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Linear Transformations on Matrices™

Marvin Marcus **
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Let K be a field and let M,(K) denote the vector space of all n X n matrices over K. Suppose
1(X) is an invariant defined on a subset ¥ of M, (K). This paper surveys certain results concerning the
following problem. Describe the set #°(1, %) of all linear transformations T:9 — 2 that hold the in-
variant [ fixed:

HTX)=1(X). Xed..
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1. Introduction

Let K be a field and let M,(K) denote the vector space of all n X n matrices over K. Over
the last 80 years. a great deal of effort has been devoted to the following question. Suppose I(X)
is an invariant defined on a subset U of M, (K). Describe the set # (I, %) of all linear transfor-
mations T:9 — 2 that hold the invariant I fixed:

HT(X))=I(X), Xell (1)

Even in this generality, it is clear that % (I, 1) is a multiplicative semigroup with an identity.
The invariant I can be a scalar valued function, e.g., I(X) = det (X): or for that matter it can de-
scribe a property, e.g., ¥ can equal M,(C) and I(X) can mean that X is unitary, so that we are
simply asking for the structure of all linear transformations T' that map the unitary group into
itself.

Much of a beginning course in linear algebra is devoted to the study of one aspect of this
question for certain choices of I: for example, if [(X)=p(X), the rank of X, then it is well known
that the three standard linear operations on the rows and columns of a matrix leave p fixed and
this fact permits us to compute p(X) by reducing X to some normal form. The similarity theory
is another example of this problem. In this case take I(X) to be the set of all elementary divisors
of the characteristic matrix of X, and then the linear operators T that we wish to study are pre-
cisely those for which I'(X)=I1(T(X)).

In the survey paper [18, 1962]|! some of the aspects of this general problem are discussed.
But since the time that paper was written there have been a number of developments. The pur-
pose of this paper is to describe some of these.

2. Survey of Results

The scalar invariants are functions I for which I(X) is either an element of K (we will assume
that char K= 0. so that integer-valued functions are included) or a p-tuple of elements of K. Prob-
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ably the first three problems of this kind were considered by Frobenius [11, 1897]:
{l] 1‘[=MH(C), I(X)=det [X}.

(ii) Y is the space of real-symmetric (or odd order skew-symmetric) matrices and I(X )=

det (X):

(iii) A={X|tr(X) =0} C M, (C) and I(X) = det(X).
Frobenius proved what one might expect, namely that .% (det, M,,(C)) consists of linear trans-
formations of the form

TX)=UXxV, XeM.(C), (2)
or

T(X)=UX"V, XeM.(C). 3)

In problem (i) det(U/})')=1; in problem (ii) U=¢4. V=A" where & is an appropriately chosen
constant and det A=1; in (iii)) U=£4, V=A-'. |. Schur [34, 1925] extended and improved the
result (i) as follows: Take 8(X) to be the (})2-tuple of k™" order subdeterminants of X in some order
where k£ = 3 is fixed; then Schur proved that if §(T(X))=S8(8(X)) for S a fixed nonsingular ma-
trix, then T has one of the two forms (2) or (3) (without the restriction det(UF)=1). Dieudonné
[8. 1949| showed that if T is a semi-linear transformation of M,(K) onto itself which holds the
cone det (X) =0 invariant, then T is of the form

TX)=Ulo(x;)) V. XeM,(K).,
or

T(X)=U(o(x;) )"V, XeM, (K).

where o is an automorphism of the field. In the paper [9, 1957] Dynkin states that the Frobenius
theorems can be obtained using some results on the structure of maximal subgroups of the clas-
sical groups.

