Linear Transformations on Matrices*

Marvin Marcus**

(November 2, 1971)

Abstract

Let K be a field and let $M_{n}(K)$ denote the vector space of all $n \times n$ matrices over K. Suppose $I(X)$ is an invariant defined on a subset \mathfrak{A} of $M_{n}(K)$. This paper surveys certain results concerning the following problem. Describe the set $\mathscr{L}(I, \mathcal{Q})$ of all linear transformations $T: \mathscr{U} \rightarrow \mathscr{Q}$ that hold the invariant I fixed:

$$
I(T(X))=I(X), \quad X \in \mathbb{I} \ldots
$$

Key words: Matrices; invariants; determinant; generalized matrix function; rank.

1. Introduction

Let K be a field and let $M_{n}(K)$ denote the vector space of all $n \times n$ matrices over K. Over the last 80 years, a great deal of effort has been devoted to the following question. Suppose $I(X)$ is an invariant defined on a subset \mathfrak{H} of $M_{n}(K)$. Describe the set $\mathscr{L}(I, \mathscr{H})$ of all linear transformations $T: \mathfrak{A} \rightarrow \mathfrak{A}$ that hold the invariant I fixed:

$$
\begin{equation*}
I(T(X))=I(X), \quad X \in \mathfrak{A} . \tag{1}
\end{equation*}
$$

Even in this generality, it is clear that $\mathscr{L}(I, \mathscr{A})$ is a multiplicative semigroup with an identity. The invariant I can be a scalar valued function, e.g., $I(X)=\operatorname{det}(X)$; or for that matter it can describe a property, e.g., \mathfrak{U} can equal $M_{n}(C)$ and $I(X)$ can mean that X is unitary, so that we are simply asking for the structure of all linear transformations T that map the unitary group into itself.

Much of a beginning course in linear algebra is devoted to the study of one aspect of this question for certain choices of I; for example, if $I(X)=\rho(X)$, the rank of X, then it is well known that the three standard linear operations on the rows and columns of a matrix leave ρ fixed and this fact permits us to compute $\rho(X)$ by reducing X to some normal form. The similarity theory is another example of this problem. In this case take $I(X)$ to be the set of all elementary divisors of the characteristic matrix of X, and then the linear operators T that we wish to study are precisely those for which $I(X)=I(T(X))$.

In the survey paper $[18,1962]^{1}$ some of the aspects of this general problem are discussed. But since the time that paper was written there have been a number of developments. The purpose of this paper is to describe some of these.

2. Survey of Results

The scalar invariants are functions I for which $I(X)$ is either an element of K (we will assume that char $K=0$, so that integer-valued functions are included) or a p-tuple of elements of K. Prob-

[^0]ably the first three problems of this kind were considered by Frobenius [11, 1897]:
(i) $\mathfrak{A}=M_{n}(C), \quad I(X)=\operatorname{det}(X)$;
(ii) \mathfrak{U} is the space of real-symmetric (or odd order skew-symmetric) matrices and $I(X)=$ $\operatorname{det}(\boldsymbol{X})$:
(iii) $\mathfrak{A}=\{X \mid \operatorname{tr}(X)=0\} \subset M_{n}(C)$ and $I(X)=\operatorname{det}(X)$.

Frobenius proved what one might expect, namely that $\mathscr{L}\left(\operatorname{det}, M_{n}(C)\right)$ consists of linear transformations of the form

$$
\begin{equation*}
T(X)=U X V, \quad X \in M_{n}(C), \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
T(X)=U X^{T} V, \quad X \in M_{n}(C) . \tag{3}
\end{equation*}
$$

In problem (i) $\operatorname{det}(U V)=1$; in problem (ii) $U=\xi A, V=A^{T}$ where ξ is an appropriately chosen constant and $\operatorname{det} A=1$; in (iii) $U=\xi A, V=A^{-1}$. I. Schur [34, 1925] extended and improved the result (i) as follows: Take $\delta(X)$ to be the $\binom{n}{k}^{2}$-tuple of $k^{\text {th }}$ order subdeterminants of X in some order where $k \geqslant 3$ is fixed; then Schur proved that if $\delta(T(X))=S(\delta(X))$ for S a fixed nonsingular matrix, then T has one of the two forms (2) or (3) (without the restriction $\operatorname{det}(U V)=1)$. Dieudonné [8, 1949] showed that if T is a semi-linear transformation of $M_{n}(K)$ onto itself which holds the cone $\operatorname{det}(X)=0$ invariant, then T is of the form

$$
T(X)=U\left(\sigma\left(x_{i j}\right)\right) V, \quad X \in M_{n}(K),
$$

or

$$
T(X)=U\left(\sigma\left(x_{i j}\right)\right)^{T} V, \quad X \in M_{n}(K),
$$

where σ is an automorphism of the field. In the paper [9, 1957] Dynkin states that the Frobenius theorems can be obtained using some results on the structure of maximal subgroups of the classical groups.

