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Let K be a fi e ld and let M .. (K) de note the vec tor SIJace of a ll n X n matrices over K. S uppose 
J(X) is an invariant de fin ed on a s ubse t ~ [ o f M .. (K ) . This pape r surveys certain results concerning the 
following problem. Describe the se t .2? (I, ~l) of a ll lin ea r transformations T: ~ -> ~ that hold the in­
variant J fixed: 

J(T(X)) = J(X), 

Key words: Matrices; invari ants; de terminant ; generalized matrix function; rank . 

1. Introduction 

Let K be a fi eld and le t M,,(K) denote the vec tor s pace of all n X n matrices over K. Over 

the last 80 years, a great deal of effort has been devoted to the following ques tion. Suppose I(X) 

is an invariant defin ed on a s ubset ~ of Mn (K). Describe the set .!l' (I, ~) of all linear transfor­

mations T : m ~ ~ l that hold the invari ant I fixed : 

I(T(X))=/(X), Xf~, (1) 

Even in thi s generality , it is clear that .!l' (I , ~) is a multiplicative se migroup with an ide ntity. 

The invariant I can be a scalar valued fun ction, e.g. , I (X) = det (X) ; or for that matter it can de­

scribe a property, e.g., m can equal M" (C) and I (X) can mean that X is unitary , so that we are 

simply asking for the s tructure of all linear transformation s T that map the unitary group into 

itself. 

Much of a beginning course in linear algebra is de voted to the study of one as pect of this 

question for certain choices of I; for example, if I (X) = p (X), the rank of X , then it is well known 

that the three standard linear operations on the rows and columns of a matrix leave p fixed and 

this fact permits us to compute p(X) by reducing X to some normal form. The similarity theory 

is another example of this problem. In this case take I (X) to be the set of all elementary divisors 

of the characteristic matrix of X, and then the linear operators T that we wish to study are pre­

cisely those for which I(X)=/(T(X)). 

In the survey paper [18, 1962] 1 some of the aspects of this general problem are disc ussed. 

But since the time that paper was written there have been a number of developments. The pur­

pose of this paper is to describe some of these. 

2. Survey of Results 

The scalar invariants are functions I for which I(X) is either an ele ment of K (we will assume 

that char K = 0, so that integer-valued fun ctions are included) or a p-tuple of eleme nts of K. Prob-
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ably the first three problems of this kind were considered by Frobenius [11, 1897]: 

(i) ~=M,,(C), I(X) = det (X); 

(ii) ~ is the space of real-symmetric (or odd order skew-symmetric) matrices and I(X) = 

det(X): 

(iii) ~ ={X I tr(X) =O} C M,,(C) and I(X) = det(X). 

Frobenius proved what one might expect, namely that 2' (det, M,,(C)) consists of linear trans­

formations of the form 

T(X)=UXV, (2) 

or 

T(X) = UXTV, (3) 

In problem (i) det (UV) = 1; in problem (ii) U = gA , V = A T where g is an appropriately chosen 

constant and det A=l; in (iii) U=gA, V=A - l. I. Schur [34, 1925] extended and improved the 

result (i) as follows: Take 8(X) to be the (~~)2-tuple of kth order subdeterminants of X in some order 

where k ~ 3 is fixed; then Schur proved that if 8(T(X)) =S(8(X)) for S a fixed nonsingular ma­

trix, then T has one of the two forms (2) or (3) (without the restriction det (UV) = 1). Dieudonne 

[8, 1949] showed that if T is a semi-linear transformation of M" (K) onto itself which holds the 

cone det (X) = 0 invariant, then T is of the form 

T(X) = U(u(Xij)) V, XEM" (f() , 

or 

T(X) = U(u(Xij) ) TV, 

where U is an automorphism of the field. In the paper [9, 1957] Dynkin states that the Frobenius 

theorems can be obtained using some results on the structure of maximal subgroups of the clas­

sical groups. 

