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Abstract

In this thesis, we study linear type-theories and their semantics. We present a

general framework for such type-theories, and prove certain decidability properties

of its equality. We also present intuitionistic linear logic and Milner’s action calculi

as instances of the framework, and use our results to show decidability of their

respective equality judgements.

Firstly, we motivate our development by giving a split-context logic and type-

theory, called dual intuitionistic linear logic (DILL), which is equivalent at the

level of term equality to the familiar type-theory derived from intuitionistic linear

logic (ILL). We give a semantics for the type-theory DILL, and prove soundness

and completeness for it; we can then deduce these results for the type-theory ILL

by virtue of our translation.

Secondly, we generalise DILL to obtain a general logic, type-theory and se-

mantics based on an arbitrary set of operators, or general natural deduction rules.

We again prove soundness and completeness results, augmented in this case by

an initiality result. We introduce Milner’s action calculi, and present example

instances of our framework which are isomorphic to them. We extend this iso-

morphism to three significant higher-order variants of the action calculi, having

functional properties, and compare the induced semantics for these action calculi

with those given previously.

Thirdly, motivated by these functional extensions, we define higher-order in-

stances of our general framework, which are equipped with functional structure,

proceeding as before to give logic, type-theory and semantics. We show that the

logic and type-theory DILL arise as a higher-order instance of our general frame-

work. We then define the higher-order extension of any instance of our framework,

and use a Yoneda lemma argument to show that the obvious embedding from an

instance into its higher-order extension is conservative. This has the corollary

that the embeddings from the action calculi into the higher-order action calculi

are all conservative, extending a result of Milner.

Finally, we introduce relations, a syntax derived from proof-nets, for our gen-

eral framework, and use them to show that certain instances of our framework,

including some higher-order instances, have decidable equality judgements. This

immediately shows that the equalities of DILL, ILL, the action calculi and the

higher-order action calculi are decidable.
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Chapter 1

Introduction

The central concept in this thesis is that of linearity. We can say that linearity

is an attribute of systems in which unrestricted duplication of computations or

information is not allowed. There are many practical situations in which this is

the case—computations with side effects, where duplicating the computation also

duplicates the side-effect, manipulating large data-structures, where a duplication

may bear an unacceptable computational cost, or simply efficient implementations

where duplicating computation is to be avoided except where necessary. Areas as

diverse as optimal λ-calculus implementations, the study of process calculi and

denotational semantics can all utilise linearity in this broad sense.

Although such systems have been studied for many years, a new and striking

development occurred when Girard introduced linear logic [Gir87]. Unlike con-

ventional intuitionistic and classical logics, linear logic is built on the underlying

idea that assumptions should be treated linearly, which is to say that an assump-

tion should not be used twice in a deduction. Starting from this basis, Girard

built a complete classical linear logic, which, just as in the conventional case, has

both minimal and intuitionistic fragments.

Since the introduction of linear logic, many researchers have used it as an un-

derlying logic for systems which exhibit linearity in our general sense, for example

in the study of optimal λ-calculus reductions [GAL92a], in the analysis of imple-

mentation issues such as garbage collection, references and others [Wad90, GH90]

and to control interference in imperative languages [OTPT95]. It has become the

logic of choice for such applications in much the same way as conventional logic

underpins a huge range of theory in computer science. In the case of conventional

logics, one large section of applications are those which are based on conventional

intuitionistic logic as a typing system for a syntax of some sort. A variety of sys-

tems can be typed in this way, and the general principles underlying such typings

are well understood.
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In this thesis, we present a first step towards a similar unifying programme for

systems with linearity. We give a general operator theory, logic, and type-theory

over a linear underlying structure, and show how it can be used to present a

number of typing systems exhibiting linearity. We also give a semantics for our

theory, and prove some general results about it.

As an introduction, we give a motivating summary in a simple setting, provide

brief tutorials and summaries of related work on the concepts we work with, and

then outline the work contained in the thesis. A chapter summary can be found

in section 1.4.

We assume a basic understanding of elementary intuitionistic logic, its type

theory, simple category theory, and the various relationships of a familiar triangle,

particularly including the Curry-Howard correspondence between logic and type-

theory:

Logic

[GLT89] [Lam89, Sol90]

Type Theory ✛
[LS86]

✲
✛

✲

Category Theory [Mac71]

✛

✲

1.1 Motivating Sketch

Consider the typed λ-calculus. Although it forms the basis of many developments

in computer science, from functional programming languages to foundational se-

mantics, it is very frequently augmented with additional constructs, for example

those for pairing, sums, or other data types, or that for recursion. In the case

of each such extension the definition of terms must be extended, and new typing

rules given, and as a result of these extensions, many simple definitions and res-

ults must be at least rechecked. Such a procedure not only repeats work, but also

guarantees that many slightly differing presentations of each alternative calculus

exist, each with its own development. We might try to avoid this by using a

general theory of operators, due to Aczel [Acz80, Acz78].

Minimal Intuitionistic Logic

We start by considering minimal intuitionistic logic over a given set of formulae or

proposition letters (ranged over by A, B . . . ) and given by the abstract grammar:

A ::= p ∈ P | A → A
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with the rules:

Γ, A ⊢ A
(Ax)

Γ, A ⊢ B
Γ ⊢ A → B

(Abs) Γ ⊢ A → B Γ ⊢ A
Γ ⊢ B

(App)

where the turnstile ⊢ is a relation holding between sets of formulae (denoted

Γ, ∆ . . . ) and formulae. We call the axiom rule, along with the (admissible) cut

and weakening rules:

Γ ⊢ A Γ, A ⊢ B

Γ ⊢ B
(Cut) Γ ⊢ B

Γ, A ⊢ B
(Weak)

the structural rules of the logic. Note that the rules for the arrow connective occur

as an introduction-elimination pair (or I/E-pair); the abstraction introduces the

→ and the application rule eliminates it. Such I/E-pairs are characteristic of

natural deduction.

Now there are many possible ways to strengthen this logic, by adding new

connectives and rules for those connectives. Let us try to give a general schema for

such natural deduction rules. As a first attempt, we might say that an arbitrary

rule, given a number of deductions Γ ⊢ Ai for i = 1 . . . r, gives us a deduction

Γ ⊢ B for some new conclusion B:

Γ ⊢ A1 . . . Γ ⊢ Ar

Γ ⊢ B

This is a reasonable attempt, as all but one of the rules of minimal intuitionistic

logic are instances of this schema, as are the rules for pairing amongst others.

However, the abstraction rule is not; this is because an assumption is discharged

in this rule. Given a deduction Γ, A ⊢ B, we end up with a deduction in which A

is no longer an assumption. Hence we could refine our schema; given a number of

deductions Γ, ∆i ⊢ Ai for i = 1 . . . r, we have a deduction Γ ⊢ B in which all the

assumptions ∆i for each i = 1 . . . r have been discharged. This gives a general

rule:
Γ, ∆1 ⊢ A1 . . . Γ, ∆r ⊢ Ar

Γ ⊢ B

Now all the rules of minimal intuitionistic logic and many others arise as instances

of this schema.

It is important to note, however, that some do not, because of implicit or ex-

plicit side-conditions. One common situation in which a side-condition is imposed

is when a modality is used; for example in the presence of a unary connective �,
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we might have an introduction rule:

Γ ⊢ A
Γ ⊢ �A

only where each formula in Γ has the form �B for some B.

Another (apparent!) possible behaviour which is not captured by our rule

schema is that where an assumption is introduced in a deduction, as for example

in an alternative formulation of the →-elimination rule:

Γ ⊢ A → B
Γ, A ⊢ B

Although rules of this form are not instances of our rule schema, in the presence

of the structural rules we can show that they are interderivable with the instances

of our rule schema. In the case of this alternative rule for →, the appropriate

instance is exactly the normal →-elimination rule.

Given our general description of a natural deduction rule, we can see that

any particular instance is characterised by the number r, the sets of formulae ∆i

which are discharged, the conclusions Ai and the final conclusion B′. We might

then write all this information as the arity of the rule:

( ~A1)B1 . . . ( ~Ar)Br

B′

where the set of elements in the sequence ~Ai is ∆i for each i = 1 . . . r. As an

example, consider the sequent-style presentation of the natural deduction rule for

choice:
Γ ⊢ A ∨ B Γ, A ⊢ C Γ, B ⊢ C

Γ ⊢ C
(∨E)

where formulae A and B are discharged from the assumptions. This would then

have the arity:
()A ∨ B (A)C (B)C

C

We can characterise any extension of minimal intuitionistic logic with rules of

this general form by giving just the basic formulae, and the arities of the rules.

Together, we call these two bits of information a signature for the logic. In fact,

as we shall see, the most important feature of minimal intuitionistic logic is not

the rules for the connective →, but rather the admissible structural rules. Given

these structural rules, we can express the underlying behaviour of any connective

such as → in the arity of its rules.
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Using the definition of proofs in a logic with general rules, we can also define

a sensible notion of equivalence between proofs based on eliminating certain re-

dundant proof sequences. For example, in minimal logic, any proof which ends:

Γ ⊢ A

Γ, A ⊢ B

Γ ⊢ A → B
Γ ⊢ B

should be equivalent to the proof obtained from the admissible cut rule applied

to the deductions Γ ⊢ A and Γ, A ⊢ B. We could extend such a notion of proof-

equivalence to the extensions of minimal logic with instances of our rule schema

by allowing arbitrary equivalences over proofs of the extended logic. However,

this is more easily done in the framework of the type-theory we will present in

the next subsection.

The Typed λ-calculus

We now recall that via the Curry-Howard correspondence, proofs of minimal logic

can be represented by the typed λ-calculus, using the annotations:

Γ, x:A ⊢ x:A
(Ax)

Γ, x:A ⊢ t:B

Γ ⊢ λx:A.t:A → B
(Abs) Γ ⊢ t:A → B Γ ⊢ u:A

Γ ⊢ tu:B
(App)

Moreover, in the example of the previous subsection, the (∨ − E) rule is often

annotated with a casesA,B,C-construct

Γ ⊢ t:A ∨ B Γ, x:A ⊢ u:C Γ, y :B ⊢ v :B

Γ ⊢ casesA,B,C t of x in u or y in v :C

which acts as a choice operator. In general, we can give an annotation for an

instance of our rule schema having arity

( ~A1)B1 . . . ( ~Ar)Br

B′

in an extension of the typed λ-calculus by adding a term construct O((~x)t, . . . , (~x)t)

with the introduction rule

Γ, ~x1 : ~A1 ⊢ t1 :B1 . . . Γ, ~xr : ~Ar ⊢ tr :Br

Γ ⊢ O((~x1)t1, . . . , (~xr)tr):B′

In this way we can build a typed λ-calculus over a signature of formulae and

rules with associated arities. Many common extensions of typed λ-calculus arise
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as instances of this, including pairing constructs, choice constructs and recursion

operators.

Having defined a typing system based on the logic having as rules arbitrary

instances of our rule schema, we can give a notion of equality judgement over

such a typing system. An equality judgement takes the form Γ ⊢ t = u :A for

terms Γ ⊢ t :A and Γ ⊢ u :A, and asserts that the proofs denoted by the terms

t and u are equivalent. Equality judgements are commonly built inductively as

congruences over axiomatic equalities which arise from proof equivalences. These

often take one of the general forms:

....
I
E

≡
...

....
E
I

≡
...

where the I and E denote the introduction and elimination rules for a particular

connective. We shall call these respectively the β- and η-equivalences for a given

connective. They give rise respectively to β- and η-equalities on the proof terms.

In minimal logic, the β- and η-equivalences for the → connective are:

Γ, x:A ⊢ t:B
Γ ⊢ λx:A.t:A → B

(→ I)
Γ ⊢ u:A

Γ ⊢ (λx:A.t)u:B
(→ E)

Γ, x:A ⊢ t:B Γ, x:A ⊢ x:A

Γ, x:A ⊢ tx:B
(→ E)

Γ ⊢ λx:A.(tx):A → B
(→ I)

||| |||

Γ, x:A ⊢ t:B Γ ⊢ u:A

Γ ⊢ t{u/x}:B
(Cut) Γ ⊢ t:A → B

under the condition on the second of these that x does not occur free in t (and

where t{u/x} stands for the substitution of u for x in t).

The equivalences then yield the familiar βη-equalities of the → type:

(β) Γ ⊢ (λx:A.t)u = t{u/x}:B (η) Γ ⊢ λx:A.(tx) = t:A → B (x not free in t)

We can extend the equality judgement in the case of logics built on general

instances of our rule schema by allowing arbitrary axiomatic equality judgements

over terms of the general term calculus over the logics.

Cartesian Closed Categories

We turn to the question of semantics. It is well-known that minimal intuitionistic

logic has models which are cartesian closed categories. In these, a proof Γ ⊢ A

is modelled as a morphism [[Γ]] → [[A]], with a suitable interpretation of the basic

types. We can see that any rule of the logic takes a certain number of morphisms
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from the appropriate hom-sets, and returns another. Being more precise, given a

rule having arity
( ~A1)B1 . . . ( ~Ar)Br

B′

to interpret it in a c.c.c. C we would require for each possible context Γ a function

αΓ :
∏

i=1...r

C([[Γ]] × [[ ~Ai]], [[Bi]]) → C([[Γ]], [[B′]])

This is sufficient to give a sound interpretation of the operator theory we have

described. However, when we extend this interpretation to the type theory, a

complication arises. Consider the choice operator casesA,B,C we have already

introduced:

Γ ⊢ casesA,B,C t of x in u or y in v :C

If Γ contains just the typing x′ : A′, and we have a proof ⊢ t′ : A′, we would

expect the typing

⊢ (casesA,B,C t of x in u or y in v){t′/x′}:C

to be modelled by the composition

[[ ⊢ t′ :A′]]; αx′:A′([[x′:A′ ⊢ t:A ∨ B]], [[x′:A′, x:A ⊢ u:C]], [[x′:A′, y :B ⊢ v :C]])

where αx′:A′ is the function interpreting the choice construct. However, the term

(casesA,B,C t of x in u or y in v){t′/x′} is precisely

casesA,B,C (t{t′/x′}) of x in (u{t′/x′}) or y in (v{t′/x′})

and so we would expect this term to be interpreted as

α (f ; [[x′:A′ ⊢ t:A ∨ B]], f ; [[x′:A′, x:A ⊢ u:C]], f ; [[x′:A′, y :B ⊢ v :C]])

where f = [[ ⊢ t′ :A′]]. Clearly, though, we would wish these two interpretations

to be equal. This is achieved by imposing the condition that αA′ be the instance

at [[A′]] of a natural transformation

C( , [[A ∨ B]]) × C( × [[A]], [[C]])× C( × [[B]], [[C]]) → C( , [[C]])

Further, we can then model an equality judgement over general axiomatic

equalities as a c.c.c. such that the interpretation of the terms is sound with

respect to the axiomatic equalities.

We might summarise the situation presented here in a familiar form as follows:
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Minimal Logic with
arbitrary rules

Type Theory with
binding operators

✛ ✲

✛

✲

Cartesian Closed
Category with natural
transformations

✛

✲

1.2 Background

We aim to extend the account of the previous section by starting with a linear lo-

gic, λ-calculus and semantics. First, however, we need to recall some background

material in a number of different areas touched on in the previous section.

Linear Logic

Linear logic was introduced by Girard in 1987 [Gir87], and is a resource logic

in which contraction and weakening are allowed only on certain formulae, those

labelled with the connective !.

Consider what we might call minimal intuitionistic linear logic, which is the

simple logic with formulae

A ::= p ∈ P | A ⊸ A

and rules

A ⊢ A
(Ax)

Γ, A ⊢ B
Γ ⊢ A ⊸ B

(Abs) Γ ⊢ A ∆ ⊢ A ⊸ B
Γ, ∆ ⊢ B

(App)

where the turnstile ⊢ is now a relation holding between multisets of formulae and

formulae. We call the axiom rule, together with the admissible cut rule

Γ ⊢ A ∆, A ⊢ B
Γ, ∆ ⊢ B

(Cut)

the structural rules of this logic. Note that weakening is no longer admissible.

In fact, there are two obvious differences between this minimal intuitionistic

linear logic and our presentation of minimal intuitionistic logic in the previous

section. The first of these occurs in the (Ax) rules; in the linear logic, we are only

allowed to assume the one formula which is deduced, whereas in minimal logic we
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can also make any number of other assumptions. The second is more pervasive,

but is seen particularly in comparing the rules for application in the two logics.

In the linear logic, each proof uses a separate multiset of assumptions and the

multiset union of these proves the conclusion. Hence we are able to measure the

number of uses of an assumption in a derivation by the number of times it appears

in the multiset of assumptions. On the other hand, in minimal logic the same

assumptions are used to prove both premises and the conclusion, and therefore

we have no information about how the assumptions are used, if at all. However,

this new way of handling contexts also has more wide-ranging effects. One could

present minimal logic equivalently with the elimination rule for the arrow given

in the linear logic. Hence the differences between these two logic are all implicit

in those between the structural rules. The importance of such rules in logics has

been studied: for a general overview, see [Avr94], and in the particular case of

those considered here, see [Lam89, Lam90a, Sza75].

We now add to this minimal linear logic rules for the exponential, as presented

for example in [Abr93]. Now the formulae are given by:

A ::= p ∈ P | A ⊸ A | !A

where given a multiset of formulae Γ = {A1, . . . , Ar}, we write !Γ as shorthand

for the multiset of formulae {!A1, . . . , !Ar}, and the rules are augmented with the

promotion, dereliction, copy and discard rules:

!Γ ⊢ A
!Γ ⊢!A

(Prom) Γ ⊢!A
Γ ⊢ A

(Der)

Γ ⊢!A ∆, !A, !A ⊢ B
Γ, ∆ ⊢ B

(Copy) Γ ⊢!A ∆ ⊢ B
Γ, ∆ ⊢ B

(Disc)

Of these, the copy and discard rules allow us to duplicate or discard assump-

tions of the form !A for some A. Although these rules complicate the situation, the

promotion and dereliction rules can be seen as an I/E-pair for the !-connective.

Altogether, these connectives and rules allow us to encode minimal logic into

intuitionistic linear logic using the translation given by (A → B) 7→ (!A ⊸ B).

Other connectives in the intuitionistic fragment of linear logic are the binary

tensor, ⊗, the nullary unit, I (which acts as a unit for the tensor), the binary

product, & (sometimes written ×) and the binary coproduct, ⊕. In this thesis, we

will focus on the multiplicative fragment of intuitionistic linear logic, which has

all these connectives except the product and coproduct (the additive connectives).

Extending techniques used in the study of the multiplicative fragment to treat

the additives is known to be non-trivial, and this is also the case for our work.
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Although we will work exclusively with intuitionistic linear logic, we briefly

present the corresponding classical linear logic, which has sequents Γ ⊢ ∆, and

two important new connectives, linear negation ( )⊥ (originally presented as a

defined connective except on the atomic propositions) and the ‘par’ connective,

written

&

. This has the introduction (or right) rule

Γ ⊢ A, B, ∆

Γ ⊢ A

&

B, ∆

It turns out that

&

is the de Morgan dual of ⊗, and that in this logic A ⊸ B

can be defined A⊥ &

B.

This logic is of more than passing interest to us because of its position as

a predecessor of the system LU [Gir93] introduced by Girard in 1993. LU has

a number of interesting features, but the most relevant to our study is its use

of a split context. In LU, a general sequent has the form Γ; ∆ ⊢ ∆′; Γ′, where

the positions occupied by the Γ, Γ′ are known as intuitionistic zones and those

occupied by the ∆, ∆′ are linear zones. Hence the above sequent should be read

(roughly): “using formulae Γ intuitionistically and formulae ∆ linearly, we can

prove formulae ∆′ linearly or formulae Γ′ intuitionistically”. Although LU is

essentially a classical logic, it contains as subsystems minimal logic, classical logic,

intuitionistic linear logic and classical linear logic, and we will take advantage in

particular of the fact that it contains intuitionistic linear logic as a subsystem to

present an alternative formulation of that logic. We will sketch this later in this

introduction, but for now it is interesting to note that the structural rules of LU

include (amongst others) admissible weakening in both intuitionistic zones, and

two flavours of cut:

Γ; ⊢ A; Γ′ Γ, A; ∆ ⊢ ∆′, Γ′

Γ; ∆ ⊢ ∆′; Γ′ (I-Cut)
Γ; ∆2 ⊢ ∆′

2, A; Γ′ Γ; ∆1, A ⊢ ∆′
1; Γ

′

Γ; ∆1, ∆2 ⊢ ∆′
1, ∆

′
2; Γ

′ (L-Cut)

The presence of zones adds complexity to the structural rules, and this complexity

will be crucial in capturing the interaction between linear and intuitionistic types

and computations.

Linear Term Calculi

The first stage in assigning terms to proofs in a natural deduction formulation

of intuitionistic linear logic is to consider the minimal intuitionistic linear logic

defined above. Just as the minimal intuitionistic logic can be annotated with the

typed λ-calculus, the minimal intuitionistic linear logic can be annotated with a

linear typed λ-calculus, and this was done by a number of people, mostly along
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the lines of [Abr93]. Most of these systems also went on to annotate the I/E-pair

for the tensor connective in what has since become the standard way:

∆1 ⊢ t:A ∆2 ⊢ u:B
∆1, ∆2 ⊢ t ⊗ u:A ⊗ B

(⊗I)
∆1 ⊢ t:A ⊗ B ∆2, x:A, y:B ⊢ u:C

∆1, ∆2 ⊢ let x ⊗ y:A ⊗ B be t in u:C
(⊗E)

From now on we may omit type annotations in terms, where they can be recon-

structed from derivations. It should be noted that in some accounts, which include

those of Abramsky [Abr93] and Wadler [Wad93] the syntax let t be x ⊗ y in v and

slight variants of it were used instead of that given here. The term construct t⊗v is

self-explanatory, and the term construct let x ⊗ y be t in u is a pattern-matching

constructor which can be thought of as decoding its argument t into two parts

which are then substituted for the bound variables x and y in its argument u.

As in minimal logic, we can give an equality judgement which is a congruence

over axiomatic equalities corresponding to proof-equivalences. The β- and η-

equivalences for the ⊗ connective are easily given, and they generate β- and

η-axiomatic equality judgements as follows:

(β) Γ ⊢ let x ⊗ y be t ⊗ u in v = v{t, u/x, y}:C

(η) Γ ⊢ let x ⊗ y be t in x ⊗ y = t:A ⊗ B

Unlike minimal logic, however, when we consider the whole equality judgement

on terms corresponding to proof equivalence and normalisation, the term calculus

as presented so far already has one particular drawback which is inherent in much

work on linear logic. Whereas in the type-theory arising from minimal logic with

no additional rules, the equality judgement is simply based on the familiar βη-

equality of the typed λ-calculus, in the case of linear logic equalities arise which

are not β- or η-equalities, the so-called “commuting conversions”. For example,

consider the following proofs:

Γ1, A ⊢ B ⊗ B′ Γ2, B, B′, A ⊢ C

Γ1, Γ2, A ⊢ C
(⊗E)

Γ1, Γ2 ⊢ A ⊸ C
(⊸ I)

Γ1 ⊢ B ⊗ B′

Γ2, B, B′, A ⊢ C

Γ2, B, B′ ⊢ A ⊸ C
(⊸ I)

Γ1, Γ2 ⊢ A ⊸ C
(⊗E)

where the proof Γ1, A ⊢ B ⊗ B′ is obtained from the proof Γ1 ⊢ B ⊗ B′ by weak-

ening. The difference between these two proofs arises because we have used the

two essentially independent rules in two different orders. However, semantically

and intuitively, it is sensible to ask that they be equivalent. This gives us the

axiomatic equality:

Γ ⊢ λx.let y ⊗ y′ be t in u = let y ⊗ y′ be t in λx.u:A ⊸ C
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which holds under appropriate free and bound variable conditions. There are a

variety of such proof equivalences and corresponding axiomatic equalities. Cat-

egorically, these equalities are soundly modelled by virtue of the interaction of

the ⊗-functor with composition.

Another way of thinking of them is to recall the intuitive reading given above of

the let -⊗ constructor as a pattern matching substitution. Then it should have the

usual properties of substitution, for example commuting with other substitutions

and term structure, under suitable free variable conditions. A similar situation

arises in a more familiar setting; if we consider the terms:

Γ ⊢ casesA,A′,B→C t of x in (λy.u) or x′ in (λy.v):B → C

and

Γ ⊢ λy.(casesA,A′,C t of x in u or x′ in v):B → C

it seems very plausible that they be equal, since the functions they describe are

intuitively the same. However, such an equality is not derivable from the βη-

equalities of the construct, and hence must be added as an axiomatic equality.

Given term annotations for this system, the most difficult problem remaining

is the annotation of the intuitionistic rules for the connective !. A first attempt,

by Abramsky [Abr93], simply annotated the key promotion rule:

Γ ⊢ t:A
Γ ⊢!t :!A

(Prom)

where Γ is a sequence of typings x1 :!A1 . . . xr :!Ar. However, Wadler [Wad92] and

Mitchell and Lincoln [LM92] noticed that there was a technical problem with this

presentation, because of the failure of a linear substitution lemma (given a typing

judgement ∆ ⊢ t:A and one ∆′, x:A ⊢ u:B, there should be a typing judgement

∆, ∆′ ⊢ u{t/x}:B). This is connected to the fact that the !-connective does not

have a “real” natural deduction presentation, since it has four rules rather than

an I/E-pair.

In order to avoid the problem, Benton, Bierman, dePaiva and Hyland gave

a syntax [BBdPH93b, BBdPH93a] which changed the form of each rule except

(Der) by adding an element of substitution for each of the fresh assumptions

(each of !∆ in the case of Prom). This gave the rule

Promotion
∆i ⊢ Mi :!Ai (i = 1..r) x1 :!A1, . . . , xr :!Ar ⊢ N :B

∆′′ ⊢ promote ~M for ~x in N :!B

Benton proved strong normalisation for the β − cc fragment of the equality of

this system [Ben95b]. We present this system in full in chapter 2. However, this
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system is complex, notably in its equality judgement. Since the !-connective does

not have an I/E-pair in the logic, it is not immediately clear what its axiomatic

equalities should be, and in fact there are a large number of axiomatic equalities

involving the term constructs associated with it.

Considering classical logics, although Abramsky [Abr93] gave an annotation

for classical linear logic, it had been thought that term calculi were not the most

appropriate presentation of the proofs of classical linear logic, partly because of

the huge number of proof equivalences induced by the possibility of selecting more

than one formula on the right of the turnstile as the primary formula of a rule.

Hyland and dePaiva [HdP93] gave a system of term assignment for a linear logic

with multiple conclusions, having the par constructor, which also exhibited these

characteristic equivalences.

A more significant development occurred when Parigot presented a system of

term assignment for classical logic [Par92, Par93] which has since been adapted

by Bierman [Bie96b, Bie96a] to give a linear form. The main feature of Parigot’s

system and its linear derivatives is that there is an identified formula on the right

which is always the active formula in introduction rules, and there are explicit

structural rules allowing the exchange of this identified formula with another

formula on the right, thereby recapturing the power of classical logic.

As yet there have been no attempts to give a syntax for the proofs of the unified

logic LU. However, a preliminary linear version of the logical framework [HHP93]

based on a natural deduction presentation of its intuitionistic fragment was given

in [MPP92], based on a logic having sequents of the form Γ; ∆ ⊢ A. This present-

ation independently inspired the annotations of [Plo93b] and [Wad93], and the

linear logical frameworks of Pfenning and Cervesato [CP96, Pfe94] and Ishtiaq

and Pym [IP]. We will sketch the annotation of [Plo93b] in the next section, and

present a full development in chapters 2 and 3 of this thesis. This work was done

in the academic year 1994-1995, published initially in [Bar96].

Meanwhile, Benton has given [Ben95a, Ben94] a type-theory in this style for

a general categorical model which encompasses the monoidal adjunction models

of intuitionistic linear logic, and Benton and Wadler [BW96] have used this type-

theory to relate the computational λ-calculus, due to Moggi [Mog91], to linear

logic.

Systems with split contexts have also proved popular in the logic program-

ming community. A system similar to those mentioned above was presented

by Miller [Mil94a, HM94] again building on the work of Miller, Plotkin and

Pym [MPP92], and another by Harland and Pym [PH94, HPW96].
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Proof nets

Although term calculi are a popular syntax for the proofs of many kinds of lo-

gics, mostly intuitionistic, Girard’s original presentation of linear logic [Gir87]

employed an alternative graphical syntax, that of proof nets. These are essen-

tially graphs in which edges, labelled with formulae, represent assumptions and

conclusions occuring in a derivation, and nodes, labelled with rule names, rep-

resent the application of the various rules. The main advantage of this approach

is that rules are not applied globally, as a term construct is applied to a whole

term, but only apply to the edges labelled with the formulae involved in the rule

application.

In the intuitionistic case, therefore, proof nets have the distinct advantage

over term-calculi that two proofs which differ by a proof equivalence which would

induce a commuting conversion on terms are assigned the same proof net. Further,

since the βη-equalities which hold between proofs are essentially local in the proof-

net representation, we can decide them using a local rewrite system.

A

∆Γ

Figure 1.1: A Proof Net

To see how proof nets work, let us consider the translation from a term calculus

for a split-context linear logic to proof nets for that logic, due to the author. We

represent the proof net corresponding to a deduction Γ; ∆ ⊢ A as in figure 1.1,

where a wire with a stroke through it represents a number of wires, the dashed

wires labelled with Γ represent the intuitionistic assumptions and the plain wires

labelled with ∆ represent the linear assumptions.

We can see how proof nets avoid commuting conversions by considering the

translation of terms into proof nets via a translation Φ. Consider the action

of Φ on the tensor introduction term Γ; ∆ ⊢ t ⊗ u :A ⊗ B, which can be seen in

figure 1.2. In this proof net, we can see that the edges representing the conclusions

of the two subterms t and u are connected to a node for the rule instance ⊗I ,

and a new trailing edge representing the conclusion of the whole term is added.
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∆
∆

Γ Γ
1

2

A B

A B

Φ( ) Φ( )t u

Figure 1.2: Tensor Introduction

Also, notice the treatment of the intuitionistic assumptions. Since both subterms

are typed using the same set of intuitionistic assumptions Γ, we need to duplicate

each assumption in Γ to provide one copy for each sub-proof. This behaviour will

be repeated for the translation of any rule with two premises.

Now consider the tensor elimination rule. The derivation

Γ; ∆ ⊢ let x ⊗ y be t in u:C

is mapped by Φ to the proof net in figure 1.3. Again, we copy the intuitionistic

C

x:A y:BA B Γ

Γ∆ ∆1 2

Φ( )

Φ( )u

t

Figure 1.3: Tensor Elimination

assumptions, once for each sub-net, but in this case, the new node which is added
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to represent the ⊗E rule is only connected to the edges labelled by x :A, y :B

and A⊗B. Hence, the trailing edge representing the conclusion of the term is the

same trailing edge representing the conclusion of the sub-term u. This property

of the proof-net representation of the ⊗E rule accounts for the fact that terms

equal via commuting conversions due to ⊗E are mapped to equal proof nets, as

the reader may verify by drawing some sample proof nets. At this point it is

worth noting that although proof nets do remove the proof-equivalences due to

commuting conversions, those which arise in connection with the linear analogue

of ∨ and its corresponding cases constructor do not map to equalities in the same

way. The proper treatment of the additives is an ongoing research area.

β
η

Figure 1.4: Tensor β-η-rewrites

Now, we can give rewrites capturing the βη-equality for the ⊗-construct as

seen in figure 1.4. These should be read as saying that any proof net containing

the redex as a subnet rewrites to the proof net having that redex replaced by

the reduct. It is obvious just from the form of this presentation that these are

local. It is worth noting that the η-rewrite is given the form of an expansion,

rather than the more familiar contraction. This is technically in order to make

the rewrite confluent, but is also motivated by work of Ghani [Gha95].

Since their introduction, proof-net systems have been given for most, if not all,

linear logics, for example [GAL92b, Gir96]. Beyond these, graphical forms based

on proof nets have been used in a number of areas. For example, the nets of [CS97,

BCS95], used in categorical coherence reasoning, are very close neighbours of proof

nets for intuitionistic linear logic, for example as given in [DR89]. More generally,

Lafont has defined interaction nets [Laf90, Laf95], which are a general graphical

syntax based on proof nets extended with arbitrary node types. This development

is similar to our addition of general rules to minimal logic, and allows interaction

nets to apply to a wide range of computational situations.

Possibly the most far-reaching impact of proof nets has been on the optimal

λ-reduction problem [Lév80, Wad71] in the untyped λ-calculus. In defining an
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efficient evaluation strategy for λ-terms, it quickly becomes obvious that, for

example, in a term such as (λx.xx)((λx.y)z) we should first reduce the application

((λx.y)z), since this will otherwise be reduced twice, one in each copy replacing

an x in xx. The optimal λ-reduction problem is to efficiently mechanise the

strategy for deciding which rewrite is appropriate at each stage. There is no

simple solution, but Lamping [Lam90b] gave a graphical method based upon a

system of λ-graphs with added connectives. Gonthier, Abadi and Lévy [GAL92a]

then showed that this extra structure corresponded in the typed case to that of

proof nets for intuitionistic linear logic, and that the required reduction strategy

could be explained systematically under this interpretation. Mackie [Mac94] also

investigated implementation issues for λ-calculus using graphical frameworks.

Action Calculi

Action calculi were first presented by Milner in [Mil93c]; the definitive reference

is [Mil96]. They can be understood as a structural framework equipped with

general operator rules determined by arities similar to those of binding operators.

Originally designed to allow a uniform presentation of various process calculi in

order to compare them, action calculi are powerful enough to represent a wide

range of interesting systems. A particular action calculus is determined by a

signature, which in Milner’s presentation [Mil96] consists of a set of prime arities,

similar to basic types in a term calculus, and a set of operators having arities

built over those prime arities, called controls. Given a signature, actions, similar

to terms, are constructed, themselves having arities which are analogous to the

types assigned to terms in a type-theory. However, in contrast to the situation in

a type theory, actions are constructed combinatorially from the internal language

of a symmetric monoidal category with certain other constructors (in something of

the sense of Curien’s categorical combinators [Cur86, Cur85]). In this framework,

variables, which are called names, are reserved for a purpose analogous to that of

variables in the intuitionistic term calculus, with the linearity springing directly

from the categorical language. In fact, Gardner [Gar95] has shown that each

action calculus is equivalent to a closed action calculus which does not have free

names.

A significant amount of theory supports action calculi. They are equipped

with normal forms, called molecular forms. These, interestingly, can be given

in a graphical form, as action graphs, which are related to proof nets. They

have a semantics, which has been steadily refined since Milner’s original paper

introduced action structures [Mil93c]. Control structures [MMP95], which are
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categories with naming structure, were followed by a fibrational equivalent not

requiring naming structure, due to Hermida and Power [HP95]. This was proved

equivalent by Power [Pow96] to an alternative formulation, which is closely related

to the structural fragment of models of linear logic. Minor variants of these models

were used in the work of Gardner et al. [HG, BGHP97].

A higher-order extension of the action calculus was given by Milner in [Mil94b,

Mil93a], and a reflexive extension in [Mil94c], providing a facility for recursion.

Normal (molecular) forms [Mil93b] exist for these extensions, although not for

their combination. Hasegawa and Gardner have related the higher-order extension

of action calculi to Moggi’s computational λ-calculus [HG].

Categorical Semantics

We now introduce and motivate the semantics we will use to model linear logic.

The models we will consider are based on linear-non-linear models. These are

pairs of categories (C, S) such that C is a cartesian closed category (CCC, or

CC category) and S is a symmetric monoidal closed category (SMCC, or SMC

category) and there is a monoidal adjunction between them:

C

F ✲
⊥✛
G

S

The intention behind the construction is that the normal power of intuition-

istic logic, arising from the exponential, should be modelled in the CCC, with the

intuitionistic linear logic being as usual modelled in the SMCC. This idea emerged

in 1993 from discussions between a number of people, including Plotkin, Benton

and Hyland. However, it was only during further work by Benton [Ben95a] and

Bierman [Bie95] that the details became clear, and in particular that it was ne-

cessary to impose the requirement that the adjunction be monoidal. In [Ben94]

there is an extensive comparison between these models and the previously pro-

posed models [BBdPH93b]. In fact, although Benton required that the cartesian

category be closed, this is not essential for our purposes, and we take the more

general definition.

Let us consider the intuition behind this in a little more detail. Imagine that

the category C is a category of total functions, and that the category S is a

category of ‘computations’, or processes—we are deliberately being vague about

the precise nature of this, but we certainly mean to allow the possibility of non-

termination or non-functional behaviour of other kinds. Note that the category of

total functions must be cartesian: there can only be one function from any type
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to the unit type, that which returns the unique element of the unit type; and,

further, the function f ; 〈g, h〉, which evaluates f and uses the result in g and h

respectively, must be the same as the function 〈f ; g, f ; h〉 which evaluates f twice

in evaluating the functions f ; g and f ; h.

By contrast, the category of computations cannot be cartesian, at least be-

cause there are potentially many computations returning no result. These might

include nonterminating computations, processes which interact with the user, or

ones which have other side-effects. Also, it is not the case that doing a computa-

tion once and using the result as the input to two other computations is the same

as doing the first computation twice, once for each computation. This equality

will fail, for example, if the first computation has any side effects.

Now consider the action of the functors in our intuitive model. The functor F

takes functions to computations, intuitively saying that all functions can be com-

puted, or that functions are a subset of processes. This is a natural requirement

on any notion of computation. The existence of the functor G then corresponds to

a kind of completeness; it says that for each computation or process, there must

be a function simulating it on a suitable representation of its input. The adjunc-

tion F ⊣ G specifies that there must exist natural transformations FG ⇒ Id and

Id ⇒ GF . The first of these then implies that we can reconstruct a computation

from the function representing it, and the second that from a function we can

construct a function representing its computation.

Not all candidate notions of total function and computation satisfy the above

intuitive representability and completeness conditions. Partly for this reason, we

will later be considering an important fragment of this model, which we might call

the structural fragment. This consists of a cartesian category C, a (not necessarily

closed) symmetric monoidal category S and a strong monoidal functor F : C → S

(which may not have an adjoint):

C
F ✲ S

Now in order for notions of total function and computation intuitively to provide

a model of this fragment, we require only that functions yield computations, or

equivalently can be computed by processes.

The basic components of this model are all very familiar to category the-

orists, and substantially predated the introduction of linear logic; for example,

the definitions of symmetric monoidal category (also tensor category), cartesian

closed category and monoidal adjunction can all be found in [Mac71]. One major

area of research in category theory is the study of coherence problems for various
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types of categories. In particular, coherence in monoidal categories has been the

subject of much study, for example in [KM72, KL80, Mac71, Sol90].

The coherence problem for a class of categories is the problem of deciding

which diagrams (made up from elementary natural transformations present in

each instance of the class) commute in every category in the class. One clas-

sical result due to MacLane [Mac71, Mac63] is that in (symmetric) monoidal

categories, every such diagram commutes. However, the situation is not uni-

formly this simple; in the case of symmetric monoidal closed categories, we do

not have that every diagram made out of the elementary natural transformations

commutes [KM72]. For these, there is a famous counter-example which we will

present in chapter 8. The theories of monoidal categories and cartesian categories

have further been clarified by work on general classes of categorical structure by

Kelly, Power and Robinson [BKP89, PR94].

One interesting approach to such problems uses syntactic methods. Consider-

ing the case of cartesian closed categories, we know that a category built from the

terms of typed λ-calculus (the term category) is complete for the class of cartesian

closed categories, which is to say that any equality between elementary natural

transformations holds in every cartesian closed category if and only if it holds

in the term category. Since the equality of arrows in the term category is based

on the equality judgement of the typed λ-calculus, to decide this is to solve the

coherence problem for cartesian closed categories. More generally, to decide the

equality on any accurate representation of the proofs of minimal logic is to solve

this coherence problem. Along these lines, in [MRA93], Mackie, Román and Ab-

ramsky used a type theory for multiplicative linear logic to approach the problem

of coherence for symmetric monoidal closed categories. Another natural question

is whether proof nets help in the solution of coherence problems, as they are an

efficient representation of proofs, and indeed, Seely et al. [CS97, BCST96] have

adapted proof-net technology for the ⊗ −

&

-fragment of classical linear logic to

this end.

Since the advent of linear logic, its models have been of major interest.

Barr [Bar91] initially gave a semantics for the ⊗ − ⊥ fragment of classical linear

logic in his ∗-autonomous categories, which have a symmetric monoidal structure

with a dualising object [Bar79] (again substantially predating linear logic itself).

Then Seely [See89] and the group at Cambridge [Bie95, Ben95a, BBdPH93a]

developed the underlying ideas for different fragments of the full logic.

For the purposes of this thesis, we are particularly interested in the work of

Day [Day70b, Day73, Day70a] on the Yoneda embedding of a category C into its
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presheaf category SetC
op

. He showed that given a symmetric monoidal category,

the presheaf category is symmetric monoidal closed, and the Yoneda embedding

functor is symmetric monoidal. The analogous result holds for cartesian categor-

ies. We will use these results to generate a model of multiplicative intuitionistic

linear logic from one of the structural fragment, so obtaining conservative exten-

sion results.

1.3 Development

Having motivated our approach, and surveyed the relevant background material,

we now give an overview of the original work in this thesis.

We start by presenting, in chapter 2, the reformulation of intuitionistic linear

logic based on LU which was mentioned in the previous section. Known con-

sequently as DILL, dual intuitionistic linear logic has sequents of the general form

Γ; ∆ ⊢ A, where Γ is a set of intuitionistic assumptions, and ∆ is a multiset of

linear assumptions.

The basic axioms are:

Γ, A; ⊢ A
(I-Ax)

Γ; A ⊢ A
(L-Ax)

which, together with the admissible rules:

Γ; ∆ ⊢ B

Γ, A; ∆ ⊢ B
(Weak)

Γ; ⊢ A Γ, A; ∆ ⊢ B

Γ; ∆ ⊢ B
(I-Cut)

Γ; ∆1 ⊢ A Γ; ∆2, A ⊢ B

Γ; ∆1, ∆2 ⊢ B
(L-Cut)

make up the structural rules of the logic. As might be expected from our previous

discussion of the relationship between the structural rules and those for the con-

nectives, in rules having two premises the intuitionistic contexts are shared and

the linear contexts are kept separate; for example, consider the tensor I/E-pair:

Γ; ∆1 ⊢ A Γ; ∆2 ⊢ B
Γ; ∆1, ∆2 ⊢ A ⊗ B

(⊗I)
Γ; ∆ ⊢ A ⊗ B Γ; ∆2, A, B ⊢ C

Γ; ∆1, ∆2 ⊢ C
(⊗E)

Now, the rules for the !-connective are presented as an I/E-pair, in conventional

natural deduction fashion:

Γ; ⊢ A
Γ; ⊢!A

(!I)
Γ; ∆1 ⊢!A Γ, A; ∆2 ⊢ B

Γ; ∆1, ∆2 ⊢ B
(!E)

The rules of the logic, and particularly this I/E-pair for the !-connective, make

the proof structure much simpler than that of intuitionistic linear logic in its
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conventional presentation. One characterising proof equivalence of the logic is as

follows:
Γ; !A, ∆ ⊢ B

Γ, A; ∆ ⊢ B

In the same way as we did above for minimal logic, we proceed in chapter 2

to give a type-theory in which the rules of the logic become typing rules, using

the Curry-Howard correspondence. We build this type theory over a signature of

primitive types and constants, and given a typing judgement Γ; ∆ ⊢ t :A we have

that variables typed in Γ may occur many times (or not at all) free in t, whereas

variables typed in ∆ must occur exactly once free in t. The variables typed in Γ

must be disjoint from those typed in ∆. The most significant difference between

this type theory and that due to [BBdPH93b], presented above, occurs in the

treatment of the !-connective and its rules. The straightforward term assignment

Γ; ⊢ t:A

Γ; ⊢!t :!A
(!I)

Γ; ∆1 ⊢ t :!A Γ, x:A; ∆2 ⊢ u:B

Γ; ∆1, ∆2 ⊢ let !x be t in u:B
(!E)

allows us to prove the two substitution lemmas corresponding to the cut rules.

Further, the β- and η-equivalences for the !-connective arising from its presenta-

tion with an I/E-pair generate β- and η-axiomatic equalities for it:

(β) Γ; ∆ ⊢ let !x be !t in u = u{t/x}:A (η) Γ; ∆ ⊢ let !x be t in !x = t :!A

This is in contrast to the complex treatment of the connective forced in the case

of the single-context linear logic presented above.

We then complete the linear version of the familiar triangle by giving, in

chapter 3, a categorical semantics for the type-theory of DILL, which is based on

the adjunction model of linear logic described earlier. We show that the type

theory is sound and complete with respect to these models in the standard way,

using a term model construction.

Now, just as we sketched the construction of a general theory of operators over

the structural fragment of minimal logic, it is profitable to consider a general

theory of rules and hence operators built on the structural fragment of DILL,

but with one slight alteration. Instead of assuming that there is just one set of

primitive propositions, as in DILL, we assume two sets; a set of primitive linear

propositions (or types) and a set of primitive intuitionistic propositions (or types).

We further assume that any primitive intuitionistic type is also a primitive linear

type. In this definition, we are intuitively saying that some linear types are in

fact value types, for example natural numbers or booleans, elements of which can

be copied.
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We construct this logic in chapter 4; a sequent has the general form Γ; ∆ ⊢ A

where Γ is a set of primitive intuitionistic propositions, ∆ is a multiset of primitive

linear propositions, and A is a primitive linear proposition. Because we have

replaced the set of primitive propositions of DILL with two sets, the new logic has

another structural rule, the I-L-rule, which holds for any intuitionistic proposition

Q:
Γ; ∆1 ⊢ Q Γ, Q; ∆2 ⊢ A

Γ; ∆1, ∆2 ⊢ A
(I-L)

We build a theory of general operators on this structural foundation, and proceed

to annotate it in chapter 4, as we did for minimal logic. Considering equivalence

between proofs in this two-zoned setting raises substantial naturality issues, which

we discuss at length before presenting the equality judgement of the type-theory.

We parameterise this equality judgement over a set of axiomatic equalities, giving

us an expressive theory of binding operators in the setting of a linear type-theory,

which we call general linear type-theory.

We then consider the categorical semantics of this general framework, using

natural transformations, in chapter 5. The basis of the model is the structural

fragment of models of linear logic mentioned above.

Having developed the theory of this general linear type theory, it is helpful to

consider an example, and in fact we provide a set of examples by showing that

each instance of Milner’s (static) action calculi, presented earlier, is equivalent

to an instance of our general type theory in which the controls correspond to

binding operators of a certain restricted form. In chapter 6, we first define action

calculi and show the equivalence to instances of our theory, and then go on to

consider three higher-order extensions of action calculi, one of which is due to

Milner [Mil94b], one of which is largely folklore, and one of which is due to

the author. We show that these extensions, and various structure-preserving

translations which exist between them, correspond to extensions of the type-

theories corresponding to action calculi and translations between them in our

theory. Finally in chapter 6, we consider the semantics for action calculi inherited

from that of the instances of our general theory, and compare it to the semantics

of action calculi given by Power [Pow96].

Inspired by the generality of the higher-order extensions of action calculi, in

chapter 7 we define higher-order general linear type theories, which are a subset

of general linear type-theories having operators and equalities based on those of

linear logic for the ⊸, ⊗ and ! connectives. We can then define the higher-order

extension of a given instance of our theory as that theory with the connectives,

operators and the corresponding equalities ‘freely’ added. It is not immediately
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clear that this addition does not yield a trivial structure (as is the case with some

extensions of action calculi, see [Mil94b]), but we are able via the semantics to

use a presheaf construction to show that the obvious embedding of a theory into

its higher-order extension is conservative. As a corollary, this shows the same

conservativity property for the morphisms of action calculi described earlier.

We complete our development in chapters 8 and 9 by considering decidability

issues for the type-theories and equalities we have introduced. Historically, decid-

ing equality judgements in linear type-theories has been complex, because of the

commuting conversions mentioned earlier, and because of confluence problems

with the reductive orientation of the axiomatic equalities. The situation is much

clearer in the case of proof nets, since it is not complicated by the commuting

conversions.

We might, therefore, consider a system of proof nets for our general linear

type-theory. However, to define such a graphical system and prove the delicate

results on its rewrites would be cumbersome. Hence we present a system of

relations, which are non-graphical analogues of proof nets for general linear type-

theories. It is worth noting that the proof nets which we use for intuition can be

formally presented, and in fact that this has been done by the author [Bar] for a

closely-related system of proof nets for the logic DILL.

A proof net labelling a derivation of Γ; ∆ ⊢ A corresponds to a relation D

relating variables ~x of type Γ, ~y of type ∆ to a variable z of type A. Each

proof-rule corresponds to a primitive relation, and cut is modelled by a multiary

relational composition. Let us take, for example, the proof net (for DILL) in

figure 1.3.

This corresponds to the term

; x′ :A ⊗ C, y :B ⊢ let x1 ⊗ x2 be x′ in x1 ⊗ (y ⊗ x2):A ⊗ (B ⊗ C)

and the relation

R(x′, y, z) = ∃x1 :A, x2:C, y′:B ⊗ C.(z = x1 ⊗ y′) ∧ (y′ = y ⊗ x2) ∧ (x1 ⊗ x2 = x′)

If we were then to abstract y from this, to give the term

; x′ :A ⊗ C ⊢ λy :B.let x1 ⊗ x2 be x′ in x1 ⊗ (y ⊗ x2):B ⊸ (A ⊗ (B ⊗ C))

this would have the relation

S(z′, x′) = ∀y :B.∃z :(A⊗ (B ⊗ C)).(z′y = z) ∧ R(x′, y, z)
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Figure 1.5:

Just as we have that commuting conversion proof equivalences correspond to

equalities on the proof nets, we can see that the commuting-conversion equivalent

form of this proof (constructed as on page 14), which has the term

; x′ :A ⊗ C ⊢ let x1 ⊗ x2 be x′ in (λy :B.x1 ⊗ (y ⊗ x2)):B ⊸ (A ⊗ (B ⊗ C))

has a relation

S ′(z′, x′) = ∃x1:A, x2:C.(x1 ⊗ x2 = x′) ∧

∀y :B.∃z :(A⊗ (B ⊗ C)), y′:B ⊗ C.(z′y = z) ∧ (y′ = y ⊗ x2) ∧ (z = x1 ⊗ y′)

which is the same as S(z′, x′) up to certain obvious syntactic manipulations of

the quantifiers.

Using these relations, we can give a syntactic representation of the proofs

of our general linear type-theory. We can then define rewrites on them which

are confluent and strongly normalising, such that two relations have the same

normal form under rewriting if and only if they correspond to terms which are

judged equal in an instance of the type-theory over an empty axiom set. We call

such an instance pure. This strongly-normalising rewrite then provides a decision

procedure for any pure instance of our general linear type-theory.

Furthermore, this result immediately provides a complete solution to the co-

herence problem for the structural fragment of linear logic. Via our completeness
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result, a diagram commutes in all models of any suitable pure instance if and

only if it does in the term-model, and checking this amounts to checking a term

equality in the pure instance, which is therefore decidable.

However, it must be said that there are few useful systems which arise as pure

instances of our general linear type theory; in order to present systems for action

calculi and linear logic we have had to incorporate extra axiomatic equalities,

which mean that our decidability result no longer applies. We proceed, therefore,

to extend the system of relations and rewrites to the higher-order case. We define

pure higher-order instances to be instances of our higher-order general linear type

theory over an empty axiom set. We then give relations and rewrites on them

which again are confluent and normalising, and such that two relations have the

same normal form if and only if they correspond to terms which are judged equal

in the pure higher-order instance of the type-theory. As before, this provides a

decision procedure for such pure higher-order instances, and this time provides a

complete solution to the coherence problem for models of our higher-order general

linear type-theory, in the same way as before.

This result is more substantial. It has as corollaries the decidability of the

equality of all the action calculi fragments studied (by virtue of our conservativity

results), the decidability of the equality judgement in the type theory of DILL,

and hence the decidability of the equality judgement in the ‘Cambridge’ type

theory [BBdPH93b]. We should also note that Ghani [Gha96] independently

decided the βη − cc equality of DILL(C), working within the term syntax and

using expansionary η-rewrites.

Finally, we note that the system of relations and rewrites for a pure instance

of our general linear type-theory embeds soundly and fully into the system of

relations and rewrites for the higher-order extension of the pure instance. In

this way we obtain a syntactic conservativity proof for conservativity on pure

instances, a subcase of the problem solved semantically in chapter 7.

1.4 Chapter Summary

Having introduced our approach, and the main concepts involved, we summarise

the contents of the rest of this thesis.

2) An Alternative Formulation of ILL This chapter introduces our altern-

ative formulation of intuitionistic linear logic built over sequents Γ; ∆ ⊢ A.

Having given the alternative logic, we give the derived type theory and some

useful results, and then proceed to show that the type theory is equivalent
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to the familiar Cambridge type theory [BBdPH93b] over ILL, up to provable

equality.

3) The Semantics of DILL In this chapter, we give a semantics for the type

theory based on DILL, and show it to be sound and complete by the con-

struction of a term model. We also consider the relation between the models

we have chosen and another influential notion of model, first stated for the

Cambridge type theory.

4) Linear Type Theories In this chapter, we move away from linear logic. We

present a generalisation of Aczel’s binding operators, and then introduce

a general linear logic over the structural rules of DILL, which incorporates

rules derived from these binding operators. We then give the type-theory

Lin(O, A) based on this logic.

5) The Semantics of Lin(O, A) In this chapter we develop a semantics of the

generalised type-theory presented in the previous chapter. This is based

around the structural fragment of the models of ILL.

6) Action Calculi and Extensions In this chapter we introduce Milner’s ac-

tion calculi and show how they can also be viewed as instances of our general

linear type theory. We also show the same for various higher-order exten-

sions of action calculi, including that given by Milner himself. Further, we

consider the semantics induced by our semantics for the general linear type

theory.

7) Higher-Order Extensions In this chapter we introduce higher-order type

theories in general, give the canonical higher-order extension of a general

linear type theory, inspired by linear logic, and use a categorical argument

to show that the embedding of any general linear type-theory into its higher-

order extension is conservative. We then consider various implications of

this result for the theory of action calculi. We also introduce an instance of

the higher-order type theory which is equivalent to the system DILL(C).

8) Normal Forms for Lin(O, A) In this chapter, we introduce relations, our

syntax for proofs based on proof nets. We show that using a rewrite and

an equality on relations, we can give a system which is equivalent to the

familiar general linear type-theory under a restricted derivable equality.

9) Normal Forms and Decidability This chapter extends the results of the

previous chapter by showing that the full provable equality of any pure in-
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stance of our general linear type theory is equivalent to a rewrite over and

equality on relations. We further show that this rewrite is strongly nor-

malising, and the equality is decidable, thereby showing that the provable

equality judgement of the general linear type-theory with empty axiom set

is decidable. This result is then extended by giving rewrites for the higher-

order type-theories which decide the axiomatic equality of the higher-order

theory without arbitrary axioms.

10) Conclusion We discuss the implications of this work, future directions and

questions raised, in particular discussing classical linear logics, enriching

our general linear type-theory with a rewrite, and applications to process

calculi.

1.5 Historical Notes

The work in chapters 2 and 3 is based on a talk [Plo93b] and unpublished

notes [Plo93a] by Gordon Plotkin, whilst the work on action calculi, higher-

order action calculi and conservativity in chapters 6 and 7 is a reformulation of

work done in collaboration with Philippa Gardner, Gordon Plotkin and Masahito

Hasegawa in [BGHP97].
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Chapter 2

An Alternative Formulation of
ILL

We introduce an alternative natural deduction formulation of ILL, dual intuition-

istic linear logic (henceforth DILL), in which we use two kinds of assumptions,

linear and intuitionistic. The exponential is introduced with rules allowing a de-

duction of a formula !A from a formula A when no linear assumptions have been

used, and eliminated by allowing a conclusion !A to substitute for an intuitionistic

assumption A.

When we express this natural deduction formulation in a sequent style, the

general form of a sequent is Γ; ∆ ⊢ A, which is interpreted as meaning that

from intuitionistic assumptions in Γ and linear assumptions in ∆ we can deduce

A. This splitting of the context leads to an extra intuitionistic axiom form, but

the remainder of the rules are very similar to their counterparts in the natural

deduction formulation of ILL.

Having outlined the form of the logic, we can see that it is easy to give a

term assignment calculus. The introduction and elimination rules for ! are reflec-

ted in two new term constructs, an introduction construct !t and an elimination

construct let !x be u in t, together forming a constructor-destructor pair.

In this chapter, we first present the logic DILL, and then give the type theory

based upon it. We then present the type theory ILLand show its relation to the

type theory based on DILL.

2.1 The Logic DILL

In order to present the logic, we assume a base set PL of primitive propositions,

ranged over by l, k . . . , and then define formulae, ranged over by A, B, C . . . :

A ::= l ∈ PL | I | A ⊗ A | A ⊸ A | !A
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Now we define an logical context to be a pair of a set of formulae and a multiset

of formulae, where we overload comma for the (set/multiset) union and for the

empty (set/multiset). We will write such a pair as Γ; ∆, where the Γ is the

intuitionistic part and ∆ is the linear part.

We now assume a set C of formulae, the primitive assumptions. These are

assumptions which we may use in a deduction with no further justification. We

give the rules of the logic over PL and C, which we call D(PL, C).

Definition 2.1.1 (Logical Rules of D(PL,C))

We say that a sequent Γ; ∆ ⊢ A can be derived for a formula A in D(PL, C) if it

can be shown using the following rules:

(Int − Ax) Γ, A; ⊢ A (Lin − Ax) Γ; A ⊢ A

(Ass) Γ; ⊢ A (A ∈ C)

(I − I) Γ; ⊢ I
Γ; ∆1 ⊢ I Γ; ∆2 ⊢ A

Γ; ∆1, ∆2 ⊢ A
(I − E)

Γ; ∆1 ⊢ A Γ; ∆2 ⊢ B

Γ; ∆1, ∆2 ⊢ A ⊗ B
(⊗ − I)

Γ; ∆1 ⊢ A ⊗ B Γ; ∆2, A, B ⊢ C

Γ; ∆1, ∆2 ⊢ C
(⊗ − E)

Γ; ∆, A ⊢ B

Γ; ∆ ⊢ A ⊸ B
(⊸ I)

Γ; ∆1 ⊢ A ⊸ B Γ; ∆2 ⊢ A

Γ; ∆1, ∆2 ⊢ B
(⊸ E)

Γ; ⊢ A
Γ; ⊢!A

(! − I)
Γ; ∆1 ⊢!A Γ, A; ∆2 ⊢ B

Γ; ∆1, ∆2 ⊢ B
(! − E)

As remarked in the introduction, we have replaced the four rules involving the

!-connective in the original form of ILL with the introduction-elimination pair seen

above. The contraction and weakening rules previously used are now derivable

by virtue of the fact that we allow contraction and weakening in the intuitionistic

side of the context.

The Structural Rules

We can now give three structural rules for this logic: we have intuitionistic weak-

ening and two flavours of cut, one intuitionistic and one linear.

Γ; ∆ ⊢ B

Γ, A; ∆ ⊢ B
Weakening

Γ; ∆1 ⊢ A Γ; ∆2, A ⊢ B
Γ; ∆1, ∆2 ⊢ B

(L − Cut)
Γ; ⊢ A Γ, A; ∆ ⊢ B

Γ; ∆ ⊢ B
(I − Cut)
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These three structural rules can be shown to be admissible, by which we mean

that given a derivation of the premise of each rule, we can construct a derivation

of its conclusion. Further, using these structural rules we can prove the lemma:

Lemma 2.1.2 (L-Transfer)

The following structural rule is admissible:

Γ; A, ∆ ⊢ B

Γ, A; ∆ ⊢ B

We now go on to state a number of defining equivalences for the connectives,

which characterise their behaviour. One of the main motivations for this logic is

the equivalence for ! presented here:

Lemma 2.1.3 (!-Equivalence)

In the presence of the structural rules, the two-way proof rule:

Γ; !A, ∆ ⊢ B

Γ, A; ∆ ⊢ B

is equivalent to the (! − I), (! − E) pair introduced earlier, in the sense that in a

system having the structural rules we would be able to derive the same sequents

using the two way proof rule as we could with the introduction-elimination pair.

Proof If we have the two-way proof rule and the cut rules, then we can derive

! − I :

Γ; ⊢ A
; !A ⊢!A
A; ⊢!A

Γ; ⊢!A
(I − Cut)

Further, we can derive ! − E:

Γ; ∆1 ⊢!A

Γ, A; ∆2 ⊢ B

Γ; !A, ∆2 ⊢ B
Γ; ∆1, ∆2 ⊢ B

(L − Cut)

Going the other way, it is easy to derive both directions of the equivalence

given the (! − I), (! − E) pair. The forward direction follows from one use of !-E,

and the other direction is an instance of linear cut and weakening:

Γ, A; ⊢ A

Γ, A; ⊢!A

Γ; !A, ∆ ⊢ B

Γ, A; !A, ∆ ⊢ B
Γ, A; ∆ ⊢ B

�

We give similar results for the other connectives:

34



Lemma 2.1.4 (Equivalences)

In the presence of the structural rules:

• The two-way proof rule
Γ; ∆, I ⊢ C

Γ; ∆ ⊢ C
is equivalent to the I − I, I − E pair.

• The two way proof rule
Γ; ∆, A ⊗ B ⊢ C

Γ; ∆, A, B ⊢ C
is equivalent to the ⊗ − I, ⊗ − E

pair.

• The two way proof rule
Γ; ∆ ⊢ A ⊸ B

Γ; ∆, A ⊢ B
is equivalent to the ⊸ −I, ⊸ −E

pair.

These are all proved in a similar way to that for !.

2.2 The Type Theory DILL(C)

We can now annotate the assumptions with variables, and obtain a type-theory

from our logic. The types of the type theory (over primitive types PL) are precisely

the formulae of the logic (over primitive propositions PL). We assume a countably

infinite set of variables X ranged over by x, y . . . (which will be ubiquitous in this

thesis), and we now assume a set of constants C ranged over by c . . . , each of

which has a type of DILL. We write c:A to indicate that the constant c has the

type A. We refer to the pair (PL, C) as a DILL-signature , and let C . . . range

over DILL-signatures. We will also assume that C = (PL, C), C′ = (P′
L, C′) and

similarly.

Definition 2.2.1 (Pre-Terms)

We define pre-terms, ranged over by t, u . . . , as follows:

t ::= x | c:A | ∗ | let ∗ be t in t | t ⊗ t | let x ⊗ x:A ⊗ A be t in t
| λx:A.t | tt | !t | let !x:A be t in t

Having given pre-terms with type annotations, we omit them where possible

for brevity. We define the usual capture-avoiding substitution t{u/x}, and also

use a simultaneous form t{~u/~x}, where ~u is a sequence of pre-terms and ~x is a

sequence of variables. In pre-terms, let x ⊗ y be t in u binds x and y in u, λx.t

binds x in t, and let !x be t in u binds x in u. We will identify pre-terms up to

α-equivalence on bound variables. The multiset of free variables of a pre-term t,

written FV(t), is defined inductively, where the mixed complement M − S for M
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a multiset and S a set removes all copies of anything in S from M :

FV(x) = {x}

FV(c) = ∅

FV(∗) = ∅

FV(let ∗ be u in t) = FV(u) ∪ FV(t)

FV(t ⊗ u) = FV(t) ∪ FV(u)

FV(let x ⊗ y be u in t) = FV(u) ∪ (FV(t) − {x, y})

FV(λx.t) = FV(t) − {x}

FV(tu) = FV(t) ∪ FV(u)

FV(let !x be u in t) = FV(u) ∪ (FV(t) − {x})

FV(!t) = FV(t)

Now we recall from appendix A the definitions of typing and (dual) typing

context along with their auxiliary definitions, for the variable set X and the set

of types of DILL.

We will now give a type theory with judgements of the form Γ; ∆ ⊢ t : A,

where Γ; ∆ is a typing context, t is a pre-term and A is a type (or formula of the

logic). We call this type-theory DILL(C).

In order to give the typing rules of DILL(C), we recall the merge relation

∆ = ∆1#∆2, read as ∆ is a merge of ∆1 and ∆2, from appendix A.

Definition 2.2.2 (The Typing Judgement of DILL(C))

The rules for deriving typing judgements Γ; ∆ ⊢ t :A are as follows, where ∆′ =

∆1#∆2:

(Int − Ax) Γ1, x:A, Γ2; ⊢ x:A (Lin − Ax) Γ; x:A ⊢ x:A

(Ass) Γ; ⊢ c:A

(I − I) Γ; ⊢ ∗:I (I − E)
Γ; ∆1 ⊢ t:I Γ; ∆2 ⊢ u:A

Γ; ∆′ ⊢ let ∗ be t in u:A

(⊗ − I)
Γ; ∆1 ⊢ t:A Γ; ∆2 ⊢ u:B

Γ; ∆′ ⊢ t ⊗ u:A ⊗ B
(⊗ − E)

Γ; ∆1 ⊢ u:A ⊗ B Γ; ∆2, x:A, y:B ⊢ t:C

Γ; ∆′ ⊢ let x ⊗ y:A ⊗ B be u in t:C

(⊸ I)
Γ; ∆, x:A ⊢ t:B

Γ; ∆ ⊢ (λx:A.t):(A ⊸ B)
(⊸ E)

Γ; ∆1 ⊢ u:A ⊸ B Γ; ∆2 ⊢ t:A

Γ; ∆′ ⊢ (ut):B

(! − I)
Γ; ⊢ t:A

Γ; ⊢!t :!A
(! − E)

Γ; ∆1 ⊢ u :!A Γ, x:A; ∆2 ⊢ t:B

Γ; ∆′ ⊢ let !x :!A be u in t:B
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Definition 2.2.3 (Term)

A Γ; ∆ term t of type A in DILL(C) for some typing context Γ; ∆ and type A

is a pre-term such that Γ; ∆ ⊢ t :A is a valid typing judgement. We will often

indicate that a pre-term t is a Γ; ∆ term of type A by writing Γ; ∆ ⊢ t : A, or omit

the context and typing where it is clear.

We now say that for a term Γ; ∆ ⊢ t :A, a variable x ∈ FV(t) is an intuition-

istic free variable of t if it occurs in occurs in dom(Γ), and x ∈ FV(t) is a linear

free variable of t if it occurs in dom(∆).

Lemma 2.2.4 (Typing Properties)

We have the following in the type system DILL(C):

Free Variables I If Γ; ∆ ⊢ t :A, then the underlying set of the multiset FV(t) is

a subset of dom(Γ) ∪ dom(∆).

Free Variables II If Γ; ∆, x:A ⊢ t:B, then x occurs precisely once in FV(t).

Strengthening If Γ, x:A; ∆ ⊢ t:B and x 6∈ FV(t), then Γ; ∆ ⊢ t:B.

I-Transfer If Γ; ∆, x:A ⊢ t:B, then Γ, x:A; ∆ ⊢ t:B.

Unique Derivation Given a Γ; ∆ term t of type A, there is a unique derivation

of the typing judgement Γ; ∆ ⊢ t:A.

The proofs of these properties are straightforward. Given the unique deriv-

ation lemma, we will interchangeably refer to terms and derivations of typing

judgements.

We now present some admissible annotated structural rules, where ∆′ =

∆1#∆2.

Γ, y :B, x:A,Γ′ ⊢ t:C

Γ, x:A, y :B,Γ′ ⊢ t:C
(I − Exch)

Γ; ∆1, y :B, x:A,∆2 ⊢ t:C
Γ; ∆1, x:A, y :B,∆2 ⊢ t:C

(L − Exch)

Γ; ∆ ⊢ t:B
Γ, x:A; ∆ ⊢ t:B

(Weak)
Γ, x:A, y :A;∆ ⊢ t:B

Γ, x:A; ∆ ⊢ t{x/y}:B
(Cont)

Γ; ⊢ u:A Γ, x:A; ∆ ⊢ t:B

Γ; ∆ ⊢ t{u/x}:B
(I − Cut)

Γ; ∆1 ⊢ u:A Γ; ∆2, x:A ⊢ t:B

Γ; ∆′ ⊢ t{u/x}:B
(L − Cut)

These are shown to be admissible easily- notably, the linear exchange is shown

by virtue of the merging we have incorporated into the typing rules. We outline

the proof of the linear cut lemma. The proof proceeds by induction on the

structure of t, and we consider only a few example cases in the proof; the rest are

similar.
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Proof: Note that since x :A is a linear typing, x must occur precisely once in

FV(t), by our lemma.

• If t is y then y is x, since x is free in y, and hence the required sequent is

the second premise.

• If t is λy :B.t′ then by considering the unique derivation, it must end:

Γ; ∆1, x:A, y :B ⊢ t′ :C

Γ; ∆1, x:A ⊢ (λy :B.t′):B ⊸ C

By the induction hypothesis on the premise, we now have:

Γ; ∆1, ∆2, y
′ :B ⊢ t′{y′/y, u/x}:C

where y′ is a fresh variable not occuring in ∆2, and the required sequent

follows by abstraction (up to α-conversion).

• If t is let !y :C be t1 in t2 then we know that we have a derivation:

Γ; ∆′
1 ⊢ t1 :!C Γ, y :C; ∆′′

1 ⊢ t2 :B

Γ; ∆1 ⊢ let !y :C be t1 in t2 :B

where ∆1 = ∆′
1#∆′′

1 and x :A occurs in either ∆′
1 or ∆′′

1. In either case

we can use the induction hypothesis to obtain the result required, possibly

using α-conversion as before.

We now need to define a notion of (term-)contexts, where these may be linear

(ie, use their ‘argument’ linearly) or intuitionistic (ie, use their argument inside

a !-construct).

We define a general pre-context, written C[ ], as follows:

C[ ] ::= | let ∗ be C[ ] in t | let ∗ be t in C[ ] | t ⊗ C[ ] | C[ ] ⊗ t |

let x ⊗ x be C[ ] in t | let x ⊗ x be t in C[ ] | λx.C[ ] | C[ ]t | tC[ ] |

!C[ ] | let !x be C[ ] in t | let !x be t in C[ ]

It is easily shown there will be precisely one occurrence of the symbol in every

pre-context. We extend the definition of free variable multiset to pre-contexts

FV(C[ ]) in the obvious way by saying FV( ) = ∅.

Definition 2.2.5 (Instantiation of Pre-contexts)

Define C[t] for a given pre-context C[ ] and pre-term t to be the pre-context C[ ]

with the unique occurrence of the symbol replaced by t. We can easily show by

induction over contexts that C[t] is a pre-term.

38



Definition 2.2.6 (Context)

A Γ; ∆, A-Γ′; ∆′, B context is a pre-context C[ ] such that for any term Γ; ∆ ⊢ t:

A, we have a derivation of the judgement Γ′; ∆′ ⊢ C[t]:B.

Although this definition is not constructive, it can be formulated in an equi-

valent but much more lengthy constructive form, using a system of judgements

of the form Γ; ∆ ⊢ C : Γ; ∆, A − Γ′; ∆′, B. For the pre-contexts we will claim are

contexts, it will be easy to see that the definition above is satisfied.

Definition 2.2.7 (Linear and Binding Contexts)

We say that a context is linear if it does not contain the clause !C[ ]. Further, a

context binds a variable x if the context is constructed with the use of a clause

instance let x ⊗ y be t in C[ ], let y ⊗ x be t in C[ ], λx.C[ ] or let !x be t in C[ ].

Now we can define our contextual equality judgement.

Definition 2.2.8 (The Equality Judgement)

We say that two terms Γ; ∆ ⊢ t :A and Γ; ∆ ⊢ u :A are provably equal of type

A in an environment Γ; ∆, written Γ; ∆ ⊢ t = u :A, if their equality is provable

using the following rules:

Γ; ∆ ⊢ t:A
Γ; ∆ ⊢ t = t:A

Γ; ∆ ⊢ t = t′ :A Γ; ∆ ⊢ t′ = t′′ :A

Γ; ∆ ⊢ t = t′′ :A

Γ; ∆ ⊢ t = u:A
Γ; ∆ ⊢ u = t:A

Γ; ∆ ⊢ t = u:A

Γ′; ∆′ ⊢ C[t] = C[u]:B

where C[ ] is a Γ; ∆, A-Γ′; ∆′, B-context.

(β) (η)

Γ; ∆ ⊢ let ∗ be ∗ in t = t:A Γ; ∆ ⊢ let ∗ be t in ∗ = t:I

Γ; ∆ ⊢ let x ⊗ y be u1 ⊗ u2 in t = t{u1/x, u2/y}:A Γ; ∆ ⊢ let x ⊗ y be t in x ⊗ y = t:A ⊗ B

Γ; ∆ ⊢ (λx:A.t)u = t{u/x}:A Γ; ∆ ⊢ λx:A.(tx) = t:A ⊸ B
where x is not free in t

Γ; ∆ ⊢ let !x:A be !u in t = t{u/x}:A Γ; ∆ ⊢ let !x:A be t in !x = t :!A

In these, C is supposed to be a linear context.

Γ; ∆ ⊢ let ∗ be t in C[u] = C[let ∗ be t in u]:A

Γ; ∆ ⊢ let x ⊗ y be t in C[u] = C[let x ⊗ y be t in u]:A

Γ; ∆ ⊢ let !x be t in C[u] = C[let !x be t in u]:A
where C[ ] does not bind x or contain it free
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These commuting conversions are the equality judgements which correspond to

the trivial proof permutations which exist in linear logics. In other presentations

of term calculi for ILL, the proof permutations are expressed as a large number

of primitive typed equality judgements such as:

Γ; ∆ ⊢ let x ⊗ y be t in u1 ⊗ u2 = u1 ⊗ (let x ⊗ y be t in u2):A ⊗ B

where x, y are not free in u.

These many individual typed equalities all occur as examples of one of our

commuting conversion schemas. For example, the typed equality above would be

an instance of our second commuting conversion axiom, where the context C is

v ⊗ .

Note 2.2.9 (Commuting Conversions of ! − E)

Notice that the restriction on the context in the !-commuting conversion, means

that it does not have as an instance the following equality judgement:

y :!A; ⊢!(let !x be y in x) = let !x be y in !x:A

This cannot be motivated from the proof structure of linear logic, and it corres-

ponds to imposing an extra requirement on models (idempotency of the comonad

!).

From now on, we will assume that whenever we write t = u, there exists an

appropriate equality judgement Γ; ∆ ⊢ t = u:A.

Equivalences

We can now prove a lemma extending our results on equivalences to the typed

case.

Lemma 2.2.10 (Equivalences)

• If Γ; ∆, x : I ⊢ t : A, then Γ; ∆ ⊢ t{∗/x} : A, and if Γ; ∆ ⊢ u : A, then

Γ; x : I, ∆ ⊢ let ∗ be x in u : A, where x is fresh. Further, these maps are

inverse up to provable term equality.

• If Γ; ∆, x1 :A, x2 :B ⊢ t :C, then Γ; ∆, y :A ⊗ B ⊢ let x1 ⊗ x2 be y in t :C

where y is fresh, and if Γ; ∆, y : A ⊗ B ⊢ u : C, then Γ; ∆, x1 : A, x2 : B ⊢

u{x1 ⊗x2/y} :C where x1 and x2 are fresh. Further, these maps are inverse

up to provable term equality.

• If Γ; ∆ ⊢ t : A ⊸ B, then Γ; ∆, x : A ⊢ tx : B where x is fresh, and if

Γ; ∆, x :A ⊢ u :B, then Γ; ∆ ⊢ λx :A.u :A ⊸ B. Further, these maps are

inverse up to provable term equality.
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• If Γ; x :!A, ∆ ⊢ t :B, then Γ, y :A; ∆ ⊢ t{!y/x} :B where y is fresh, and if

Γ, y : A; ∆ ⊢ u : B, then Γ; x :!A, ∆ ⊢ let !y be x in u : B where x is fresh.

Further, these maps are inverse up to provable term equality.

It is interesting to note that we could use these equivalences to define the
term equality. If we consider the typing system without any notion of equality
judgement, and read the equivalences above as isomorphisms on proofs, they say
the following:

Proofs Γ; ∆, x:I ⊢ t:A are isomorphic to proofs Γ; ∆, x:I ⊢ let ∗ be x in t{∗/x}:A
Proofs Γ; ∆ ⊢ u:A are isomorphic to proofs Γ; ∆ ⊢ let ∗ be ∗ in u:A

Proofs Γ; ∆, x1:A, x2:B ⊢ t:C are isomorphic to proofs
Γ; ∆, x1:A, x2:B ⊢ let x ⊗ y be x ⊗ y in t:C

Proofs Γ; ∆, y:A ⊗ B ⊢ u:C are isomorphic to proofs
Γ; ∆, y:A ⊗ B ⊢ let x1 ⊗ x2 be y in u{x1 ⊗ x2/y}:C

Proofs Γ; ∆, x:A ⊢ t:B are isomorphic to proofs Γ; ∆, x:A ⊢ (λx.t)x:B
Proofs Γ; ∆ ⊢ u:A ⊸ B are isomorphic to proofs Γ; ∆ ⊢ λx.(ux):A ⊸ B

Proofs Γ, x:A; ∆ ⊢ t:B are isomorphic to proofs Γ, x:A; ∆ ⊢ let !x be !x in t:B
Proofs Γ; y :!A, ∆ ⊢ u:B are isomorphic to proofs

Γ; y :!A, ∆ ⊢ let !x be y in u{!x/y}:B

Now the alternative equality judgement with the symmetric, transitivity, re-

flexivity and congruence rules already defined, with the addition of two cut rules:

Γ; ∆1 ⊢ u:A Γ; x:A, ∆2 ⊢ t = t′ :B

Γ; ∆′ ⊢ t{u/x} = t′{u/x}:B

Γ; ⊢ u:A Γ, x:A; ∆ ⊢ t = t′ :B

Γ; ∆ ⊢ t{u/x} = t′{u/x}:B

(where ∆′ = ∆1#∆2) and with the axiomatic equalities induced by the proof

isomorphisms listed above is equivalent in strength to the equality judgement

first defined.

A Definable Intuitionistic Function Space

We now briefly present a definable extension to the logic and term calculus given

above. In order to make the syntax more usable, we show how we can define the

types and terms associated with an intuitionistic arrow type purely in terms of

the structures we already have.

Definition 2.2.11 (The Intuitionistic Arrow)

Types Define the type A → B in our new system as the type !A ⊸ B.

Terms Define the intuitionistic abstraction and application term constructs as

follows (where we use γ for the abstraction, and y is fresh):

γx:A.t = λy :!A let !x :!A be y in t

tu = t(!u)
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Now we have the following lemma:

Lemma 2.2.12 (Typing and Equality Rules for →)

The following introduction and elimination rules are admissible in DILL(C):

Γ, x:A; ∆ ⊢ t:B
Γ; ∆ ⊢ γx:A.t:A → B

→ −I
Γ; ∆ ⊢ t:A → B Γ; ⊢ u:A

Γ; ∆ ⊢ tu:B
→ −E

The following equality judgements are admissible in DILL(C):

Γ; ∆ ⊢ (γx:A.t)u = t[u/x]:A Γ; ∆ ⊢ γx:A.(tx) = t:A → B

Clearly we can erase the typings from the introduction and elimination rules to

obtain admissible introduction and elimination rules for → in the logic DILL(C).

This construct and its associated terms and equalities can by virtue of this

lemma be used without changing the development to follow. Other definitions

of this function space are possible via more complex embeddings of intuitionistic

logic into linear logic; for example see Benton [BW96] or Schellinx [Sch94].

2.3 The Type Theory ILL(C)

We present the type-theory based on ILL due to Benton et al. [BBdPH93b], with

two amendments. Firstly, we build the type theory over a dill-signature, in the

analogous way to DILL, and secondly we have adapted the presentation of the

equality in op. cit. using contexts to express the commuting conversions, and

giving an equality judgement. For brevity we do not present the logic; this can

be found in [BBdPH93b].

We assume the same set X of variables as used in DILL(C). The types of

ILL(C) are exactly those of DILL(C). Given this, we define pre-terms, ranged over

by M, N . . . as follows:

M ::=x | c:A | ∗ | let ∗ be M in M | M ⊗ M | let x ⊗ x:A ⊗ A be M in M |

λx:A.M | MM | promote ~M for x :!A . . .x :!A in M |

derelict(M) | copy M for x, x :!A in M | discard M in M

As before, we will omit type information in pre-terms where convenient. Following

Benton et al., we use the form (discard ~M in N) to abbreviate

(discard M1 in . . . in discard Mr in N)

We also use (copy ~M for ~x, ~y in N) to abbreviate

(copy M1 for x1, y1 in . . . copy Mr for xr, yr in N)
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We now summarise the binding behaviour of the pre-terms: the pre-terms

let x ⊗ y be M in N and copy M for x, y in N bind x and y in N ; the pre-term

λx.M binds x in M and the pre-term promote ~M for ~X in N bind each of the ~x

in N . Again, we will require a standard capture-avoiding notion of substitution

M{N/x}, and its simultaneous counterpart t{~u/~x}.

Now we define an ILL typing context as a single typing context over the variable

set X and the types of DILL(C). We give the contextual typing judgement ∆ ⊢

M :A as follows:

Definition 2.3.1 (The Typing Judgement)

The rules for deriving judgements ∆ ⊢ M :A are as follows, where ∆′ = ∆1#∆2

and ∆′′ = ∆1# . . . #∆r:

(Lin − Ax) x:A ⊢ x:A (Ass) ⊢ c:A

(I − I) ⊢ ∗:I (I − E)
∆1 ⊢ M :I ∆2 ⊢ N :A
∆′ ⊢ let ∗ be M in N :A

(⊗ − I)
∆1 ⊢ M :A ∆2 ⊢ N :B

∆′ ⊢ M ⊗ N :A ⊗ B
(⊗ − E)

∆1 ⊢ N :A ⊗ B ∆2, x:A, y :B ⊢ M :C

∆′ ⊢ let x ⊗ y :A ⊗ B be N in M :C

(⊸ I)
∆, x:A ⊢ M :B

∆ ⊢ (λx:A.M):(A ⊸ B)
(⊸ E)

∆1 ⊢ M :A ⊸ B ∆2 ⊢ N :A

∆′ ⊢ (MN):B

(Weak)
∆1 ⊢ M :!A ∆2 ⊢ N :B
∆′ ⊢ discard M in N :B

(Der)
∆ ⊢ M :!A

∆ ⊢ derelict(M):A

Contraction
∆1 ⊢ M :!A ∆2, x :!A, y :!A ⊢ N :B

∆′ ⊢ copy M as x, y in N :B

Promotion
i = 1..r ∆i ⊢ Mi :!Ai x1 :!A1, . . . , xr :!Ar ⊢ N :B

∆′′ ⊢ promote ~M for ~x in N :!B

Definition 2.3.2 (Term)

We define a ∆ term t of type A in ILL(C) to be a pre-term t of ILL(C) such that

we can derive the typing judgement ∆ ⊢ t:A.

We can now give admissible exchange and linear cut rules.
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Definition 2.3.3 (Pre-contexts)

We define pre-contexts for ILL(C) inductively as follows:

C[ ] ::= | let ∗ be C[ ] in t | let ∗ be t in C[ ] | t ⊗ C[ ] | C[ ] ⊗ t |

let x ⊗ x be C[ ] in t | let x ⊗ x be t in C[ ] | λx.C[ ] | C[ ]t | tC[ ] |

promote ~M1, C[ ], ~M2 for ~x in N | promote ~M for ~x in C[ ]

copy C[ ] for x, y in N | copy M for x, y in C[ ]derelict(C[ ])

discard C[ ] in N | discard M in C[ ]

We define the instantiation of a pre-context C[ ] with a pre-term M again to

be the pre-context with the unique occurrence of the symbol replaced by the

pre-term M . We say that any pre-context constructed with no instance of the

schema promote ~M for ~x in C[ ] is linear.

Definition 2.3.4 (Context)

We define a ∆, A-∆′, B′ context to be a pre-context C[ ] such that for any term

∆ ⊢ t:A, we have ∆′ ⊢ C[t]:B.

Again, this definition of contexts is not inductive, but as in the case of contexts

for DILL(C), it could easily be equivalently given inductively.

Definition 2.3.5 (The Equality Judgement)

We define a contextual equality judgement ∆ ⊢ M = N :A, where M and N are

∆ terms of type A, by the following rules (where for brevity we write M = N for

∆ ⊢ M = N :A):

The Congruence Rules

∆ ⊢ M :A
∆ ⊢ M = M :A

∆ ⊢ M = M ′ :A ∆ ⊢ M ′ = M ′′ :A
∆ ⊢ M = M ′′ :A

∆ ⊢ M = N :A
∆ ⊢ N = M :A

∆ ⊢ t = u:A
∆′ ⊢ C[t] = C[u]:B

where C[ ] is a ∆, A-∆′, B-context.

The Basic Equalities

let ∗ be ∗ in M = M (2.1)

let ∗ be M in ∗ = M (2.2)

let x ⊗ y be M1 ⊗ M2 in N = N{M1/x, M2/y} (2.3)

let x ⊗ y be M in x ⊗ y =M (2.4)

(λx.M)N = M{N/x} (2.5)

λx.(Mx) = M (2.6)
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The Commuting Conversions For linear C[ ],

let ∗ be M in C[N ] = C[let ∗ be M in N ] (2.7)

let x ⊗ y be M in C[N ] = C[let x ⊗ y be M in N ] (2.8)

discard M in C[N ] = C[discard M in N ] (2.9)

copy M for x, y in C[N ] = C[copy M for x, y in N ] (2.10)

The Exponential Equalities

derelict (promote ~M for ~x in N ) = N{ ~M/~x} (1)

discard (promote ~M for ~x in N ) in N ′ = discard ~M in N ′ (2)

promote M for x in derelict (x) = M (3)

copy M for x, y in N = copy M for y, x in N (4)

copy M for x, y in (discard x in N ) = N{M/y} (5)

copy M for x, y in copy y for x′, y′ in N = copy M for y, y′ in copy y for x, x′ in N
(6)

promote M ′, ~M for x′, ~x = discard M ′ in (promote ~M for ~x in N ) (7)

in (discard x′ in N )

copy (promote ~M for ~x in N ) = copy ~M for ~x1, ~x2 in N ′{p1, p2/y1, y2} (8)

for y1, y2 in N ′

(where p1 = promote ~x1 for ~x in N and p2 = promote ~x2 for ~x in N)

promote M ′, ~M for x′, ~x = copy M ′ for y′
1, y

′
2 in p3 (9)

in (copy x′ for y1, y2 in N )

(where p3 = promote ~M, y′
1, y

′
2 for ~x, y1, y2 in N)

promote (promote ~y1 for ~x1 in M), ~y2 = promote ~y1, ~y2 for ~y3, ~x2 in N{p4/x′} (10)

for x′, ~x2 in N

(where p4 = promote ~y3 for ~x1 in M)

2.4 Relating DILL and ILL

We now show that DILL is essentially equivalent to ILL at the level of the respect-

ive type-theories, by which we mean firstly that we can give a translation from

DILL(C) to the type-theory ILL(C), and one in the reverse direction, such that

two terms are equal in ILL(C) if and only if their images are equal in DILL(C)and

secondly that we can give a translation from the terms of DILL(C) derivable with

no intuitionistic assumptions, ; ∆ ⊢ t :A, to the terms of ILL(C). Wherever num-

bers are used to refer to particular equalities of ILL(C), those numbers are as
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given in section 2.3. Of course these translations easily yield translations on the

logics DILL and ILL.

In the following, we will use the abbreviation (let !~x be ~u in t) to indicate the

term

let !x1 be u1 in . . . let !xr be ur in t

in DILL(C). We use the turnstile ⊢ILL(C) to indicate the typing and equality

judgements of ILL(C) and similarly the turnstile ⊢DILL(C) to indicate those of

DILL(C) where the distinction is unclear.

We will define two translations, Φ taking ILL(C) to DILL(C), and Ψ taking

DILL(C) to ILL(C). These translations will be the identity on types.

Lemma 2.4.1 (Properties of the Translations)

The following are properties of Φ and Ψ:

1. If ∆ ⊢ILL(C) M :A, then ; ∆ ⊢DILL(C) Φ(M):A

2. If x1 :A1 . . . xr :Ar; ∆ ⊢DILL(C) u :A, then x1 :!A1 . . . xr :!Ar, ∆ ⊢ILL(C) Ψ~x(u):

A

3. If ∆ ⊢ILL(C) M = N :A, then ; ∆ ⊢DILL(C) Φ(M) = Φ(N):A

4. If x1 : A1 . . . xr : Ar; ∆ ⊢DILL(C) t = u : A, then x1 :!A1 . . . xr : Ar, ∆ ⊢ILL(C)

Ψ~x(t) = Ψ~x(u):A

5. If ∆ ⊢ILL(C) M :A, then ∆ ⊢ILL(C) Ψε(Φ(M)) = M :A

6. If ; ∆ ⊢DILL(C) t:A, then ; ∆ ⊢DILL(C) Φ(Ψε(t)) = t:A

Given these lemmas, we can prove:

Theorem 1 (Equivalence)

1. ∆ ⊢ILL(C) M = N :A iff ; ∆ ⊢DILL(C) Φ(M) = Φ(N):A

2. ; ∆ ⊢DILL(C) t = u:A iff ∆ ⊢ILL(C) Ψε(t) = Ψε(u):A

Proof The two proofs are almost identical. Consider the first case. We already

have the implication

∆ ⊢ILL(C) M = N :A implies ; ∆ ⊢DILL(C) Φ(M) = Φ(N):A

Now assume ; ∆ ⊢DILL(C) Φ(M) = Φ(N) : A. By lemma 2.4.1 (4), we have that

∆ ⊢ILL(C) Ψε(Φ(M)) = Ψε(Φ(N)) :A, but we also have by lemma 2.4.1 (5) that
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∆ ⊢ILL(C) Ψε(Φ(M)) = M :A, and hence the other direction of the implication

holds.

The proof of the second case uses the analogous results in lemma 2.4.1 (3)

and 2.4.1 (6) �

We now proceed to give the details of the translations, and prove lemma 2.4.1,

thereby showing that the results of theorem 1 hold.

From Intuitionistic Linear Logic to DILL

Now we can define the translation Φ from the intuitionistic linear type theory

ILL(C) to DILL(C).

Definition 2.4.2 (The Translation Φ)

On Types we define Φ to be the identity.

On Pre-Terms we define Φ as follows:

Φ(x) = x
Φ(c) = c
Φ(∗) = ∗

Φ(let ∗ be M in N) = let ∗ be Φ(M) in Φ(N)
Φ(M ⊗ N) = Φ(M) ⊗ Φ(N)

Φ(let x ⊗ y be M in N) = let x ⊗ y be Φ(M) in Φ(N)
Φ(λx.M) = λx.Φ(M)
Φ(MN) = Φ(M)Φ(N)

Φ(discard M in N) = let !x1 be Φ(M) in Φ(N)
Φ(copy M for x, y in N) = let !x1 be Φ(M) in Φ(N)[!x1/x, y]

Φ(derelict(M)) = let !x1 be Φ(M) in x1

Φ(promote ~M for ~x in N) = let !~x1 be ~Φ(M) in !(Φ(N)[!~x1/~x])

where in the last four rules x1 is a fresh variable from X.

Now we need to prove the lemma.

Lemma 2.4.1 (1) If ∆ ⊢ILL(C) M :A, then ; ∆ ⊢DILL(C) Φ(M):A.

Proof This proof is by induction over the structure of the term t. We give a

summary proof only.

Axiom Instance: In this case, we have x :A ⊢ x :A, so that the translation is

; x:A ⊢ x:A, which is derivable.

Assumption and Unit-I In these cases there is almost nothing to show, as

the corresponding typing rules in DILL(C) are analogous. We note the

requirement that we have the same constants in each type theory.
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⊗-Introduction: We present this case as an example of the simple cases not

involving the exponential. We have the derivation

∆1 ⊢ M :A ∆2 ⊢ N :B
∆ ⊢ M ⊗ N :A ⊗ B

(⊗ − I)

where ∆ = ∆1#∆2.

By the inductive hypothesis, we have ; ∆1 ⊢ Φ(M):A, and ; ∆2 ⊢ Φ(N):

A, so we have ; ∆ ⊢ Φ(M) ⊗ Φ(N) :A ⊗ B via the ⊗-introduction rule of

DILL(C). But Φ(M ⊗ N) = Φ(M) ⊗ Φ(N), so we are done.

⊗-E,⊸-I and ⊸-E: Again these rules in ILL(C) are exactly parallelled in DILL(C).

Weakening Rule: In this case, we have the derivation

∆2 ⊢ M :!A ∆1 ⊢ N :B
∆ ⊢ discard M in N :B

where ∆ = ∆1#∆2.

By intuitionistic weakening and our inductive hypothesis, in DILL(C) we

have x1 : A; ∆1 ⊢ Φ(N) : B. Now one application of our !-E rule gives

us ; ∆ ⊢ let !x1 be Φ(M) in Φ(N) : B, but Φ(discard M in N) is precisely

let !x1 be Φ(M) in Φ(N).

Contraction: In this case, we have the derivation in ILL(C):

∆1 ⊢ M :!A ∆2, x :!A, y :!A ⊢ N :B

∆ ⊢ copy M for x, y in N :B

where ∆ = ∆1#∆2.

Now by the inductive hypothesis, in DILL(C) we have the derivations:

; ∆1 ⊢ Φ(M) :!A

and

; ∆2, x :!A, y :!A ⊢ Φ(N):B

But now, using the substitution lemmas of DILL(C) and the !-I,E pair, we

have the following derivation:

; ∆ ⊢ let !x1 be Φ(M) in Φ(N){!x1/x, y}:B

which proves the case.
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Dereliction: In this case we have the derivation

∆ ⊢ M :!A
∆ ⊢ derelict M :A

in ILL(C). Using the inductive hypothesis, we have in DILL(C) that

; ∆ ⊢ Φ(M) :!A

so using one instance of !-E and an intuitionistic axiom, we have

; ∆ ⊢ let !x1 be Φ(M) in x1 :A

as required.

Promotion Rule: The derivation here is

i = 1..r ∆i ⊢ Mi :!Ai x1 :!A1 . . . xr :!Ar ⊢ N :B

∆ ⊢ promote ~M for ~x in N :B

where ∆ = ∆1# . . . #∆r.

By the substitution lemma and the inductive hypothesis, we have y1 : A1 . . . yr :

Ar; ⊢ Φ(N){!~y/~x}:B. Hence, by the promotion rule of DILL(C), we have

y1 :A1 . . . yr :Ar; ⊢!Φ(N){!~y/~x} :!B

We also have by induction ; ∆i ⊢ Φ(Mi) :!Ai for each i = 1..r. Hence, by r

applications of the !-E rule, we have

; ∆i ⊢ let !~y be ~Φ(M) in !Φ(N){!~y/~x}:B

This is precisely what is given in the translations. �

We now give one auxiliary lemma:

Lemma 2.4.3

We have that for terms ∆1, x:A ⊢ M :B and ∆2 ⊢ N :A of ILL(C),

; ∆ ⊢ Φ(M{N/x}) = Φ(M){Φ(N)/x}:B

where ∆ = ∆1#∆2.

This is easily proved by induction over the first term, M , and we leave it to

the reader.

We now prove the lemma on derivable equality judgements.

Lemma 2.4.1 (3) If ∆ ⊢ILL(C) M = N :A, then ; ∆ ⊢DILL(C) Φ(M) = Φ(N):A.
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Proof This is proved by induction over the derivation of the derivable equality

judgement ∆ ⊢ M = N : A in ILL(C). First we consider all the one-step de-

rivations, ie axioms. However, since there are a large number of these, most of

which are identical to those already given in DILL(C), we give the proof only for

the substantially different ones, that is the exponential axioms. It is routine for

the other equality axioms and the reflexivity, symmetry and transitivity rules.

In the following, we show it for the exponential axioms based on the numbering

given in the definition of the equality judgement of ILL(C). We omit contexts

and types for equality judgements in this proof for brevity, as they will always be

reconstructible from those present in the relevant axiomatic equality.

1): In this case, the image of the left-hand side is

let !y be (let ~!z be ~Φ(M) in !Φ(N){!~z/~x}) in y

This is equivalent by a commuting conversion (since w and zi are fresh) to

let ~!z be ~Φ(M) in (let !y be !Φ(N){!~z/~x} in y)

However, (let !y be !Φ(N){!~z/~x} in y) = Φ(N){!~z/~x}. Hence the image of

the left-hand side of the equality is

let ~!z be ~Φ(M) in (Φ(N){!~z/~x})

But now by commuting conversions and η-equality, this is equal to Φ(N){ ~Φ(M)/~x},

which is the image of the right-hand side of the equality.

2): In this case, the image of the left-hand side is:

let !y be (let ~!z be ~Φ(M) in !Φ(N){!~z/~x}) in Φ(N ′)

This is equivalent by a commuting conversion (since y and zi are fresh) to

let ~!z be ~Φ(M) in (let !y be !Φ(N){!~z/~x} in Φ(N ′))

We know, however, that y does not occur in Φ(N ′), as it is fresh, so this is

equal to let ~!z be ~Φ(M) in Φ(N ′), which is precisely the image of the right-

hand side.

3): In this case, the image of the left-hand side is:

let !y be Φ(M) in !(let !z be !y in z)

which is β-equal to

let !y be Φ(M) in !y

which is η-equal to the image of the right-hand side.
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4): In this case, the image of the left-hand side is:

let !z be Φ(M) in Φ(N){!z/x, y}

which is easily seen to be the image of the right-hand side by analogous

reasoning.

5): In this case the image of the left-hand side is

let !z be Φ(M) in (let !z′ be x in Φ(N)){!z/x, y}

which is equal to

let !z be Φ(M) in (let !z′ be !z in Φ(N)){!z/y}

but by one β-equality this is

let !z be Φ(M) in Φ(N){!z/y}

so we can now see that via commuting conversions and an η-equality this

is Φ(N){Φ(M)/y}, which is the image of the right-hand side.

6): In this case the left hand side of the equality has image

let !z be Φ(M) in (let !z′ be y in Φ(N){!z′/x′, y′}){!z/x, y}

but this is equal to

let !z be Φ(M) in (let !z′ be !z in Φ(N){!z′/x′, y′}){!z/x}

However, by a β-equality this is equal to

let !z be Φ(M) in Φ(N){!z/x, y′, x′}

and by a similar process we can see that the image of the right-hand side is

also equal to this term.

7): In this case, the image of the left-hand side is:

let !z′, !~z be Φ(M ′), ~Φ(M) in !(let !z′′ be x′ in Φ(N)){!z′, !~z/x′, ~x}

which is

let !z′, !~z be Φ(M ′), ~Φ(M) in !(let !z′′ be !z′ in Φ(N)){!~z/~x}
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which is β-equal to

let !z′, !~z be Φ(M ′), ~Φ(M) in !(Φ(N)){z′, !~z/z′′, ~x}

This is

let !z′ be Φ(M ′) in (let !~z be ~Φ(M) in !Φ(N){z′, !~z/z′′, ~x})

but we know that z′′ does not occur in Φ(N), so this is

let !z′ be Φ(M ′) in (let !~z be ~Φ(M) in !Φ(N){!~z/~x})

which is the image of the right-hand side.

8): In this case, the image of the left-hand side is:

let !z′ be (let !~z be ~Φ(M) in !Φ(N){!~z/~x}) in Φ(N ′){!z′/y1, y2}

This is equivalent, again by a commuting conversion, to

let !~z be ~Φ(M) in (let !z′ be !Φ(N){!~z/~x} in Φ(N ′){!z′/y1, y2})

Now this is β-equal to

let !~z be ~Φ(M) in (!Φ(N){!Φ(N ′){!~z/~x}/y1, y2})

But !Φ(N){!Φ(N ′){!~z/~x}/y1, y2} is β-equal to

!Φ(N){let ! ~z′′ be !~z in !Φ(N ′){! ~z′′/~x}/y1, y2}

And this in turn is the same as

!Φ(N ){(let ! ~z′′ be ~x′ in !Φ(N ′){! ~z′′/~x}), (let ! ~z′′ be ~x′′ in !Φ(N ′){! ~z′′/~x})/y1, y2}{!~z/~x′, ~x′′}

which is

Φ(N{(promote ~x′ for ~x in N ′), (promote ~x′′ for ~x in N ′)/y1, y2}{!~z/~x′, ~x′′})

Therefore, the image of the left-hand side is

let ! ~z′′ be ~Φ(M) in

(Φ(N{(promote ~x′ for x in N ′), (promote ~x′′ for x in N ′)/y1, y2}{! ~z′′/~x′, ~x′′}))

But this is precisely the image of the right-hand side, so we are done.
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9): In this case, the image of the left-hand side is:

let !z′, !~z be Φ(M ′), ~Φ(M) in !(let !z′′ be !z′ in Φ(N){!z′′/y1, y2}){!~z/~x}

This is

let !z′, !~z be Φ(M ′), ~Φ(M) in !(let !z′′ be !z′ in Φ(N){!z′′/y1, y2}{!~z/~x})

which is β-equal to

let !z′, !~z be Φ(M ′), ~Φ(M) in !(Φ(N){!z′/y1, y2}{!~z/~x})

and this is equal to

let !z′ be Φ(M ′) in (let !~z be ~Φ(M) in !(Φ(N){!z′/y1, y2}{!~z/~x}))

But this is η-equal to the translation of the right-hand side.

10): The image of the left-hand side of this equality is

let !z′, ! ~z′′ be (let ! ~z′′′ be ~y1 in !Φ(M)[! ~z′′′/~x1]), ~y2 in !Φ(N){!z′, ! ~z′′/x′, ~x2}

By commuting conversions this is equal to

let ! ~z′′′ be ~y1 in (let !z′, ! ~z′′ be !Φ(M){! ~z′′′/~x1}, ~w in !Φ(N){!z′1, ! ~z′′/x′, ~x2})

This then is η-equal to

let ! ~z′′′ be ~y1 in (let ! ~z′′ be ~y2 in !Φ(N){!Φ(M){! ~z′′′/~x1}, ! ~z′′/x′, ~x2})

This is abbreviated to

let ! ~z′′′, ! ~z′′ be ~y1, , ~y2 in (!Φ(N){!Φ(M){! ~z′′′/~x1}, ! ~z′′/x′, ~x2})

But by an η-equality this is equal to

let ! ~z′′′, ! ~z′′ be ~y1, ~y2 in (!Φ(N){(let ! ~z′′′′ be ! ~z′′′ in !Φ(M){! ~z′′′′/~x1}), ! ~z′′/x′, ~x2})

and this can be written as

let ! ~z′′′, ! ~z′′ be ~y1, ~y2 in (!Φ(N){(let ! ~z′′′′ be !~z in !Φ(M){! ~z′′′′/~x1})/x′}){! ~z′′′, ! ~z′′/~z, ~x2}

But now this is the image of the right-hand side.

�
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From DILL(C) to ILL(C)

For each term of DILL(C) x1 : A1 . . . xr : Ar; ∆ ⊢ t : A, we give a term x1 :

!A1 . . . xr :!Ar, ∆ ⊢ Ψ~x(t):A in ILL(C).

Definition 2.4.4 (The Translation Ψ)

On Types define Ψ as the identity.

On Terms define Ψ as follows:

Ψ~y(x:A) =







discard ~y1 ~y2 in derelict(x) if ~y = ~y1x~y2

discard ~y in x otherwise

Ψ~y(c) = discard ~y in c

Ψ~y(∗) = discard ~y in ∗

Ψ~y(let ∗ be t in u) = copy ~y for ~y1, ~y2 in (let ∗ be Ψ~y1(t{~y1/~y}) in Ψ~y2(u{~y2/~y}))

Ψ~y(t ⊗ u) = copy ~y for ~y1, ~y2 in Ψ~y1(t{~y1/~y}) ⊗ Ψ~y2(u{~y2/~y})

Ψ~y(let x1 ⊗ x2 be t in u) = copy ~y for ~y1, ~y2 in p1

where p1 = let x1 ⊗ x2 be Ψ~y1(t{~y1/~y}) in Ψ~y2(u{~y2/~y})

Ψ~y(λx.t) = λx.Ψ~y(t)

Ψ~y(tu) = copy ~y for ~y1, ~y2 in Ψ~y1(t{~y1/~y})Ψ~y2(u{~y2/~y})

Ψ~y(!t) = promote ~y for ~y1 in Ψ~y1(t{~y1/~y})

Ψ~y(let !x be t in u) = copy ~y for ~y1, ~y2 in Ψ~y2x(u{~y2/~y}){Ψ~y1(t{~y1/~y})/x}

where ~y1 and ~y2 are vectors of fresh variables.

We first make an abbreviation; given a sequence of types ~A = A1 . . .Ar, we will

write ! ~A for !A1 . . .!Ar. Similarly, given a sequence of typings Γ = x1 :A1 . . . xr :

Ar, we will write !Γ for x1 :!A1 . . . xr :!Ar.

Lemma 2.4.1 (2) If Γ; ∆ ⊢DILL(C) t:A, then !Γ, ∆ ⊢ILL(C) Ψ~y(t):A.

Proof This is proved by induction over the first derivation. We leave most of

this proof, as it is routine, but we consider the tensor introduction as a sample

case, and also the rules for ! as they are significantly different.

Tensor Introduction We have in this case that there is a deduction in DILL(C)

Γ; ∆1 ⊢ u:A Γ; ∆2 ⊢ v :B

Γ; ∆ ⊢ u ⊗ v :A ⊗ B
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where ∆ = ∆1#∆2. By the inductive hypothesis we have that there exist

derivations in ILL(C) (using some α-conversion, and assuming that Γ = ~y :
~C):

~y1 :! ~C, ∆1 ⊢ Ψ ~y1(u{~y1/~y}):A ⊗ B

and

~y2 :! ~C, ∆2 ⊢ Ψ ~y2(v{~y2/~y}):A ⊗ B

Now we have by the tensor introduction in ILL(C)

~y1 :! ~C, ~y2 :! ~C, ∆ ⊢ Ψ ~y1(u{~y1/~y}) ⊗ Ψ ~y2(v{~y2/~y}):A ⊗ B

But by a sequence of copies, we can now obtain:

!Γ, ∆ ⊢ copy ~y for ~y1, ~y2 in Ψ ~y1(u{~y1/~y}) ⊗ Ψ ~y2(v{~y2/~y}):A ⊗ B

which is precisely the image of the tensor. In fact, the technique of modelling

the shared intuitionistic context with repeated contractions accounts for all

of the copy constructs in the definition of Ψ.

!-Introduction In this case, we have the following deduction in DILL(C):

Γ; ⊢ t:A

Γ; ⊢!t :!A

By the inductive hypothesis, we have a derivation in ILL(C)(using some

α-conversion)

~y′ :! ~B ⊢ Ψ~y′(t{~y′/~y}):A

where Γ = ~y : ~B. Now by one use of promotion, we have

!Γ ⊢ promote ~y for ~y′ in Ψ~y′(t{~y′/~y}) :!A

which is precisely the image of !t.

!-Elimination In this case, we have the following derivation in DILL(C).

Γ; ∆1 ⊢ t :!A Γ, x:A; ∆2 ⊢ u:B

Γ; ∆ ⊢ let !x be t in u:B

where ∆ = ∆1#∆2. Hence again by the inductive hypothesis we have the

following derivations in ILL(C) (using some α-conversion:

~y1 :! ~C, ∆1 ⊢ Ψ ~y1(t{~y1/~y}) :!A

where Γ = ~y : ~C, and

~y2 :! ~C, x :!A, ∆ ⊢ Ψ ~y2(u{~y2/~y}):B

55



Now by the admissible cut rule in ILL(C) we have

~y1 :! ~C, ~y2 :! ~C, ∆ ⊢ Ψ~y2(u{~y2/~y}){Ψ ~y1(t{~y1/~y})/x}:B

Now by the familiar series of contractions, we have

!Γ, ∆ ⊢ copy ~y for ~y1, ~y2 in Ψ ~y2(u{~y2/~y}){Ψ ~y1(t{~y1/~y})/x}:B

�

We now give auxiliary lemmas relating intuitionistic and linear substitutions

in DILL(C) to substitution in ILL(C).

Lemma 2.4.5 (Linear Substitution)

If we consider the substitution:

Γ; ∆1, x:A ⊢DILL(C) t:B Γ; ∆2 ⊢DILL(C) u:A

Γ; ∆1, ∆2 ⊢DILL(C) t[u/x]:B

where Γ = ~y : ~C, then

Ψ~y(t[u/x]) = copy ~y for ~y1, ~y2 in Ψ ~y1(t{~y1/~x}){Ψ(u) ~y2{~y2/~x}/x}

Lemma 2.4.6 (Intuitionistic Substitution)

If we consider the substitution:

Γ, x:A; ∆ ⊢DILL(C) t:B Γ; ⊢DILL(C) u:A

Γ; ∆ ⊢DILL(C) t[u/x]:B

where Γ = ~y : ~C, then we have that

Ψ~y(t[u/x]) = copy ~y for ~y1, ~y2 in Ψ ~y1,x(t{~y1/~y}){promote ~y2 for ~y3 in Ψ ~y3(u{~y3/~y})/x}

These are both routine inductions over the structure of the first term, and are

left to the reader.

Now we can prove the equality lemma:

Lemma 2.4.1.4 If Γ; ∆ ⊢DILL(C) t = u :A, then !Γ, ∆ ⊢ILL(C) Ψ~y(t) = Ψ~y(u) :A

where Γ = ~y : ~A.
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Proof This is proved again by induction over the length of the derivation of

equality in DILL(C). We consider only the exponential equalities, as it is easy but

time-consuming to show that the other components of the equality rule system

over DILL(C) correspond to equalities on ILL(C).

!-β This equality is:

Γ; ∆ ⊢ let !x be !u in v = v{u/x}:A

The image of the left-hand side of this is:

copy ~y for ~y1, ~y2 in Ψ ~y1(v[~y1/~y])[promote ~y2 for ~y3 in Ψ ~y3(u[~y3/~y]/x])

assuming that Γ = ~y : ~C. But this is just the image of intuitionistic substi-

tution in ILL(C).

!-η This equality is

Γ; ∆ ⊢ let !x be t in !x = t:!A

The image of the left-hand side is

copy ~y for ~y1, ~y2 in (discard ~y2 in promote x for x′ in derelict x′ ){Ψ ~y1(t{~y1/~y})/x}

assuming that Γ = ~y : ~B. By equality (5) of ILL(C) we have that this is

precisely

copy ~y for ~y1, ~y2 in (discard ~y2 in Ψ ~y1(t{~y1/~y}))

However, using equality (7) this is just Ψ~y(t)

Commuting Conversions are dealt with easily, as they translate to the com-

muting conversions in ILL(C). �

Lemma 2.4.1.5 For any term ∆ ⊢ILL(C) M :A of ILL, ∆ ⊢ILL(C) Ψε(Φ(M)) =A

M .

Proof We note first that the translation Φ is effectively the identity on terms

other than those containing the exponential constructors. Moreover, since Φ

translates sequents to sequents derivable from no intuitionistic assumptions, ap-

plying Ψ to these sequents gives the identity (as we need no copy or discard

constructs). Hence we know that Ψ(Φ(t)) is the identity except perhaps on terms

involving the exponential constructors.

We prove that the translation satisfies the property above by consideration of

the structure of t. We consider only the exponential cases.
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derelict: In this case, we have that M has the form derelict(N), and hence that

Φ(M) has the form let !z be Φ(N) in z. This must have the following de-

rivation in DILL(C):

z :A; ⊢ z :A ; ∆ ⊢ Φ(N) :!A

; ∆ ⊢ let !z be Φ(N) in z :A

The translation Ψ takes this derivation to

z :!A ⊢ derelict (z):A ∆ ⊢ Ψ〈〉(Φ(N)) :!A

Ψ(∆) ⊢ derelict (z){Ψε(Φ(N))/z}:A

which is derelict(Ψε(Φ(u))), but this is βη-equal to derelict (u) by the in-

ductive hypothesis.

discard: In this case, M has the form discard N in N ′, so that Φ(M) is let !z be Φ(N) in Φ(N ′).

This must have the following derivation in DILL(C):

; ∆1 ⊢ Φ(N) :!A z :A; ∆2 ⊢ Φ(N ′):B

; ∆ ⊢ let !z be Φ(N) in Φ(N ′):B

where ∆ = ∆1#∆2. Ψ applied to this derivation gives the following:

z :!A, ∆1 ⊢ discard z in Ψε(Φ(N ′)):B ∆2 ⊢ Ψε(Φ(N)) :!A

∆ ⊢ discard z in (Ψε(Φ(N ′))){Ψε(Φ(N))/z}:B

but since z does not occur in Φ(N ′) and hence in Ψε(Φ(N ′)), this is precisely

discard Ψε(Φ(N)) in (Ψε(Φ(N ′))) which is βη-equal to discard N in N ′ by

hypothesis.

copy: Here, Φ(M) has the form let !z be Φ(N) in Φ(N ′){!z/x, y}, and therefore

has the derivation:

z :A; ∆1 ⊢ Φ(N ′){!z/x, y}:B ; ∆2 ⊢ Φ(N) :!A

; ∆ ⊢ let !z be Φ(N) in Φ(N ′){!z/x, y}:B

Under Ψ, this derivation becomes

z :!A, ∆1 ⊢ copy z for x, y in Ψε(Φ(N ′)):B ∆2 ⊢ Ψε(Φ(N)) :!A

∆ ⊢ copy z for x, y in Ψε(Φ(N ′)){Ψε(Φ(N))/z}:B

which is copy Ψε(Φ(N)) for x, y in Ψε(Φ(N ′)), which is by hypothesis equal

to copy N for x, y in N ′, or M .

promote: In this case, M has the form promote ~N for ~x in N ′. Hence Φ(M) is

let !~z be Φ( ~N) in !Φ(N ′){!~z/~x}.

58



This has the derivation

~z : ~A; ⊢!Φ(N ′)[!~z/~x]:B ; ∆i ⊢ Φ(Ni) :!Ai (i = 1 . . . r)

; ∆ ⊢ let !~z be ~Φ(N) in !Φ(N ′){!~z/~x}:B

where ∆ = ∆1# . . . #∆r. When Ψ is applied, this becomes

~z : ~!A ⊢ promote ~z for ~x in Ψε(Φ(N ′)):B ∆i ⊢ Ψε(Φ(Ni)) :!Ai (i = 1 . . . r)

∆ ⊢ (promote ~z for ~x in Ψε(Φ(N ′))){Ψε(Φ(N1)) . . . Ψε(Φ(Nr))/z1 . . . zr}:B

but this final term is just promote ~Ψε(Φ(N)) for ~x in Ψε(Φ(N ′)), which is

equal to the original term by induction.

We can prove an analogous lemma for the alternative direction:

Lemma 2.4.1 )(6) For any term ; ∆ ⊢ t:A of DILL(C), ; ∆ ⊢ Φ(Ψε(t)) = t:A.

This is easily proved in the same manner as the previous lemma.

Now by virtue of the proof at the beginning of this section, we have the results:

Theorem 1.1 ∆ ⊢ILL(C) M = N :A iff ; ∆ ⊢DILL(C) Φ(M) = Φ(N):A

Theorem 1.2 ; ∆ ⊢DILL(C) t = u:A iff ∆ ⊢ILL(C) Ψε(t) = Ψε(u):A
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Chapter 3

The Semantics of DILL

We now show that DILL(C) can be soundly and completely mapped into a class

of models for linear logic. By this we mean that we can map terms Γ; ∆ ⊢ t :A

to morphisms in the model in such a way that the Γ; ∆ terms t and u of type A

are judged to be equal Γ; ∆ ⊢ t = u : A if and only if the interpretations of the

derivations are equal in every model of the class.

The models we will consider are based on linear-non-linear models, which

were introduced by Benton [Ben95a] and studied by Bierman [Bie95]. These are

pairs of categories (C, S) such that C is a CCC and S is a SMCC and there

is a monoidal adjunction between them. The intention behind the construction

is that the normal power of intuitionistic logic, arising from the exponential,

should be modelled in the CCC, with the intuitionistic linear logic being as usual

modelled in the SMCC. This idea emerged in 1993 from discussions between a

number of people, including Plotkin, Benton and Hyland. However, it was only

during further work by Benton [Ben95a] that the details became clear, and in

particular that it was necessary to impose the requirement that the adjunction be

monoidal. In [Ben94] there is an extensive comparison between these models and

the previously proposed models [BBdPH93b]. In fact, although Benton required

that the cartesian category be closed, this is not essential for our purposes, and

we take the more general definition.

3.1 The Interpretation

We will make extensive use of the primitive categorical definitions in appendix A.2,

and in particular will refer to equations there using their numbers with no further

comment.

The carrier of a DILL(C)-model is a quadruple (C, S, F, G), such that C is a

CC, S is a SMCC and F ⊣ G : C → S is a strong monoidal functor. We will
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write un for the unit of the monoidal adjunction, and nu for its counit.

Definition 3.1.1 (DILL(C)-Model)

A DILL(C)-model, which we will write L, is a carrier (C, S, F, G) together with

a primitive interpretation function [[ ]]LPL
: PL → obj(S) and a morphism [[c]]LC ∈

S(I, [[A]]) for each constant c:A in C, where the interpretation function is exten-

ded to arbitrary types in the obvious way, as defined shortly.

Where the particular model we are referring to is clear, we may omit the super-

script L on the interpretation [[ ]]L.

We now make some definitions to simplify the interpretation. For a sequence of

objects in the category S, ~X = X1 . . . Xr, we define
⊗ ~X to be the left-bracketed

tensor of this sequence, ⊗ ~X = (..(X1 ⊗ X2) ⊗ . . . Xr) Also, for a sequence of

typings ~x: ~A, we define !(~x: ~A) = ~x :! ~A.

Given a DILL(C)-model L over signature (PL, C), we now define an interpret-

ation [[ ]]L which takes the types and typing contexts of DILL(C) to objects in S,

and takes the terms of DILL(C) to morphisms in S.

Definition 3.1.2 (The Interpretation on Types and Contexts)

On Types We define [[ ]]L on types as follows:

[[l]] = [[l]]PL
for l ∈ PL

[[I ]] = I
[[A ⊗ B]] = [[A]] ⊗ [[B]]
[[A ⊸ B]] = [[A]] ⊸ [[B]]

[[!A]] = FG([[A]])

On Typing Contexts We extend this firstly to sequences of types by saying

that [[A1 . . .Ar]] =
⊗

([[A1]] . . . [[Ar]]). We then say that for a sequence of typings

∆, [[∆]] = [[|∆|]]. We then extend the definition to typing contexts by saying that

for a typing context Γ; ∆, [[Γ; ∆]] = [[!|Γ|, |∆|]].

We can now define some context-manipulation arrows, using the structure we

have in the model.

Define

permA,B,A′,B′ :(A ⊗ B) ⊗ (A′ ⊗ B′) → (A ⊗ A′) ⊗ (B ⊗ B′)

mge∆,∆1,∆2 :[[∆]] → [[∆1, ∆2]] where ∆ = ∆1#∆2

sep∆1,∆2 :[[∆1, ∆2]] → [[∆1]] ⊗ [[∆2]]

dupΓ :[[!|Γ|]] → [[!|Γ|]] ⊗ [[!|Γ|]]

splitΓ,∆,∆1,∆2 :[[Γ; ∆]] → [[Γ; ∆1]] ⊗ [[Γ; ∆2]] where ∆ = ∆1#∆2

discΓ :[[!|Γ|]] → I

promΓ :[[Γ; ]] →![[Γ; ]]
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as follows:

permA,B,A′,B′ = aA,B,A′⊗B′; (idA ⊗ a−1
B,A′,B′); (idA ⊗ (sB,A′ ⊗ id[[B′]]));

(idA ⊗ aA′,B,B′); a−1
A,A′,B⊗B′)

mge∆,∆1,∆2 =







sepx:A,∆′ ; (id[[A]] ⊗ mge∆′,∆′
1,∆2

); sep−1
x:A,(∆′

1,∆2)

if ∆ = x:A, ∆′ and ∆1 = x:A, ∆′
1

sepx:A,∆′ ; (id[[A]] ⊗ mge∆′,∆1,∆′
2
); (id[[A]] ⊗ sep∆1,∆′

2
);

a[[A]],[[∆1]],[[∆′
2]]
; (s[[A]],[[∆1]] ⊗ id∆′

2
)(sep−1

∆1,A ⊗ id∆′
2
); sep−1

(∆1,A),∆′
2

if ∆ = x:A, ∆′ and ∆2 = x:A, ∆′
2

idI if ∆ = ∆1 = ∆2 =

sep∆1,∆2 =







(sep∆1,∆′
2
⊗ id[[A]]); a[[∆1]],[[∆2]],[[A]];

id[[∆1]] ⊗ sep−1
∆′

2,A) where ∆1 6= and ∆2 = x:A, ∆′
2

ri−1
[[∆2]]

if ∆1 =

li−1
[[∆1]] if ∆2 =

dupΓ =







dupΓ′,x:A ⊗ (F (cG[[B]]); m
−1
G[[B]],G[[B]]);

perm!(Γ′,x:A),!(Γ′,x:A),y:!B,y:!B if Γ = Γ′, x : A, y : B

F (cG[[A]]); m
−1
G[[A]],G[[A]] if Γ = x:A

riI if Γ =

splitΓ,∆,∆1,∆2 = sep!Γ,∆; (dupΓ ⊗ mge∆,∆1,∆2); (id[[Γ]]⊗[[Γ]] ⊗ sep∆1,∆2)

; perm[[!Γ]],[[!Γ]],[[∆1]],[[∆2]]; (sep
−1
!Γ,∆1

⊗ sep−1
!Γ,∆2

)

discΓ =







discΓ′,y:B ⊗ (F (dG[[A]]); mi−1); ri−1
I if Γ = Γ′, y :B, x:A

F (dG[[A]]); mi−1 if Γ = x:A

idI if Γ =

promΓ =







promΓ′,y:B ⊗ F (unG[[A]]) if Γ = Γ′, y :B, x:A

F (unG[[A]]) if Γ = x:A

mi if Γ =

where mX,Y and mi are the monoidality natural transformations for the functor

FG.

The interpretation will take a term Γ; ∆ ⊢ t:A to an arrow

[[Γ; ∆ ⊢ t:A]] : [[Γ; ∆]] → [[A]]

in the SMCC part of L.

Definition 3.1.3 (The Interpretation on Sequents)

First we recall that given a Γ; ∆ term t of type A, there is a unique derivation

of the typing judgement Γ; ∆ ⊢ t :A. We now define [[ ]]L inductively over the

structure of this unique derivation as follows:
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Linear Axiom Here we have:

[[Γ; x:A ⊢ x:A]] : [[Γ; A]] → [[A]]

= sep,!Γ,A; (discΓ ⊗ id[[A]]); ri[[A]]

Intuitionistic Axiom Here, we have

[[Γ, x:A, Γ′; ⊢ x:A]] : [[Γ, A, Γ′; ]] → [[A]]

= sep(!Γ,x:!A),!Γ′; (sep(!Γ),!x:A ⊗ id[[!Γ′]]);((discΓ ⊗ derA) ⊗ discΓ′); liI⊗[[A]]; ri[[A]]

Constant Axiom Here. we have

[[Γ; ⊢ c:A]] : [[Γ; ]] → [[A]]

=discΓ; [[c]]C

I-introduction Here we have:

[[Γ; ⊢ ∗:I ]] : [[Γ; ]] → [[I ]]

= discΓ

I-elimination We need to interpret the derivation

Γ; ∆1 ⊢ t:I Γ; ∆2 ⊢ u:A

Γ; ∆ ⊢ let ∗ be t in u:A

where ∆ = ∆1#∆2. In this case, we have arrows

f : [[Γ; ∆1]] → [[I ]]

g : [[Γ; ∆2]] → [[A]]

Hence we have

[[Γ; ∆ ⊢ let ∗ be t in u:A]] : [[Γ; ∆]] → [[A]]

=splitΓ,∆,∆1,∆2 ; (f ⊗ g); ri[[A]]

⊗-introduction The rule is:

Γ; ∆1 ⊢ t:A Γ; ∆2 ⊢ u:B
Γ; ∆ ⊢ t ⊗ u:A ⊗ B

where ∆ = ∆1#∆2. Using the premises, we already have arrows

f : [[Γ; ∆1]] → [[A]]

g : [[Γ; ∆2]] → [[B]]
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Hence we have

[[Γ; ∆ ⊢ t ⊗ u:A ⊗ B]] : [[Γ; ∆]] → [[A ⊗ B]]

=strΓ,∆,∆1,∆2 ; (f ⊗ g)

⊗-Elimination The rule is

Γ; ∆1 ⊢ u:(A ⊗ B) Γ; ∆2, x:A, y :B ⊢ t:C

Γ; ∆ ⊢ let x ⊗ y be u in t:C

where ∆ = ∆1#∆2. We have arrows:

f : [[Γ; ∆1]] → [[A ⊗ B]]

g : [[Γ; ∆2, A, B]] → [[C]]

Hence we have

[[Γ; ∆ ⊢ let x ⊗ y be u in t:C]] :[[Γ; ∆]] → [[C]]

=splitΓ,∆,∆2,∆1; (id[[Γ;∆2]] ⊗ f); sep−1
(!Γ,∆2),(A⊗B); g

⊸-introduction The rule is as follows:

Γ; ∆, x:A ⊢ t:B

Γ; ∆ ⊢ λx.t:A ⊸ B

so we have an arrow:

f : [[Γ; ∆, A]] → [[B]]

Hence we have

[[Γ; ∆ ⊢ λx.t:A ⊸ B]] :[[Γ; ∆]] → [[A ⊸ B]]

=λ(sep−1
(!Γ,∆),A; f)

⊸-elimination The rule is:

Γ; ∆1 ⊢ u:(A ⊸ B) Γ; ∆2 ⊢ t:A

Γ; ∆ ⊢ (ut):B

where ∆ = ∆1#∆2, so we have arrows:

f : [[Γ; ∆1]] → [[A ⊸ B]]

g : [[Γ; ∆2]] → [[A]]

Hence we have

[[Γ; ∆ ⊢ (ut):B]] : [[Γ; ∆]] → [[B]]

=splitΓ,∆,∆1,∆2; (f ⊗ g); ap[[A]],[[B]]
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!-introduction The rule is:
Γ; ⊢ t:A
Γ; ⊢!t :!A

so we have an arrow:

f : [[Γ; ]] → [[A]]

Hence we have

[[Γ; ⊢!t :!A]] :[[Γ; ]] → [[!A]]

=promΓ; FG(f)

!-elimination The rule is:

Γ; ∆1 ⊢ u :!A Γ, x:A; ∆2 ⊢ t:B

Γ; ∆ ⊢ let !x be u in t:B

where ∆ = ∆1#∆2. Hence we have arrows:

f : [[Γ; ∆1]] → [[!A]]

g : [[Γ, A; ∆2]] → [[B]]

Hence we have

[[Γ; ∆ ⊢ let !x be u in t:B]] : [[Γ; ∆]] → [[B]]

= strΓ,∆,∆1,∆2 ;(f ⊗ id[[Γ;∆2]]); sep
−1
!A,(!Γ,∆2)

; mge(!A,!Γ,∆2),!Γ,(!A,∆2); g

3.2 Soundness

Having given the interpretation function [[ ]]L, we now need to show that the inter-

pretation is sound. That is, we need to demonstrate that the equality judgement

we have given for DILL(C) is respected by the interpretation [[ ]]L for any model

L.

First we need to prove two technical lemmas, which give the interpretations

of the two substitutions in the model:

Lemma 3.2.1

If [[Γ; ∆1 ⊢ t:A]] = f and [[Γ; ∆2, x:A ⊢ u:B]] = g, and ∆ = ∆1#∆2, then

[[Γ; ∆ ⊢ u[t/x]:B]] = splitΓ,∆,∆2,∆1 ;(id[[Γ;∆′]] ⊗ f); sep−1
(!Γ,∆),A; g

Lemma 3.2.2

If [[Γ; ⊢ t:A]] = f and [[Γ, x:A; ∆ ⊢ u:B]] = g, then

[[Γ; ∆ ⊢ u[t/x]:B]] = splitΓ,∆, ,∆;((promΓ; FG(f)) ⊗ id[[Γ;∆]]); adminΓ,∆,A; g
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where adminΓ,∆,A : [[!A]] ⊗ [[Γ; ∆]] → [[Γ, A; ∆]] is defined:

adminΓ,∆,A = (id[[!A]] ⊗ sep!Γ,∆); (s[[!A]],[[!Γ]] ⊗ id[[∆]]); (sep
−1
!Γ,!A ⊗ id[[∆]]); sep

−1
!(Γ,A),∆

These lemmas are proved by induction over the structure of the first term. The

proofs are again left to the reader, but as an example we prove the intuitionistic

lemma in the case where u is the term Γ, x :A; ⊢ x :A. Clearly, in this case the

result of the substitution {t/x} is just the term Γ; ⊢ t:A, so we need to show:

f = splitΓ, , , ; ((promΓ; FG(f)) ⊗ id[[Γ; ]]); adminΓ, ,A; sep(!Γ,x:!A), ;

(sep(!Γ),!x:A ⊗ id[[ ]]); ((discΓ ⊗ derA) ⊗ disc ); liI⊗[[A]]; ri[[A]]

We can see that adminΓ, ,A = s[[!A]],[[!Γ]]; sep
−1
!Γ,!x:A, and hence the right-hand side of

this simplifies to

splitΓ, , , ; ((promΓ; FG(f))⊗ id[[Γ; ]]); s[[!A]],[[!Γ]]; sep
−1
!Γ,!x:A; sep(!Γ),!x:A; (discΓ⊗derA); ri[[A]]

But this is precisely

splitΓ, , , ; ((promΓ; FG(f)) ⊗ id[[Γ; ]]); (derA ⊗ discΓ); s[[A]],I ; ri[[A]]

By the adjunction and the tensor rules, this is

splitΓ, , , ; (f ⊗ discΓ); li[[A]]

which is

splitΓ, , , ; (id[[Γ; ]] ⊗ discΓ); ri[[Γ; ]]; f

But we can prove that splitΓ, , , ; (id[[Γ; ]] ⊗ discΓ); ri[[Γ; ]] = id[[!Γ]], so that the result

holds.

Now we are able to prove soundness by considering the derivation of equality

judgements in DILL(C).

Theorem 2 (Soundness)

If Γ; ∆ ⊢ tu : A then

[[Γ; ∆ ⊢ t:A]] = [[Γ; ∆ ⊢ u:A]]

Proof

I − β In this case, we have

Γ; ∆ ⊢ let ∗ be ∗ in t = t : A
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The interpretation of the left hand side is the arrow

strΓ, ,∆; (discΓ ⊗ g); ri[[A]]

but

strΓ, ,∆; (discΓ ⊗ id[[Γ;∆]]) = ri−1
[[Γ;∆]]

so this is just g by naturality of ri.

I − η In this case we have

Γ; ∆ ⊢ let ∗ be t in ∗ = t : I

The interpretation of the left-hand side of this is the arrow

strΓ,∆, ; (f ⊗ discΓ); riI

but by a symmetric equality to that used above we have that this is

li−1
[[Γ;∆]]; (f ⊗ idI); riI

but now since riI = liI this is just f .

⊗ − η First, note that

[[Γ; x:A, y :B ⊢ x ⊗ y :A ⊗ B]] = strΓ,A,B; ((lcon!Γ,A; (discΓ ⊗ id[[A]]); ri[[A]])

⊗ (lcon!Γ,B; (discΓ ⊗ id[[B]]); ri[[B]]))

= lcon!Γ,(A,B); (discΓ ⊗ id[[A⊗B]]); ri[[A⊗B]]

This means that

[[Γ; ∆ ⊢ let x ⊗ y be t in x ⊗ y]] = strΓ, ,∆; (id[[Γ; ]] ⊗ f); a−1
[[Γ; ]],A,B; lcon!Γ,(AB);

(discΓ ⊗ idA⊗B); ri[[A]])

= strΓ, ,∆; (id[[Γ; ]] ⊗ f); (discΓ ⊗ idA⊗B); riA⊗B

= strΓ, ,∆; (discΓ ⊗ f); riA⊗B

= f

! − β In this case,

[[Γ; ∆ ⊢ let !x be !t in u:B]] =strΓ, ,∆; ((promΓ; FG(f)) ⊗ id[[Γ;∆]]); (id[[!A]] ⊗ lcon!Γ,∆2);

(s[[!A]],[[!Γ]] ⊗ id[[∆2]]); (lcon
−1
!Γ,!A ⊗ id[[∆2]]); lcon

−1
!(Γ,A),∆2

; g

which is just the interpretation of u[t/x].
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λ − β In this case, assuming that [[Γ; ∆1, A ⊢ t :B]] = f and [[Γ; ∆2 ⊢ u :A]] = g,

we have

[[Γ; ∆1, ∆2 ⊢ (λx.t)u:B]] =strΓ,(∆1,A),∆2
; (λ(lcon−1

(!Γ,∆1),A
; f) ⊗ g); ap[[A]],[[B]]

=strΓ,∆1,∆2 ; (id[[Γ;∆1]] ⊗ g); lcon−1
!Γ,∆1

; f

=[[Γ; ∆1, ∆2 ⊢ t[u/x]:B]]

Congruence These cases are easily shown, firstly because categorical equality

is an equivalence, and secondly since given a context C[ ] and a term t,

the interpretation of a term having the form C[t] is a term of the internal

language of the category containing a sub-term the interpretation of t.

This shows soundness. �

3.3 The Term Model

The first stage in establishing completeness is to define the term model of DILL(C).

It is clear that we will as normal construct the term category to form the SMCC

part of the model, but we will need to use a somewhat more complex construction

to provide the CCC part.

Definition 3.3.1 (The Term Category)

We define the term category ST for the signature (PL, C) as follows:

• The objects of ST are the types of DILL(C).

• ST (A, B) = {[(x, t)A,B]| ; x :A ⊢ t :B}, where we write [(x, t)A,B] to denote

the equivalence class of (x, t)A,B under the equivalence ≡ defined by:

(x, t)A,B ≡ (y, u)A,B if ; x:A ⊢ t = u{x/y} : B

For now on, we will write [(x, t)]A,B as [x, tA,B] for clarity, and omit the type

information where possible. Also, we will assume where necessary that in referring

to [x, t] and [y, u] etc., the pairs (x, t) and (y, u) are chosen from their equivalence

classes in such a way that the variables x and y are distinct, unless they are

explicitly identified.

Now define identities and substitution:

• idA = [x, x]

• [x, t]; [y, u] = [x, u{t/y}]
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Now it is easily demonstrated that these definitions give a category, given

primitive results on substitution. Further, we certainly have appropriate primitive

interpretation functions [[ ]]PL
: PL → obj(S), given by the identity, and [[c]]C given

by [x, let ∗ be x in c] for each constant c in C. The next step is to show that ST is

in fact a SMCC. First we define the tensor of two objects A and B as the object

A⊗B, and on arrows we define the tensor and its associated natural isomorphisms

as follows:

[x1, t] ⊗ [x2, u] = [y, let x1 ⊗ x2 be y in t ⊗ u]

riA : I ⊗ A → A = [y, let x1 ⊗ x2 be y in let ∗ be x1 in x2]

liA : A ⊗ I → A = [y, let x1 ⊗ x2 be y in let ∗ be x2 in x1]

aA,B,C = [y1, let x1 ⊗ y2 be y1 in let x2 ⊗ x3 be y2 in (x1 ⊗ x2) ⊗ x3]

: A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C

sA,B : A ⊗ B → B ⊗ A = [y, let x1 ⊗ x1 be y in x2 ⊗ x1]
We can easily now show:

ri−1
A = [x, ∗ ⊗ x]

li−1
A = [x, x ⊗ ∗]

a−1
A,B,C = [y1, let y2 ⊗ x3 be y1 in let x1 ⊗ x2 be y2 in x1 ⊗ (x2 ⊗ x3)]

s−1
A,B = sB,A

We give the proof of the fact that riA has the inverse given above as an example.

In order to show that the given arrow ri has the inverse [x, ∗ ⊗ x], there are two

cases to consider. Firstly we consider the composition riA; [x, ∗ ⊗ x], which is

[y, ∗ ⊗ (let x1 ⊗ x2 be y in let ∗ be x1 in x2)]

Now in DILL(C) we have by two commuting conversions the equality judgement

; y :I ⊗ A ⊢ ∗ ⊗ (let x1 ⊗ x2 be y in let ∗ be x1 in x2)
= let x1 ⊗ x2 be y in (let ∗ be x1 in ∗) ⊗ x2 :I ⊗ A

and by η equalities for ⊗ and I the equality judgement

; y :I ⊗ A ⊢ let x1 ⊗ x2 be y in (let ∗ be x1 in ∗) ⊗ x2 = y :A ⊗ A

and hence

[y, ∗ ⊗ (let x1 ⊗ x2 be y in let ∗ be x1 in x2)] = [y, y]

as required. Secondly, we consider the composition [x, ∗ ⊗ x]; riA, which is

[x, let x1 ⊗ x2 be ∗ ⊗ x in let ∗ be x1 in x2]
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But in DILL(C) we have by ⊗ and I − β-equalities the equality judgement

; x:A ⊢ let x1 ⊗ x2 be ∗ ⊗ x in let ∗ be x1 in x2 = x:A

so that we have

[x, let x1 ⊗ x2 be ∗ ⊗ x in let ∗ be x1 in x2] = [x, x]

as required. �

In future we omit the explicit statements of the equality judgements which

justify the equalities between equivalence classes, and merely annotate some of

these equalities with the axiomatic equalities of DILL(C) used to derive them.

⊗
is a Functor

We need to show that the definition given above of the tensor is functorial. This

amounts to showing that identities are preserved:

[x, x] ⊗ [x′, x′] = [y, let x ⊗ x′ be y in x ⊗ x′]
(by ⊗ − η) = [y, y]

and that composition is preserved. We show this in the second place of the

functor; the proof for the first place is analogous.

[x, x] ⊗ ([y, t]; [y′, u])
= [x′, let x ⊗ y be x′ in x ⊗ (u{t/y′})]

(by ⊗-cc and β) = [x′, let x′′ ⊗ y′ be (let x ⊗ y be x′ in x ⊗ t) in x′′ ⊗ u]
= ([x, x] ⊗ [y, t]); ([x′′, x′′] ⊗ [y′, u])

We now need to check that the specified natural transformations ri, li, a and

s have the correct properties:

riA There is one diagram to check here for naturality, and two equalities for

isomorphism.

riA; [x, t]
= [y, t{let x′ ⊗ x be y in let ∗ be x′ in x/x}]

(by cc) = [y, let x′ ⊗ x be y in let ∗ be x′ in t]
(by cc and ⊗ − β) = [y, let y′ ⊗ y′′ be let x′ ⊗ x be y in x′ ⊗ t

in let ∗ be y′ in y′′

]

= (idI ⊗ [x, t]); riB

This shows the naturality of ri. We previously demonstrated that riA was

an isomorphism.

liA The diagrams in this case are exactly analogous to the above ones, and

hence are omitted.
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aA,B,C We first check naturality for this arrow.

aA1,A2,A3; ([x1, t1)] ⊗ [x2, t2]) ⊗ [x3, t3]
= [y′, let x1 ⊗ x′

be let y1 ⊗ y′′ be y′ in let y2 ⊗ y3 be y′′ in (y1 ⊗ y2) ⊗ y3

in let x2 ⊗ x3 be x′ in (t1 ⊗ t2) ⊗ t3]
(by cc, α-conv. and ⊗ − β)

= [y′, let x1 ⊗ x′ be y′ in let x2 ⊗ x3 be x′ in (t1 ⊗ t2) ⊗ t3]
(by cc and ⊗ − β)

= [y′, let y1 ⊗ y′′

be let x1 ⊗ x′ be y′ in let x2 ⊗ x3 be x′ in t1 ⊗ (t2 ⊗ t3)
in let y2 ⊗ y3 be y′ in (y1 ⊗ y2) ⊗ y3]

= [x1, t1] ⊗ ([x2, t2] ⊗ [x3, t3]); aB1,B2,B3

The isomorphism is easily seen.

sA,B We need to show naturality:

[x, t] ⊗ [y, u]; sB1,B2

= [y′′, let x′ ⊗ y′ be let x ⊗ y be y′′ in t ⊗ u
in y′ ⊗ x′

]

(by cc and ⊗ − β) = [y′′, let x ⊗ y be y′′ in u ⊗ t]
(by cc, α-conv. and ⊗ − β) = [y′′, let y ⊗ x be let x′ ⊗ y′ be y′′ in y′ ⊗ x′

in u ⊗ t
]

= sA1,A2 ; [y, u] ⊗ [x, t]

Again, the isomorphism is easily seen.

From now on we will omit the justifications of equality steps for brevity.

Now we need to show that the coherence equalities given earlier hold in ST . We

check these by number based on the numbering given in appendix A.2. Because

the demonstration for larger equalities consists of equalities between huge terms

of DILL(C), we check here only equalities A.2.2, A.2.3, A.2.5 and A.2.6.

A.2.2

LHS =[y′, let x1 ⊗ x2

be let y′′ ⊗ x′′′ be y′ in let x′ ⊗ x′′ be y′′ in x′ ⊗ (x′′ ⊗ x′′′)

in x1 ⊗ (let y1 ⊗ y2 be x2 in let ∗ be y1 in y2)]

=[y′, let y′′ ⊗ x′′′ be y′ in let x′ ⊗ x′′ be y′′ in x′ ⊗ (let ∗ be x′′ in x′′′)]

=[y′, let y′′ ⊗ x′′′ be y′ in (let x′ ⊗ x′′ be y′′ in let ∗ be x′′ in x′) ⊗ x′′′]
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A.2.3

LHS =[y′, let x ⊗ y be y′ in let ∗ be y in x]

=[y′, let x ⊗ y be y′ in let ∗ be y in let ∗ be x in ∗]

=[y′, let x ⊗ y be y′ in let ∗ be x in y]

=RHS

A.2.5 We show this by demonstrating sA,B; sB,A = id.

LHS =[y′′, let x ⊗ y be let x′ ⊗ y′ be y′′ in y′ ⊗ x′ in y ⊗ x]

=[y′′, y′′]

A.2.6

LHS =[y′′, let x ⊗ y be let x′ ⊗ y′ be y′′ in y′ ⊗ x′ in let ∗ be y in x]

=[y′′, let x′ ⊗ y′ be y′′ in let ∗ be x′ in y′]

=RHS

At this point we have shown that the term category is an s.m. category. It

remains to demonstrate that a suitable candidate exists for the right adjoint of

the tensor.

Closedness of the SMC

We will define the functor ⊸ on types in the obvious way, and on morphisms

[x, t] : A → B, [y, u] : A′ → B′ and [x′, t′] : A ⊗ B → C as follows:

[x, t] ⊸ [y, u] : (B ⊸ A′) → (A ⊸ B′) = [x′, λx:A.(u{(x′t)/y})]

λ[x′, t′] : A → (B ⊸ C) = [x′′, λy′ :B.(t′{(x′′ ⊗ y′)/x′})]

apA,B : A ⊗ (A ⊸ B) → B = [y, let x1 ⊗ x2 :(A ⊸ B) ⊗ A be y in x1x2]
It is easy to show that these definitions give a functor, and that it is right

adjoint to the tensor, using lemma 2.2.10. Hence the term category ST is an

SMCC.

Having shown that ST is a SMCC, and hence forms part of a DILL(C)-model,

we now need to find a suitable candidate for the CCC part of this model.

The Intuitionistic Term category

We now give an explicit construction of a strict cartesian category which we will

show to be adjoint to the term category.
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Definition 3.3.2 (The Intuitionistic Term Category)

We define the intuitionistic term category CT as follows:

• The objects of CT are sequences of types of DILL(C).

• CT ( ~A, ~B) = {[(~x,~t)
~A, ~B]|~x : ~A; ⊢ ti : Bi for ti ∈ ~t}, where we write [(~x,~t)

~A, ~B]

to denote the equivalence class of (~x,~t)
~A, ~B under the equivalence ≡C defined

by:

(~x,~t)
~A, ~B ≡C (~y, ~u)

~A, ~B if for all ti ∈ ~t, ~x: ~A; ⊢ ti = ui{~x/~y} : Bi

As before, we write [~x,~t]
~A, ~B for [(~x,~t)]

~A, ~B for clarity, omit type information

where possible and assume that the variables ~x and ~y in the arrows [~x,~t] [~y, ~u]

are always chosen from the equivalence classes so as to make all the variables in

the concatenation ~x~y distinct, except where explicitly identified.

Now define identities and substitution:

• id ~A = [~x, ~x]

• [~x,~t]; [~y, ~u] = [~x, ~u{~t/~y}]

It is again easy to show that these definitions make CT into a category. We now

specify the strict cartesian structure on sequences of types to be concatenation,

and on morphisms where [~x,~t] : ~A1 → ~B1 and [~y, ~u] : ~A2 → ~B2:

[~x,~t] × [~y, ~u] : ~A1
~A2 → ~B1

~B2 = [~x~y,~t~u]

〈[~x,~t], [~x, ~u]〉 : ~A1 → ~B1
~B2 = [~x,~t~u]

pi,r : A1 . . .Ar → Ai = [~x, xi]

These definitions make CT into a strict cartesian category; as an example, we

show the defining equality of the projections:

〈[~x, t1] . . . [~x, tr]〉; pi,r = [~x, t1 . . . tr]; [~y, yi]

= [~x, ti]

It is possible to make this category into a CCC by defining an arrow type

A → B =!A ⊸ B, but we do not do this here.
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ST is monoidally adjoint to CT

Now, in order to construct a term model for DILL(C), we need to show that the

categories ST and CT which we have constructed are monoidally adjoint.

Note 3.3.3 (Strict Tensor)

Firstly, since we will be mapping a strict cartesian structure into the category ST ,

we will need to define some new term constructors. Define the tensor of ⊗t1 . . . tr

⊗t1, . . . tr =







∗ if r = 0

t1 if r = 1

(⊗t1 . . . tr−1) ⊗ tr otherwise

Further, we need to define a let term construct to eliminate sequences of variables,

which we again do as follows:

let ⊗x1 . . . xr be t in u =







let ∗ be t in u if r = 0

u[t/x1] if r = 1

let z ⊗ xr be t

in (let ⊗x1 . . . xr−1 be z in u) otherwise

Now, assume that Γ; ∆′′, ~x: ~A ⊢ u:B, that Γ; ∆′′′ ⊢ u′ :⊗ ~A, and that Γ; ∆′
i ⊢ t:Ai

for i = 1 . . . r, where ~A = A1 . . . Ar. Then, using the β and η equalities of DILL(C),

we can derive equality judgements:

Γ; ∆ ⊢ let ⊗~x be ⊗~t in u = u{~t/~x}:B Γ; ∆′′′ ⊢ let ⊗~x be u′ in ⊗~x = u′ :⊗ ~A

where ∆ = ∆′′#∆′
1# . . . #∆′

r. Now assume we have a Γ1; ∆1, A1 − Γ2; ∆2, A2

linear term context C[ ]. Given Γ1; ∆1, ~x: ~B ⊢ u :A1, Γ2; ∆′ ⊢ t′ :⊗ ~B and Γ; ∆′′
i ⊢

ti :!Bi for i = 1 . . . r, where ~B = B1 . . . Br, we have:

Γ; ∆ ⊢ let !~x be ~t in ⊗!~x = ⊗~t⊗! ~A
Γ2; ∆′′′ ⊢ C[let ⊗~x be t′ in u] = let ⊗~x be t′ in C[u]:A2

where ∆′′′ = ∆′#∆2 and ∆ = ∆′
1# . . .#∆r.

Definition 3.3.4 (The Functors FT and GT )

We define the functors FT : CT → ST and GT : ST → CT :

FT ( ~A) = ⊗! ~A

FT ([~x,~t]) = [y, let ⊗~x1 be y in let !~x be ~x1 in ⊗!~t]

GT (A) = A

GT ([x, t]) = [x, t]
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We show that these definitions are functorial. It is easy to see that G preserves

identities and composition, but more tricky for F . To show that it preserves

identities:

FT (id ~A) = FT ([~x, ~x])

= [y, let ⊗~x1 be y in let !~x be ~x1 in ⊗!~x]

= [y, let ⊗~x1 be y in ⊗~x1]

= [y, y]

To show that it preserves composition:

FT ([~x,~t]; [~y, ~u]) = FT ([~x, ~u{~t/~y}])

= [y′, let ⊗~x1 be y′ in let !~x be ~x1 in ⊗!(~u{~t/~y})]

= [y′, let ⊗~x1 be y′ in let !~x be ~x1 in let !~y be !~t in ⊗!~u]

= [y′, let ⊗ ~x3

be let ⊗~x1 be y′ in let !~x be ~x1 in ⊗!~t

in let ⊗~x2 be ⊗~x3 in let !~y be ~x2 in ⊗!~u]

= FT ([~x,~t]); FT ([~y, ~u])

We now need to show that both FT and GT are monoidal functors. This

means we must give natural transformations mG
A,B : G(A)G(B) → G(A ⊗ B),

miG : → G(I), mF
A,B : F ( ~A) ⊗ F ( ~B) → F ( ~A~B) and miF : I → F ( ).

mG
A,B = [xy, x ⊗ y]

miG = [ε, ∗]

mF
~A, ~B

= [y′, let x1 ⊗ x2 be y′

in let ⊗~y1 be x1 in let ⊗~y2 be x2 in ⊗~y1~y2

]

miF = [x, x]

We must now check naturality and certain coherence conditions.

Naturality of m
G Assume that f = [x, t] and that g = [y, u]. Then

LHS = (G(f) × G(g)); mG

= [xy, tu]; [x′y′, x′ ⊗ y′]

= [xy, t ⊗ u]

= [xy, x ⊗ y]; [y′, let x ⊗ y be y′ in t ⊗ u]

= mG; G(f ⊗ g)

= RHS
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A.2.8) for m
F

LHS = [y′, let x1 ⊗ x2 be y′ in let ∗ be x1 in x2]

= [y′, let x1 ⊗ x2 be y′ in x1 ⊗ x2];

[x′, let x1 ⊗ x2 be x′ in let ∗ be x1 in x2]; [x
′, x′]

A.2.9) for m
F

LHS = [y′, let x1 ⊗ x2 be y′ in x2 ⊗ x1];

[x′, let x1 ⊗ x2 be x′

in let ⊗~y1 be x1 in let ⊗~y2 be x2 in ⊗~y1~y2

]

= [y′, let x1 ⊗ x2 be y′ in let ⊗~y1 be x2 in let ⊗~y2 be x1 in ⊗~y1~y2

= [y′, let x1 ⊗ x2 be y′

in let ⊗~y1 be x1 in let ⊗~y2 be x2 in ⊗~y1~y2

];

[x′, let ⊗~x1~x2 be x′ in ⊗~x2~x1]

A.2.8) for m
G

LHS = [x, x]

= [x, ∗ ⊗ x]; [y′, let x ⊗ y be y′ in let ∗ be x in y]

= [x, ∗x]; [xy, x⊗ y]; G([y′, let x ⊗ y be y′ in let ∗ be x in y])

= RHS

A.2.9) for m
G

LHS = [xy, yx]; [xy, x⊗ y]

= [xy, y ⊗ x]

= [xy, x ⊗ y]; [y′, let x ⊗ y be y′ in y ⊗ x]

= [xy, x ⊗ y]; G([z, let x ⊗ y be z in y ⊗ x])

= RHS

We need to establish that there is an adjunction between ST and CT . First we

give the counit and unit:

[x, let !y be x in y] = nuA : FGA → A

[~x, ⊗!~x] = un ~A : ~A → GF ( ~A)

Now, consider an arbitrary morphism [x, t] : F ~A → B in ST . Define [x, t]∗ to be

the morphism [~y, t{⊗!~y/x}] : ~A → GB in CT . But now:

F ([x, t]∗); nuB = [y′, let ⊗~x′ be y′ in let !~y be ~x′ in !t{⊗!~y/x}]; [x, let !y be x in y]

= [y′, let ⊗~x′ be y′ in let !~y be ~x′ in t{⊗!~y/x}]

= [y′, t{y′/x}]
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Therefore the adjunction triangle commutes. Now assume that it does so for

[~y, u] : ~A → GB, that is to say

[y′, let ⊗~x′ be y′ in let !~y be ~x′ in !u] = [y′, t{y′/x}]

This equality implies that

; y′ :⊗! ~A ⊢ let ⊗~x′ be y′ in let !~y be ~x′ in !u = t{y′/x}:B

and by substituting ⊗!~y for y′ this implies that

~y : ~A; ⊢!u = t{⊗!~y/x}:B

This implies that our choice of [x, t]∗ is the unique such making the adjunction

triangle commute. Hence we have the required adjunction. We now need to check

that the adjunction is monoidal, ie that the unit and counit of the adjunction are

monoidal natural transformations. In order to check this, we need the maps

mFG, miFG, mGF and miGF :

[x, let ∗ be x in !∗] = mFG
I

I → FGI

[x′, let x1 ⊗ x2 be x′ in let !x′
1 be x1 in let !x′

2 be x2 in !(x′
1 ⊗ x′

2)] = mFG
A,B

FGA ⊗ FGB → FG(A ⊗ B)

[ε, ∗] = mGF

→ GF ( )

[xy, let ⊗~x1 be x in let ⊗~x2 be y in ⊗~x1~x2] = mGF
~A, ~B

(GF ~A)(GF ~B) → GF ( ~A~B)

We now need to check certain coherence conditions:

A.2.10) for nu

LHS = [x′, let x1 ⊗ x2 be x′ in let !x′
1 be x1 in let !x′

2 be x2 in !(x′
1 ⊗ x′

2)];

[x, let !y be x in y]

= [y′, let x1 ⊗ x2 be y′ in let !x′
1 be x1 in let !x′

2 be x2 in x′
1 ⊗ x′

2]

A.2.11) for nu

LHS = [x, let ∗ be x in !∗]; [x, let !y be x in y]

= [x, let ∗ be x in ∗]

= [x, x]
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A.2.10) for un

LHS = [~x1~x2, ⊗!~x1~x2]

= [~x1~x2, (⊗!~x1)(⊗!~x2)]; [xy, let ⊗~x1 be x in let ⊗~x2 be y in ⊗~x1~x2]

A.2.11) for un

LHS = [ε, ∗]

= RHS

We have now demonstrated that ST is monoidally adjoint to CT . We now

make the definition:

Definition 3.3.5 (DILL(C) Term Model)

Define the term model of DILL(C) which we will call LT , to be the carrier

(ST , CT , FT , GT ) equipped with the primitive interpretation functions [[ ]]PL
: PL →

obj(S) given by the identity and [[c]]C = [x, let ∗ be x in c].

We have by our previous calculations that this is a DILL(C)-model over sig-

nature (PL, C).

3.4 Completeness

In order to prove completeness, it now suffices to prove a lemma:

Lemma 3.4.1

[[~x′:Γ; ~x′′ :∆ ⊢ t:A]]LT
= [x, let ⊗~y~x′′ be x in let !~x′ be ~y in t] in the SMCC part of

the term model LT .

We prove this lemma by induction over the structure of the term. Now com-

pleteness is easy:

Theorem 3 (Soundness and Completeness)

Suppose we have terms Γ; ∆ ⊢ t : A and Γ;: ∆ ⊢ u : A, where Γ = ~x′ : ~B′ and

∆ = ~x′′ : ~B′′. Then Γ; ∆ ⊢ t = u : A if and only if [[Γ; ∆ ⊢ t:A]]L = [[Γ; ∆ ⊢ u:A]]L

in every DILL(C)-model,L.

Proof We have the forward direction of the implication, soundness, proved

earlier. As for the other direction, assume that [[Γ; ∆ ⊢ t : A]]L = [[Γ; ∆ ⊢ u :

A]]L for all DILL(C)-models L. Then since LT is an DILL(C)-model we have by

lemma 3.4.1 that

[x, let ~y~x′′ be x in let !~x′ be ~y in t] = [x, let ~y~x′′ be x in let !~x′ be ~y in u]
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and hence we have

; x : ⊗! ~B′, ~B′′ ⊢ let ~y~x′′ be x in let !~x′ be ~y in t = let ~y~x′′ be x in let !~x′ be ~y in u : A

But now it follows that if we substitute
⊗

!~x′, ~x′′ for x in both terms we still have

an equality. However, under this substitution, we have:

Γ; ∆ ⊢ let ~y~x′′ be (
⊗

!~x′, ~x′′) in let !~x′ be ~y in t = t:A

and hence

Γ; ∆ ⊢ t = u : A

as required. �

3.5 ILL and Other Models

Our proof of completeness above has certain easy corollaries. Firstly, since we

have shown that the type theory ILL(C) together with its βη-cc equality is iso-

morphic to a subsystem of DILL(C), with its βη-cc equality, we know that the

models of DILL(C) will be very closely related to models of ILL(C). We give some

results which are easily proved.

Lemma 3.5.1 (Interpretation for ILL(C))

If ∆ ⊢ILL(C) M :A, then we have an arrow [[ ; ∆ ⊢ Φ(M) :A]] : [[∆]] → [[A]] in the

SMCC part of any DILL(C)-model.

This is obvious from the form of the maps [[ ]] and Φ.

Corollary 3.1 (Soundness for ILL(C))

If ∆ ⊢ILL(C) M = N : A, then the arrows [[ ; ∆ ⊢ Φ(M):A]] and [[ ; ∆ ⊢ Φ(N):A]]

are equal in the SMCC part of any DILL(C)-model.

This follows from the fact that Φ preserves equalities, and from the fact that

[[ ]] is sound.

Corollary 3.2 (Soundness and Completeness for ILL(C))

For terms ∆ ⊢ILL(C) M :A and ∆ ⊢ILL(C) N :A, ∆ ⊢ M = N : A if and only if

[[ ; ∆ ⊢ Φ(M):A]] = [[ ; ∆ ⊢ Φ(N):A]]

in the SMCC part of every DILL(C)-model.
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Proof Clearly by completeness, [[ ; ∆ ⊢ Φ(M) : A]] = [[ ; ∆ ⊢ Φ(N) : A]] iff

; ∆ ⊢DILL(C) Φ(M) = Φ(N) : A, and this is true iff ∆ ⊢ M = N : A by our

translation results.

Hence we have shown that ILL(C) is complete for DILL(C)-models.

Relating DILL(C)-models and Cambridge Models

We now recall that together with the original presentation of ILL(C), in [BBdPH93b],

a categorical model was given based on a SMCC with a comonoidal comonad.

These models were referred to as linear categories, or sometimes as Cambridge

categories. It is natural to ask how this model of linear logic relates to the

DILL(C)-models we have used, and indeed this question has been considered in

detail by Benton in [Ben95a], with respect to his LNL-models. We summarise

two of his results.

Lemma 3.5.2 ([Ben95a], Corollary 8)

Any LNL-model has as its SMCC part a linear category.

Lemma 3.5.3 ( [Ben95a], Corollary 17)

Any linear category is the SMCC part of at least one LNL-model.

This last lemma is of particular interest because the construction of a suitable

CC part to make the LNL-model can be accomplished in a variety of ways. We

can now prove the following lemma, which neatly confirms the claim made in

[BBdPH93a]:

Theorem 4 (ILL(C) and linear categories)

For two terms ∆ ⊢ILL(C) M :A and ∆ ⊢ILL(C) N :A of ILL(C), ∆ ⊢ILL(C) M = N :

A iff

[[ ; ∆ ⊢ Φ(M):A]]L = [[ ; ∆ ⊢ Φ(N):A]]L

in every DILL(C)-model L.

Proof We have via completeness that [[ ; ∆ ⊢ Φ(M):A]]L = [[ ; ∆ ⊢ Φ(N):A]]L

iff ; ∆ ⊢DILL(C) Φ(M) = Φ(N) : A, and by translation results that this is true iff

∆ ⊢ILL(C) M = N : A. �
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Chapter 4

Linear Type Theories

We now present a generalised linear type-theory, which consists of a basic struc-

tural part similar to the structural part of DILL, operator rules for operators in a

given signature, and axiomatic equalities over terms given by a primitive axiom

set. This linear type-theory is general enough to have as instances both DILL(C)

and also all the static action calculi of Milner.

4.1 Introduction

Operators

Historically, many intuitionistic logics and typing systems have been constructed

on the familiar foundation of the intuitionistic axiom Γ, A ⊢ A and cut rule

Γ ⊢ A Γ, A ⊢ B
Γ ⊢ B

including some typing systems which are not based on any other logical struc-

ture. In order to consider such systems, we recall Aczel’s general binding oper-

ators [Acz80]. In an natural deduction formulation, consider the usual rule for

∨-elimination:
(A)
....
C

(B)
....
C A ∨ B

C

where formulae A and B are discharged from the assumptions. More generally,

we will allow a general operator rule to take an arbitrary number of proofs as ar-

guments, and to discharge any assumptions from those proofs, giving a deduction

of any formula. A suitable definition of operator along these lines encompasses

all the common introduction and elimination rules of most logics based on these
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structural rules. Now consider annotations of proofs with terms in such a sys-

tem. The type theoretic formulation corresponding to the ∨-elimination rule

given above involves a “cases construction”:

Γ, x:A ⊢ u:C Γ, y :B ⊢ v :C Γ ⊢ t:A ∨ B

Γ ⊢ cases((x:A)u, (y :B)v, t):C

Here, notice that the discharging of assumptions A and B in the operator rule

corresponds via the Curry-Howard correspondence to the binding of the variables

x and y in u and v, the annotations of the corresponding deduction, respectively.

The typing rule for a general such operator is:

Γ, ~x1 : ~A1 ⊢ t1 :B1 . . .Γ, ~xr : ~Ar ⊢ tr :Br Γ ⊢ u1 :C1 . . . Γ ⊢ us :Cs

Γ ⊢ K((~x1 : ~A1)t1, . . . , (~xr : ~Ar)tr, u1, . . . , us):B

where each ~xi : ~Ai denotes the sequence of distinct variables which are bound in

the ith component. This general theory can be pushed through into the semantics

as well, yielding a model in which operators are interpreted as natural transform-

ations between the hom-sets representing proofs of the appropriate types.

Linearity

Considering DILL(C) and its properties, we notice that many of the characterising

rules, which in ILL(C) involve the type constructor !, in DILL(C) arise as properties

of the structural rules. Consider the ‘structural fragment’ of the logic DILL(C),

which consists of the following rules:

(Int − Ax) Γ, A; ⊢ A (Lin − Ax) Γ; A ⊢ A

and the (derivable) cut rules:

Γ; ∆1 ⊢ A Γ; ∆2, A ⊢ B
Γ; ∆1, ∆2 ⊢ B

(L − Cut)
Γ; ⊢ A Γ, A; ∆2 ⊢ B

Γ; ∆ ⊢ B
(I − Cut)

We can see within the rules which are admissible in this very restricted system

that we clearly have intuitionistic structure, given by the intuitionistic axiom and

cut rules, and correspondingly linear structure, given by the linear axiom and cut

rules. In the same way as many systems are viewed as intuitionistic by virtue of

the structural rules they have as a basis, many systems are viewed and described

as ‘linear’ due to their use of the linear structural rules and context maintenance

disciplines, whilst not being based on the full linear logic. Hence we might well

wish to consider a system of general operators based on the structural fragment

of DILL(C), along the same lines as that described above.
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First, however, there is one more important generalisation to make. When

we consider the logic DILL(C), we see that a sequent Γ; ∆ ⊢ A is equivalent to

a sequent ; !Γ; ∆ ⊢ A. This reflects an underlying fact about the logic, which

is that all types are viewed as linear, and the intuitionistic fragment of the lo-

gical system is constructed over the linear types. Now in many applications, for

example Moggi’s computational λ-calculus [Mog89], exactly the opposite view is

taken, which is to say that all types are essentially intuitionistic (or value types),

and that the linearly constructed type-system over them is viewed as a a system

of computations. Clearly, in order to account for these equally valid and inter-

changeable views, it makes sense for us to allow both intuitionistic and linear

types. In keeping however with the approach of DILL(C), which is focussed more

on the linearity of a system, we will view intuitionistic types or formulae as a

subset of linear types or formulae.

Therefore, we will take a general sequent Γ; ∆ ⊢ A in which the formulae in

Γ must be intuitionistic, and those in ∆, A are linear, although since each intu-

itionistic type is also linear they may be intuitionistic. If we write Q for a general

intuitionistic formula and A for a general linear formula, then the structural rules

are as follows:

(Int − Ax) Γ, Q; ⊢ Q (Lin − Ax) Γ; A ⊢ A

with the (derivable) cut rules:

Γ; ∆1 ⊢ A Γ; ∆2, A ⊢ B

Γ; ∆1, ∆2 ⊢ B
(L − Cut)

Γ; ⊢ Q Γ, Q; ∆2 ⊢ A

Γ; ∆ ⊢ A
(I − Cut)

and the new rule:
Γ; ∆1 ⊢ Q Γ, Q; ∆2 ⊢ A

Γ; ∆1, ∆2 ⊢ A
(F )

Now this new F -rule is needed because in general, we have another cut-like

operation which allows us to use the image of the intuitionistic structure (weak-

ening and contraction) in the linear part on an intuitionistic type. This was not

needed previously as we had no intuitionistic types.

Given this framework, a general operator will be able to bind arbitrary se-

quences of linear and intuitionistic variables in each of its arguments. It is also

convenient to allow a sequent-style presentation of the operator theory, in which

as well as discharging assumptions (binding variables) an operator instance can

introduce new assumptions (free variables). This generalisation does not change

the expressive power of the system, but is convenient for the representation of the

operators we shall consider. We will discuss this further after the typing system

has been introduced.
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The final amendment which we will make to the straightforward introduction

of operators into this framework is in considering naturality. As can be seen

simply by considering the form of the typing rule for the cases-construct and its

corresponding operator, substitution for any variable in the intuitionistic context

Γ commutes through the application of the operator transparently. This corres-

ponds to the interpretation of operators of this kind as natural transformations

in the semantics. However, in the case where we have two distinct parts to the

typing context, we might ask what the corresponding property is on interpreta-

tion. It turns out that to allow such transparent substitution on the intuitionistic

context is to insist that an operator be natural in the linear category over the

intuitionistic category, and to allow such transparent substitution in the linear

context is to insist that an operator be natural in the linear category over the

linear category.

Considering the operators we will be using, not all of them are linearly nat-

ural in each argument, and so we allow a general operator to have two sets of

arguments, one in which it is only intuitionistically natural and one in which it

is linearly natural as well.

4.2 The Generalised Logic

Firstly, we present the propositions of the logic. We assume two sets MI ⊆ ML of

primitive intuitionistic propositions and primitive linear propositions, ranged over

by Q, R . . . and A, B . . . respectively. (Note that we have overloaded A, B . . . to

refer both to formulae of DILL and linear arities; where it is not clear from the

context, we shall explicitly state which reading is intended.) Now a generalised

logical context is a pair consisting of a set of intuitionistic formulae and a multiset

of linear formulae. In the usual way, we write such a pair as Γ; ∆, where Γ is the

intuitionistic part, or set of intuitionistic formulae, and ∆ is the linear part, or

multiset of linear formulae.

We also assume two sets OI ⊆ OL of operators, ranged over by O . . . . To each

of these operators is associated an arity of the form:

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)Br ; (~Q′
1; ~A′

1)B
′
1, . . . , (~Q′

s; ~A′
s)B

′
s

(~Q′′; ~A′′)B′′

where we insist that any operator in OI which we will call intuitionistic, must

have an arity of the form:

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)Br;

(; )R
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Together, the sets MI , ML, OI and OL make up a generalised signature ; we

let such generalised signatures be ranged over by O = (MI , ML, OI, OL).

The general form of the arity of an operator given above should be read

as saying that the operator O has r arguments in which it is intuitionistically

natural, and s arguments in which it is intuitionistically and linearly natural.

We consider operators which have arguments that they are not linearly natural

in because several operators of interest fall into this category, notably the !-

operator of DILL(C) and the operators of Milner’s action calculi, which all are

only intuitionistically natural. The general form for the arity of an intuitionistic

operator also given above is more restricted because of certain properties we will

require of all such operators, in the equality of the type-theory. The leading

example of an intuitionistic operator is given by the !-introduction of DILL(C),

which in this framework will be an intuitionistic operator of arity:

(; )A;

(; )!A

because intuitively it represents the lifting of a general linear term to be in the

intuitionistic world.

Though the general operator signature is quite complex, it would be possible to

start with a signature containing just intuitionistically natural operators, and to

define these less primitive notions using the equality theory; for example we could

equip a simple type theory with a linearly natural operator by giving it a family

of intuitionistically natural operators and adding certain equality judgements to

the set of axioms of the type theory.

Before proceeding, we introduce some notation. Many operators that we will

introduce have a general arity in which either r or s is zero, or they have no binding

behaviour for a given argument. We will represent this absence of arguments or

binding behaviour by the absence of any marker- for example, the operator ! with

no linearly natural arguments and just one intuitionistically natural argument

with no binding behaviour has arity:

(; )A ;

(; )!A

We can now present the logic, which we call Lin(O).

Definition 4.2.1 (The Logic Lin(O))

We say that a sequent Γ; ∆ ⊢ A can be derived, for a linear formula A and a
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generalised logical context Γ; ∆, if this can be shown using the following rules:

(Int − Ax) Γ, Q; ⊢ Q (Lin − Ax) Γ; A ⊢ A
Γ; ∆1 ⊢ Q Q, Γ; ∆2 ⊢ A

Γ; ∆1, ∆2 ⊢ A
F

Γ, ~Q1; ~A1 ⊢ B1 . . . Γ, ~Qr; ~Ar ⊢ Br

Γ, ~Q′
1; ∆1, ~A′

1 ⊢ B′
1 . . . Γ, ~Q′

s; ∆s, ~A′
s ⊢ B′

s

Γ; ∆′
1 ⊢ Q′′

1 . . . Γ; ∆′
r′ ⊢ Q′′

r′

Γ; ∆′′
1 ⊢ A′′

1 . . . Γ; ∆′′
s′ ⊢ A′′

s′

Γ; ∆ ⊢ B′′ (O)

where ∆ = ∆1, . . . , ∆s, ∆′
1, . . . ∆

′
r′, ∆′′

1, . . . , ∆′′
s′ and where this last rule may be

used for any operator O ∈ OL having arity:

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)Br ; (~Q′
1; ~A′

1)B
′
1, . . . , (~Q′

s; ~A′
s)B

′
s

(~Q′′; ~A′′)B′′

where ~Q′′ = Q′′
1 . . . Q′′

r′ and ~A′′ = A′′
1 . . . A′′

s′.

We briefly explain these rules. The axioms are self-explanatory, and familiar

from the presentation of DILL. The F -rule, which resembles a non-conventional

intuitionistic cut, is justified because it is only allowed in the case where the

‘cut’ formula is intuitionistic. For the operator rule, we assume a derivation of

each of the sequents appearing above the line in order to deduce the sequent

below the line. The rule assumes firstly premises for the linearly natural and

the intuitionistically natural arguments of the operator, and secondly premises

demonstrating the propositions which are the fresh inputs of the conclusion of

the operator. These are necessary so that both the appropriate cut rules will be

admissible for the logic, or equivalently to give an adequate notion of substitution

in the type theory.

The Structural rules

Given the operator rule presented above, we have the following three structural

rules, as expected; a weakening rule and linear and intuitionistic cut rules:

Γ; ∆ ⊢ A

Γ, Q; ∆ ⊢ A
Weak

Γ; ∆1 ⊢ A Γ; ∆2, A ⊢ B
Γ; ∆1, ∆2 ⊢ B

L
Γ; ⊢ Q Γ, Q; ∆ ⊢ A

Γ; ∆ ⊢ A
I

These are all admissible. We note that the intuitionistic cut is redundant in

this logical setting since it is a special case of the F -rule. This redundancy will

disappear in the type-theory because these two rules will have different actions

on terms, in general.
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4.3 The Typing System Lin(O)

Having given this logic, we can now proceed to annotate its contexts and deriva-

tions with variables and terms respectively. We assume the same set of variables

used in DILL(C), X, ranged over as before by x, y . . . , and construct pre-terms as

follows:

Definition 4.3.1 (Pre-Terms)

We define pre-terms over a signature (MI , ML, OI, OL), ranged over by v, w . . .

as follows:

v ::=x | let x:Q be v in v

| O((~x: ~Q; ~x: ~A)v, . . . , (~x: ~Q; ~x: ~A)v; (~x: ~Q; ~x: ~A)v, . . . , (~x: ~Q; ~x: ~A)v)(~v;~v)

where we have an operator clause for every operator O ∈ OL.

We omit typing information in pre-terms where convenient. The binding beha-

viour of the let construct is familiar, and the operator construct

O((~x1; ~y1)v1, . . . , (~xr; ~yr)vr; (~x
′
1; ~y

′
1)w1, . . . , (~x′

s; ~y
′
s)ws)(v

′
1, . . . , v′

r′; w′
1, . . . , w′

s′)

binds the variables ~xi and ~yi in vi for all i from 1 to r, and the variables ~x′
j and

~y′
j in wj respectively for all j = 1 . . . s. We assume the usual capture-avoiding

substitution v{w/x} and we may also use a simultaneous form v{~w/~x}.

We can now define the notion of the multiset of free variables of a pre-term v,

which we write FV(v), unambiguously overloading our previous notation. In the

following, we again use the mixed complement M −S, where M is a multiset and

S is a set, for the multiset resulting when all copies of anything in S are removed

from M .

FV(x) = {x}

FV(let x be v in w) = (FV(w) − {x}) ∪ FV(v)

FV(O((~x1; ~y1)v1, . . . , (~xr; ~yr)vr; (~x
′
1; ~y

′
1)w1, . . . , (~x′

s; ~y
′
s)ws)(~v

′; ~w′))

= (
⋃

i=1...r

FV(vi) − {~xi~yi}) ∪ (
⋃

j=1...s

FV(wj) − {~x′
j~y

′
j}) ∪

(
⋃

i′=1...r′

FV(v′
i′)) ∪ (

⋃

j′=1...s′

FV(w′
j′))

We again recall the definitions of appendix A, and add to them by saying that

a linear typing is a typing of a variable from the set X with a linear type, and

conversely an intuitionistic typing is a typing of a variable with an intuitionistic

type. Then an intuitionistic typing sequence is a sequence of intuitionistic typings,
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and similarly for linear typing sequences. Then a typing context is a pair of an

intuitionistic typing sequence and a linear typing sequence, written as usual as

Γ; ∆ where Γ is the intuitionistic part and ∆ is the linear part.

We now give the typing rules of the generalised type system over a signature

O, which we will refer to again as Lin(O).

Definition 4.3.2 (The Typing Rules of Lin(O))

We say a typing judgement Γ; ∆ ⊢ v :A can be derived, for a typing context Γ; ∆,

a pre-term v and a linear type A, when this can be shown using the following

rules:

(I − Ax) Γ, x:Q, Γ′; ⊢ x:Q (L − Ax) Γ; x:A ⊢ x:A

Γ; ∆1 ⊢ v :Q x:Q, Γ; ∆2 ⊢ w:A

Γ; ∆ ⊢ let x:Q be v in w:A
(F )

(where ∆ = ∆1#∆2)

Γ, ~x1 : ~Q1; ~y1 : ~A1 ⊢ v1 :B1 . . . Γ, ~xr : ~Qr; ~yr : ~Ar ⊢ vr :Br

Γ, ~x′
1 : ~Q

′
1; ∆1, ~y′

1 : ~A′
1 ⊢ w1 :B′

1 . . .

Γ, ~x′
s : ~Q

′
s; ∆s, ~y′

s : ~A′
s ⊢ ws :B′

s

Γ; ∆′
1 ⊢ v′

1 :Q
′′
1 . . . Γ; ∆′

r′ ⊢ v′
s :Q

′′
r′

Γ; ∆′′
1 ⊢ w′

1 :A
′′
1 . . . Γ; ∆′′

s′ ⊢ w′
s′ :A′′

s′

Γ; ∆ ⊢ O((~x1; ~y1)v1, . . . , (~xr; ~yr)vr; (~x′
1; ~y

′
1)w1, . . . , (~x′

s; ~y
′
s)ws)(v′

1, . . . , v′
r′; w′

1, . . . , w′
s′):B′′ (O)

where ∆ = ∆1# . . . #∆s#∆′
1# . . .#∆′

r′#∆′′
1 . . . ∆′′

s′, and there is an instance of

this last rule for any operator O with arity

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)Br ; (~Q′
1; ~A′

1)B
′
1, . . . , (~Q′

s; ~A′
s)B

′
s

(~Q′′; ~A′′)B′′

where ~Q′′ = Q′′
1 . . . Q′′

r′ and ~A′′ = A′′
1 . . . A′′

s′.

Definition 4.3.3 (Term)

For a typing context Γ; ∆ and a linear type A, a Γ; ∆-term v having type A of

Lin(O) is a pre-term of Lin(O) such that we can derive Γ; ∆ ⊢ v :A. We will often

say “the term Γ; ∆ ⊢ v :A” meaning “the Γ; ∆ term v of type A”.

We now say that, given a typing judgement Γ; ∆ ⊢ v :A, a variable x ∈ FV(v)

is an intuitionistic free variable of v if it occurs in dom(Γ), and x ∈ FV(v) is an

linear free variable of v if it occurs in dom(∆).
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Operators and Natural Deduction

Now that we have presented the basic typing system and shown how operators

are assigned arities, it is worth discussing the process by which a sequent-style

operator rule becomes a natural deduction typing rule. Our presentation of op-

erators as primitives has been sequent-style from the outset, since we allow new

assumptions in the result of an operator. If we were to directly adopt the operator

arity rule as the logical rule for the operator, then in our natural deduction system

a cut into one of these new assumptions would not be eliminable. In fact, this

problem is a generalisation of a problem which historically arose in connection

with the promotion rule of ILL, which was first presented for example in [Abr93]

as:
!Γ ⊢ A
!Γ ⊢!A

Prom

In that rule, we intuitively bind all the inputs !Γ and introduce fresh ones of the

same types, since this operator is not linearly natural. However, if we take this

rule then it is not possible to eliminate a cut into one of the assumptions. The

solution to this problem as proposed by Benton et al. was to incorporate the

possibility of a cut into any of the assumptions, giving the rule:

∆1 ⊢!B1 . . . ∆r ⊢!Br !B1 . . .!Br ⊢ A
∆1, . . .∆r ⊢!A Prom′

This is precisely the approach we have adopted, incorporating the possibility

of a cut into any new assumption in the output of an operator, and this approach

is the canonical way of turning a sequent system into a natural deduction one.

We choose to work with sequent-style operators partly because they are easier

to work with and also since Milner’s action calculi have a sequent-style approach

inherited from their categorical underpinning.

We can now prove the following typing properties of Lin(O).

Lemma 4.3.4 (Typing Properties)

We have the following in the system Lin(O):

Free Variables I If Γ; ∆ ⊢ v :A, then the underlying set of the multiset FV(v)

is a subset of dom(Γ) ∪ dom(∆).

Free Variables II If Γ; x:A, ∆ ⊢ v :B, then x occurs precisely once in FV(v).

Strengthening If Γ, x:Q; ∆ ⊢ v :B and x 6∈ FV(v), then Γ; ∆ ⊢ v :B.

I-Transfer If Γ; ∆, x:Q ⊢ v :A, then Γ, x:Q; ∆ ⊢ v :A.
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Unique Derivation Given a typing context Γ; ∆ and a linear type A, for each

Γ; ∆ term v of type A there is a unique derivation of the typing judgement

Γ; ∆ ⊢ v :A. Further, given a pre-term v ad a typing context Γ; ∆, there is

at most one A such that v is a Γ; ∆-term of type A.

The proofs of these properties are simple. For example, we prove that every

term has a unique derivation.

Proof We can prove this by induction over the pre-term structure of v. If

the pre-term is a variable, it is clear that there is only one possible derivation,

which will use the intuitionistic or linear axiom depending on where the variable

is typed in the context. If the pre-term is a let-clause, say let x:Q be v in w, we

know that all the linear free variables of v and w are typed in ∆. But then since

each distinct free variable must occur either in v or w, we know that ∆ = ∆1#∆2

where ∆2 is the unique subsequence of ∆ which types precisely the linear free

variables of v and ∆2 is the unique subsequence which types precisely the linear

free variables in w. Now, if we take ∆ = ∆′
1#∆′

2, where ∆1 6= ∆′
1 and ∆2 6= ∆′

2,

we can see by our free variable lemma that v will not be a Γ; ∆′
1 − Q term and

w will not be a Γ; ∆′
2 term of type A. Hence the only possible typing derivation

of the let x:Q be v in w is constructed from the unique derivation of the typings

Γ; ∆1 ⊢ v :Q and Γ; ∆2 ⊢ w:A. If the pre-term is an operator instance

O((~x1; ~y1)v1, . . . , (~xr; ~yr)vr; (~x
′
1; ~y

′
1)w1, . . . , (~x′

s; ~y
′
s)ws)(~v

′; ~w′)

we have precisely the multiary case of the same problem, where we have a unique

partition of ∆ into subsequences based on the linear free variables of the ~w~v′ ~w′.

�

The Substitution Rules

We can now give typed versions of the two cut rules given earlier, with some other

typed structural rules:

Γ, x:Q, y :R, Γ′; ∆ ⊢ v :A

Γ, y :R, x:Q, Γ′; ∆ ⊢ v :A
(I − Exch)

Γ; ∆, y :B, x:A, ∆′ ⊢ v :C

Γ; ∆, x:A, y :B, ∆′ ⊢ v :C
(L − Exch)

Γ; ∆ ⊢ v :A
Γ, x:Q; ∆ ⊢ v :A

(Weak)
Γ, x:Q, y :Q;∆ ⊢ v :A

Γ, x:Q; ∆ ⊢ v{x/y}:A
(Cont)

Γ; ⊢ w:Q Γ, x:Q; ∆ ⊢ v :A

Γ; ∆ ⊢ v{w/x}:A
(I − Cut)

Γ; ∆1 ⊢ w:A Γ; ∆2, x:A ⊢ v :B

Γ; ∆ ⊢ v{w/x}:B
(L − Cut)
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where in the linear cut rule, ∆ = ∆1#∆2. These are all admissible typing

rules. In particular, the linear exchange is admissible by virtue of the merging

that we have incorporated into the F and O rules.

Constants

It will be convenient to consider a particular class of operators, those with arity
;

(; )A

for some A ∈ ML. An operator O of this form for a given A will have a typing

rule of the form:

Γ; ⊢ O(; )(; ):A

We will refer to such an operator as a constant of arity A, and abbreviate the

term form O(; )(; ) as O where convenient.

4.4 The Type Theory Lin(O, A)

We will now present the equality judgement of the type theory. This has two

parts, in a similar way to the typing system. We have the structural equality

judgements for congruence and the F -equality, and we also assume an axiom set

of typed equalities (to capture the behaviour of the operators).

First we need to define the notion of term-context, in order to define congru-

ence. We define a pre-context, written C[ ], as follows:

C[ ] ::= | let x be C[ ] in v | let x be v in C[ ] |

O((~x; ~x)v, . . . , (~x; ~x)C[ ], . . . , (~x; ~x)v; (~x; ~x)v, . . . , (~x; ~x)v)(~v;~v)

| O((~x; ~x)v, . . . , (~x; ~x)v; (~x; ~x)v, . . . , (~x; ~x)C[ ], . . . , (~x; ~x)v)(~v;~v)

| O((~x; ~x)v, . . . , (~x; ~x)v; (~x; ~x)v, . . . , (~x; ~x)v)(v . . .C[ ] . . . v;~v)

| O((~x; ~x)v, . . . , (~x; ~x)v; (~x; ~x)v, . . . , (~x; ~x)v)(~v; v . . . C[ ] . . . v)

Now define the instantiation of a pre-context C[ ] by a pre-term v, written

C[v], as the pre-context C[ ] but with the unique occurrence of replaced by

the pre-term v. It is easy to show that the instantiation of any pre-context by a

pre-term is a pre-term.

Definition 4.4.1 (Term Context)

A Γ; ∆ − A/Γ′; ∆′ − B-term context of Lin(O) is a pre-context C[ ] such that for

any term Γ; ∆ ⊢ v :A of Lin(O), we have a derivation of the typing judgement

Γ′; ∆′ ⊢ C[v]:B.
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As before, this definition of contexts is not inductive, but could be equivalently

presented in an inductive form.

An equality judgement over the typing system Lin(O) has the form Γ; ∆ ⊢ v =

w:A, where v and w are both Γ; ∆-terms of type A.

An axiom set is a set of typed equality judgements. We let A range over axiom

sets. We now define intuitionistic terms:

Definition 4.4.2 (Intuitionistic Term)

A Γ; -term is intuitionistic if it is an instance of the following inductive definition:

v ::= x | O((~x; ~x)v, . . . , (~x; ~x)v; )(; )

for some intuitionistic operator O.

We can now define the derivable equality judgements of the type-theory Lin(O)

over the axiom set A.

Definition 4.4.3 (The Equality of Lin(O) over A)

An equality judgement Γ; ∆ ⊢ v = w :A is derivable if it is present in the axiom

set A or is derivable using the following rules:

(Refl) Γ; ∆ ⊢ v = v :A

Γ; ∆ ⊢ v = w:A Γ; ∆ ⊢ w = w′ :A

Γ; ∆ ⊢ v = w′ :A
(Trans)

Γ; ∆ ⊢ v = w:A

Γ; ∆ ⊢ w = v :A
(Sym)

Γ; ∆ ⊢ v = w:A

Γ′; ∆′ ⊢ C[v] = C[w]:B
(Cong)
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where C[ ] is a Γ; ∆ − A/Γ′; ∆′ − B term-context.

(F − βv) Γ; ∆ ⊢ let x be v in w = w{v/x}:A
where Γ; ⊢ v :Q is an intuitionistic term

(F − η) Γ; ∆ ⊢ let x be v in x = v :Q

(cc − 1) Γ; ∆ ⊢ let x be v in (let y be w in w′) = let y be (let x be v in w) in w′ :A
where x is not free in w′ and y is not free in v

(cc − 2) Γ; ∆ ⊢ let x be v in (let y be w in w′) = let y be w in (let x be v in w′):A
where x is not free in w and y is not free in v

(cc − 3) Γ; ∆ ⊢ let x be v in O((~x1; ~y1)v1, . . . , (~xr; ~yr)vr; (~x
′
1; ~y

′
1)w1, . . . , (~x′

s; ~y
′
s)ws)(~v

′; w′
1 . . .w′

s′) =
O((~x1; ~y1)v1, . . . , (~xr; ~yr)vr; (~x

′
1; ~y

′
1)w1, . . . , (~x′

s; ~y
′
s)ws)(~v

′; w′
1 . . . (let x be v in w′

i) . . .w′
s′):A

where x does not occur free other than possibly in w′
i

(cc − 4) Γ; ∆ ⊢ let x be v in O((~x1; ~y1)v1, . . . , (~xr; ~yr)vr; (~x
′
1; ~y

′
1)w1, . . . , (~x′

s; ~y
′
s)ws)(v

′
1 . . . v′

r′ ; ~w′) =
O((~x1; ~y1)v1, . . . , (~xr; ~yr)vr; (~x

′
1; ~y

′
1)w1, . . . , (~x′

s; ~y
′
s)ws)(v

′
1 . . .(let x be v in v′

i) . . . v′
r′ ; ~w′):A

where x does not occur free other than possibly in v′
i

(cc − 5) Γ; ∆ ⊢ let x′ be w in O((~x1; ~y1)v1, . . . , (~xr; ~yr)vr; (~x
′
1; ~y

′
1)w1, . . . , (~x′

s; ~y
′
s)ws)(~w′;~v′) =

O((~x1; ~y1)v1, . . . , (~xr; ~yr)vr; (~x
′
1; ~y

′
1)w1, . . . , (~xi; ~yi)(let x be w in wi), . . . , (~x′

s; ~y
′
s)ws)(~w′;~v′):A

where x′ does not occur free other than possibly in vi

We refer to the type-theory with typing system Lin(O) over axiom set A as

Lin(O, A).

In considering the axioms, the least intuitive are clearly the commuting con-

versions. These can be understood by noting that we allow the let -construct to

commute into any linearly natural argument place of an operator, or into any of

the terms which are incorporated for the free assumptions, as these are not bound

by the operator.

Output Naturality

The notion of output naturality is less important than those of intuitionistic and

linear naturality, but it is still worth defining as it will prove very convenient.

In fact, every operator corresponding to an elimination rule of DILL(C) will be

output-natural, and the equalities in the definition will be precisely the commut-

ing conversions of these operators.

Definition 4.4.4 (Output-Parameterised Family)

We say that a typing system Lin(O) has an output-parameterised family of oper-

ators O if O is a set of operators indexed by the set ML, and the element of the
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set indexed by the type (or proposition) C, written OC , has arity;

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)(Br); (~Q′
1; ~A′

1)B
′
1, . . . , (~Q′

s−1; ~A′
s−1)B

′
s−1, (~Q′

s; ~A′
s)(C)

(~Q′′; ~A′′)(C)

where position s is distinguished and s ≥ 1. We will say that the output-

parameterised family has arity:

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)(Br); (~Q′
1; ~A′

1)B
′
1, . . . , (~Q′

s−1; ~A′
s−1)B

′
s−1, (~Q′

s; ~A′
s)( )

(~Q′′; ~A′′)( )

Definition 4.4.5 (Output Naturality)

Given a type-theory Lin(O, A), an output-parameterised family O with arity:

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)(Br); (~Q′
1; ~A′

1)B
′
1, . . . , (~Q′

s−1; ~A′
s−1)B

′
s−1, (~Q′

s; ~A′
s)( )

(~Q′′; ~A′′)( )

is output natural if assuming the following:

• that we have Γ~xi : ~Qi; ~yi: ~Ai ⊢ vi :Bi for i = 1 . . . r

• that we have Γ, ~y′
j : ~Q

′
j; ∆j, ~xj : ~A′

j ⊢ wj :Bj for j = 1 . . . s,

• that we have Γ; ∆′, x′′ :Bs ⊢ w:C,

• that we have Γ; ∆′′
i′ ⊢ w′

i′ :Q
′′
i′ for i′ = 1 . . . r′, where ~Q′′ = Q′′

1 . . . Q′′
r′,

• and that we have Γ; ∆′′′
j′ ⊢ v′

j′ :A′′
j′ for j′ = 1 . . . s′, where ~A′′ = A′′

1 . . . A′′
s′.

we have the following equality judgement:

Γ; ∆ ⊢w{OBs((~x1; ~y1)v1, . . . , (~xr; ~yr)vr; (~x
′
1; ~y

′
1)w1, . . . , (~x′

s; ~y
′
s)ws)(~v

′; ~w′)/x′′}

= OC((~x1; ~y1)v1, . . . , (~xr; ~yr)vr; (~x
′
1; ~y

′
1)w1, . . . , (~x′

s; ~y
′
s)w{ws/x

′′})(~v′; ~w′):C

where ∆ = ∆1# . . .#∆s#∆′#∆′
1# . . .#∆′

r′#∆′′
1# . . . #∆′′

s′. We let ONat(O, O)

be the set of all such equalities for an operator O in the typing system Lin(O).

We note here that since any operator which is part of an output-parameterised

set of operators in a given typing system Lin(O) has at least one linearly-natural

argument (by definition), no such operator can be intuitionistic.

As an example of an output-natural operator, consider the set of operators

given by the ⊗ − L-rule of DILL(C). In this framework, it is an output-natural

operator set of arity:
; (; AB)( )

(; A ⊗ B)( )

and the equalities specified by the definition of output-naturality are just the

commuting conversions of this term construct in DILL(C).

94



Chapter 5

The Semantics of Lin(O, A)

We will now give a semantics for the type theory Lin(O, A). Just as the underlying

structural rules of the logic and type-theory capture the essence of the interaction

between linear and intuitionistic behaviour, we expect the models of the underly-

ing structural rules of the type theory to have just the essential structure required

to model this interaction. In fact, the models we will use for Lin(O, A) will be

based on a cartesian category interpreting the intuitionistic types, a symmetric

monoidal category interpreting the linear types, and a monoidal functor from the

cartesian category to the symmetric monoidal category. Operators will then be

modelled as natural transformations on hom-sets, and theories will be imposed as

sets of equalities on arrows. Having given this framework, we then get soundness

and completeness results for the models, and further we get an initiality result

for an appropriate category of small models and morphisms.

5.1 The Interpretation

We refer once again to the primitive categorical definitions of appendix A.2, and

their numbered equalities.

The carrier of a Lin(O)-model is a triple (C, S, F ) such that C is a strict

cartesian category, S is a strict symmetric monoidal category and F : C → S is a

strict monoidal functor.

Definition 5.1.1 (Lin(O)-Interpretation)

An interpretation of the typing system Lin(O), which we write G, is a carrier

(C, S, F ) together with:

• primitive interpretation functions [[ ]]GMI
: MI → obj(C) and [[ ]]GML

: ML →

obj(S) such that for all Q ∈ MI we have [[Q]]GML
= F ([[Q]]GMI

),
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• for each operator O ∈ OL having arity

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)Br ; (~Q′
1; ~A′

1)B
′
1, . . . , (~Q′

s; ~A′
s)B

′
s

(~Q′′; ~A′′)B′′

a natural transformation

[[O]]GOL
:(×i=1...rS(F (=) ⊗ [[ ~Qi; ~Ai]]

G, [[Bi]]
G
ML

)) ×

(×j=1...sS(F (=) ⊗ [[ ~Q′
j]] ⊗ ( j) ⊗ [[ ~A′

j]]
G, [[B′

j]]
G
ML

))

→ S(F (=) ⊗ [[ ~Q′′]] ⊗ (⊗j=1...s( s)) ⊗ [[ ~A′′]]G, [[B′′]]GML
)

which is natural independently in each of the s + 1 arguments (=) and

( 1), . . . , ( s), and where the interpretation [[ ]]G is extended to arbitrary

contexts in the obvious way, as given shortly,

• for each operator O ∈ OI having arity

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)Br;

(; )R

a natural transformation

[[O]]GOI
: ×i=1...r S(F (=) ⊗ [[ ~Qi; ~Ai]]

G, [[Bi]]
G
ML

)

→ C(=, [[Q′′]]GC)

where the interpretation is again given shortly, such that for all objects X

of C and all arrows fi : F (X) ⊗ [[ ~Qi; ~Ai]] → [[Bi]] where i = 1 . . . r in S,

[[O]]GOL
(X)(f1, . . . , fr) = F ([[O]]GOI

(X)(f1, . . . , fr))

Where the particular interpretation we are referring to is clear, we will omit

the superscript G on the interpretation function [[ ]].

We now proceed to extend the definition of the interpretation function [[ ]]G to

terms for an arbitrary model G of Lin(O).

Definition 5.1.2 (The Interpretation on Contexts)

First, for a sequence of linear types A1 . . . Ar, define [[A1 . . . Ar]]
G = A1 ⊗ . . .⊗Ar.

Further, define [[Q1 . . .Qs]]
G
C = Q1 × . . . × Qs for a sequence of intuitionistic types

Q1 . . . Qs. Now, for a pair of a sequence of intuitionistic types and a sequence

of linear types ~Q; ~A, define [[ ~Q; ~A]]G = F ([[ ~Q]]GC) ⊗ [[ ~A]]G. Finally overload these

notations to sequences of typings and typing contexts using the function | |; for

example, for a generalised typing context Γ; ∆ define [[Γ; ∆]]G = [[|Γ|; |∆|]]G. Note

that [[Γ; ∆]]G = [[ ; Γ, ∆]]G.
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We now define some useful arrows:

disc′
~Q

: [[ ~Q]] → I

dup′
~Q

: [[ ~Q]] → [[ ~Q]] ⊗ [[ ~Q]]

merge∆1,∆2,∆ : [[∆]] → [[∆1]] ⊗ [[∆2]]

mmerger
∆1,... ,∆r,∆ : [[∆]] → [[∆1]] ⊗ . . . ⊗ [[∆r]]

str′Γ,∆1,∆2,∆ : [[Γ; ∆]] → [[Γ; ∆1]] ⊗ [[Γ; ∆2]]

mstrrΓ,∆1,... ,∆r,∆ : [[Γ; ∆]] → [[Γ; ∆1]] ⊗ . . . ⊗ [[Γ; ∆r]]

as follows:

disc′
~Q

= F (d[[~Q]]C
)

dup′
~Q

= F (c[[~Q]]C
)

merge∆1,∆2,∆ =







idI where ∆ = ∆1 = ∆2 =

id[[A]] ⊗ merge∆′
1,∆2,∆′ where ∆1 = x:A, ∆′

1 and ∆ = x:A, ∆′

id[[A]] ⊗ merge∆1,∆′
2,∆′;

s[[A]],[[∆1]] ⊗ id[[∆′
2]] where ∆2 = x:A, ∆′

2 and ∆ = x:A, ∆′

mmerger
∆1,... ,∆r,∆ =







id[[∆]] if r = 1

merge∆1,(∆2,... ,∆s+2); id[[∆1]] ⊗ mmerges+1
∆2,... ,∆s+2

where r = s + 2

str′Γ,∆1,∆2,∆ = dup′
Γ ⊗ merge∆1,∆2,∆; id[[Γ]] ⊗ s[[Γ]],[[∆]] ⊗ id[[∆2]]

mstrrΓ,∆1,... ,∆r,∆ =







id[[Γ;∆]] if r = 1

strΓ,∆1,(∆2,... ,∆s+2); id[[Γ;∆1]] ⊗ mstrs+1
Γ,∆2,... ,∆s+2

if r = s + 2

Definition 5.1.3 (The Interpretation on Terms)

We will interpret a term Γ; ∆ ⊢ v :A by induction over the unique derivation of

the typing judgement.

Intuitionistic Axiom In this case, we take

[[Γ, x:Q, Γ′; ⊢ x:Q]] = disc′
Γ ⊗ id[[Q]] ⊗ disc′

Γ′

Linear Axiom In this case, we take

[[Γ; x:A ⊢ x:A]] = disc′
Γ ⊗ id[[A]]

The F Rule Assuming that [[Γ; ∆1 ⊢ v :Q]] = f and [[Γ, x :Q;∆2 ⊢ w :A]] = g,

we take

[[Γ; ∆ ⊢ let x be v in w:A]] = str′Γ,∆1,∆2,∆; f ⊗ id[[Γ;∆2]]; s[[Γ]],[[Q]] ⊗ id[[∆2]]; g
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The Operator Rule Given an operator O of arity:

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)Br ; (~Q′
1; ~A′

1)B
′
1, . . . , (~Q′

s; ~A′
s)B

′
s

(~Q′′; ~A′′)B′′

where ~Q′ = Q′
1 . . . Q′

s and ~A′ = A′
1 . . . A′

s′, assume

• that [[Γ, ~xi: ~Qi; ~yi : ~Ai ⊢ vi:Bi]] = fi for i = 1 . . . r,

• that [[Γ; ~x′
j : ~Q

′
j; ∆j, ~yj;: ~A′

j ⊢ wj :B′
j]] = gj for j = 1 . . . s,

• that [[Γ; ∆′
i′ ⊢ vi′ :Q′′

i′]] = f ′
i′ for i′ = 1 . . . r′,

• that [[Γ; ∆′′
j′ ⊢ w′

j′ :A′′
j′]] = g′

j′ for j′ = 1 . . . s′

Now we take

[[Γ; ∆ ⊢ O((~x1; ~y1)v1 . . . (~xr; ~yr)vr; (~x′
1; ~y

′
1)w1 . . . (~x′

s; ~y
′
s)ws)(~v′; ~w′):B′′]] =

mstrr
′+s+s′

Γ,∆′
1,... ,∆′

r′ ,∆1,... ,∆s,∆′′
1 ,... ,∆′′

s′ ,∆
; (f ′

1 ⊗ . . . ⊗ f ′
r′ ⊗ id[[∆1,... ,∆s]] ⊗ ‘g′

1 ⊗ . . . ⊗ g′
s′);

[[O]]OL
([[Γ]]C, [[∆1]], . . . , [[∆s]])(f1, . . . , fr, g1, . . . , gs)

We can also make an auxiliary definition:

Definition 5.1.4 (The Interpretation on Intuitionistic Terms)

Define the interpretation [[ ]]GC which takes intuitionistic terms Γ; ⊢ v :A to ar-

rows [[Γ; ]]GC → [[A]]GMI
in the cartesian part of the model as follows:

Intuitionistic Axiom In this case, we take

[[Γ, x:Q, Γ′; ⊢ x:Q]]C = πr+1+s
r+1

where Γ = y1 :R1 . . . yr :Rr and Γ′ = y′
1 :R

′
1 . . . y′

s :R
′
s.

The Operator Rule In this case, we take

[[Γ; ⊢ O((~x1; ~y1)v1, . . . , (~xr; ~yr)vr; )(; ):R]]C = [[O]]C([[Γ]]C)(f1, . . . , fr)

where for i = 1 . . . r we have [[Γ, ~xi: ~Qi; ~yi : ~Ai ⊢ vi:Bi]] = fi in S.

We now define the models of the type theory Lin(O, A).

Definition 5.1.5 (Lin(O, A)-Model)

A Lin(O, A) model G is a Lin(O) interpretation such that: for each typed equality

judgement Γ; ∆ ⊢ v = w:A in A, we have [[Γ; ∆ ⊢ v :A]]G = [[Γ; ∆ ⊢ w:A]]G.
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5.2 Soundness

We now show that the equality judgement of Lin(O, A) is soundly mapped into

any model of the type theory Lin(O, A).

First we state two lemmas on the interpretations of the two admissible sub-

stitution rules.

Lemma 5.2.1 (Intuitionistic Substitution)

For any Lin(O, A) model G, given [[Γ, Γ′; ⊢ v :Q]]G = f , where v is intuitionistic

and [[Γ, x:Q, Γ′; ∆ ⊢ w:A]]G = g, we have:

[[Γ, Γ′; ∆ ⊢ w{v/x}:A]]G = str′(Γ,Γ′),∆, ,∆; f ⊗ id[[Γ,Γ′;∆]]; s[[Q]],[[Γ]] ⊗ id[[Γ′;∆]]; g

Lemma 5.2.2 (Linear Substitution)

For any Lin(O, A) model G, given the interpretations [[Γ; ∆1 ⊢ v :A]]G = f and

[[Γ; ∆2, x:A, ∆′
2 ⊢ w:B]]G = g, we have:

[[Γ; ∆ ⊢ w{v/x}:B]]G = str′Γ,∆1,(∆2,∆′
2),∆; f ⊗ id[[Γ;∆2,∆′

2]]; s[[A]],[[Γ;∆2]] ⊗ id[[∆′
2]]; g

where ∆ = ∆1#(∆2, ∆′
2).

Theorem 5 (Soundness)

Given a Lin(O, A) model G and a provable equality Γ; ∆ ⊢ v = w :A in Lin(O, A),

we have that:

[[Γ; ∆ ⊢ v :A]]G = [[Γ; ∆ ⊢ w:A]]G

in the symmetric monoidal part of G.

Proof First we observe that equality of arrows is an equivalence relation, and

further that given a Γ; ∆ − A/Γ′; ∆′ − A′ context C[ ] and a term Γ; ∆ ⊢ t :A,

the interpretation of Γ′; ∆′ ⊢ C[t] : A′ in the internal language of the category

contains as a sub-term the interpretation of Γ; ∆ ⊢ t :A. This implies that our

context-equality rule and equivalence rules are sound. Now by definition any

typed equality in A is soundly interpreted in G, and hence we need only to show

that the 7 axiomatic equalities of the let construct are soundly mapped into G.

Here, we give as examples the proofs for the first two equalities.

• Considering the equality Γ; ∆ ⊢ let x be v in w = w{v/x} :A, we have that:

[[Γ; ∆ ⊢ let x be v in w:A]]

= str′Γ, ,∆,∆; (f ⊗ id[[Γ;∆]]); s[[|Γ|]],[[Q]]ML
⊗ id[[|∆|]]; g

where [[Γ; ⊢ v :Q]] = f and [[Γ, x :Q; ∆ ⊢ w :A]] = g, which is precisely

[[Γ, y :Q, Γ′; ∆ ⊢ v{y/x}:A]] according to our lemma.
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• Considering the equality Γ; ∆ ⊢ let x be v in x = v :Q, we have that:

[[Γ; ∆ ⊢ let x be v in x:Q]]

= str′Γ,∆, ,∆; f ⊗ id[[Γ;∆]]; s[[|Γ|]],[[Q]]ML
⊗ id[[|∆|]]; (discΓ ⊗ id[[Q]]ML

)

= str′Γ,∆, ,∆; (f ⊗ discΓ)

= f

again as required.

Constants

We consider the interpretation of a constant in this semantics. By definition, a

constant O of arity A in Lin(O, A) has an interpretation in a Lin(O, A)-model G

as follows:

[[O]]GOL
: {i} → S(F (=), [[A]]GML

)

However, natural transformations of this form are isomorphic to arrows S(I, [[A]]GML
),

and so we will frequently refer to the interpretation of a constant as having this

latter form.

We now want to show completeness of Lin(O, A) with respect to its models,

which is to say that if two Γ; ∆ terms of type A have the same interpretation

in every Lin(O, A) model, then they are provably equal in Lin(O, A). This is a

familiar result for type theories and their models, and it is commonly proved

by the construction of a term model, in which the objects are types and the

morphisms are terms. In such a term model, we use the structure of the type-

theory to build the categorical structure required of the model. However, such

constructions normally depend on the existence of the appropriate functors in the

model as type constructors, for example as ⊗ occurs explicitly in DILL(C). Type-

theories such as ours which have no type-constructors as basic must therefore

be treated differently. The most one can normally hope for in these cases is

that there exists a term category in which the objects and morphisms are freely

constructed in a simple way from the types and terms of the theory; the best

example of this is the construction of a term cartesian category from sequences of

types and terms of the basic intuitionistic type-theory having only axiom and cut

rules. Operators can be added in this example, and the result extended to show

that given any operator over the objects of the free strict cartesian category on

the types of the theory, there exists a set of operators such that the term model

of the type theory over this set is isomorphic to the free strict cartesian category

with the original operator.
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This result tells us that working in the type theory without an explicit product

constructor is the same as working in the type theory with that constructor added,

even when we are allowed arbitrary operators over the types of the theory with

explicit product constructors. As an example of the method, imagine a nullary

operator (a constant) (A)B × C
c

in the theory with products. Clearly there is

no one operator which represents this in the theory without explicit products,

since B × C is not a type of that theory. However, we can represent the operator

as a pair of operators c1, c2 having arities (A)B
c1

and (A)C
c2

, both of which

can exist in the theory without products, and prove that the resulting type theory

is equivalent to the type theory with products over the original operator c.

Unfortunately, there is no result of this kind for SMC’s and the basic linear

type theory except for the case with no operators. The problem is that given for

example a constant (A)B ⊗ C
c′

in the theory with tensor, there is no equivalent

set of operators in the theory without tensors- it is not possible to represent this

as a pair since linearity demands that B and C be produced and used together.

This behaviour is inherited by our system, since it clearly incorporates the basic

linear type theory but without an explicit tensor type constructor.

The implication of this discussion is that our type theory is only expressive

enough to represent SMC’s having a certain subclass of the obvious operators, ie

those not mentioning the tensor or the unit in the outputs of either the arguments

or the results of the operator.

5.3 The Term Model

It is normal to define the term model of a type-theory using categories having as

objects and arrows elementary constructions over the types and terms of the type

theory. In particular, it is normal in the case of a linear type-theory to construct a

symmetric monoidal term category using sequences of types and terms of the type

theory. However, in this case such a construction is not rich enough in arrows, as

can be seen from the fact that any interpretation of Lin(O) has in its s.m.c. part an

arrow FX → FX ⊗FX for any object X of C. The natural next step is therefore

to allow constructions of the form let x be v in ...(let y be v′ in w1 . . . wr) which

augment the sequence construction sufficiently to allow us to express the cor-

rect arrows. Unfortunately, once we have made this construction certain obvi-

ous equalities appear between constructed elements, notably the equalities which

would be commuting conversions in a type-theoretic setting. Whilst the con-

struction could be pushed through, it seems clearer to present a slightly amended
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type-theory which we can use directly to construct the term-model, and then to

relate this extended type theory to the original type theory.

We will therefore define the term Lin(O, A)-model by giving its objects and

morphisms as the types and terms of this slightly extended type theory, and then

show that this new type theory is a full and faithful extension of Lin(O, A). Hence

the completeness result follows.

Definition 5.3.1 (The Type Theory Lin⊗(O, A))

For a signature O = (MI , ML, OI, OL) and an axiom set A we define the type

theory Lin⊗(O, A) as Lin((M⊗
I , M⊗

L , O⊗
I , O⊗

L ), A⊗), where we define M⊗
I , M⊗

L , O⊗
I ,

O⊗
L and A⊗ as follows:

• M⊗
I is the set of sequences of length one each containing an element of MI ,

which we will refer to briefly as singleton sequences.

• M⊗
L is the set of sequences of elements of ML. We will write a sequence ~A of

elements of ML as ⊗ ~A and may write the empty sequence of such elements

as I .

We will refer to typing contexts of Lin⊗(O, A) using the familiar Γ; ∆, and we

define a function to convert Lin(O) typing contexts to Lin⊗(O, A) typing contexts.

On sequences of linear types A1 . . .Ar, define
︷ ︸︸ ︷

A1 . . . Ar as the sequence of singleton

sequences containing A1 to Ar respectively. We extend this function to sequences

of typings and hence typing contexts by defining
︷︸︸︷

x:A = x :
︷︸︸︷

A . We also extend
︷︸︸︷ to pre-terms simply by applying it to each type annotation in the pre-term,

but when we omit type annotations on pre-terms, we also omit ︷︸︸︷ on pre-terms.

Although in fact one might argue that
︷ ︸︸ ︷

Γ; ∆ = Γ; ∆, by identifying singletons

and the single element they contain, we retain the syntax here to help make the

distinction between the two type theories clear.

Now,

• O⊗
L is the set containing an operator O of arity

(
︷ ︸︸ ︷

~Q1; ~A1)
︷︸︸︷

B1 , . . . , (
︷ ︸︸ ︷

~Qr; ~Ar)
︷︸︸︷

Br ; (
︷ ︸︸ ︷

~Q′
1; ~A′

1)
︷︸︸︷

B′
1 , . . . , (

︷ ︸︸ ︷

~Q′
s; ~A′

s)
︷︸︸︷

B′
s

(
︷ ︸︸ ︷

~Q′′; ~A′′)
︷︸︸︷

A′′

for each operator O ∈ OL having arity:

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)Br ; (~Q′
1; ~A′

1)B
′
1, . . . , (~Q′

s; ~A′
s)B

′
s

(~Q′′; ~A′′)B′′
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with the addition of a weak tensor operator ⊗r
~B

of arity:

; (; )B1, . . . , (; )Br

(; ) ⊗ (B1 . . . Br)

for each r 6= 1, such that each Bi is a singleton sequence.

• O⊗
I is the subset of O⊗

L containing those operators induced by operators in

OI ⊆ OL.

• A⊗ is the set containing
︷ ︸︸ ︷

Γ; ∆ ⊢ v = w :
︷︸︸︷

A for each equality Γ; ∆ ⊢ v = w :

A in A.

It is fairly obvious that given a term Γ; ∆ ⊢ v :A of Lin(O, A), we have that
︷ ︸︸ ︷

Γ; ∆ ⊢ v :
︷︸︸︷

A in Lin⊗(O, A). We will write ⊗r(; ()v1, . . . , ()vr)(; ) as ⊗(v1, . . . , vr)

for clarity, and we define the abbreviation ⊗(v) = v, noting that there is no

instance of the operator when r = 1 by definition.

It is important to note that although we are now using arbitrary sequences

of the types of Lin(O, A) for types, the operators of Lin⊗(O, A) have arities only

involving singleton sequences, with the exception of the tensor operators. In

particular, any set of operators which is output natural in Lin(O, A) will not

be output natural in Lin⊗(O, A), since there can be no instance of the operator

family for any case where the indexing type is not a singleton sequence. This is a

consequence of our preceding discussion, where we remarked that only a certain

subclass of the operators which could be given over the type set with explicit

tensor can be given in Lin(O, A).

Now say that a pre-term of Lin⊗(O, A) is in canonical form if it is an instance

of the following inductive definition, where the v are pre-terms of Lin(O, A):

vc ::= ⊗~v | let x be v in vc

Now we can prove a crucial lemma:

Lemma 5.3.2

Given a typing judgement
︷ ︸︸ ︷

Γ; ∆ ⊢ v :⊗~A of Lin⊗(O, A), v is identically in canon-

ical form with the various pre-terms of Lin(O, A) in v being terms of Lin(O, A).

Note that the typing contexts Γ′; ∆′ which the pre-terms are typable in are

uniquely determined from the typing context Γ; ∆ and the form of the pre-term.

This lemma bears some explanation before we prove it. The reason we have

defined the tensor of the theory Lin⊗(O, A) weakly is so that this lemma is prov-

able. This lemma then shows that the only terms provably of tensor type in
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Lin⊗(O, A) are simply built up from tensors of terms of Lin(O, A) with shared

intuitionistic variables. Further, an important implication of the lemma is that

in the case where ⊗ ~A is a singleton B, v is identically a Γ; ∆-term of type B in

Lin(O, A).

Proof We prove this by induction over the unique derivation of the typing

judgement
︷ ︸︸ ︷

Γ; ∆ ⊢ v :⊗(A1 . . .As).

Intuitionistic Axiom In this case we must have a derivation
︷ ︸︸ ︷

Γ′, x′ :Q′; ⊢ x′ :

Q′, where the sequence ⊗( ~A) must be the singleton Q, and hence the term

is in the correct form.

Linear Axiom In this case, we must have a derivation
︷ ︸︸ ︷

Γ; x′ :A′ ⊢ x′ : A′ and

hence again we have that the derivation is in the correct form.

F Rule In this case we must have a derivation:

︷ ︸︸ ︷

Γ; ∆′′
1 ⊢ w:Q′

︷ ︸︸ ︷

Γ, x′ :Q′; ∆′′
2 ⊢ v :⊗(A1 . . .As)

︷ ︸︸ ︷

Γ; ∆ ⊢ let x′ be w in v :⊗(B1 . . . Bs)

where ∆ = ∆′′
1#∆′′

2. However, in this case, we know by induction that there

exist terms of Lin(O, A) ~v′, ~v′′ and variables ~x such that v is:

let x1 be v′
1 in . . . let xr be v′

r in ⊗~v′′

But since w must be a Γ; ∆′′
2-term of Lin(O, A) by induction, we have that

︷ ︸︸ ︷

Γ; ∆ ⊢ let x′ be w in v :⊗(A1 . . .As) has the correct form.

Operator Rule In this case we need to consider first the operators of OL. Since

these are operators over the types ML, it is impossible that one should exist

with result having output of a tensor type. Hence they can be disregarded.

Now considering an instance of the tensor rule, we have a derivation:

︷ ︸︸ ︷

Γ; ∆′′
1 ⊢ v1 :A1, . . . ,

︷ ︸︸ ︷

Γ; ∆′′
s ⊢ vs :As

︷ ︸︸ ︷

Γ; ∆ ⊢ ⊗~v :⊗(A1 . . .As)

where ∆ = ∆′′
1# . . .#∆′′

s (and the As are singletons). However, by induction

on the the
︷ ︸︸ ︷

Γ; ∆′′
i ⊢ vi:Ai for i = 1 . . . s, we know that these must be Γ; ∆′′

i -

terms of Lin(O, A), and hence
︷ ︸︸ ︷

Γ; ∆ ⊢ ⊗~v : ⊗(A1 . . .As) has the correct form.

�

We can now define the term model of Lin(O, A), GT (O, A).
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Definition 5.3.3 (The Linear Term Category)

We define the linear term category, ST , as follows:

• The objects of ST are the sequences of linear types of Lin(O).

• ST ( ~A, ~B) = {[(~x, v)
~A, ~B]| ;

︷︸︸︷

~x: ~A ⊢ v : ⊗( ~B)}, where we write [(~x, v)
~A, ~B] to

denote the equivalence class of (~x, v)
~A, ~B under the equivalence ≡′ defined

by

(~x, v)
~A, ~B ≡′ (~y, w)

~A, ~B if ;
︷︸︸︷

~x: ~A ⊢ v = w{~x/~y}:⊗ ~B

As in previous definitions of this sort, we write [~x, v]
~A, ~B for [(~x, v)]

~A, ~B, omit

type information where possible and assume that when writing the equi-

valence classes of arrows [~x, v] and [~y, w], the variable sequences are chosen

to make all the variables in the concatenation ~x~y distinct, unless explicitly

identified.

• id ~A = [~x, ⊗~x]

• [~x, v]; [~y, w] =

[~x, let x1 be v′
1 in . . . let v′

r be v′
r in (w{~v′′/~y})]

where by our previous lemma v is let x′
1 be v′

1 in . . . let x′
r be v′

r in ⊗~v′′.

It is easy to show that these definitions give a category. We proceed to define

a strict s.m. structure on ST . First define the tensor on objects, which are

sequences of types, as concatenation. Then define [~x, v] ⊗ [~y, w] as

[~x~y, let x′
1 be v′

1 in . . . let x′
r be v′

r in let y′
1 be w′

1 in . . . let y′
r′ be w′

r′ in ⊗(~v′′ ~w′′)]

where again by our previous lemma v is let x′
1 be v′

1 in . . . let x′
r be v′

r in ⊗~v′′ and

w is let y′
1 be w′

1 in . . . let y′
r′ be w′

s′ in ⊗~w′′.

In order to define the intuitionistic term category, we need an auxiliary defin-

ition.

Definition 5.3.4 (Intuitionistic Equality)

We say that two intuitionistic terms Γ; ⊢ v :Q and Γ; ⊢ w :Q are intuitionist-

ically equal, which we write Γ; ⊢ v =I w :Q, if they are identically equal, or if v

is O((~x1; ~y1)v′
1, . . . , (~xr; ~yr)v′

r; )(; ), w is O((~x1; ~y1)w′
1, . . . , (~xr; ~yr)w′

r; )(; ) and

Γ, ~xi : ~Qi; ~yi : ~Ai ⊢ v′
i = w′

i :Bi

for all i = 1 . . . r.
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Definition 5.3.5 (The Intuitionistic Term Category)

We define the intuitionistic term category, CT , as follows:

• The objects of CT are sequences of intuitionistic types of Lin(O, A).

• The arrows are given:

CT (~Q, ~R) = {[(~x,~v)
~Q, ~R]|

︷ ︸︸ ︷

~x: ~Q; ⊢ vi :Ri (where the vi are

intuitionistic for i = 1 . . . s)}

where ~R = R1 . . . Rs and we write [(~x,~v)
~Q, ~R] to denote the equivalence class

of (~x,~v)
~Q, ~R under the equivalence ≡′

C defined by

(~x,~v) ≡′
C (~y, ~w) if ~v = v1 . . . vr, ~w = w1 . . . wr

and ~x: ~Q; ⊢ vi =I wi{~y/~x}:Ri for i = 1 . . . r

Again, we write [~x,~v]
~Q, ~R for [(~x,~v)]

~Q, ~R, omit type information where possible

and assume that when writing the equivalence classes of arrows [~x,~v] and

[~y, ~w], the variable sequences are chosen to make all the variables in the

concatenation ~x~y distinct, unless explicitly identified.

• id ~Q = [~x, ~x]

• [~x,~v]; [~y, ~w] = [~x, ~w{~v/~y}]

We can equip CT with a cartesian structure by defining the product to be

concatenation on sequences, and giving the arrow structure as follows:

〈[~x,~v], [~x, ~w]〉 = [~x,~v ~w]

pi = [~x, xi]

This construction is familiar, as it is almost identical to that which we used for

the intuitionistic part of the term model of DILL(C). Similar proofs show that

these definitions make CT into a cartesian category.

We can now define the functor FT : CT → ST as the identity on objects of CT ,

and on arrows by:

F ([~x,~v]) = [~y, let ~x be ~y in ⊗~v]

We can easily check that this definition is functorial, and further that F is a

strict monoidal functor. We now define the term model GT (O, A) of Lin(O, A).

Definition 5.3.6 (The Term Lin(O, A)-Model)

The carrier of the term model GT (O, A) is the triple (CT , ST , FT ), and the primitive

interpretation functions are given as follows:
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• [[ ]]
GT (O,A)
MI

takes the intuitionistic types to the singleton sequences containing

them in CT .

• [[ ]]
GT (O,A)
ML

takes the linear types to the singleton sequences containing them

in ST . Clearly for all Q ∈ MI we have [[Q]]GT

ML
= F ([[Q]]GT

MI
).

• Given an operator O ∈ OI having arity

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)Br;

(; )R

define the natural transformation [[O]]
GT(O,A)
OI

at ~Q′ on arrows [~x′~xi~yi, vi] for

i = 1 . . . r to be the arrow

[(~x′, O((~x1; ~y1)v1, . . . , (~xr; ~yr)vr; )()]

• Given an operator O ∈ OL having arity

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)Br ; (~Q′
1; ~A′

1)B
′
1, . . . , (~Q′

s; ~A′
s)B

′
s

(~Q′′; ~A′′)B′′

define the natural transformation [[O]]
GT(O,A)
OL

to be that which when applied

at ~R, ~C1 . . . ~Cs to the arrows [~z~xi~yi, vi] for i = 1 . . . r and [~z~x′
j~z

′
j~y

′
j, wj] for

j = 1 . . . s gives the arrow

[~z~x′′~z′
1 . . . ~z′

s~y
′′, O((~x1; ~y1)(v1), . . . , (~xr; ~yr)(vr); (~x

′
1; ~y

′
1)(w1), . . . , (~x′

s; ~y
′
s)(ws))(~x

′′; ~y′′)]

Clearly these two definitions satisfy the condition on the interpretation of

operators in the two categories.

In order to show that this is indeed a model, we need to observe that the

conditions on Lin(O)-interpretations and Lin(O, A)-models hold. This is easily

done once we have proved the following lemma.

Lemma 5.3.7

Given a term ~x: ~Q; ~y : ~A ⊢ v :B of Lin(O, A) such that [[~x: ~Q; ~y : ~A ⊢ v :B]]GT(O,A) =

[~x~y, w]
~Q ~A,B, we can derive the equality judgement in Lin⊗(O, A):

︷ ︸︸ ︷

~x: ~Q; ~y : ~A ⊢ w = v :B

5.4 Completeness

We now present a lemma relating Lin(O, A) to Lin⊗(O, A).

Lemma 5.4.1

Given an equality judgement
︷ ︸︸ ︷

Γ; ∆ ⊢ v = w :
︷︸︸︷

A in Lin⊗(O, A), we have an

equality judgement Γ; ∆ ⊢ v = w:A in Lin(O, A).
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Proof Firstly, we know that both v and w are Γ; ∆ terms of type A in Lin(O, A)

by the lemma 5.3.2. We prove the lemma by induction over the structure of the

proof of the equality judgement
︷ ︸︸ ︷

Γ; ∆ ⊢ v = w :
︷︸︸︷

A in Lin⊗(O, A). If the last rule

was any of the reflexivity, symmetry or transitivity rules then by the induction

hypothesis the proof is easy. If the last rule was the term-context rule then it

is easy to see that the
︷ ︸︸ ︷

Γ; ∆ −
︷︸︸︷

A /
︷ ︸︸ ︷

Γ′; ∆′ −
︷︸︸︷

B term context of Lin⊗(O, A) used

in the rule is also a Γ; ∆ − A/Γ′∆′ − B term context of Lin(O, A), and hence

that the result follows from the induction hypothesis. Considering the axiomatic

equalities, those generated from equalities in A are clearly the images of equalities

in Lin(O, A), the naturality equations clearly must mention the operator ⊗ and

hence are not terms in the appropriate context (since if they were they would

be pre-terms of Lin(O, A), which is a contradiction) and finally, the axiomatic

equalities which are commuting conversions for the let -construct Lin⊗(O, A) are

the images of instances of the same equalities in Lin(O, A). �

This shows that the embedding from Lin(O, A) into Lin⊗(O, A) is faithful. We

also know that it is full by virtue of lemma 5.3.2.

We can use these results to relate the term model and Lin(O, A) as follows:

Lemma 5.4.2

The arrows ~A → B in the symmetric monoidal category of the term model, ST ,

are isomorphic to the terms ; ~x : ~A ⊢ v :B of Lin(O, A) quotiented by provable

equality.

Proof Firstly consider arrows ~A → B in ST . These are equivalence classes of

terms of Lin⊗(O, A) ;
︷︸︸︷

~x: ~A ⊢ v :B quotiented by term equality and α-conversion

on free variables. But we know that such terms of Lin⊗(O, A) are isomorphic to

terms of Lin(O) ; ~x: ~A ⊢ w:B by our lemmas relating the two type theories, and

hence the result follows. �

Now we can prove soundness and completeness:

Theorem 6 (Soundness and Completeness)

Given Γ; ∆ terms v and w of type A in Lin(O, A), Γ; ∆ ⊢ v = w :A if and only if

[[Γ; ∆ ⊢ v :A]]G = [[Γ; ∆ ⊢ w:A]]G for all Lin(O, A)-models G.

Proof This proof is largely by standard means. We already have the forward

direction thanks to our proof of soundness. To show the other direction, assume

that:

[[Γ; ∆ ⊢ v :A]]GT(O,A) = [~x~y, v′] = [~x~y, w′] = [[Γ; ∆ ⊢ w:A]]GT(O,A)

108



where Γ = ~x : ~Q and ∆ = ~y : ~B, for the particular Lin(O, A)-model GT (O, A).

Now by lemma 5.3.7 and the definition of equality in GT (O, A) we have that:

︷ ︸︸ ︷

Γ; ∆ ⊢ v = v′ :
︷︸︸︷

A and
︷ ︸︸ ︷

Γ; ∆ ⊢ w = w′ :
︷︸︸︷

A

and
︷ ︸︸ ︷

; Γ, ∆ ⊢ v′ = w′ :
︷︸︸︷

A .

From this last equality we can construct an equality judgement
︷ ︸︸ ︷

Γ; ∆ ⊢ v′ =

w′ :
︷︸︸︷

A using the
︷ ︸︸ ︷

Γ; ∆ −
︷︸︸︷

A /
︷ ︸︸ ︷

; Γ, ∆−
︷︸︸︷

A term context , and hence by transit-

ivity we have the equality judgement
︷ ︸︸ ︷

Γ; ∆ ⊢ v = w :
︷︸︸︷

A . But now using our last

lemma, we have the required equality judgement of Lin(O, A):

Γ; ∆ ⊢ v = w:A

�

5.5 Initiality

We now define suitable Lin(O)-maps and prove that the term model GT (O, A) is

(strictly) initial in the category of small Lin(O, A)-categories and Lin(O)-maps.

Definition 5.5.1 (Lin(O)-Maps)

Define a Lin(O)-map F : G → G ′ for Lin(O)-interpretations G and G ′ having

carriers (C, S, F ) and (C′, S ′, F ′) respectively as a pair of functors (FC : C →

C′, FS : S → S ′) such that:

• FC is strict cartesian and FS is strict symmetric monoidal,

• the following diagram commutes:

C
F ✲ S

C′

FC

❄ F ′
✲ S ′

❄

FS

• FC([[ ]]GMI
) = [[ ]]G

′

MI
: MI → obj(C′),

• FS([[ ]]GML
) = [[ ]]G

′

ML
: ML → obj(S ′),

• for each operator O ∈ OI with arity

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)Br;

(; )R
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object X of C and arrows fi : F (X) ⊗ [[ ~Qi; ~Ai]] → [[Bi]] for i = 1 . . . r of S,

FC([[O]]GOI
(X)(f1 . . . fr)) = [[O]]G

′

OI
(FC(X)(FS(f1), . . . , FS(fr)))

• for each O ∈ OL, object X of C, objects Y1 . . . Ys and arrows of S fi : F (X)⊗

[[ ~Qi; ~Ai]] → [[Bi]] for i = 1 . . . r and gj : F (X) ⊗ [[ ~Q′
j]] ⊗ Yj ⊗ [[ ~A′

j]] → [[B′
j]] for

j = 1 . . . s,

FS([[O]]GOL
(X, Y1, . . . , Ys)(f1 . . . fr, g1 . . . gs)) =

[[O]]G
′

OL
(FC(X), FS(Y1), . . . , FS(Ys))(FS(f1), . . . , FS(fr), FS(g1), . . . , FS(gs))

Now define the category of small Lin(O, A)-models, CatLin(O, A), to be the

category having objects the small Lin(O, A)-models and morphisms the Lin(O)-

morphisms between them.

Now we will prove that each Lin(O, A)-model canonically yields a Lin⊗(O, A)-

model, simply by interpreting sequences of types as the tensor of the interpretation

and interpreting the tensor operator on a sequence of terms as the obvious tensor

of the interpretations of the terms, with the intuitionistic context duplicated.

Lemma 5.5.2

Given a Lin(O, A)-model G, we can construct a Lin⊗(O, A)-model G ′ as follows:

• The carrier of G ′ will be the carrier of G, (C, S, F ).

• The primitive interpretation function [[ ]]G
′

M⊗

I

, which takes singleton sequences

of elements of MI to objects of C, is just the function which takes the

singleton sequence containing Q to [[Q]]GMI
.

• The primitive interpretation function [[ ]]G
′

M⊗

L

, which takes sequences of ele-

ments of ML to objects of S, is just the function which takes the sequence

A1 . . . Ar to [[A1]]
G
ML

⊗ . . .⊗ [[Ar]]
G
ML

. These two definitions clearly satisfy the

equality [[ ]]G
′

M⊗

L

= F ([[ ]]G
′

M⊗

I

) over singleton sequences of intuitionistic types.

• Since [[
︷ ︸︸ ︷

Γ; ∆]]G
′

= [[Γ; ∆]]G on objects of S, as is easily seen from the defini-

tions, the natural transformation [[O]]G
′

O⊗

L

is just the natural transformation

[[O]]GOL
on operators of Lin(O, A), and similarly for OI . Clearly this definition

satisfies the condition on these interpretation functions.

• For the tensor operator of Lin⊗(O, A),

; (; )A1, . . . , (; )Ar

(; ) ⊗ (A1 . . . Ar)
⊗r

Γ,∆1,...∆r , ~A
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say [[⊗r]](X, Y1, . . . , Yr)
G′

O⊗

L

is the function which given fi : F (X)⊗Yi → [[ ~A]]

for i = 1 . . . r, takes value:

nr
X,Y1,... ,Yr

; (f1 ⊗ . . . ⊗ fr)

where nr
X,Y1,... ,Yr

is the obvious map taking

F (X) ⊗ A1 ⊗ . . . ⊗ Ar → ⊗(F (X) ⊗ A1), . . . , (F (X) ⊗ Ar)

It can now easily be shown that G ′ is a Lin⊗(O, A)-model, and further that

on terms of Lin⊗(O, A)
︷ ︸︸ ︷

Γ; ∆ ⊢ v :A which are the images of terms of Lin(O, A)

Γ; ∆ ⊢ v :A, we have:

[[
︷ ︸︸ ︷

Γ; ∆ ⊢ v :A]]G
′

= [[Γ; ∆ ⊢ v :A]]G
′

in the s.m. category S.

Definition 5.5.3 (Canonical Morphism)

Given a Lin(O, A)-model G, define the morphism FT G : GT (O, A) → G as follows,

where FT G = (FT G
C , FT G

S):

• On objects of CT , which are sequences of intuitionistic types of Lin(O), ~Q,

define FT C(~Q) = [[~Q]]GC .

• On arrows of CT , which are equivalence classes [~x,~v]
~Q, ~R for intuitionistic

terms v of Lin⊗(O, A), define FT C([~x,~v]) as 〈f1, . . . , fr〉, where fi = [[ ;
︷︸︸︷

~x: ~A ⊢

vi:⊗ ~B]]G
′

C for i = 1 . . . r, where G ′ is the model of Lin⊗(O, A) which is gener-

ated from the Lin(O, A)-model G. Note that since the models have the same

carrier, the interpretation takes arrows of CT to arrows in the cartesian part

of G as required.

• On objects of ST , which are sequences of linear types of Lin(O), ~A, define

FT S( ~A) = [[ ~A]]G.

• On arrows of ST , which are equivalence classes [~x, v]
~A, ~B for terms v of

Lin⊗(O, A), define FT S([~x, v]) as [[ ;
︷︸︸︷

~x: ~A ⊢ v :⊗ ~B]]G
′

where G ′ is the model

of Lin⊗(O, A) which is generated from the Lin(O, A)-model G. Note that

since the models have the same carrier, the interpretation takes arrows of

ST to arrows in the s.m.c. part of G as required.

We now prove two auxiliary lemmas:
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Lemma 5.5.4

Given a term
︷ ︸︸ ︷

~y : ~Q; ~x: ~A ⊢ v : ⊗ ~B of Lin⊗(O, A), we have that for an arbitrary

Lin(O)-morphism (FC , FS) : GT (O, A) → G ′:

FS([~y′~x, let ~y be ~y′ in v]) = [[
︷ ︸︸ ︷

~y: ~Q; ~x: ~A ⊢ v :⊗ ~B]]G
′

Proof The proof proceeds by induction over the derivation
︷ ︸︸ ︷

~y : ~Q; ~x: ~A ⊢ v :⊗ ~B.

• In the case of an intuitionistic axiom instance
︷ ︸︸ ︷

~x: ~Q, y :R,~x′: ~Q′; ⊢ y :R, we

have that:

[~x′′y′~x′′′, let ~xy~x′ be ~x′′y′~x′′′ in y] = FT (d
[[~Q]]

GT (O ,A )

C

× id
[[R]]

GT (O,A )

C

× d
[[~Q′]]

GT (O,A )

C

)

But all of these constructs are preserved by the fact that FT ; FS = FC ; F

and that FC strictly preserves the cartesian structure, and so we have:

FS([~x′′y′~x′′′, let ~xy~x′ be ~x′′y′~x′′′ in y]) = F (d[[~Q]]G
C

× id[[R]]G
C

× d[[~Q′]]G
C

)

as required.

• In the case of a linear axiom instance
︷ ︸︸ ︷

~y : ~Q; x:A ⊢ x:A we have that:

[~y′x, let ~y be ~y′ in x] = FT (d
[[~Q]]

GT (O,A )

C

) ⊗ id[[A]]GT (O,A)

But again, these constructs are preserved since F preserves F and the mon-

oidal structure, and so we have:

FS([~y′x, let ~y be ~y′ in x]) = F (d[[~Q]]G
C

) ⊗ id[[A]]G

• In the case of an instance of the F -rule:
︷ ︸︸ ︷

~y : ~Q; ~x′ : ~A′ ⊢ v :Q′

︷ ︸︸ ︷

~y : ~Q, y′ :Q′; ~X ′′ : ~A′′ ⊢ w:⊗ ~B
︷ ︸︸ ︷

~y : ~Q; ~x: ~A ⊢ let y′ be v in w:⊗ ~B

(F )

where ~x: ~A = (~x′ : ~A′)#(~x′′ : ~A′′), we have that

[~y′′~x, let y′ be v in w] = str′~Q, ~A′, ~A′′, ~A
; ([~y′′~x′, let ~y be ~y′ in v] ⊗ id[[~Q; ~A′′]]GT (O,A ) );

(s[[~Q]]GT (O ,A ) ,[[Q′]]GT (O ,A ) ⊗ id[[ ~A′′]]GT (O,A ) ); [~y′′y′′′, let ~yy′ be ~y′′y′′′ in w]

In this expression, the two arrows still in the form [. . . ] are preserved by

induction since they annotate the premises of the F-rule, and the rest of

the structure excepting the str′ construct is preserved by the fact that FS is

strict symmetric monoidal. It is fairly easy to show that the str′ construct

is also preserved by considering its construction.
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• In the case of an operator rule instance not due to the tensor operator, the

proof proceeds similarly, as the operator clause must be preserved.

• In the case where we have an instance of the tensor introduction rule,

︷ ︸︸ ︷

~y : ~Q; ~x1 : ~A1 ⊢ v1 :B1, . . . ,
︷ ︸︸ ︷

~y : ~Q; ~xr : ~Ar ⊢ vr :Br

︷ ︸︸ ︷

~y : ~Q; ~x: ~A ⊢ ⊗r(v1 . . . vr):⊗(B1 . . .Br)

⊗r

where ~x: ~A = (~x1 : ~A1)# . . . #(~xr : ~Ar), we have that:

[~y′~x, let ~y be ~y′ in ⊗r(v1 . . . vr)] =

mstrr~Q, ~A1... ~Ar , ~A
; ([~y′~x1, let ~y be ~y′ in v1] ⊗ . . . ⊗ [~y′~xr, let ~y be ~y′ in vr])

But now since we can show that mstrr is preserved by FS , and we know

that the tensor must be, we have the required result. �

Similarly, we can show:

Lemma 5.5.5

Given an arbitrary intuitionistic term
︷ ︸︸ ︷

~x: ~Q; ⊢ v :R of Lin⊗(O, A), (which also

must be an intuitionistic term ~x : ~Q; ⊢ v :R of Lin(O, A)) we have that for an

arbitrary Lin(O)-morphism (FC, FS) : GT (O, A) → G ′:

FC([~x, v]) = [[
︷ ︸︸ ︷

~x: ~Q; ⊢ v :R]]G
′

C

This is proved in an exactly analogous way, except that there are only two

cases, one for the variable which is preserved because it is a projection, and one

for the operator case which follows from the previous lemma and the preservation

of the operator interpretations by the Lin(O)-morphism.

Lemma 5.5.6 (Uniqueness)

The morphism FT G : GT (O, A) → G is a Lin(O)-map, and it is the unique such

Lin(O)-map.

Proof We prove this by considering the definition. Assume we have an arbitrary

Lin(O)-map F : GT (O, A) → G.

On Objects of CT , which are sequences of intuitionistic types of Lin(O), we

know that FC(Q1 . . . Qr) = [[Q1]]
G
MI

× . . . × [[Qr]]
G
MI

since F strictly preserves

the cartesian structure. But we have:

[[Q1]]
G
MI

× . . . × [[Qr]]
G
MI

= [[Q1 . . . Qr]]
G
C = FT G

C(Q1 . . . Qr)
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On Arrows of CT , which are equivalence classes [~x,~t]
~Q, ~R, by definition we have

FC([~x,~v]
~Q, ~R) = 〈FC([~x, v1]), . . . , FC([~x, vs])〉 since FC strictly preserves the

cartesian structure. But now we can see by our lemma that these arrows

[~x, vi] must all be mapped according to the definition of FT C.

On Objects of ST , which are sequences of linear primes of Lin(O), we know

that FS(A1 . . .As) = [[A1]]G ⊗ . . . ⊗ [[As]]G because FS is strict monoidal.

But we have:

[[A1]]
G ⊗ . . . ⊗ [[As]]

G = [[A1 . . .As]]
G = FT G

S(A1 . . .As)

On Arrows of ST , which are equivalence classes [~x, v]
~A, ~B, we use our result;

given

FS([~y′~x, let ~y be ~y′ in v]) = [[
︷ ︸︸ ︷

~y: ~Q; ~x: ~A ⊢ v :⊗ ~B]]G
′

we can easily see that in the special case of arrows in ST , this means that

FS agrees with FT S . Hence it follows that the arbitrary map F is the same

as the canonical map FT , which is therefore unique. �

This immediately implies that GT (O, A) is initial in the category CatLin(O, A).

5.6 Output Naturality

We now consider our defined notion of output naturality of a given operator in a

type theory Lin(O, A). Clearly, just as we have specified that linearly natural op-

erators be interpreted by appropriate natural transformations, we might expect

that output-natural operators be interpreted as natural transformations which

are natural in the output-place of the appropriate argument. However, it is im-

mediately obvious that not every model of Lin(O, A) interprets its output natural

operators as such natural transformations, simply because in the model we only

have candidates for the components of the natural transformations for objects

which are the interpretation of types. We now proceed by defining a sub-class of

models which do interpret output natural operators as natural transformations

of this kind, and show how they relate to the original models.

Definition 5.6.1 (Output Natural Lin(O)-Interpretation)

Given a typing system Lin(O) with an output-parameterised set of operators O

having arity:

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)(Br); (~Q′
1; ~A′

1)B
′
1, . . . , (~Q′

s−1; ~A′
s−1)B

′
s−1, (~Q′

s; ~A′
s)( )

(~Q′′; ~A′′)( )
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we define an output-natural-in-O interpretation of the typing system Lin(O), which

we again write G, to be an interpretation of the typing system Lin(O) with a

natural transformation

[[O]]GOL
:(×i=1...rS(F (=) ⊗ [[ ~Qi; ~Ai]]

G, [[Bi]]
G
ML

)) ×

(×j=1...(s−1)S(F (=) ⊗ [[ ~Q′
j]]

G ⊗ ( j) ⊗ [[ ~A′
j]]

G, [[B′
j]]

G
ML

)) ×

(S(F (=) ⊗ [[ ~Q′
s]]

G ⊗ ( s) ⊗ [[ ~A′
s]]

G, (≡)))

→ S(F (=) ⊗ [[ ~Q′′]]G ⊗ (⊗i=1...s( s)) ⊗ [[ ~A′′]]G, (≡))

which is natural independently in each of the arguments (=),(≡) and ( 1) . . . ( s)

such that each operator OA in the set has interpretation

[[OA]]GOL
= [[O]]GOL

(=, 1, . . . s, [[A]]GML
)

We now note that each output-natural-in-O interpretation of a typing system

Lin(O) induces an interpretation of Lin(O) by the obvious map which forgets the

natural transformation [[O]]OL
.

This enables us to map the typing system Lin(O) into an output-natural-in-O

interpretation of Lin(O).

Definition 5.6.2

Given a typing system Lin(O) with an output-parameterised set of operators O,

we define the map [[ ]]G which takes the typing system Lin(O) to an output-natural-

in-O interpretation G simply by defining it to be the map taking Lin(O) to the

underlying interpretation of G.

Given this map, we can go on to give a definition of output-natural Lin(O, A)-

model.

Definition 5.6.3 (Output-Natural-in-O Lin(O, A)-Model)

Given a typing system Lin(O) with an output-parameterised set of operators O,

we define an output-natural-in-O model of the type theory Lin(O, A), which we

also write G, to be an output-natural-in-O interpretation of Lin(O) such that for

each equality judgement Γ; ∆ ⊢ v = w:A in A, we have

[[Γ; ∆ ⊢ v :A]]G = [[Γ; ∆ ⊢ w:A]]G

in the s.m. part of G.

Given this definition, soundness is an easy corollary of soundness for our first

definition of interpretation.

115



Lemma 5.6.4 (Soundness)

Given a typing system Lin(O) with an output-parameterised set of operators

O, and an output-natural-in-O Lin(O, A)-model G, for every provable equality

judgement Γ; ∆ ⊢ v = w:A of Lin(O, A), we have:

[[Γ; ∆ ⊢ v :A]]G = [[Γ; ∆ ⊢ w:A]]G

The important property of output-natural-in-O interpretations which distin-

guishes them from plain interpretations is the following:

Lemma 5.6.5

Given a typing system Lin(O) with an output-parameterised set of operators O

and an output-natural-in-O interpretation G, for every provable equality Γ; ∆ ⊢

v = w:A of the type theory Lin(O, ONat(O, O)), we have:

[[Γ; ∆ ⊢ v :A]]G = [[Γ; ∆ ⊢ w:A]]G

This is easily provable adapting the proof of the previous soundness lemma.

We only need to prove that the axiomatic equality judgements in the set ONat(O, O)

are soundly mapped to the output-natural-in-O interpretation, which follows by

virtue of the fact that the operators in O are all interpreted as instances of a

natural transformation.

Now we can define output-natural-in-O morphisms.

Definition 5.6.6 (Output-Natural-in-O Lin(O)-morphism)

Given a typing system Lin(O) with an output-parameterised set of operators O

having arity

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)(Br); (~Q′
1; ~A′

1)B
′
1, . . . , (~Q′

s−1; ~A′
s−1)B

′
s−1, (~Q′

s; ~A′
s)( )

(~Q′′; ~A′′)( )

an output-natural-in-O Lin(O)-morphism F : G → G ′ between two output-natural-

in-O Lin(O, A)-models is a Lin(O)-morphism on the underlying Lin(O)-interpretations

of G and G ′ with the additional property that for any object X of C, objects

Y1, . . . , Ys−1 and Y ′ of S, and arrows of S:

fi : F (X) ⊗ [[ ~Qi; ~Ai]] → [[Bi]] for i = 1 . . . r

gj : F (X) ⊗ [[ ~Q′
j]] ⊗ Yj ⊗ [[ ~A′

j]] → [[B′
j]] for j = 1 . . . (s − 1)

gs : F (X) ⊗ [[ ~Q′
j]] ⊗ Yj ⊗ [[ ~A′

j]] → Y ′

we have,

FS([[O]]GOL
(X, Y1, . . . , Ys, Y

′)(f1, . . . fr, g1, . . . , gs))

= [[O]]G
′

OL
(FC(X), FS(Y1), . . . FS(Ys), FS(Y ′))(FS(f1), . . . FS(fr), FS(g1), . . . , FS(gs))
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We now write CatOLin(O, A) for the category of small output-natural-in-O mod-

els and morphisms. Clearly by the forgetful map mentioned earlier from output-

natural-in-O Lin(O, A)-models to Lin(O, A)-models and its obvious extension to

output-natural-in-O morphisms, we have a functor CatOLin(O, A) → CatLin(O, A).

In the opposite direction, given an a type theory Lin(O, A) having an output-

parameterised set of operators O, there may be no candidate natural transforma-

tion to make it into an output-natural-in-O model, or there may be one or many.

However, considering the term-model in particular, it is not the case that the

term model GT (O, A) for a type-theory Lin(O, A) with an output-parameterised

set of operators O can be extended to an output-natural-in-O model simply by

picking an existing natural transformation for [[O]]GT (O,A)
OL

. This is simply because

there is no appropriate operator set, since no operator acts on arguments having

as outputs for example 2-element sequences. All operators of Lin⊗(O, A) act only

on arguments with singleton outputs.

The Output-Natural Term Model

Since it is not the case that the term model GT (O, A) can be extended to an

output natural model, we need to reconsider the questions of completeness and

initiality. We will sketch a variation on the construction of the term model which

will give us an output-natural term Lin(O, A)-model, and indicate how it can be

proved initial for the category CatOLin(O, A).

First consider an extension of the type theory Lin⊗(O, A).

Definition 5.6.7 (The Type Theory Lin⊗
O(O, A))

For a signature O = (MI , ML, OI, OL) and an axiom set A, such that the typing

system Lin(O) has an output-parameterised set of operators O with arity

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)(Br); (~Q′
1; ~A′

1)B
′
1, . . . , (~Q′

s−1; ~A′
s−1)B

′
s−1, (~Q′

s; ~A′
s)( )

(~Q′′; ~A′′)( )

we define the type theory Lin⊗
O(O, A) as Lin((M⊗

I , M⊗
L , O⊗

L O), A⊗
O), where M⊗

I , M⊗
L

and O⊗
I are as defined as for Lin⊗(O, A), and we define O⊗

L O and AO as follows:

• O⊗
L O is the set O⊗

L augmented with new operators O⊗~C of arity

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)(Br); (~Q′
1; ~A′

1)B
′
1, . . . , (~Q′

s−1; ~A′
s−1)B

′
s−1, (~Q′

s; ~A′
s)(⊗~C)

(~Q′′; ~A′′)(⊗~C)

for any non-singleton sequence ⊗~C ∈ M⊗
L . Note that there already exists

instances in the case where the sequence is a singleton.
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• A
⊗
O is the set A⊗ augmented for each output-natural set of operators O of

Lin(O, A) with the equality judgements in the set ONat((M⊗
I , M⊗

L , O⊗
I , O⊗

L O), O′),

where O′ is the set O∪(O⊗
L O −O⊗

L ), which is to say the set O with the extra

operator instances added in the definition of O⊗
L O.

This type-theory differs from Lin⊗(O, A) in that the output-natural set of

operators O of Lin(O, A) is extended canonically to be an output-natural set of

operators in Lin⊗
O(O, A). Now say that a pre-term of Lin⊗

O(O, A) is in canonical

form if it is an instance of the following inductive definition, where the v are

pre-terms of Lin(O, A):

vc ::= ⊗~v | let x be v in vc | O ~A((~x; ~x)~v, . . . , (~x; ~x)~v; (~x; ~x)~v, . . . , (~x; ~x)~v, (~x; ~x)vc)(~v;~v)

We then have the following extended version of lemma 5.3.2:

Lemma 5.6.8

Given a typing judgement
︷ ︸︸ ︷

Γ; ∆ ⊢ v :⊗~A of Lin⊗
O(O, A), v is identically in canon-

ical form with the various pre-terms of Lin(O, A) being terms.

This is proved in a very similar way to the original version of the lemma, with

the one extension that we now have additional operators in O⊗
O which may return

results having outputs of tensor type. However, we know this can only occur when

they are applied to an argument (in their output-parameterised place) which is of

tensor type, and so we can use induction to show that the term is still in canonical

form.

Given this result, we then proceed to define the term categories in much the

same way as before, and define the output-natural-in-O term model of Lin(O, A)

exactly as we do the term model of Lin(O, A) with the exception that we interpret

the output-natural set of operators O in Lin(O, A) into the appropriate natural

transformation which exists in the term model by virtue of the extension of O to

incorporate instances OA for any type A of M⊗
L (which is a sequence of types of

ML) and the addition of the output-naturality equalities to A.

Similarly, the definition of the canonical morphism from the output-natural-

in-O term model to an arbitrary output-natural-in-O model is identical to the

previous one with the exception that for the output-natural set of operators O we

map the natural transformation which exists in the output-natural term model

to the natural transformation in the arbitrary model.

Given this development, we have that the output-natural-in-O Lin(O, A)-term

model, which we will call GO
T (O, A), is initial in the category CatO

Lin(O, A).
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Multiary Output-Natural Models

Most of the leading examples of linear type-theories which we will present have

more than one output-natural set of operators, and so we briefly consider the

situation in this case. In fact, it is easy to extend all the definitions of “output-

natural-in-O” constructions into the analogous “output-natural-in-O-and. . . -and-

O′” forms, and the constructions go through as before, with the same results being

provable.
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Chapter 6

Action Calculi and Extensions

We now present an important example of a system having a linear structural

framework, Milner’s action calculus [Mil93c]. The action calculus is similar to our

general linear type-theory in that it is a general framework in which many different

systems can be presented, particularly process calculi. The leading example of an

action calculus is the π-calculus [MPW92], but systems ranging from petri-nets

to the λ-calculus have been shown to correspond to action calculi.

The essential idea is that we have certain underlying structure, including a

monoidal structure and a discipline of names, and in addition, for each instance

we have a signature containing a set of intuitionistically natural operators (called

controls) and associated reaction rules which depend on the particular calculus

we wish to describe. For example, there is a set of controls Kπ and a set of

reaction rules ցπ such that the action calculus AC(Kπ, ցπ) is isomorphic to the

π-calculus, and there are other sets of controls and reaction rules serving the same

purpose for other languages such as petri-nets and the λ-calculus.

We will actually present a slight generalisation of Milner’s original action cal-

culi as found in [Mil96], which will incorporate a notion of linear prime arity in

addition to Milner’s primes, which have intuitionistic behaviour. This general-

isation is motivated by our discussion of general linear type-theories, which can

have both linear and intuitionistic primitive types; further, we have an example

of an action calculus of this more general form which is not isomorphic to an

action calculus as defined by Milner. This is the action calculus corresponding

to the linear λ-calculus, which we will call AC�,((K). However, we note that all

Milner’s action calculi are instances of this more general form.

We will also define several higher-order extensions of the basic action calculi,

inspired variously by Milner’s higher order action calculi [Mil94b] and the higher-

order structure present in linear logic.



6.1 Action Calculi

We first assume a set PI of intuitionistic primes, ranged over by p, q . . . and a set

PL of linear primes, ranged over by l, k . . . , such that PI ⊆ PL. We can now define

the set of (tensor) arities over the set of linear primes, written M(PL), as the set

of sequences of primes in PL. We use m, n . . . for (tensor) arities (henceforth

just arities), and write (infix) ⊗ for concatenation and ε for the empty sequence.

Further, we will omit the argument PL of M where it is clear from the context.

We can now give the definition of signature:

Definition 6.1.1 (Action Calculus Signature)

An action calculus signature K is a triple (PI , PL, K) of sets such that PI ⊆ PL

and each K in K has an arity of the form:

((m1, n1), . . . , (mr, nr)) → (m, n)

where the m’s and n’s are from the set M(PL).

Definition 6.1.2 (Intuitionistic Action Calculus Signature)

An action calculus signature K = (PI , PL, K) is intuitionistic if PI = PL.

Intuitionistic action calculus signatures give rise to intuitionistic action calculi,

which are equivalent to Milner’s original action calculi.

In order to simplify definitions, in the following we assume that a signature

K has components (PI , PL, K) unless otherwise stated, and similarly K′ has com-

ponents (P′
I , P

′
L, K′) etc.

In order to define the terms of the action calculus, we use the familiar variable

set X. However, in this context these variables are known as names, and further

it is necessary to assume that each name x has an associated intuitionistic prime

arity p; we may write xp to denote this.

Definition 6.1.3 (Terms)

Terms over an action calculus signature K, written a, b . . . , are constructed from

the basic operators identity, idm, permutation, pm,n, composition, ·, tensor, ⊗,

abstraction, (xp) , datum, 〈xp〉 and the control operators, K. A term a is assigned

an (action) arity a : m → n where m, n are tensor arities, using the following

rules:
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idm : m → m
a : m → m′ b : m′ → n

a · b : m → n

a : m1 → n1 b : m2 → n2

a ⊗ b : m1 ⊗ m2 → n1 ⊗ n2

pm,n : m ⊗ n → n ⊗ m

a : m → n

(xp)a : p ⊗ m → n
〈xp〉 : ε → p

a1 : m1 → n1 . . . ar : mr → nr

K(a1, . . . , ar) : m → n
K

where the control operator K from the signature K has the arity

((m1, n1), . . . , (mr, nr)) → (m, n)

We will omit arity annotations, both in terms and of terms, where these are

apparent. The construct (x)a binds the free name x in the term a, and the name

x occurs free in the term 〈x〉. We write a{b/〈x〉} to denote the usual capture-

avoiding substitution of terms for subterms of the form 〈x〉. Note that all free

occurrences of x are in subterms of this form.

Given a sequence of names xp1
1 . . . xpr

r , we write |x1 . . . xr| to denote the ar-

ity p1 . . . pr. Further, we define the constructs (x1 . . . xr)a = (x1) . . . (xr)a and

〈x1 . . . xr〉 = 〈x1〉 ⊗ . . . ⊗ 〈xr〉, where this is the left-bracketed tensor. Note,

however, that since the tensor will be strict, the choice is unimportant.

We give the equality on the terms, which is adapted slightly from that of

Milner.

Definition 6.1.4 (The Theory AC)

An equality holds between two terms of AC in the equational theory AC if it

can be proved using the following axioms, annotated with action arities, and the

obvious reflexivity, transitivity and congruence rules:
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a · (b · c) = (a · b) · c (A1)

a · idn = a = idm · a (A2)

(a · b) ⊗ (c · d) = (a ⊗ c) · (b ⊗ d) (A3)

idm ⊗ idn = idm⊗n (A4)

a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c (A5)

a ⊗ idε = a = idε ⊗ a (A6)

pm,n · (b ⊗ a) = (a ⊗ b) · pm′,n′ (ζ1)

pm⊗n,m′ = (idm ⊗ pn,m′) · (pm,m′ ⊗ idn) (ζ2)

pε,m = idm (ζ3)

pm,n · pn,m = idm⊗n (ζ4)

augmented with the two naming axioms:

(〈y〉 ⊗ idm) · (x)a = a{〈y〉/〈x〉} (σ)

(x)((〈x〉 ⊗ id) · a) = a, where x 6∈ fn(a) (δ)

It is an immediate consequence of these axioms that idm = (~x)〈~x〉 and pm,n =

(~x~y)〈~y~x〉, where |~x| = ~p = m and |~y| = ~q = n.

Definition 6.1.5 (Action Calculus)

The action calculus AC(K, ց) is the quotient of the terms of AC(K) by the equa-

tional theory AC, together with the reaction relation ց, which is a transitive

relation closed under tensor, composition, abstraction and equality, and such

that there is no action a such that id ց a.

We refer to the terms of the theory as actions. From now on we will consider

only the static case, which is to say the case in which the reaction relation is

empty. Possible extensions of these definitions and the following results to the

case with a non-empty reaction relation are discussed in chapter 10.

We now briefly show how this definition relates to Milner’s original definition,

found in [Mil96].

Definition 6.1.6 (Intuitionistic Action Calculus)

An action calculus AC(K) is intuitionistic if it is constructed over an intuitionistic

action calculus signature.

We can now show:

123



Lemma 6.1.7

An intuitionistic action calculus AC(K) where K = (PI , PI , K) is isomorphic to

Milner’s action calculus AC(K) built over the primes PI , up to equality in the

appropriate theory.

Proof This is proved by giving inverse translations. To translate from an intu-

itionistic action calculus AC(K) to the corresponding instance of Milner’s action

calculus, the translation is the identity on terms except on pm,n, which we map

to the term (~x)(~y)〈~y〉 ⊗ 〈~x〉. Conversely, to translate from Milner’s action cal-

culus back to the intuitionistic action calculus AC(K), we simply map terms to

themselves. It is easy to show that these two translations are sound with respect

to the appropriate theories, and they are inverse simply because in the action

calculus AC(K), given sequences of intuitionistic primes m and n,

pm,n = (~x)(~y)〈~y〉 ⊗ 〈~x〉

�

6.2 Generalised Linear Type Theory

We now present a generalised linear type-theory which corresponds to the static

action calculus AC(K).

Definition 6.2.1 (The Type Theory LinA(K))

Given an action calculus signature K = (PI , PL, K), we define the type theory

LinA(K) to be the instance Lin(OA, AA), where O
A = (MA

I , MA
L, OA

I , OA
L) and MA

I ,

MA
L, OA

I , OA
L and AA are defined as follows:

• The set MA
I is the set of all singleton sequences of elements of PI .

• The set MA
L is the set of all sequences of elements of PL. For consistency

with the action calculus, we may write m, n . . . for arbitrary sequences of

elements of PL l1 . . . lr, and further we may write ⊗ for concatenation and

ε for the empty sequence.

• The set OA
I is the empty set.

• The set OA
L contains:

1. For each control K from K of arity

((~l1, n1), . . . , (~lr, nr)) → (~l′, n′)
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an operator OK of arity

(;~l1)n1, . . . , (;~lr)nr ;

(;~l′)n′

where we overload notation to write ~l for the sequence of singleton

sequences of the elements of ~l. We will abbreviate the general operator

form

OK((; ~x1 :~l1)v1, . . . , (; ~xr :~lr)vr; )(; ~w)

as K((~x1 :~l1)v1, . . . , (~xr :~lr)vr, ~w)

2. For each r and m1 . . . mr, an operator ⊗R
m1...mr

of arity:

; (; )m1 . . . (; )mr

(; )m1 ⊗ . . . ⊗ mr

In terms of the type theory, we will write v1 ⊗ . . . vr or occasionally

⊗(v1 . . . vr) as an abbreviation for ⊗R
m1...mr

(; (; )v1, . . . (; )vr)(; ).

3. For each r and m1 . . . mr, each of an output-parameterised set of op-

erators ⊗L
m1...mr

with arity:

; (; m1 . . . mr)( )

(; m1 ⊗ . . . ⊗ mr)( )

In terms of the type theory, we will write let ