-product parametrization of canonical transformations in geometric optics (6)–(9),

with its nested structure of linear and aberration subgroups of increasing orders [1, chapter 13],

plainly suggests the following analog decomposition of the group U(N) based on a U(2)-linear

subgroup. Its elements will be characterized by N2 parameters forming the list

B ≡ {BA}N−1
A=0 ≡

{{{

B0
k,m}km=−k

}N−1

2k=A=0
,
{{

B1
k,m

}k

m=−k

}N−1

2k+1=A=1

}

, (31)

that can also be displayed in the pattern of the monomials (15)–(16). This factored-product

order for the group U(N) will be written as the N × N representation of

U(B) = exp(−iBN−1 · MN−1) × · · · × exp(−iB2 · M2) (32)

× exp(−iB1 · M1) × e−iB0 (33)

=:

0
∏

A=N−1

> exp(−iBA · MA), (34)

BA · MA :=
k=A/2
∑

m=−k

B0
k,mM

0
k,m +

k=(A−1)/2
∑

m=−k

B1
k,mM

1
k,m, (35)

where as before �>
A is the product of factors with decreasing values of the aberration order

A. Although many relevant properties of the factored product (6)–(9) hold for (32)–(35), the

composition of parameters under multiplication in U(N) is of course different from that given

in [1, equations (14.71–76)] for Poisson operators.

It is also interesting to examine the range of the parameters B
0,1
k,m in the list (31). Since the

U(N) group manifold has a finite invariant volume (it is a direct product of complex spheres

[28]), the range of its parameters could be expected to be always finite and periodic, as it

is for the linear U(2) subgroup. To this end, consider first the eigenvalues of the spherical

aberration matrices M0
k,k = P2k (A = 2k); for N = 2j+1, these are p2k with integer or

half-integer p ∈ [−j, j ]; the eigenvalues of the matrices exponentiated with φ = B0
k,k are

then exp(−iφp2k). When N is odd (integer j and p’s), all these phases return to 1 for φ = 2π ;

but when N is even (half-integer j and p’s) this occurs only for φ = 22k+1π . The same

holds for the subgroups generated by Q2k or by L2k —including the (k = 1) Kerr anomaly

[27] with φ cyclic modulo 8π (at simple fractions of this period a coherent-state signal will

undergo multiple revivals as Schrödinger-cat states). But beyond the previous cases, all other

aberrations |m| < k, starting with {PQ}W and N > 5 [19], have eigenvalues that seem to

be incommensurable. The line φ of such one-parameter groups will then be of non-closing

Lissajous kind within the finite manifold of U(N).

The factored-product parametrization (32)–(35) should not be construed as a good global

parameterization of U(N), but as a parametrization of the neighborhood of its linear U(2)

subgroup. This is what constitutes an aberration expansion around the paraxial regime; in

geometric optics the dimension of the neighborhood is a denumerable infinite, classified by

aberration order. In finite systems, the neighborhood is finite-dimensional, and also classified

by aberrations as departures from linearity.

In this paper, we are not overly concerned with the compound aberrations that have

been computed for geometric optical setups, including corrections for fractional Fourier

transformers [1, chapter 15]. Starting with squeezing {PQ}W we do not have analytic forms for

the unitary aberrations, but numerical computation appears to be quite easy. In what follows

10



J. Phys. A: Math. Theor. 41 (2008) 304026 K B Wolf

we shall concentrate on describing single aberrations, generated by Mσ
k,m and thus classified

by the quantum numbers (k,m, σ). In this context, we can also gloss over the difference

between the left-right orders in which operators and matrices act [1, p. 161], by only changing

the sign of the parameter. Finally, to show the face of our U(N) aberrations, we must recall

the su(2) Wigner function to reveal them on the phase-space sphere.