In an old result, Pòlya [32] restricted T to be a linear transformation which affixes in a prescribed way + and - signs to the elements of X, and asked whether such a T exists which satisfies per $(T(X))=\operatorname{det}(X)$ for $n>2$. Pòlya answered the question negatively and many years later in [23, 1961] the question was answered negatively for arbitrary linear transformations T. Along the lines of the Frobenius and Schur results, the structure of $\mathscr{L}\left(E_{r}, M_{n}(C)\right)$ is determined where $E_{r}(X)$ is the r th elementary symmetric function of the eigenvalues of X, i.e., the sum of all r-square principle subdeterminants of X. It was proved in $[28,1959]$ that for $4 \leqslant r<n$ any $\mathrm{T} \epsilon \mathscr{L}\left(E_{r}, M_{n}(C)\right)$ is of the form

$$
T(X)=U X V, \quad X \in M_{n}(C)
$$

or

$$
T(X)=U X^{T} V, \quad X \in M_{n}(C),
$$

where $U V=e^{i \varphi} I_{n}$ and $r \varphi \equiv 0(2 \pi)$. Just recently Beasley [1, 1970] completed the argument by showing that for $r=3$, precisely the same result holds. E. P. Botta, in several papers considers the choice $I(X)=d(X)$ where d is a generatized matrix function in the sense of Schur, i.e.,

$$
d(X)=\sum_{\sigma \in H} \lambda(\sigma) \prod_{i=1}^{n} x_{i, \sigma(i)},
$$

where λ is a nonzero function defined on a subgroup H of S_{n}. In [3, 1967] Botta determined the structure of $\mathscr{L}\left(d, M_{n}(K)\right)$ when H is a transitive cyclic subgroup of S_{n}. In [4, 1968] H is taken to be a doubly transitive or regular proper subgroup of S_{n} and λ is a character of H of degree 1. In [5, 1967] Botta reproves an earlier result of Marcus and May [22, 1962] showing that \mathscr{L} (per, $M_{n}(K)$) consists of precisely those T of the form

$$
T(X)=D P X Q L, \quad X \in M_{n}(K),
$$

or

$$
T(X)=D P X^{T} Q L, \quad X \in M_{n}(K),
$$

where P and Q are permutation matrices, D and L are diagonal matrices and per $(D L)=1$.
Many of the results concerning the structure of $\mathscr{L}(I, \mathfrak{H})$ can be reduced to the problem of determining linear maps on $M_{n}(K)$ which map the set of rank 1 matrices into itself. W. L. Chow [6, 1949], L. K. Hua [12, 1951] and Jacobson and Rickart [13, 1950] considered 1-1 onto maps T of $M_{n}(K)$ which have the property that both T and T^{-1} preserve coherence. In the present context, this amounts to assuming that T and T^{-1} both have the property that whenever X and Y differ by a matrix of rank 1 , then $T(X)$ and $T(Y)$ differ by a matrix of rank 1 . For linear maps this means $\rho(T(X))=\rho(X)$ for all X. In $[26,1959]$ Marcus and Moyls proved that if $T: M_{m, n}(K) \rightarrow$ $M_{m, n}(K)\left(M_{m, n}(K)\right.$ is the space of all $m \times n$ matrices over $\left.K\right)$ is linear and $\rho(T(X))=1$ whenever $\rho(X)=1$, then T has the form

