LINEAR TRANSFORMATIONS UNDER WHICH THE DOUBLY STOCHASTIC MATRICES ARE INVARIANT¹

RICHARD SINKHORN

ABSTRACT. Let $[M_n(C)]$ denote the set of linear maps from the $n \times n$ complex matrices into themselves and let $\hat{\Omega}_n$ denote the set of complex doubly stochastic matrices, i.e. complex matrices whose row and column sums are 1. If $F \in [M_n(C)]$ is such that $F(\hat{\Omega}_n) \subseteq \hat{\Omega}_n$ and $F^*(\hat{\Omega}_n) \subseteq \hat{\Omega}_n$, then there exist A_i , B_i , A_i and $B \in \hat{\Omega}_n$ such that

$$F(X) = \sum A_i X B_i + A X^i J_n + J_n X^i B - (1+m) J_n X J_n$$

for all $n \times n$ complex matrices X, where J_n is the $n \times n$ matrix whose elements are each 1/n and where the superscript t denotes transpose. m denotes the number of the A_i (or B_i).

Introduction. It has been of considerable interest to study linear maps from the $n \times n$ matrices to themselves that leave certain quantities invariant [1]-[12]. Often these maps are necessarily of the form F(X) = AXB or $AX^{t}B$ with certain restrictions imposed on the $n \times n$ matrices A and B, where the superscript t denotes transpose. For example, Marcus and Moyls [8] show that such maps which preserve spectral values are of these forms with A unimodular and $B = A^{-1}$. They show in [8], [9] that such maps which preserve certain given ranks are of these forms with A and B nonsingular. Marcus and May [7] show that such maps which preserve the permanent function are of these forms with $A = P_1D_1$ and $B = P_2D_2$ where the P_i are permutation matrices and the D_i are diagonal matrices such that per $D_1D_2=1$. Marcus, Minc, and Moyls [10] show that one may assume that D_1 $= D_2 = I$ if in addition the linear map leaves the doubly stochastic matrices invariant.

This paper is concerned with linear transformations which map the set of $n \times n$ generalized doubly stochastic matrices, i.e. $n \times n$ complex matrices whose row and column sums are one, into itself. It is shown that the set of such maps F which includes both F and F^* is precisely the set of linear combinations of transformations of the types AXB and CX^tD , where the sum of the coefficients in any such

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Received by the editors May 12, 1969.

AMS 1968 subject classifications. Primary 1565, 1585; Secondary 1530.

Key words and phrases. Faithful representation, generalized doubly stochastic matrices, Kroneker product, lexicographic ordering.

¹ This research was partially supported by University of Houston grant FRSP (GIA) 69-27.

RICHARD SINKHORN

combination is one and A, B, C, and D are generalized doubly stochastic. It is clear that if F is such a combination, $F(J_n) = F^*(J_n)$ $= J_n$, where J_n is the $n \times n$ matrix whose entries are each 1/n. There are linear maps not of this form which send the generalized doubly stochastic matrices into themselves which do not have J_n as a fixed point. For example, let F_1 be the linear map from the 2×2 complex matrices into themselves such that

$$F_1\begin{pmatrix}a&b\\c&d\end{pmatrix}=\begin{pmatrix}a+b&0\\0&c+d\end{pmatrix}.$$

However, for such a map, the adjoint does not leave the generalized doubly stochastic matrices invariant.

We shall make use of the following notations and definitions. $M_{mn}(C)$ shall denote the $m \times n$ complex matrices, but we shall write $M_n(C)$ in case m = n. 0_{mn} is the zero matrix in $M_{mn}(C)$ whereas 0_n and I_n are respectively the zero and identity matrix in $M_n(C)$. $E_{ij} \in M_{mn}(C)$ is a matrix whose element in the (i, j)th position is 1 and whose elements are otherwise 0. $M_n(C)$ will be given the usual inner product: $(X, Y) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} \overline{y}_{ij}$, where the bar denotes conjugation. The inner product induces the conventional norm on $M_n(C): ||x||^2 = (X, X)$. $[M_n(C)]$ shall denote the set of linear maps of $M_n(C)$ into itself. The lexicographic representation of $X = (x_{ij})$ $\in M_n(C)$ is the column vector

$$x = (x_{11} x_{12} \cdots x_{1n} x_{21} x_{22} \cdots x_{2n} \cdots x_{n1} x_{n2} \cdots x_{nn})^{t}.$$

 F_{n^2} shall denote the $n^2 \times n^2$ matrix representation of $F \in [M_n(C)]$ such that $F_{n^2x} = y$ whenever F(X) = Y, where x and y are the lexicographic representations of X and Y, respectively. F_{n^2} is called the faithful representation of F.

 $\hat{\Omega}_n$ shall denote the $n \times n$ generalized doubly stochastic matrices. If $X_k \in M_{n_k}(C), k = 1, \dots, m$, and $n_1 + \dots + n_m = n$, the $n \times n$ matrix

$$X_1 \oplus X_2 \oplus \cdots \oplus X_m = \begin{pmatrix} X_1 & 0 \cdots & 0 & 0 \\ 0 & X_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & X_m \end{pmatrix}$$

is called the direct sum of X_1, \dots, X_m . The zeros indicate zero matrices of appropriate dimensions.

If $X \in M_{mn}(C)$ and $Y \in M_{pq}(C)$, the $mp \times nq$ matrix

[February

$$X \otimes Y = \begin{pmatrix} x_{11}Y & x_{12}Y & \cdots & x_{1n}Y \\ x_{21}Y & x_{22}Y & \cdots & x_{2n}Y \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1}Y & x_{m2}Y & \cdots & x_{mn}Y \end{pmatrix}$$

is called the Kroneker product of X and Y.

The following well-known result is easily verified.

THEOREM 1. Let A, $B \in M_n(C)$, and let $F \in [M_n(C)]$ be such that F(X) = AXB for all $X \in M_n(C)$. Then $F_{n^2} = A \otimes B^t$ is the faithful representation of F.

Preliminary results.

LEMMA 1. Let $A \in M_{(pr)(qs)}(C)$. There exist $A_i \in M_{pq}(C)$ and $B_i \in M_{rs}(C)$ such that $A = \sum_i (A_i \otimes B_i)$.

PROOF. Let the A_i be the matrices $E_{ij} \in M_{pq}(C)$ listed in lexicographic order. Then write

 $A = \begin{pmatrix} A_{11} & A_{12} \cdots & A_{1q} \\ A_{21} & A_{22} \cdots & A_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ A_{p1} & A_{p2} \cdots & A_{pq} \end{pmatrix},$

where each $A_{ij} \in M_{re}(C)$, and let the B_i be the A_{ij} arranged in lexicographic order. Clearly $A = \sum_i (A_i \otimes B_i)$.

THEOREM 2. Suppose that $Q \in M_{pq}(C)$, $R \in M_{rs}(C)$, and $S \in M_{(pr)(qs)}(C)$. There exist $M_i \in M_{pq}(C)$ and $N_i \in M_{rs}(C)$ such that $Q = \sum_i M_i, R = \sum_i N_i$, and $S = \sum_i (M_i \otimes N_i)$.

PROOF. By Lemma 1 there are $A_i \in M_{pq}(C)$ and $B_i \in M_{rs}(C)$ such that $S - (Q \otimes R) = \sum_i (A_i \otimes B_i)$. Then

$$Q = Q + \sum_{i} A_{i} + \sum_{i} 0_{pq} + \sum_{i} (-A_{i}),$$

$$R = R + \sum_{i} B_{i} + \sum_{i} (-B_{i}) + \sum_{i} 0_{ri},$$

and

$$S = (Q \otimes R) + \sum_{i} (A_{i} \otimes B_{i}) + \sum_{i} (0_{pq} \otimes (-B_{i})) + \sum_{i} ((-A_{i}) \otimes 0_{ri}).$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

LEMMA 2. Let $A, B \in M_n(C)$, and let $F \in [M_n(C)]$ be such that F(X) = AXB for all $X \in M_n(C)$. Then $F^*(X) = A^*XB^*$ for all $X \in M_n(C)$, where F^* is the adjoint of F and A^* and B^* are respectively the conjugate transposes of A and B.