7. The su(2) Wigner function

The phase space provides the scenario to see the aberrations of signals as flows on the surface

of a classical sphere (see figure 3). To analyze the one-parameter subgroups of the previous

section, we present succinctly the su(2) Wigner function (see e.g. [15, 27, 29, 30]) and a

sui generis projection of the sphere onto a rectangle, which we have found convenient in

comparing our renderings of finite signals with those of other Wigner functions for continuous

signals on the plane. In particular, we emphasize that the finite signals that we treat are

understood to be not periodic, i.e., there is nothing beyond the signal endpoints.

We first define the su(2) Wigner operator as a manifold of elements in the SU(2) group

ring [15, 29], which is a function of the meta-phase space coordinates of position, momentum,

and (displaced) energy, �v = (q, p, λ) ∈ R3, as

W(�v) :=
∫

SU(2)

dg( �w) exp i[w1(q − Q) + w2(p − P) + w3(λ − L)], (36)

where the integration is over the group manifold of SU(2) with the Haar measure dg( �w).

We define the Wigner function of an N-point signal f = {fq}jq=−j (N = 2j+1, a column

vector) as the expectation value of the Wigner operator (36) in that state,

W(f|�v) := 〈f|W(�v)|f〉 =
∑

q,q ′
f ∗

q W
(j)

q,q ′(�v)fq ′ . (37)

In the last expression, the Wigner operator is represented by an N × N Wigner matrix

W(j)(�v) =
∥

∥W
(j)

q,q ′(�v)
∥

∥, which is both Hermitian and unitary [15, 29]. Its full expression is

given in the appendix, where we also list the radial and axial marginals of this su(2) Wigner

function, and show that one may ‘slice’ meta-phase space �v = (q, p, λ) = rû(β, γ ) at the

radius r = j + 1
2
. One thus remains with the Wigner function (37)–(A.2) on the phase-

space sphere, with coordinates (β, γ ) of colatitude β ∈ [0, π ] and azimuth γ ∈ (−π, π ]

(modulo 2π ). On the sphere, and written W(f|β, γ ), the su(2) Wigner function (37) becomes

equivalent to the phase-space distribution function of Stratonovich [31] and Agarwal [32], as

proven in [16]. The Wigner function (37) transforms covariantly under SU(2), and can be

easily extended for density matrices representing mixed states using the trace of its product

with the Wigner matrix as usual.

We recall from figure 3 that the colatitude angle β is measured from the q-axis because

the position operator Q in (17) is the one that we chose diagonal; β = 0 is the ‘+q-pole’ (with

all γ ’s equivalent), while the −λ-axis (the ‘bottom pole’) is at β = 1
2
π , and determines the

γ = 0 meridian. Since the interesting region of the phase-space sphere is near the bottom

pole, where it is tangent to the phase plane of continuous systems, we find it advantageous

to plot W(f|β, γ ) on the (β, γ ) rectangle shown in figure 4. (In [18, 19] instead of a 2:1

rectangle we used a square.)

In figure 5, we show the Wigner function of a rectangle signal; this will serve as a

reference for its further transformations. The projection of figure 4 distorts the polar grid of

the sphere near to the ends of the β-axis, but near to its center it rather faithfully reproduces the

Wigner function of continuous systems. The position marginal of the Wigner function (which

11
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q

p

λ

0

β

−π π γ

π

Figure 4. Left: polar coordinates on the sphere (β, γ ) are referred to the position q-axis so that

β = 0 is the +q direction. Right: the (β, γ ) plane rectangle, β ∈ [0, π ], γ ∈ (−π, π ]. The

bottom pole of the sphere (β = 1
2
π, γ = 0) is projected on the center of the rectangle; there, the

axis of positions q corresponds to the vertical β-axis, and that of momenta with the horizontal

γ -axis. Heavy lines on the sphere mark its intersections with the Cartesian coordinate planes; they

are marked similarly on the rectangle. The left and right edges (γ = ±π) are identified as in a

cylinder; the upper edge represents the single point β = 0 on the +q axis, while the lower edge is

the point β = π on the −q direction.

q

β

γ

Figure 5. Left: centered rectangle signal of N = 21 points (j = 10), Rectn(q) = 1 for integer

−n � q � n = 4 and 0 elsewhere. The function ‘exists’ only on the dots; a continuous line joins

them for visibility. Right: Wigner function W(Rect4|β, γ ) on the sphere, displayed as a contour plot

on the (sphere, projected onto the) rectangle indicated in the previous figure. We show the contour

lines for the values 0.0, ±0.0001,±0.001,±0.01, 0.02, 0.03, . . . , 0.15, 0.2, 0.3, . . . , 3.0, 3.1.

returns the absolute square of the signal points—see the appendix) is obtained integrating over

momentum; this projects the su(2) Wigner function over the rectangles onto their vertical

axes.

8. The face of U(N ) aberrations

We have chosen the sharp-edged rectangle signal of figure 5 to undergo aberrations, as we

did in [18, 19], because its Wigner function has more structure than the smooth low-energy

oscillator modes that are often used to illustrate phase-space transformations. The contours in

the density plot of the Wigner function are chosen both to highlight the shape of its main peak,

and to display the fine structure in the regions where it is less than 5% of the top value π .

12



J. Phys. A: Math. Theor. 41 (2008) 304026 K B Wolf

Figure 6. The rectangle signal and Wigner function of the previous figure under SU(2)-linear

transformations (26). The real, imaginary, and absolute values of the signals are indicated by

dots of increasing size, joined by dashed, dotted, and continuous lines, respectively. All Wigner

functions are real and (except for the coherent states, i.e. the finite oscillator ground state rotated

by SU(2)) they have small regions of shallow negative values. Top: SU(2)-rotation (‘translation’)

in position generated by p ↔ P, acting through the unitary matrix exp(iβP), for β = 1
4
π .

Middle: SU(2)-translation in momentum (frequency) through exp(iαQ), for α = 1
4
π . Bottom:

Fourier-Kravchuk transform (with a phase) generated by λ ↔ L through exp(iγπL), for γ = 1
4
π .

Compare the first two phase-space transformations with the second row of figure 1; the third is a

45◦ rotation of phase space around its center.

In figures 6, we show the three SU(2)-linear transformations generated by p, q, λ in (29)–

(30). These are rotations of the sphere that correspond in continuous systems to translations

in position, in momentum (see the second row in figure 1), and rotations due to fractional

Fourier transformations. As we pointed out above, under these transformations, the Wigner

function is rigidly carried along with the rotations of the underlying phase-space sphere; the

distortions we see in figures 6 are due to the projection on the (β, γ ) rectangle.

Aberrations that distort the surface of the classical sphere will make the Wigner function

of a signal wiggle somewhat, as it does in continuous models on the phase-space plane [33].

13
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Figure 7. Aberrations of order A = 2 in the rectangle signal of figure 5, with coefficient B2 = 0.05.

The dots and lines of the signal follow the conventions of the previous figure, and hold for the

following ones. Left column (top to bottom): aberrations generated by the finite quantization of

the classical monomials p2 = M0
1,1, pq = M0

1,0, and q2 = M0
1,−1. Compare with the third row in

figure 1 of linear transformations in continuous systems. Right column: aberrations generated by

λp = M1
1,1/2 and λq = M1

1,−1/2.

Figure 8. Aberrations of order A = 3 in the signal of figure 5, with coefficient B3 = 0.01.

Left column (top to bottom): aberrations generated by p3 = M0
3/2,3/2, p

2q = M0
3/2,1/2, pq2 =

M0
3/2,−1/2, and q3 = M0

3/2,−3/2. Compare with the nonlinear maps in the fourth row of figure 1

for continuous systems. Right column: aberrations generated by λp2 = M1
3/2,1, λpq = M1

3/2,0

and λq2 = M1
3/2,−1.
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Figure 9. Aberrations of order A = 4 in the signal of figure 5, with coefficient B4 = 0.002. Left

column: aberrations generated by p4 = M0
2,2, p

3q = M0
2,1, p

2q2 = M0
2,0, pq3 = M0

2,−1, and

q4 = M0
2,−2. Compare with the five aberrations of the bottom row in figure 1 and their flows in

figure 2. Right column: aberrations generated by λp3 = M1
2,3/2, λp

2q = M1
2,1/2, λpq2 = M1

2,−1/2

and λq3 = M1
2,−3/2.

The usefulness of the su(2) Wigner function depends on how recognizable the signal remains

after aberration. In figure 7 we show the five aberrations of order A = 2, for small values of the

parameters, chosen to display the deformation without undue wiggling. Aberration expansions

in geometric optics are generally done on the basis of assuming that their parameters are

small compared to the linear part of the transformation. As we noted earlier, increasing the

parameter values leads to Talbot-like reconstructions for spherical aberrations, or to random

partial revivals in other cases. Figure 8 shows the seven aberrations of order A = 3, and

figure 9 displays the nine aberrations of order A = 4. The number of points in the signal was

chosen to be N = 21 (j = 10), so the total number of aberrations these signals can suffer is

actually 212 − 4 = 437.

9. Conclusions

One of the purposes of studying finite systems is to model micro-optical devices for parallel

signal processing, which have a finite number N of sources and sensors, where the first-
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order (paraxial) regime is well understood (for example, the fractional Fourier transform),

but aberrations are present that may be corrected [1, chapter 15]. Of course, observing N

independent test signals under transformation, one can find the N × N complex transfer

matrix for the system, but its departure from the paraxial design can be quantified only when

one has some appropriate basis that allows the aberration coefficients to be extracted order by

order. While in geometric optics this ‘inverse problem’ is unbounded, in finite systems there

are aberrations of orders up to A = N − 1 only, and to find them (from the transfer matrix of

an actual optical system) is a computational task that we see ahead.

It is known that passive optical systems produce canonical transformations of phase space;

in geometric optics this means that no rays are lost or gained; in finite systems this means that

all information contained in finite complex signals (amplitudes and phases with respect to a

basis) will be preserved, i.e., unitarity. In the present finite su(2) model these requisites are

fulfilled by construction, orthonormal bases are natural, and coherent states can be built as in

the classical and continuous counterpart models [17]. It remains to be understood exactly how,

when N → ∞, unitarity contracts to canonicity. This limit has been probed in the contraction

of su(2) to the Heisenberg–Weyl algebra, in the Hamilton and Newton equations (difference

to differential), and in the limit from Kravchuk to Hermite wavefunctions [34], but several

aspects in the contraction of the Wigner functions need exploration.

The structure of the U(N) group as revealed by the factored-product parametrization is

new, and certainly appears more complicated than that of Euler angles and phases [28], but

it can be managed with symbolic and numerical computation. In particular, the well-known

N ×N finite Fourier matrix with its FFT algorithm is an element of the U(N) group. What are

its Euler-angle and factored-product coordinates? How far is it from the Fourier–Kravchuk

transform? Two works in this direction are [35, 36].

Much research has gone into producing numerical algorithms for linear canonical

transformations of sampled continuous signals [12], to achieve the ∼N log2 N efficiency

of the FFT. Part of the problem is that the transform kernel is generally a chirping function—

which is hard to tame. The finite model has no problem with oscillations, but its linear U(2)

subgroup necessarily involves all N signal points, so its complexity is ∼N2. Thus, the su(2)

model is not computationally fast, but it is exact.

Here, finite quantization based on the Lie algebra su(2) has led us from geometric optics

directly to finite ‘N-point optics’. Other Lie algebras that also contract to the Heisenberg–

Weyl algebra can be used in a similar fashion. The Euclidean Lie algebra iso(2) that generates

rigid motions of the plane leads to a model whose position space is the set of integers, and

momentum space is a circle; the corresponding Wigner function then lives on a phase-space

cylinder [37]. Other discrete models based on associative q-algebras have been proposed [38];

there, position space is finite-dimensional —but not equally spaced— and phase space is a

revolution spheroı̈d, but the study of its aberrations has not been pursued yet.
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the SEP–CONACYT project 44845 Óptica Matemática is gratefully acknowledged.

Appendix

To examine the Wigner operator (36) it is convenient to parametrize g( �w) ∈ SU(2) in polar

coordinates, with a rotation angle ψ (modulo 2π or 4π ) around a unit axis û(θ, φ) on the
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sphere, so �w = ψû. Since g(ψû)ν = g(νψû) for any ν ∈ R, the unitary action of g on

complex N-point signals f, implies that the matrix elements of its Wigner function (37) on the

meta-phase space �v = (q, p, λ) can be written as [15, 29]

W(f|�v) =
∫

SU(2)

dg( �w)
〈

g
(

− 1
2
ψû

)

: f| exp(−i�v· �w)|g
(

+ 1
2
ψû

)

: f
〉

. (A.1)

This form is analogous to that of the usual Wigner function [39–41], with 1
2
x-displaced

functions to each side and a Fourier transform phase kernel. This form also evinces the

covariance of (36) under su(2) rotations.

Now, writing �v = (q, p, λ) ∈ R3 in spherical coordinates �v(r, β, γ ), we can express the

Wigner matrix elements (37) in terms of phases, Wigner little-d functions d
j

q,q ′(β) [24] and a

diagonal matrix W
(j)
q̄ (r) as

W
(j)

q,q ′(r, β, γ ) = e−i(q−q ′)γ
j

∑

q̄=−j

d
j
q,q̄(β)W

(j)
q̄ (r)d

j

q̄,q ′(−β). (A.2)

The diagonal matrix is a function only of the radius r = |�v|; it is obtained through a single

integral over a finite interval [15],

W
(j)
q̄ (r) = (−1)2j+1 π

2

j
∑

q=−j

∫ π

0

sin β dβ
∣

∣d
j
q̄,q(β)

∣

∣

2 sin(2πr cos β)

(r cos β − q)[(r cos β − q)2 − 1]
. (A.3)

Since d
j
q̄,q(β) is a polynomial in trigonometric functions of β, (A.3) may have a closed

expression, but we have found it more convenient to compute its 2j+1 values by numerical

integration; this is practical for j up to about 30.

The dependence of the Wigner function (A.1) on the radius r of the meta-phase space is

found by calculating the radial marginal over the sphere S2,

M
(j)

rad (f|r) :=
∫

S2

dûW(f|rû) = ‖f‖2Rj (r), (A.4)

where all radial dependence is in the factor Rj (r). This can be found in terms of sine-integral

functions [15],

Rj (r) = 4π2

(2j + 1)r
(Si 2π(r + j) + Si 2π(r − j) − Si 2π(r + j + 1) − Si 2π(r − j − 1)).

(A.5)

This function is strongly peaked in the interval j < r < j + 1, and oscillates with very small

values around zero elsewhere [15, figure 2], corresponding to the restriction (21). We have

chosen to ‘slice’ meta-phase space setting the radius to be r = j + 1
2
, so the Wigner constants

(A.3) need to be calculated only once for each j .

The marginal of position is the projection of the Wigner function onto the q-axis, through

integration over (p, λ) ∈ R2,

M
(j)

Q (f|q) :=
∫

R

dp

∫

R

dλW(f|q, p, λ)

= (2π)3

j
∑

q ′=−j

|fq ′ |2 sinc π(q−q ′). (A.6)

This function returns the absolute square of the 2j + 1 values of the signal at the positions {q}
of the system, and sinc-interpolates smoothly between and beyond them.
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