$$
T(X)=U X V, \quad X \in M_{m, n}(C)
$$

or

$$
T(X)=U X^{T} V, \quad X \in M_{m, n}(C),
$$

where U and V are fixed nonsingular matrices in $M_{m}(K)$ and $M_{n}(K)$ respectively. This result is fairly easy to apply because it does not require the a priori existence of T^{-1}. R. Westwick in [36, 1967] extended the result in $[26,1959]$ to linear maps on the space of n-contravariant tensors which hold the nonzero decomposable elements set-wise fixed. In another paper [35, 1964] Westwick, using techniques in $[6,1949]$ determined the structure of linear maps on the space $\wedge^{m} V$ of skew-symmetric tensors into itself which hold the set of nonzero decomposable elements setwise fixed. In a thesis at the University of British Columbia [7, 1967] L. Cummings proved that if T maps the symmetric power $V^{(m)}$ into itself and holds the set of non-zero decomposable elements set-wise fixed then T is induced by a linear map of V . Cummings' result requires that the underlying field be algebraically closed of characteristic either 0 or exceeding m. In another thesis [14, 1971] M. H. Lim reconsiders this problem and relaxes the conditions on the field. Beasley $[2,1970]$ considered the problem of determining all linear transformations $T: M_{n}(K) \rightarrow M_{n}(K)$, K algebraically closed, which hold the set of rank k matrices set-wise fixed. Beasley required additional hypotheses on T in order to prove that T has the form (2) or (3). Djoković [10, 1969] proved that if T maps the set of rank k matrices into itself and is nonsingular, then in fact T maps the set of rank 1 matrices into itself and the result in [26, 1959] applies. Much earlier [30, 1941] Morita proved that if T maps the set of rank 1 matrices into itself and maps the set of rank 2 matrices into the set of matrices of rank at least 2 , then T has the form (2) or (3). He then used this to prove a result of Schur to the effect that if $I(X)=\alpha_{1}(X)$ is the Hilbert norm of X, i.e., the square root of the largest eigenvalue of $X^{*} X$, and $T \epsilon \mathscr{L}\left(I, M_{m, n}(C)\right)$, then T has the form (2) or (3) in which U and V are unitary. In a later paper [31,1944], Morita shows that if \mathfrak{A} is the set of n-square complex skew-symmetric matrices and $I(X)$ is again the Hilbert norm of X, then for $n \neq 4$ and $T \epsilon \mathscr{L}(I, \mathfrak{H})$,

$$
T(X)=U^{T} X U, \quad X \in M_{n}(C),
$$

where U is a fixed unitary matrix; or if $n=4$, then $T(X)$ can also have the alternative form

$$
\begin{equation*}
T(X)=U^{T} X^{+} U, \quad X \in M_{n}(C), \tag{4}
\end{equation*}
$$

where X^{+}is the matrix obtained from X by interchanging the $(1,4)$ and the $(2,3)$ entry. A result similar to this was obtained by Westwick in his thesis [35, 1964]. In [29, 1960] Marcus and Westwick proved a theorem somewhat along the lines of the Morita theorem as follows. Let k be a fixed integer satisfying $4 \leqslant 2 k \leqslant n$. Let \mathfrak{A} be the set of skew-symmetric matrices over the field R of real numbers and let $T \epsilon \mathscr{L}\left(E_{2 k}, \mathfrak{U}\right)$. If $n \geqslant 5$, then there exists a real matrix P such that

$$
\begin{equation*}
T(X)=\alpha P X P^{T}, \quad X \in \mathfrak{N}, \tag{5}
\end{equation*}
$$

where $\alpha P P^{T}=I_{n}$ is $2 k<n$ and $\alpha P P^{T}$ is unimodular if $2 k=n$. If $2 k=n=4$, then either T has the form (5) or

$$
T(X)=\alpha P\left[\begin{array}{cccc}
0 & x_{34} & x_{24} & x_{23} \\
-x_{12} & 0 & x_{23} & x_{24} \\
-x_{13} & -x_{23} & 0 & x_{34} \\
-x_{14} & -x_{24} & -x_{34} & 0
\end{array}\right] P^{T},
$$

where

$$
X=\left[\begin{array}{cccc}
0 & x_{12} & x_{13} & x_{14} \\
-x_{12} & 0 & x_{23} & x_{24} \\
-x_{13} & -x_{23} & 0 & x_{34} \\
-x_{14} & -x_{24} & -x_{34} & 0
\end{array}\right],
$$

and $\alpha P P^{T}$ is unimodular. Later on Marcus and Minc [24, 1962] proved that if $T \epsilon \mathscr{L}\left(E_{r}^{\prime}, M_{m, n}(C)\right)$ where $1<r \leqslant n$ and $E_{r}^{\prime}(X)$ is the value of E_{r} at the squares of the singular values of X, i.e., $E_{r}^{\prime}(X)$ is just the value of E_{r} at the eigenvalues of $X^{*} X$, then T has the form (2) if $m \neq n$ and either (2) or (3) if $m=n$, where $U \epsilon M_{n}(C)$ and $V \epsilon M_{n}(C)$ are unitary.