In an old result, Polya [32] restricted T to be a linear transformation which affixes in a pre-
scribed way + and — signs to the elements of X, and asked whether such a T exists which satisfies
per (T(X))=det (X) for n >2. Polya answered the question negatively and many years later in
[23, 1961] the question was answered negatively for arbitrary linear transformations T. Along
the lines of the Frobenius and Schur results, the structure of #(E,, M,(C)) is determined where
E(X) is the rth elementary symmetric function of the eigenvalues of X, i.e., the sum of all r-square
principle subdeterminants of X. It was proved in [28, 1959] that ford4 < r<nany Te¥ (E,. M, (C))
is of the form

TX)=UXV, XeM,(C),
or

TX)=UX"V, XeM,(C),

where UV =ei¢l, and r¢ =0(2m). Just recently Beasley [1, 1970] completed the argument by
showing that for r=3, precisely the same result holds. E. P. Botta, in several papers considers

the choice I(X)=d(X) where d is a generalized matrix function in the sense of Schur, i.e.,

d(X) =2 A(a) H Xi, o (i)

el i=1
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where A is a nonzero function defined on a subgroup H of S,. In [3, 1967] Botta determined the
structure of ¥ (d, M, (K)) when H is a transitive cyclic subgroup of S,. In [4, 1968] H is taken to
be a doubly transitive or regular proper subgroup of S, and A is a character of H of degree 1. In
[5, 1967] Botta reproves an earlier result of Marcus and May [22, 1962] showing that . (per,
M, (K)) consists of precisely those T of the form ‘

T(X)=DPXQL, XeM,(K),

or

T(X)=DPX"QL, XeM,(K),

where P and ) are permutation matrices, D and L are diagonal matrices and per (DL)=1.

Many of the results concerning the structure of # (I, ) can be reduced to the problem of
determining linear maps on M, (K) which map the set of rank 1 matrices into itself. W. L.. Chow
[6, 1949], L. K. Hua [12, 1951] and Jacobson and Rickart [13, 1950] considered 1 —1 onto maps
T of M,(K) which have the property that both T' and T-' preserve coherence. In the present con-
text, this amounts to assuming that T and T-! both have the property that whenever X and Y
differ by a matrix of rank 1, then T'(X) and T(Y) differ by a matrix of rank 1. For linear maps
this means p(T(X)) = p(X) for all X. In [26. 1959] Marcus and Moyls proved that it 7': M,, ,(K)—
My, w(K) (M, o(K) is the space of all m X n matrices over K) is linear and p(T(X)) =1 whenever
p(X)=1, then T has the form

T(X)=UXV, XEMI'H.N(C):'
or

T(X)=UX"V, XeMu, «(C),

where U and }J° are fixed nonsingular matrices in M, (K) and M,(K) respectively. This result
is fairly easy to apply because it does not require the a priori existence of T-1. R. Westwick in
[36. 1967] extended the result in [26, 1959] to linear maps on the space of n-contravariant tensors
which hold the nonzero decomposable elements set-wise fixed. In another paper [35, 1964] West-
wick, using techniques in [6, 1949] determined the structure of linear maps on the space A"V
of skew-symmetric tensors into itself which hold the set of nonzero decomposable elements set-
wise fixed. In a thesis at the University of British Columbia [7, 1967] L. Cummings proved that
if 7' maps the symmetric power V" into itself and holds the set of non-zero decomposable elements
set-wise fixed then T is induced by a linear map of V. Cummings’ result requires that the under-
lying field be algebraically closed of characteristic either 0 or exceeding m. In another thesis
[14, 1971] M. H. Lim reconsiders this problem and relaxes the conditions on the field. Beasley
[2, 1970] considered the problem of determining all linear transformations T: M, (K) — M, (K).
K algebraically closed, which hold the set of rank k& matrices set-wise fixed. Beasley required
additional hypotheses on T in order to prove that T has the form (2) or (3). Djokovi¢ [10, 1969]
proved that if T maps the set of rank k& matrices into itself and is nonsingular, then in fact T maps
the set of rank 1 matrices into itself and the result in [26, 1959] applies. Much earlier [30, 1941]
Morita proved that if 7" maps the set of rank 1 matrices into itself and maps the set of rank 2 mat-
rices into the set of matrices of rank at least 2, then 7" has the form (2) or (3). He then used this
to prove a result of Schur to the effect that if 1(X) = o, (X) is the Hilbert norm of X, i.e., the square
root of the largest eigenvalue of X*X, and Te# (I, M, ,(C)), then T has the form (2) or (3) in
which U and V are unitary. In a later paper [31, 1944], Morita shows that if 2 is the set of n-square
complex skew-symmetric matrices and I(X) is again the Hilbert norm of X, then for n # 4 and

