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LINEAR TRANSFORMATIONS UNDER WHICH THE
DOUBLY STOCHASTIC MATRICES ARE INVARIANT!

RICHARD SINKHORN

ABSTRACT. Let [M4(C)] denote the set of linear maps from the
nXn complex matrices into themselves and let {2, denote the set of
complex doubly stochastic matrices, i.e. complex matrices whose
row and _column sums are 1. If FE[M,(C)]is such that F(Q,.) CQ
and F*(Q,) CQ,, then there exist 4;, Bi, 4, and BEQ, such that

F(X) =2 AXBi 4+ AXUn+ JuX'B — (1 +m)JoXJn

for all nXn complex matrices X, where J, is the # X7 matrix whose
elements are each 1/7 and where the superscript ¢ denotes trans-
pose. m denotes the number of the 4; (or B;).

Introduction. It has been of considerable interest to study linear
maps from the » Xn matrices to themselves that leave certain quanti-
ties invariant [1]-[12]. Often these maps are necessarily of the form
F(X)=AXB or AX'B with certain restrictions imposed on the nXn
matrices A and B, where the superscript ¢ denotes transpose. For
example, Marcus and Moyls [8] show that such maps which preserve
spectral values are of these forms with A unimodular and B=4"!
They show in [8], [9] that such maps which preserve certain given
ranks are of these forms with 4 and B nonsingular. Marcus and May
[7] show that such maps which preserve the permanent function are
of these forms with 4 = P1D; and B = P,D, where the P; are permuta-
tion matrices and the D; are diagonal matrices such that per DD, =
Marcus, Minc, and Moyls [10] show that one may assume that D,
=D, =1 if in addition the linear map leaves the doubly stochastic
matrices invariant.

This paper is concerned with linear transformations which map
the set of # Xn generalized doubly stochastic matrices, i.e. n X% com-
plex matrices whose row and column sums are one, into itself. It is
shown that the set of such maps F which includes both F and F* is
precisely the set of linear combinations of transformations of the
types AXB and CX'D, where the sum of the coefficients in any such
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combination is one and 4, B, C, and D are generalized doubly sto-
chastic. It is clear that if F is such a combination, F(J,)=F*(J,)
=J,, where J, is the # X#n matrix whose entries are each 1/%#. There
are linear maps not of this form which send the generalized doubly
stochastic matrices into themselves which do not have J, as a fixed
point. For example, let Fy be the linear map from the 2 X2 complex
matrices into themselves such that

abd ea+b O
m(sa) - ( ):
cd 0 c¢c+d
However, for such a map, the adjoint does not leave the generalized
doubly stochastic matrices invariant.

We shall make use of the following notations and definitions.
M ma(C) shall denote the m Xn complex matrices, but we shall write
M,(C) in case m =n. Opy is the zero matrix in Mm,(C) whereas 0, and
I, are respectively the zero and identity matrix in M,(C). E;
€ Mna(C) is a matrix whose element in the (¢, j)th position is 1 and
whose elements are otherwise 0. M,(C) will be given the usual inner
product: (X, ¥) = 2 _n,> ™| x:¥ij;, where the bar denotes conjuga-
tion. The inner product induces the conventional norm on
M.(C):]|*||2=(X,X). [Ma(C)]shall denote the set of linear maps of
M,(C) into itself. The lexicographic representation of X =(xij)
E M,(C) is the column vector

%= (F11%12* * *FT1a¥2 %2z * * *Xzn * * * Xn1%nz * * * Tan)be

F,2shall denote the 72X n? matrix representation of FE [M,(C)] such
that F.x =y whenever F(X) =Y, where x and y are the lexicographic
representations of X and Y, respectively. Fps is called the faithful
representation of F.