In [17, 1959] it is proved that if T is a linear map of $M_{n}(C)$ into itself such that $T(X)$ is unitary whenever X is unitary, then T is of the form (2) or (3) where U and V are unitary. B. Russo [33, 1969] recently used this result to prove the following interesting theorem. If $I(X)$ is the sum of the singular values of X and if T maps the identity matrix into itself, then $T \in \mathscr{L}\left(I, M_{n}(C)\right)$ has the form (2) or (3), where U and V are unitary. Marcus and Gordon [20, 1970] recently proved the following result. Let $f(t)=f\left(t_{1}, \ldots, t_{n}\right)$ be a continuous, real-valued function defined for all $t_{j} \geqslant 0, \mathrm{l} \leqslant j \leqslant n$, and for $X \in M_{m, n}(C)$, let

$$
I(X)=f\left(\alpha_{1}(X), \alpha_{2}(X), \ldots, \alpha_{n}(X)\right)
$$

where $\alpha_{1}(X) \geqslant \alpha_{2}(X) \geqslant \ldots \geqslant \alpha_{n}(X)$ are the singular values of X. If $f\left(t_{1}, \ldots, t_{n}\right)$ is concave, symmetric, strictly increasing in each t_{j}, and $f(0)=0$, then $T \in \mathscr{L}\left(I, M_{m, n}(C)\right)$ has the form (2) if $m \neq n$ and either (2) or (3) if $m=n$ where $U \in M_{m}(C)$ and $V \in M_{n}(C)$ are unitary. By specializing f to

$$
f(t)=\sum_{j=1}^{n} t_{j}^{\sigma}
$$

where $0<\sigma \leqslant 1$, the above theorem reduces to the following result. If $T: M_{m, n}(C) \rightarrow M_{m, n}(C)$ satisfies

$$
\sum_{j=1}^{n} \alpha_{j}(T(X))^{\sigma}=\sum_{j=1}^{n} \alpha_{j}(X)^{\sigma}
$$

for all $X \in M_{m, n}(C)$, then (2) or (3) holds with unitary U and V. In the paper [27,1970] the following result is proven using representation theory techniques. Let $f(t)=f\left(t_{1}, \ldots, t_{n}\right)$ satisfy the conditions
(i) $f(t)=0$ if and only if $t=0$;
(ii) f is positively homogeneous of degree $\rho \neq 0$; i.e., $f(c t)=c^{\rho} f(t)$, all $c \geqslant 0, t \geqslant 0$ (i.e., $\left.t_{j} \geqslant 0, j=1, \ldots, n\right)$.

If $I(X)=f\left(\alpha_{1}(X), \ldots, \alpha_{n}(X)\right)$ as before, then $\mathscr{L}\left(I, M_{m, n}(C)\right)$ is a subgroup of the group of $m n \times m n$ unitary matrices $U(m n, C)$ where we associate each $T \in \mathscr{L}\left(I, M_{m, n}(C)\right)$ with its matrix representation with respect to the lexicographically ordered basis $\left\{E_{s t}=\left(\delta_{i s} \delta_{t j}\right), i, j=1, \ldots, n\right\}$.

3. Current Work and Some Questions

M. J. S. Lim, in work closely related to that of Marcus and Westwick [29, 1960], has recently published [15, 1970] the following result. Let T map the space of skew-symmetric matrices over an algebraically closed field K into itself. Assume that T maps the set of rank 4 matrices into itself. Then for $n \neq 4, T$ is of the form