PROOF. This follows from the fact that $F_{n^2}^* = (A \otimes B^i)^* = A^* \otimes B^{*^i}$.

LEMMA 3. Let U be a real unitary matrix in $M_n(C)$ with first column $(1/\sqrt{n})$ $(1, 1, \dots, 1)^t$. Define $H \in [M_n(C)]$ by $H(X) = U^t X U$ for all $X \in M_n(C)$. Then H is unitary, and for each $M \in \hat{\Omega}_n$, there is an $M' \in M_{n-1}(C)$ such that $H(M) = 1 \oplus M'$.

PROOF. *H* is unitary by Lemma 2. For $M \in \hat{\Omega}_n$ put W = H(M). Then

$$w_{1j} = \sum_{i=1}^{n} \sum_{k=1}^{n} u_{i1}m_{ik}u_{kj} = \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \sum_{i=1}^{n} m_{ik}u_{kj} = \frac{1}{\sqrt{n}} \sum_{k=1}^{n} u_{kj} = \delta_{1j},$$

Kroneker's delta. Similarly, $w_{i1} = \delta_{i1}$.

LEMMA 4. Let $P \in M_{n^2}(C)$ be the permutation matrix such that for any $A, B \in M_{n-1}(C)$,

 $P[(1 \oplus A) \otimes (1 \oplus B)]P^{t} = 1 \oplus A \oplus B \oplus (A \otimes B),$

and let T denote the transpose map. Then

$$PT_{n} P^{t} = 1 \oplus \begin{pmatrix} 0_{n-1} & I_{n-1} \\ I_{n-1} & 0_{n-1} \end{pmatrix} \oplus T_{(n-1)^{2}}.$$

PROOF. Put

$$V = 1 \oplus \begin{pmatrix} 0_{n-1} & I_{n-1} \\ I_{n-1} & 0_{n-1} \end{pmatrix} \oplus T_{(n-1)^2}$$

Let σ , τ , and ω respectively denote permutations of $1, \dots, n^2$ such that $p_{i\sigma(i)} = t_{ir(i)} = v_{i\omega(i)} = 1$ for $i = 1, \dots, n^2$, where $P = (p_{ij}), T_{n^2} = (t_{ij})$, and $V = (v_{ij})$. Then

(1)
$$\sigma(k) = (k-1)n + 1, \qquad k = 1, \dots, n$$
:
 $\sigma[k(n-1) + j] = (k-1)n + j,$

(2)
$$j = 2, \dots, n, \quad k = 1, \dots, n,$$

 $\tau[(k-1)n+j] = (j-1)n+k,$
 $j = 1, \dots, n, \quad k = 1, \dots, n,$

and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

$$\omega(1) = 1; \quad \omega(k) = n + k - 1, \quad k = 2, \dots, n;$$

(3)
$$\omega(n + j - 1) = j, \qquad j = 2, \dots, n;$$

$$\omega[k(n - 1) + j + n] = j(n - 1) + k + n,$$

$$j = 1, \dots, n - 1, \qquad k = 1, \dots, n - 1.$$

If $k=1, \dots, n$, $\tau\sigma(k) = \tau[(k-1)n+1] = (1-1)n+k=k$; if $j=2, \dots, n$, $k=1, \dots, n$, $\tau\sigma[k(n-1)+j] = \tau[(k-1)n+j] = (j-1)n+k$. Also $\sigma\omega(1) = \sigma(1) = 1$, while if $k=2, \dots, n$, $\sigma\omega(k) = \sigma(n+k-1) = (1-1)n+k=k$; if $j=2, \dots, n$, $\sigma\omega(n-1+j) = \sigma(j) = (j-1)n+1$; if $j=2, \dots, n$, $k=2, \dots, n$,