Tex (1,%),

T(X)=UXU, XeM,(C),
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where U is a fixed unitary matrix; or if n=4, then T'(X) can also have the alternative form
T(X)=UTX+U, XeM,(C), (4)

where X is the matrix obtained from X by interchanging the (1, 4) and the (2, 3) entry. A result
similar to this was obtained by Westwick in his thesis [35, 1964]. In [29, 1960] Marcus and West-
wick proved a theorem somewhat along the lines of the Morita theorem as follows. Let & be a
fixed integer satisfying 4 = 2k = n. Let 2 be the set of skew-symmetric matrices over the field
R of real numbers and let Te.# (E,;, ). If n = 5, then there exists areal matrix P such that

T(X)=aPXPT,  Xel, (5)

where aPPT=1, is 2k < n and aPPT is unimodular if 2k=n. If 2k=n=4, then either T has the
form (5) or

0 X34 X24 Xag
—X12 0 Xag X2
T(X)=aP P,
—Xia — Xag 0 X4
—X14 — X24 — X34 0
where

0 X2 X13 X14

— Xi2 0 Xa23 Xa2q
X= ;

— X113 — Xa3 0 X34

— X4 — X4 — X34 0

and aPPT is unimodular. Later on Marcus and Mine [24, 1962] proved that if Te # (E, M, . (C))
where 1 < r=n and E}(X) is the value of E, at the squares of the singular values of X, i.e., E.(X)
is just the value of E, at the eigenvalues of X *X, then T has the form (2) if m # n and either (2)
or (3) if m=n, where UeM,(C) and VelM,(C) are unitary.

In [17,1959] it is proved that if T is a linear map of M, (C) into itself such that T (X) is uni-
tary whenever X is unitary, then T is of the form (2) or (3) where U and V are unitary. B. Russo
[33, 1969] recently used this result to prove the following interesting theorem. If 1 (X)) is the sum
of the singular values of X and if T maps the identity matrix into itself, then Te.¥ (I, M, (C))
has the form (2) or (3), where U and V are unitary. Marcus and Gordon [20, 1970] recently proved
the following result. Let f(¢)=f(t;. ..., ty) be a continuous, real-valued function defined for
allt;=0,1=<j=<n, and for XeM ., (C), let

[(X)=f(a: (X), @ (X). ..., ax(X))

where a; (X) = a: (X) =. . . = a, (X) are the singular values of X. If f(¢;, . . ., ty) is concave,
symmetric, strictly increasing in each t;, and f(0) =0, then T'e€.%¥ (I, My, » (C)) has the form (2)
if m # n and either (2) or (3) if m=n where UeM,, (C) and Ve M, (C) are unitary. By specializing

fto
o
=1

where 0 < o <1, the above theorem reduces to the following result. If T:M,, ,(C)—= M, .(C)
satisfies

S o (TH)7=Y & (X)”
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for all X e M., », (C), then (2) or (3) holds with unitary U and V. In the paper [27, 1970] the following
result is proven using representation theory techniques. Let f(t)=f(t;, . . ., t,) satisfy the
conditions
(i) f(¢)=0 if and only if t=0;
(ii) f is positively homogeneous of degree p # 0; i.e., flct)=cPf(t), all ¢=0, t=0 (ie.,
E_;?O,jzl, e

If I(X) =f(a;(X), . . ., @n(X)) as before, then Z (I, My, , (C)) is a subgroup of the group of
mn X mn unitary matrices U(mn, C) where we associate each T e % (I, M., , (C)) with its matrix
representation with respect to the lexicographically ordered basis {Ey= (8i84). . j=1. .. .. n}.