$$
T(X)=\alpha P X P^{T}
$$

or

$$
T(X)=\alpha P X^{T} P^{T} .
$$

In case $n=4, T$ is one of the above forms, or else

$$
T(X)=\alpha P X^{+} P^{T}
$$

where X^{+}is defined in (4).
Just recently Marcus and Holmes [21, 1971] have proved the following results. Let $X \in M_{n}(C)$. For any subgroup H of the symmetric group S_{m} of degree m and character χ of degree 1 on H, let $K(X): P \rightarrow P$ be the induced transformation [19, 1967] on the symmetry class of tensors (P, ν) associated with H and χ. Define $I(X)=\operatorname{tr} K(X), X \epsilon M_{n}(C)$.
(i) Let $m \leqslant n$ or $\chi \equiv 1 . \mathscr{L}\left(I, M_{n}(C)\right)$ is a group if and only if $H \neq\{e\}$.
(ii) Let $H=S_{m}, \chi \equiv 1$ and $\mathfrak{A} \subset M_{n}(C)$ an algebra with the property that $\mathfrak{A} *=\left\{X^{*}: X \epsilon \mathfrak{H}\right\}=$ \mathfrak{A}, when X^{*} denotes the conjugate transpose of X. Then $\mathscr{L}(I, \mathfrak{H})$ is a group.
(iii) In (i) take $H=S_{m}, m \geqslant 3$ and $\chi \equiv 1$. If $\mathscr{L}_{1}\left(I, M_{n}(C)\right)$ denotes the subgroup of $\mathscr{L}\left(I, M_{n}(C)\right)$ of those $T: M_{n}(C) \rightarrow M_{n}(C)$ satisfying $T\left(I_{n}\right)=\xi I_{n}$, then for any $T \epsilon \mathscr{L}_{1}\left(I, M_{n}(C)\right)$ there exists a fixed nonsingular matrix $P \epsilon M_{n}(C)$ such that

$$
\begin{equation*}
T(X)=\xi P^{-1} X P, \quad X \in M_{n}(C), \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
T(X)=\xi P^{-1} X^{T} P, \quad X \epsilon M_{n}(C) . \tag{7}
\end{equation*}
$$

In this case $\operatorname{tr} K(X)$ is the completely symmetric function of the eigenvalues of X, denoted here by $h_{m}(X)$. Thus this result states that if $T\left(I_{n}\right)=\xi I_{n}$ and $h_{m}(T(X))=h_{m}(X)$ for all $X \epsilon M_{n}(C)$ then T has the form (6) or (7).
(iv) In (i) take $A_{m} \subset S_{m}$ to be the alternating group, $m \geqslant 3$ and $\chi \equiv 1$. Then the group $\mathscr{L}_{1}(I$, $\left.M_{n}(C)\right)$ consists precisely of those linear transformations T of the form (6) or (7).
There are a number of questions which remain unanswered. For example, a more direct proof of the result in [27, 1970] might be based on the following.

Conjecture 1: Let T be an mn-square complex matrix, and assume that for arbitrary unitary matrices $\mathrm{U} \epsilon \mathrm{M}_{\mathrm{n}}(\mathrm{C}), \mathrm{V} \epsilon \mathrm{M}_{\mathrm{n}}(\mathrm{C})$ the matrix $(\mathrm{U} \otimes \mathrm{V}) \mathrm{T}$ has eigenvalues of modulus 1 . (The matrix $\mathrm{U} \otimes \mathrm{V}$ is the usual Kronecker product of U and V .) Then T is unitary.

Conjecture 2: If $\mathrm{T}: \mathrm{M}_{\mathrm{n}}(\mathrm{C}) \rightarrow \mathrm{M}_{\mathrm{n}}(\mathrm{C})$ is a linear map and if $\mathrm{h}_{\mathrm{m}}(\mathrm{T}(\mathrm{X}))=\mathrm{h}_{\mathrm{m}}(\mathrm{X}), \mathrm{X} \in \mathrm{M}_{\mathrm{n}}(\mathrm{C})$ (recall that $\mathrm{h}_{\mathrm{m}}(\mathrm{X})$ is the completely symmetric function of the eigenvalues of X$)$, then in fact $\mathrm{T}\left(\mathrm{I}_{\mathrm{n}}\right)$ $=\xi \mathrm{I}_{\mathrm{n}}$ and hence from $[21,1971] \mathrm{T}$ has the form (6) or (7).

Conjecture 3: Let $\mathrm{P}_{\mathrm{m}}(\mathrm{X})$ denote the mth induced power matrix of X [25] and suppose that $\mathrm{T}: \mathrm{M}_{\mathrm{n}}(\mathrm{C}) \rightarrow \mathrm{M}_{\mathrm{n}}(\mathrm{C})$ satisfies $\mathrm{P}_{\mathrm{m}}(\mathrm{T}(\mathrm{X}))=\mathrm{S}\left(\mathrm{P}_{\mathrm{m}}(\mathrm{X})\right)$, $\mathrm{X} \epsilon \mathrm{M}_{\mathrm{n}}(\mathrm{C})$ where $\mathrm{S}: \mathrm{M}_{\mathrm{N}}(\mathrm{C}) \rightarrow \mathrm{M}_{\mathrm{N}}(\mathrm{C})$ is a fixed nonsingular linear map, $\mathrm{N}=\binom{\mathrm{m}+\mathrm{m}-1}{\mathrm{~m}}$. Then T has the form (2) or (3).

Conjecture 4: Suppose $\mathrm{K}(\mathrm{X})$ is an invariant matrix [16, Chapter X] defined by means of a Young tableau. If $\mathrm{T}: \mathrm{M}_{\mathrm{n}}(\mathrm{C}) \rightarrow \mathrm{M}_{\mathrm{n}}(\mathrm{C})$ and $\operatorname{tr} \mathrm{K}(\mathrm{T}(\mathrm{X}))=\operatorname{tr} \mathrm{K}(\mathrm{X})$ for all $\mathrm{X} \epsilon \mathrm{M}_{\mathrm{n}}(\mathrm{C})$, then T must have the form (2) or (3) with some appropriate conditions on the U and V . Of course, the result in $[28,1959]$ and $[21,1971]$ are special cases of this.

As a possible extension of Schur's theorem [30, 1941] consider
Conjecture 5: Let $\mathrm{T}: \mathrm{M}_{\mathrm{n}}(\mathrm{C}) \rightarrow \mathrm{M}_{\mathrm{n}}(\mathrm{C})$ and $\mathrm{h}_{\mathrm{m}}\left(\mathrm{T}(\mathrm{X})^{*} \mathrm{~T}(\mathrm{X})\right.$) $=h_{\mathrm{m}}(\mathrm{X} * \mathrm{X})$ (see Conjecture 2 in which h_{m} is defined), then T has the form (2) or (3).

As a variant of the result in [17, 1959], let G be any of the following classical groups: the real orthogonal group, the rotation group, the symplectic group.

Conjecture 6: Let $\mathrm{T}: \mathrm{M}_{\mathrm{n}}(\mathrm{R}) \rightarrow \mathrm{M}_{\mathrm{n}}(\mathrm{R})$ map G into itself. Then T must have the form (2) or (3) in which U and V belong to G . (In the case of the rotation group, U and V could be simply real orthogonal with $\operatorname{det}(\mathrm{UV})=1$.)

Conjecture 7: Suppose T is a mapping of the space of 2-contravariant tensors into itself; and suppose moreover that for each decomposable element $\mathrm{x} \otimes \mathrm{y}$ we have $\|\mathrm{T}(\mathrm{x} \otimes \mathrm{y})\|=\|\mathrm{x} \otimes \mathrm{y}\|$ (Euclidean norm). Then T is unitary. This can be restated in terms of linear maps $\mathrm{T}: \mathrm{M}_{\mathrm{n}}(\mathrm{C}) \rightarrow \mathrm{M}_{\mathrm{n}}(\mathrm{C})$. Thus suppose for $\rho(\mathrm{X})=1,\|\mathrm{~T}(\mathrm{X})\|=\|\mathrm{X}\|$ where $\|\mathrm{X}\|$ is just the Euclidean norm. Show that T is unitary.

4. References

[1] Beasley, L., Linear transformations on matrices: The invariance of the third elementary symmetric function, Canad. J. Math. 22 (1970), 746-752.
[2] Beasley, L., Linear transformations on matrices: The invariance of rank k matrices, Linear Algebra and Appl. 3 (1970), 407-427.
[3] Botta, E., Linear transformations on matrices: The invariance of a class of general matrix functions, Canad. J. Math. 19 (1967), 281-290.
[4] Botta, E., Linear transformations on matrices: The invariance of a class of general matrix functions II, Canad. J. Math. 20 (1968), 739-748.
[5] Botta, E., Linear transformations that preserve the permanent, Proc. Amer. Math. Soc. 18 (1967), 566-569.
[6] Chow, W. L., On the geometry of algebraic homogeneous spaces, Ann. Math. 50 (1949), 32-67.
[7] Cummings, L., Linear transformations on symmetric tensor spaces which preserve rank 1 (Ph.D. thesis), University of British Columbia (1967).
[8] Dieudonné, J., Sur une généralisation du groupe orthogonal à quatre variables, Arch. Math. 1 (1949), 282-287.
[9] Dynkin, E. B., The maximal subgroups of the classical groups, Amer. Math. Soc. Translations Series 2, 6 (1959).
[10] Djoković, D., Linear transformations of tensor products preserving a fixed rank, Pacific J. Math. 30 (1969), 411-414.
[11] Frobenius, G., Über die Darstellung der endlichen Gruppen durch linear Substitutionen: I, Sitzungsberichte der Preuss. Acad. Wiss. zu Berlin (1897), 994-1015.
[12] Hua, L. K., A theorem on matrices over a field and its applications, J. Chinese Math. Soc. (N.S.) 1 (1951), 110-163.
[13] Jacobson, N., and Rickart, C., Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479-502.
[14] Lim, M. H., (Ph.D. thesis, in preparation) University of British Columbia (1971).
[15] Lim, M. J. S., Rank preservers of skew-symmetric matrices, Pacific J. Math. 35 (1970), 169-174.
[16] Littlewood, D., The Theory of Group Characters and Matrix Representations of Groups, (Oxford University Press, 1940).
[17] Marcus, M., All linear operators leaving the unitary group invariant, Duke Math. J. 26 (1959), 155-163.
[18] Marcus, M., Linear operations on matrices, Amer. Math. Monthly 69 (1962), 837-847.
[19] Marcus, M., A theorem on rank with applications to mappings on symmetry classes of tensors, Bull. Amer. Math. Soc. 73 (1967), 675-677.
[20] Marcus, M., and Gordon, W., A generalization of the unitary group, Linear Algebra and Appl. 3 (1970), 225-247.
[21] Marcus, M., and Holmes, J., Groups of linear operators defined by group characters, in press.
[22] Marcus, M., and May, F., The permanent function, Canad. J. Math. 14 (1962), 177-189.
[23] Marcus, M., and Minc, H., On the relation between the determinant and the permanent, Ill. J. Math. 5 (1961), 376-381.
[24] Marcus, M., and Minc, H., The invariance of symmetric functions of singular values, Pacific J. Math. 12 (1962), 327-332.
[25] Marcus, M., and Minc, H.. A Survey of Matrix Theory and Matrix Inequalities (Prindle, Weber and Schmidt, 1964).
[26] Marcus, M., and Moyls, B., Transformations on tensor product spaces, Pacific J. Math. 9 (1959), 1215-1221.
[27] Marcus, M., and Newman, M., Some results on unitary matrix groups, Linear Algebra and Appl. 3 (1970), 173-178.
[28] Marcus, M., and Purves, R., Linear transformations on algebras of matrices II: The invariance of the elementary symmetric functions, Canad. J. Math. 11 (1959), 383-396.
[29] Marcus, M., and Westwick, R., Linear maps on skew-symmetric matrices: The invariance of elementary symmetric functions, Pacific J. Math. 10 (1960), 917-924.
[30] Morita, K., Analytical characterization of displacements in general Poincaré space, Proc. Imperial Acad. 17 (1941), 489-494.
[31] Morita, K., Schwarz's lemma in a homogeneous space of higher dimension, Japanese J. Math. 19 (1944), 45-56.
[32] Pölya, G., Aufgabe 424, Arch. Math. u. Phys. 203, 271.
[33] Russo, B., Trace preserving mappings of matrix algebras. Duke Math. J. 36 (1969), 297-300.
[34] Schur, I., Einige Bemerkungen zur Determinanten Theorie, Sitzungsberichte der Preuss. Akad. Wiss. zu Berlin 25 (1925), 454-463.
[35] Westwick, R., Linear transformations on Grassmann spaces, Pacific J. Math. 14 (1964), 1123-1127.
[36] Westwick. R.. Transformations on tensor spaces, Pacific J. Math. 23 (1967), 613-620.
(Paper 75B3 \& 4-350)

[^0]: AMS Subject Classification: Primary 15A72; Secondary 15A15 and 15A75.
 *An invited paper. This research was supported by the U.S. Air Force Office of Scientific Research under Grant AFOSR 698-67.
 ** Present address: Department of Mathematics, University of California, Santa Barbara, California 93106.
 ${ }^{1}$ Figures in brackets indicate the literature references at the end of this paper.