$$\sigma\omega[k(n-1)+j] = \sigma\omega[(k-1)(n-1)+(j-1)+n]$$

= $\sigma[(j-1)(n-1)+(k-1)+n]$
= $\sigma[j(n-1)+k] = (j-1)n+k.$

Thus $\tau\sigma(k) = \sigma\omega(k)$ for $k = 1, \dots, n^2$, and therefore $PT_{n^2} = VP$. LEMMA 5. If $W \in \hat{\Omega}_n$, then $||W - J_n||^2 + 1 = ||W||^2$.

PROOF. $||W - J_n||^2 = (W - J_n, W - J_n) = (W, W) - (W, J_n) - (J_n, W_n) + (J_n, J_n) = ||W||^2 - 1 - 1 + 1 = ||W||^2 - 1.$

It follows that for all $W \in \hat{\Omega}_n$, $||W|| \ge 1$, and equality holds if and only if $W = J_n$.

COROLLARY. If $F \in [M_n(C)]$ is such that $F(\hat{\Omega}_n) \subseteq \hat{\Omega}_n$ and $F^*(\hat{\Omega}_n) \subseteq \hat{\Omega}_n$, then necessarily $F(J_n) = F^*(J_n) = J_n$.

PROOF. Suppose that $F(J_n) = W$ and $F^*(J_n) = X$. Put F(X) = Y and $F^*(W) = Z$. Then W, X, Y, and $Z \in \hat{\Omega}_n$, and

$$||W||^2 = (W, W) = (F(J_n), W) = (J_n, F^*(W)) = (J_n, Z) = 1;$$

whence $W = J_n$. Likewise $||X||^2 = (X, F^*(J_n)) = (Y, J_n) = 1$, and so $X = J_n$.

Consequences. Let K, $L \in [M_n(C)]$ be defined respectively by K(X) = AXB and $L(X) = AX^*B$, where A and $B \in \hat{\Omega}_n$ are fixed. Let U and H be as in Lemma 3. There exist matrices A', $B' \in M_{n-1}(C)$ such that $U^*AU = 1 \oplus A'$ and $U^*BU = 1 \oplus B'$. Then, since $H^*(X) = UXU^*$ for any $X \in M_n(C)$,

$$(HKH^*)(X) = (U^t A U) X (U^t B U) = (1 \oplus A') X (1 \oplus B').$$

Thus $(HKH^*)_{n^2} = (1 \oplus A') \otimes (1 \oplus B'^t)$, and so

$$P(HKH^*)_{n^2}P^t = 1 \oplus A' \oplus B'^t \oplus (A' \otimes B'^t),$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

where P is as in Lemma 4.

Also if T is the transpose map of Lemma 4,

 $(KLH^*)(X) = (HKTH^*)(X) = (U^tAU) X^t(U^tBU) = (HKH^*T)(X).$ Whence $(HLH^*)_{n^2} = (HKH^*)_{n^2}T_{n^2}$, and so, by Lemma 4.

$$P(HLH^*)_{n^2}P^{\iota} = P(HKH^*)_{n^2}P^{\iota}PT_{n^2}P^{\iota}$$

= $(1 \oplus A' \oplus B'^{\iota} \oplus (A' \otimes B'^{\iota}))$
 $\cdot \left(1 \oplus \begin{pmatrix} 0_{n-1} & I_{n-1} \\ I_{n-1} & 0_{n-1} \end{pmatrix} \oplus T_{(n-1)^2} \right)$
= $1 \oplus \begin{pmatrix} 0_{n-1} & A' \\ B'^{\iota} & 0_{n-1} \end{pmatrix} \oplus (A' \otimes B'^{\iota})T_{(n-1)^2}.$

Note that the component $A' \otimes B'^{t}$ represents the reduced map K'(Y) = A'YB' and $(A' \otimes B'^{t})T_{(n-1)^{2}}$ represents the reduced map $L'(Y) = A'Y^{t}B'$, where $K', L' \in [M_{n-1}(C)]$.

Suppose that $F \in [M_n(C)]$ is such that $F(\hat{\Omega}_n) \subseteq \hat{\Omega}_n$ and $F^*(\hat{\Omega}_n) \subseteq \hat{\Omega}_n$. By the corollary to Lemma 5, $F(J_n) = F^*(J_n) = J_n$. Since $H(J_n) = U^i J_n U = 1 \oplus 0_{n-1}$, $(HFH^*) (1 \oplus 0_{n-1}) = 1 \oplus 0_{n-1}$.

Let $W, X \in \hat{\Omega}_n$ and put $Y = F(W), Z = F^*(X)$. There are matrices W', X', Y', and $Z' \in M_{n-1}(C)$ such that $H(W) = 1 \oplus W', H(X) = 1 \oplus X', H(Y) = 1 \oplus Y'$, and $H(Z) = 1 \oplus Z'$. It follows that

$$(HFH^*)(1 \oplus W') = HF(W) = H(Y) = 1 \oplus Y$$

and thus that

$$(HFH^*)(0 \oplus W') = (HFH^*)\{(1 \oplus W') - (1 \oplus 0_{n-1})\} = (1 \oplus Y') - (1 \oplus 0_{n-1}) = 0 \oplus Y'.$$

Likewise, $(HFH^*)^* (1 \oplus X') = 1 \oplus Z'$ and $(HFH^*)^* (0 \oplus X') = 0 \oplus Z'$.

If w'', x'', y'' and z'' are the lexicographic representations of $1 \oplus W'$, $1 \oplus X'$, $1 \oplus Y'$, and $1 \oplus Z'$, and similarly for w''', x''', y''', z''' and $0 \oplus W'$, $0 \oplus X'$, $0 \oplus Y'$, $0 \oplus Z'$, then

$$(HFH^*)_{n^2}w'' = y'', \qquad (HFH^*)^*_{n^2}x'' = z'', \\ (HFH^*)_{n^2}w''' = y''', \qquad (HFH^*)^*_{n^2}x''' = z''',$$

where $(HFH^*)^*_{n^2}$ is the conjugate transpose of $(HFH^*)_{n^2}$.

Note that $Pw'' = (1, \theta^t, w'^t)^t$, $Pw''' = (0, \theta^t, w'^t)^t$, and similarly for x'', x''', y'', y'', and z'', z''', where θ is a 2(n-1) dimensional column of zeros and where w', x', y', and z' are respectively the lexicographic representations of W', X', Y', and Z'. Put

[February

$$P(HFH^*)_{n^2}P^t = \begin{pmatrix} F_0 & F_{12} & F_{13} \\ F_{21} & F_1 & F_{23} \\ F_{31} & F_{32} & F_2 \end{pmatrix},$$

where F_0 is 1×1 , F_1 is $2(n-1) \times 2(n-1)$, and F_2 is $(n-1)^2 \times (n-1)^2$. Then

$$\begin{pmatrix} F_{0} & F_{12} & F_{13} \\ F_{21} & F_{1} & F_{23} \\ F_{31} & F_{32} & F_{2} \end{pmatrix} \begin{pmatrix} 1 \\ \theta \\ w' \end{pmatrix} = \begin{pmatrix} 1 \\ \theta \\ y' \end{pmatrix}, \qquad \begin{pmatrix} F_{0} & F_{12} & F_{13} \\ F_{21} & F_{1} & F_{22} \\ F_{31} & F_{32} & F_{2} \end{pmatrix}^{*} \begin{pmatrix} 1 \\ \theta \\ z' \end{pmatrix} = \begin{pmatrix} 1 \\ \theta \\ z' \end{pmatrix},$$

$$\begin{pmatrix} F_{0} & F_{12} & F_{13} \\ F_{21} & F_{1} & F_{23} \\ F_{31} & F_{32} & F_{2} \end{pmatrix} \begin{pmatrix} 0 \\ \theta \\ w' \end{pmatrix} = \begin{pmatrix} 0 \\ \theta \\ y' \end{pmatrix}, \qquad \begin{pmatrix} F_{0} & F_{12} & F_{13} \\ F_{21} & F_{1} & F_{23} \\ F_{31} & F_{32} & F_{2} \end{pmatrix}^{*} \begin{pmatrix} 0 \\ \theta \\ z' \end{pmatrix} = \begin{pmatrix} 0 \\ \theta \\ z' \end{pmatrix}.$$

The third equation in (1) indicates that F_{13} and F_{23} are zero; the fourth equation indicates that F_{31} and F_{32} are zero. Given these facts, the first equation indicates that $F_0 = 1$ and $F_{21} = \theta$. The second equation indicates that $F_0 = 1$ and $F_{12} = \theta^i$. Whence

$$P(HFH^*)_n P^t = 1 \oplus F_1 \oplus F_2.$$

If we write

$$F_1 = \begin{pmatrix} Q & Q' \\ R'^t & R \end{pmatrix}$$

where Q, Q', R, and $R' \in M_{n-1}(C)$, we have

(2)
$$P(HFH^*)_{n^2}P^{i} = (1 \oplus Q \oplus R \oplus F_2) + \left(0 \oplus \begin{pmatrix} 0_{n-1} & Q' \\ R'^{i} & 0_{n-1} \end{pmatrix} \oplus 0_{(n-1)^2}\right).$$

Let $L_1, L_2 \in [M_n(C)]$ be respectively defined by $L_1(X) = AX^i J_n$ and $L_2(X) = J_n X^i B$ where $A = H^*(1 \oplus Q') \in \hat{\Omega}_n$ and $B = H^*(1 \oplus R') \in \hat{\Omega}_n$. Then if $J(X) = J_n X J_n$ for all $X \in M_n(C)$,

$$\begin{pmatrix} 0 \oplus \begin{pmatrix} 0_{n-1} & Q' \\ R'^{t} & 0_{n-1} \end{pmatrix} \oplus 0_{(n-1)^{2}} \end{pmatrix} = \begin{pmatrix} 1 \oplus \begin{pmatrix} 0_{n-1} & Q' \\ 0_{n-1}^{t} & 0_{n-1} \end{pmatrix} \oplus (Q' \otimes 0_{n-1}^{t}) T_{(n-1)^{2}} \end{pmatrix} \\ + \begin{pmatrix} 1 \oplus \begin{pmatrix} 0_{n-1} & 0_{n-1} \\ R'^{t} & 0_{n-1} \end{pmatrix} \oplus (0_{n-1} \otimes R'^{t}) T_{(n-1)^{2}} \end{pmatrix} \\ - 2 \begin{pmatrix} 1 \oplus \begin{pmatrix} 0_{n-1} & 0_{n-1} \\ 0_{n-1} & 0_{n-1}^{t} \end{pmatrix} \oplus (0_{n-1} \otimes 0_{n-1}^{t}) \end{pmatrix} \\ = P(HL_{1}H^{*})_{n^{2}}P^{t} + P(HL_{2}H^{*})_{n^{2}}P^{t} - 2P(HJH^{*})_{n^{2}}P^{t}.$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