3. Current Work and Some Questions

M. J. S. Lim, in work closely related to that of Marcus and Westwick [29, 1960]. has recently
published [15, 1970] the following result. Let T map the space of skew-symmetric matrices over
an algebraically closed field K into itself. Assume that T maps the set of rank 4 matrices into
itself. Then for n# 4, T is of the form

T(X)=aPXP"
or

T(X)=aPXTPT.
In case n=4, T is one of the above forms, or else

T(X)=aPX'P"

where X is defined in (4).
Just recently Marcus and Holmes [21, 1971] have proved the following results. Let XeM,(C).
For any subgroup H of the symmetric group S, of degree m and character x of degree 1 on H, let
K(X) :P— P be the induced transformation [19, 1967]| on the symmetry class of tensors (P, v)
associated with H and x. Define I(X) =tr K(X), XeM,(C).
(i) Letm=norx=1 %, M,(C)) is a group if and only if H # {e}.
(i) Let H=S8,,,x=1and A C M, (C) an algebra with the property that A *={ X*: X } =
A, when X* denotes the conjugate transpose of X. Then . (I, %) is a group.
(iii) In (i) take H=S,, m =3 and x = 1. If 4, (I, M,(C)) denotes the subgroup of # (I, M,(C))
of those T: M, (C)— M (C) satisfying T(I,)= &l,. then for any Te ', (I, M,(C)) there exists

a fixed nonsingular matrix PeM ,(C) such that

T(X)=§P_IXP, XEM::{C)- {6}
or
T(X)=¢P'XTP, XeMa(C). (7)

In this case tr K(X) is the completely symmetric function of the eigenvalues of X, denoted here
by hAw (X ). Thus this result states that if T ([,)=¢&I, and hp (T(X))=hu(X) for all XeM , (C)
then T has the form (6) or (7).
(iv) In (i) take 4, C S to be the alternating group, m = 3 and x = 1. Then the group .#, (I,
M, (C)) consists precisely of those linear transformations T' of the form (6) or (7).
There are a number of questions which remain unanswered. For example, a more direct
proof of the result in [27, 1970] might be based on the following.
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CONJECTURE 1: Let T be an mn-square complex matrix, and assume that for arbitrary unitary
matrices UeM,(C), VeEM(C) the matrix (U @ V)T has eigenvalues of modulus 1. (The matrix U@V
is the usual Kronecker product of U and V.) Then T is unitary.

ConNJECTURE 2: If T: My(C)— M,(C) is a linear map and if hy(T(X))=hn(X), XeM,(C)
(recall that hy(X) is the completely symmetric function of the eigenvalues of X), then in fact T(I,)
= ¢1, and hence from |21, 1971| T has the form (6) or (7).

CONJECTURE 3: Let P (X) denote the mth induced power matrix of X [25] and suppose that
T: Mu(C)— M(C) satisfies Py(T(X))=S(P(X)), XeM,(C) where S: My(C)— My(C) is a fixed non-

singular linear map, N=(m+:: a 1). Then T has the form (2) or (3).

CONJECTURE 4: Suppose K(X) is an invariant matrix [16, Chapter X| defined by means
of a Young tableau. If T: M (C)— M,(C) and tr K(T(X))=tr K(X) for all XeM,(C), then T must
have the form (2) or (3) with some appropriate conditions on the U and V. Of course, the result
in [28. 1959] and |21, 1971] are special cases of this.

As a possible extension of Schur’s theorem [30, 1941] consider

CoNJECTURE 5: Let T: M,(C)— My(C) and hy(TX)*T(X)) = hn(X*X) (see Conjecture 2 in
which hy, is defined), then T has the form (2) or (3).

As a variant of the result in [17. 1959], let G be any of the following classical groups: the
real orthogonal group, the rotation group, the symplectic group.

CONJECTURE 6: Let T: M (R) = M, (R) map G into itself. Then T must have the form (2)
or (3) in which U and V belong to G. (In the case of the rotation group, U and V could be simply
real orthogonal with det (UV)=1.)

CONJECTURE 7: Suppose T is a mapping of the space of 2-contravariant tensors into itself;
and suppose moreover that for each decomposable element x ®y we have | Tx® y)[|=|x&® y|
(Euclidean norm). Then T is unitary. This can be restated in terms of linear maps T: M,(C)— M,(C).
Thus suppose for p(X)=1, | TX)||=| X|| where | X|| is just the Euclidean norm. Show that T is
unitary.
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