In an old result, Polya [32] restricted T to be a linear transformation which affixes in a pre­

scribed way + and - signs to the elements of X, and asked whether such a T exists which satisfies 

per (T(X)) = det (X) for n > 2. Polya answered the question negatively and many years later in 

[23, 1961] the question was answered negatively for arbitrary linear transformations T. Along 

the lines of the Frobenius and Schur results, the structure of £,(Er , Mn(C)) is determined where 

Er(X) is the rth elementary symmetric function of the eigenvalues of X, i.e., the sum of all r-square 

principle subdeterminants of X. It was proved in [28, 1959] that for 4 ~ r < n any TE2' (E/' , M" (C)) 

is of the form 

T(X)=UXV, 

or 

T(X) =UXTV, 

where UV = ei <pIn and rep == 0 (27T). Just recently Beasley [1, 1970] completed the argument by 

showing that for r= 3, precisely the same result holds. E. P. Botta, in several papers considers 

the choice J(X)=d(X) where d is a generalized matrix function in the sense of Schur, i.e., 

" d(X)=L A (U) IT Xi. <T(i) , 

UEH i = l 
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where A is a nonzero function defined on a s ubgroup H of SIt. In [3, 1967J Botta determined the 

structure of £l (d, M" (K)) when H is a transitive cyclic subgroup of Sn. In [4, 1968J H is taken to 

be a doubly transitive or regular proper subgroup of SIl and A is a character of H of degree 1. In 

[5, 1967J Botta reproves an earlier result of Marcus and May [22 , 1962] showing that £l (per, 

Mn (K)) consis ts of precisely those T of the form . 

T(X) = DPXQL , 

or 

T(X) = DPXTQ L , 

where P and Q are permutation matrices, D and L are diagonal matrices and pe r (DL) = 1. 

Many of the results concerning the structure of £l (I, ~) can be reduced to the problem of 

determining linear maps on Mn(K) whic h map the set of rank 1 matrices into itself. W. L. Chow 

[6, 1949], L. K. Hua [12, 1951] and Jacobson and Rickart [13, 1950J considered 1- 1 onto maps 

T of M,,(K) which have the property that both T and T- I preserve coherence. In the present con· 

text, this amounts to assuming that T and T- I both have the property that whenever X and Y 

differ by a matrix of rank 1, then T(X) and T(y) differ by a matrix of ra nk 1. For linear maps 

this means p(T(X)) = p (X) for all X. In [26, 1959] Marcus and Moyls proved that if T: Mill, II(K) -') 

Mm, ,,(K) (Mm , ,,(K) is the space of all m X n matrices over K) is linear and p(T(X)) = 1 whenever 

p(X) = 1, then T has the form 

T(X) =UXV, 

or 

T(X) = UX1'V, 

where U and V are fixed nonsingular matrices in Mill (K) and Mil (K) respective ly. This result 

is fairly easy to apply because it does not require the a priori existence of T- l. R. West wick in 

[36, 1967J exte nded the result in [26,1959] to linear maps on the space of n·contravariant te nsors 

whic h hold the nonzero deco mposable eie me nts set-wise fixed. In another paper [35 , 1964J W est­

wi ck , using techniques in [6, 1949] determined the structure of linear maps on the space I\ '"V 

of skew-symmetric tensors into itself which hold the set of nonzero decomposable elements se t­

wise fixed. In a thesis at the Universi ty of Britis h Columbia [7 , 1967] L. Cummings proved that 

if T maps the symmetric power V(III) into itself and holds the se t of non-zero decomposable ele me nts 

set·wise fixed then T is induced by a linear map of V. Cummings' result requires that the under­

lying field be algebraically closed of characteristi c either ° or exceeding m. In another thesis 

[14, 1971] M. H. Lim reconsiders this problem and relaxes the conditions on the field. Beasley 

[.2, 1970] considered the proble m of determining all linear transformations T: MII(K) -') MII(K) , 

K algebraically closed, which hold the set of rank k matrices set-wise fixed. Beasley required 

additional hypotheses on T in order to prove that T has the form (2) or (3). Djokovic [l0, 1969] 

proved that if T maps the set of rank k matrices into itself and is nonsingular, then in fact T maps 

the set of rank 1 matri ces into itself and the result in [26, 1959] applies. Much earlier [30, 1941] 

Morita proved that if T maps the set of rank 1 matrices into itself and maps the set of rank 2 mat­

rices into the set of matrices of rank at least 2, then T has the form (2) or (3). He then used this 

to prove a result of Schur to the e ffect that if J(X) = al (X) is the Hilbert norm of X , i. e., the square 

root of the largest eigenvalue of X*X, and TE£l (I, M""n(C)) , then T has the form (2) or (3) in 

which U and V are unitary. In a later paper [31, 1944] , Morita shows that if ~ is the set of n-square 

complex skew-symmetric matrices and J(X) is again the Hilbert norm of X, then for n ¥ 4 and 