[1°CDI UAI

By Theorem 2, there exist matrices M_i and $N_i \in M_{n-1}(C)$ such that $Q = \sum_i M_i$, $R = \sum_i N_i^t$, and $F_2 = \sum_i (M_i \otimes N_i^t)$. For each *i* let $A_i = H^*(1 \oplus M_i)$ and $B_i = H^*(1 \oplus N_i)$. Then each A_i and $B_i \in \hat{\Omega}_n$. Let $K_i \in [M_n(C)]$ be defined by $K_i(X) = A_i X B_i$ for all $X \in M_n(C)$. Then

$$1 \oplus Q \oplus R \oplus F_{2} = \left(1 \oplus \sum_{i} M_{i} \oplus \sum_{i} N_{i}^{t} \oplus \sum_{i} (M_{i} \otimes N_{i}^{t})\right)$$

$$= \sum_{i} (1 \oplus M_{i} \oplus N_{i}^{t} \oplus (M_{i} \otimes N_{i}^{t}))$$

$$+ (1 - m)(1 \oplus 0_{n^{2} - 1})$$

$$= \sum_{i} P(HK_{i}H^{*})_{n^{2}}P^{t} + (1 - m)P(HJH^{*})_{n^{2}}P^{t}$$

where *m* is the number of M_i (or N_i).

It follows from (2), (3), and (4) that

$$F = \sum_{i} K_{i} + L_{1} + L_{2} - (1 + m)J.$$

In summary,

THEOREM 3. Let $F \in [M_n(C)]$ be such that $F(\hat{\Omega}_n) \subseteq \hat{\Omega}_n$ and $F^*(\hat{\Omega}_n) \subseteq \hat{\Omega}_n$. Then there exist matrices A_i, B_i, A , and $B \in \hat{\Omega}_n$ such that

$$F(X) = \sum_{i} A_{i}XB_{i} + AX^{i}J_{n} + J_{n}X^{i}B - (1+m)J_{n}XJ_{n}$$

for all $X \in M_n(C)$, where m is the number of A_i (or B_i).

The author is most grateful for an invaluable discussion with Professor Paul Knopp concerning this presentation.

References

1. E. P. Botta, Linear transformations on matrices: The invariance of a class of general matrix functions, Canad. J. Math. 19 (1967), 281-290. MR 35 #1609.

2. ——, Linear transformations on matrices: The invariance of a class of general matrix functions. II, Canad. J. Math. 20 (1968), 739–748.

3. J. Dieudonné, Sur une généralisation du groupe orthogonal à quatre variables, Arch. Math. 1 (1949), 282-287. MR 10, 586.

4. L. K. Hua, Geometries of matrices. I. Generalizations of von Staudt's theorem, Trans. Amer. Math. Soc. 57 (1945), 441-481. MR 7, 58.

5. H. G. Jacob, Jr., Coherence invariant mappings on Kronecker products, Amer. J. Math. 77 (1955), 177-189. MR 16, 667.

6. M. Marcus, Linear operations on matrices, Amer. Math. Monthly 69 (1962), 837-847. MR 26 #5007.

7. M. Marcus and F. C. May, *The permanent function*, Canad. J. Math. 14 (1962), 177-189. MR 25 #1178.

8. M. Marcus and B. N. Moyls, Linear transformations on algebras of matrices, Canad. J. Math. 11 (1959), 61-66. MR 20 #6432.

9. ____, Transformations on tensor product spaces, Pacific J. Math. 9 (1959), 1215-1221. MR 21 #7219.

10. M. Marcus, H. Minc and B. N. Moyls, Permanent preservers on doubly stochastic matrices, Canad. J. Math. 14 (1962), 190-194.

11. M. Marcus and R. Purves, Linear transformations on algebras of matrices: The invariance of the elementary symmetric functions, Canad. J. Math. 11 (1959), 383– 396. MR 21 #4167.

12. K. Morita, Schwarz's lemma in a homogeneous space of higher dimensions, Japan J. Math. 19 (1944), 45–56. MR 7, 381.

UNIVERSITY OF HOUSTON, HOUSTON, TEXAS 77004