. shall denote the n X7 generalized doubly stochastic matrices. If

XieEM,(0), k=1, - - -, m,and n;+ - - - +n,=n, the n Xn matrix
X, 0---00
0 X,---00
X1®X2@ . ‘@Xm=
0 O0:--0Xn
is called the direct sum of Xj, - - -, Xm The zeros indicate zero

matrices of appropriate dimensions.
I XEMn.(C) and YEM,,(C), the mp Xng matrix
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Y 2137 - - -2,

Y %20l - - 2Y

Tm1Y TmelV - o - mn ¥

is called the Kroneker product of X and Y.
The following well-known result is easily verified.

THEOREM 1. Let A, BEM,(C), and let FE[M,(C)] be such that
F(X)=AXB for all X&M.(C). Then Fa=A®B* is the faithful
representation of F.

Preliminary resuits.

LEMMA 1. Let AE My en(C). There exist A;EMyo(C) and B;
EM,,(C) suchthat A=Y ; (4:®By).

ProoF. Let the 4; be the matrices E;;E M,,(C) listed in lexico-
graphic order. Then write

Ay Ays - - - Ay
Az Ay - -+ Ay

.......

Apl Apz tte Am

where each 4,;€ M,,(C), and let the B; be the 4;; arranged in lexico-
graphic order. Clearly 4 =) _; (4:® B;).

THEOREM 2. Suppose that Q&EM,,(C), REM,(C), and S
E M (prye)(C). There exist M,E My, (C) and N;EM,(C) such that
Q=Zi Mi,R'—‘E.‘ N;, and S=z; (M.’@N().

Proor. By Lemma 1 there are 4:& M,,(C) and B:&EM,,(C) such
that S—(Q®R) =Y_; (4;®B;). Then

Q=0+ 2 4i+ 20,0+ 2 (—4),
[y ) s
R=R+ X B:i+ X (—=B) + X 0n,

and

S=Q®R) + X (4:® B) + X (0, ® (—B))

+ 2 ((—4) ® 0p).
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LEMMA 2. Let A,BEM,(C), and le¢ FE[M,(C)] be such that
F(X)=AXB for all XEM,(C). Then F*(X)=A*XB* for all X
EM,(C), where F* is the adjoint of F and A* and B* are respeciively
the conjugate transposes of A and B.

Proor. This follows from the fact that Fiz=(4 ® B)*=4*®@B*"

LeEMMA 3. Let U be a real unitary matrix in M,(C) with first column
1/+/n) (1,1, - - -, 1)t. Define HE [M,(C)] by H(X) = U'XU for all
XEM,(C). Then H is unitary, and for each MER,, there is an M’
EMua(C) suchthat HM) =10 M'.

PRrOOF. H is unitary by Lemma 2.
For MEQ, put W=H(M). Then

n n 1 n n
= Z E UaMixUs; = —— 2 Z Milhi; = —— E ur; = 081j,
f=1 k=1 \/ N k=1 i=1 n k=1

Kroneker’s delta. Similarly, wi =48..

LEMMA 4. Let P& M,2(C) be the permutation matrix such that for any
A ] B e M n—l(C) ’

P1o4)®@(1®B)|PP=1®40dBd(4Q B),

and let T denote the transpose map. Then

On—l In—l
PTaP' =16 D T

n—1 On1
Proor. Put
=160 (0”_1 I"—l) ® T -1y
In1 Op
Let o, 7, and o respectively denote permutations of 1, - - -, #2 such
that pisy =lir() =viwy =1 for i=1, - - -, n?, where P (pi)y Tw

= (ti;), and V= (v;;). Then
ok) = (k—n+1, k=1, ,n:
(1) olk(n — 1) +j] = (¢ — Dn + 5,
=2, m, E=1,---,n
@ k= Dn+j]=3G-Dn+k
j=1,--+,m, E=1--,m,

and
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w(l)=1; wkB)=n+k—1, k=2,---,n;
“’(”+j_1)=j’ J=2,:-,m
wlk(n — 1) +j+n] =jln — 1) + &+ n,
ji=14L---,n—1, k=1,---,n—1.
If k=1,..--,n gto@®)=r[-1)n+1]=0-Vn+k=k; if
i=2,---,n,  k=1,---,n, tolkn—1)+j]=7[(k—1)n+j]l=
G—Un+k Also ow(l)=¢(1)=1, while if k=2, ..-,n, ocwk)
=g(n+k—1)=01—-Vn+k=k; if j=2, ..., n, co(n—1+4j)=0(j)
=G—-n4+1;ifj=2, - -, n,k=2, - ,m,
cwlk(n — 1) +j] = ow[(k — D(n — 1) + (G — 1) + 4]
=c[(j—=1Dm—1)+ (k—1) + 2]
=oljitn—1)+ k] = (G~ Dn+k
Thus 70 (k) =ow(k) for k=1, - - -, n?, and therefore PT,:=VP.
LEMMA 5. If WERQ., then |W— T,/|2+1 =||W]|2.

PrOOF. ||W=J.|2= W=Ts, W—T.) =W, W)= (W, J.)—
(Tny Wa) + (T, Ja) =||W||2—1—1+1 =] W||2—1.

It follows that for all WEQ,, ||W]||21, and equality holds if and
onlyif W=J,.

COROLLARY. If FE[M,(C)] is such that FQ,)C0, and F*(Q,)
CQn, then necessarily F(J,) = F*(J,) = Ja.

PROOF. Suppose that F(J,) =W and F*(J,) =X. Put F(X) =Y and
F*(W)=Z.Then W, X, Y, and ZEQ,, and

W2 = (W, W) = (F(.), W) = (Ja, F*(W)) = (Jn, 2) = 1;
whence W=J,. Likewise || X||2=(X, F*(J.))=(Y, J.)=1, and so
X=7,.

Consequences. Let K, LE[M,(C)] be defined respectively by
K(X)=AXB and L(X) =AX'B, where A and BEQ,, are fixed. Let U
and H be as in Lemma 3. There exist matrices 4’, B'E M,_1(C) such
that U'AU=1®A4’ and U'BU=1@®B’. Then, since H*(X)=UXU*
for any XE M, (0),

(HKH*)(X) = (U*AU)X(U'BU) = (1 ® 4)X(1 ® B).
Thus (HKH*).=(1®A4A")®(1® B'!), and so
P(HKH* 2Pt =10 A’ ® B'*® (4’ ® B'Y),

©)
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where P is asin Lemma 4.
Also if T is the transpose map of Lemma 4,

(KLH*) (X) = (HKTH*) (X) = (U*AU) X{U'BU) = (HKH*T) (X).
Whence (HLH*) 2= (HKH*) 3T 2, and so, by Lemma 4,
P(HLH*)2Pt* = P(HKH*)2P'PT P!
=10 4"®B'® (4'® BY))

(1 ® (0»-1 In—l) ®T )
. n—1)?
Iy Opy *=b
_1@(01;—1 A')$(A’®B,‘)T 2
Bt 0,_; (1)

Note that the component A’®B’* represents the reduced map
K'(Y)=A'YB' and (A'®B’'*)T(n_1*> represents the reduced map
L'(Y)=A'Y'B’,where K/, L'E [M,(C)].

Suppose that FE [M,(C)] is such that F(Q.) S0, and F*{.) SQ..
By the corollary to Lemma 5, F(J,)=F*(J,)=J,. Since H(J,)
=UtJ, U=1®0,1, (HFH*) (100,_1) =1®0,_1.

Let W, XEQ, and put Y=F(W), Z=F*(X). There are matrices
w', X', V', and Z’EM,_1(C) such that HW)=1eW’', H(X)
=10X',H(Y)=1®0Y',and H(Z) =18 2Z’. It follows that

(HFEH¥YY(1 ® W) = HFW)=H(Y) =10 Y’
and thus that
(HFE*)(0 ® W) = (HFE*{(1 ® W) — (1 @ 0,_y)}
=1eY)—160,_,) =0 Y.
Likewise, (HFH*)* (1®0X')=1®2’ and (HFH*)* (06X")=082".