Te£l (I , ~), 

T(X)=UTXU, XeM,,(C) , 
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where U is a fixed unitary matrix; or if n = 4, then T(X) can also have the alternative form 

XeM,,(C) , (4) 

where X+ is the matrix obtained from X by interchanging the (1,4) and the (2,3) entry. A result 

similar to this was obtained by Westwick in his thesis [35, 1964]. In [29, 1960] Marcus and West· 

wick proved a theorem somewhat along the lines of the Morita theorem as follows. Let k be a 

fixed integer satisfying 4 ~ 2k ~ n. Let ~ be the set of skew-symmetric matrices over the field 

R of real numbers and let Te2' (E2/" ~). If n ~ 5, then there exists a real matrix P such that 

T(X) = aPXPT, Xe~ , (5 ) 

where aPPT=I" is 2k< nand appT is unimodular if 2k=n. If 2k=n=4, then either T has the 

form (5) or 

T(X)~OP[ -:" 
X34 X24 

k'l 0 X23 X24 pT, 

-X13 -X23 0 X34 

-X14 -X24 -X34 ° 
where 

[0 Xl2 Xl3 

"HI 
. -X12 

° X 23 X24 , 
X-

0 -X13 -X23 X34 

-X14 -X24 -X34 0 

and aPPT is unimodular. Later on Marcus and Minc [24, 1962] proved that if T e 2' (E; , M m, " (C)) 

where 1 < r ~ nand E;.(X) is the value of E,. at the squares of the singular values of X, i.e., E;.(X) 

is just the value of E r at the eigenvalues of X * X, then T has the form (2) if m 0/= n and either (2) 

or (3) if m = n, where UeMII(C) and VeMn(C) are unitary. 

In [17 , 1959] it is proved that if T is a linear map of M n (C) into itself such that T (X) is uni­

tary whenever X is unitary, then T is of the form (2) or (3) where U and V are unitary. B. Russo ' 1 

[33, 1969] recently used this result to prove the following interesting theorem. If I (X) is the sum 

of the singular values of X and if T maps the identity matrix into itself, then T e 2' (l, M" (C) ) 

has the form (2) or (3), where U and V are unitary. Marcus and Gordon [20, 1970] recently proved 

the following result. Letf(t) = f(tl, ... , til) be a continuous, real-valued function defined for 

all t j ~ 0, 1 ~ j ~ n, and for X e M tn ," (C), let 

I(X)=f(al (X), a2 (X) , .. . , a,,(X)) 

where al (X) ~ a2 (X) ~ ... ~ all (X) are the singular values of X. If f(tt, ... , til) is concave, 

symmetric, strictly increasing in each tj, and f(O) = 0, then T e 2' (I, Mm , n (C)) has the form (2) 

if m 0/= n and either (2) or (3) if m = n where U eM m (C) and Ve M" (C) are unitary. By specializing 

fto 

n 

f(t) = 'L t'J 
j=l 

where O<(j~ 1, the above theorem reduces to the following result. If T:MIII , n(C) --;.MI/I , ,,(C) 

satisfies 

n II 

'L aj (T(X))"='L aj (X)" 
j=1 j = l 
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for all X EO Mm , n (C), then (2) or (3) holds with unitary U and V. In the paper [27,1970] the following 

result is proven using representation theory techniques. Let f(t) = f(t" ... , til) satisfy the 

conditions 

(i) f(t) =0 if and only if t=O; 

(ii) f is positively homogeneous of degree p ¥- 0; i.e., feet) = ePf(t) , all e ~ 0, t ~ 0 (i.e., 

tj~O,j=I, . . . ,n). 

If I(X) = feat (X), ... , an(X)) as before, then 2 (1, Mm , n (C)) is a subgroup of the group of 

mn X mn unitary matrices U(mn, C) where we associate each T € 2 (1, Mm , 11 (C)) with its matrix 

representation with res pec t to the lexicographically ordered basis {Est = (OisOlj) , i, j = I, ... , n}. 

3. Current WOl:'k and Some Questions 

M. J. S. Lim, in work closely related to that of Marcus and Westwick [29, 1960], has recently 

published [15, 1970] the following result. Let T map the space of skew-symmetric matrices over 

an algebraically closed field K into itself. Assume that T maps the set of rank 4 matrices into 

itself. Then for n =t= 4, T is of the form 

T(X)= aPXpT 

or 

T(X) = aPX7'P'l'. 

In case n = 4, T is one of the above forms , or else 

whereX+ is defined in (4). 

Just rece ntly Marcus and Holmes [21 , 1971] have proved the following results. Let X€Mn(C). 

For any subgroup H of the symmetric group 5m of degree m and character X of degree 1 on H, let 

K(X) :P~P be the induced transformation [19, 1967] on the symmetry class of tensors (P, v) 

associated with Hand X. Define I (X) = tr K (X), X€M,,( C). 

or 

(i) Let m ,,;;; n or X == 1. 2 (I, M 11 (C)) is a grou p if and only if H ¥- { e} . 

(ii) Let H =5 m, X == 1 and ~ c M" (C) an algebra with the property that ~ * = {X* : X € ~} = 
~, when X* denotes the conjugate transpose of X. Then 2 (I, ~) is a group. 

(iii) In (i) take H = Sm, m ~ 3 and X == 1. If 2 , (T, MII(C)) de notes the subgroup of 2 (I, MII(C)) 

of ~hose T:M,, (C)~ M,,(C) satisfying T(T")=~T,,, then for any T€2 , (/ , M,,(C)) there exists 

a fixed nonsingular matrix P€M,,(C) such that 

(6) 

(7) 

In this case tr K (X) is the co mpletely symmetric function of the eigenvalues of X, denoted here 

by h m (X)_ Thus this result states that if T (In) = ~ I" and hm (T (X)) = h m (X) for all X €M 11 (C) 

then T has the form (6) or (7). 

(iv) In (i) take A III C 5 In to be the alternating group, m ~ 3 and X == 1. Then the group 2 , (I, 

M n (C)) consists precisely of those linear transformations T of the form (6) or (7). 

There are a number of questions which remain unanswered. For example, a more direct 

proof of the result in [27 , 1970] might be based on the following. 

111 



CONJECTURE 1: Let T be an 'mn-square complex matrix, and assume thatforarbitraryunitary 

matrices UEMn(C), V EMn(C) the matrix (U ® V)T has eigenvalues of modulus 1_ (The matrix U ® V 

is the usual Kronecker product of U and V.) Then T is unitary. 

CONJECTURE 2: If T: Mn(C) ---,> Mn(C) is a linear map and if ~(T(X))= hm(X), XEMn(C) 

(recall that hm(X) is the completely symmetric function of the eigenvalues of X), then in fact T(In) 

= gIn and hence from [21, 1971J T has the form (6) or (7). 

CONJECTURE 3: Let P m(X) denote the mth induced power matrix of X [25] and suppose that 

T: Mn(C)---'> Mn(C) satisfies Pm(T(X))=S(Pm(X)), XEMn(C) where S: MN(C)---,>MN(C) is a fixed non-

( m+m-1) 
singular linear map, N = m . Then T has the form (2) or (3). 

CONJECTURE 4: Suppose K(X) is an invariant matrix [16, Chapter X] defined by means 

of a Young tableau. If T: Mn(C)---,> Mn(C) and tr K(T(X))= tr K(X) for all XEMn(C), then T must 

have the form (2) or (3) with some appropriate conditions on the U and V. Of course, the result 

in [28, 1959] and [21, 1971] are special cases of this. . 

As a possible extension of Schur's theorem [30, 1941] consider 

CONJECTURE 5: Let T: Mn(C) ---,> Mn(C) and hm(T(X)*T(X)) = hm(X*X) (see Conjecture 2 in 

which hm is defined), then T has the form (2) or (3). 

As a variant of the result in [17, 1959], let G be any of the foLLowing classical groups: the 

real orthogonal group, the rotation group, the symplectic group. 

CONJECTURE 6: Let T: Mn(R)---'>Mn(R) map G into itself Then T must have theform (2) 

or (3) in which U and V belong to G. (In the case of the rotation group, U and V could be simply 

real orthogonal with det (UV) = 1.) 

CONJECTURE 7: Suppose T is a mapping of the space of 2-contravariant tensors into itself; 

and suppose moreover that for each decomposable element x @ y we have II T(x ® y) II = II x ® y II 
(Euclidean norm). Then T is unitary. This can be restated in terms of linear maps T: Mn(C) ---,> Mn(C). 

Thus suppose for p(X) = 1, II T(X) II = II X II where II X II is just the Euclidean norm. Show that T is 

unitary. 
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