If w”, x"”, 9" and 2’’ are the lexicographic representations of 1® W,
16X’ 1®Y’, and 10 2Z’, and similarly for w'”’, x'”’, »"", 2’"" and
0OW,00X',00Y,002, then

(HFH®) 20" =y, (HFH*)*22" = o',
(HFH*)n " —_ y’/I’ (HFH*)*"leII = zlll’
where (HFH*)*, is the conjugate transpose of (HFH¥) .

Note that Pw'’ =(1, 6¢, w'%)t, Pw'’ =(0, 6%, w’'*)¢, and similarly for
x', %", 9", 9", and 2", 3'"’, where 0 is a 2(n—1) dimensional column
of zeros and where w’, x’, 9’, and 2’ are respectively the lexicographic

representations of W', X', ¥’,and Z’.
Put
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Fo Fi Fy
P(HFH* P = |Fu Fy Ful,
Fy Fg F,

where Fois 1 X1, F1is 2(n—1)X2(n—1), and Fois (n—1)2 X (n—1)2
Then

Fo Fip Fpu)(1 1 Fy Fi Fiu)*(1

Fyu Fi Fyl||0)|=|0]|, Fu F, Fyu| |60 =|0],
) Fyy Fg F, o y ) (Fs1 F32 Fa £ 7

Fo Fi Fy)(0 0 Fy Fiz Fu)*(0

Fsy Fy, Fyl||l0|=1]6], Fyy Fy Fo| |0|=1|0

Fy Fs Fy ) |v] y Fs1 F3 F, x| 4

The third equation in (1) indicates that Fi; and Fy;s are zero; the
fourth equation indicates that Fs and Fj, are zero. Given these facts,
the first equation indicates that Fo=1 and Fa =6. The second equa-
tion indicates that Fo=1 and Fis=0* Whence

P(HFH*),.’P‘ =16 F1 (<) Fz.

7= (e )

where Q, Q', R, and R'€ M,_1(C), we have

If we write

) P(HFH*)u*P‘=(1®Q€BR®Fz)+(0@((12:1 oQ,:_,)eO"‘“”>’

Let Ly, L;E [ M,(C) ] be respectively defined by Li(X) =AX*J, and
Ly(X)=J,X'B where A=H*(10Q")EQ, and B=H*(10R') X0,
Then if J(X) =J,XJ,forall X€ M,(O),

(0 &) (0"—1 4 ) & 0(n-1)’> = (1 @ (0:_1 0 ) Q' ® 0:-1)T(u—1)’)

R" On-—l Ou—l On—l
On—l On—-l
+ (1 ® (R" 0 ) D (0,1 ® R")T<n-1)’)
(3) n—1
On—l 0»—1 ¢
- 2 1 @ t @(On-—l ® Ou—l)
On—l n—1

= P(HL,H*)P* + P(HL,H*)Pt — 2P(HJH*)2P".
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By Theorem 2, there exist matrices M; and N;& M,_,(C) such that
0=>i M; R=Y_; N, and F=)_; (M:®N!). For each i let A4;
=H*(1®M,) and B;=H*(1®N,). Then each 4; and B;EQ,. Let
K.€[M,(C)] be defined by K(X) =A4:XB; for all X E M,(C).

Then

169Q€BR@F:=<1€BZ_M.-® ZN:GBZ(M.-®N:))

@ =X (oM eN® MO N)

+(1 - m)(l @ Onz—-l)
= 2 P(HKH*),2Pt 4+ (1 — m)P(HJ H*)2P*

where m is the number of M; (or N;).
It follows from (2), (3), and (4) that

F=XKi+L+L—Q0+mJ
In summary,

THEOREM 3. Let FE[M,(C)] be such that F(Q.) Qs and F*(Q.)
CQ,.. Then there exist matrices A, Bi, A, and BEQ, such that

F(X) = 2, AXBi+ AXJ. + JX'B — (1 + m)JoXJa

for all X € M.(C), where m is the number of A; (or B;).

The author is most grateful for an invaluable discussion with Pro-
fessor Paul Knopp concerning this presentation.
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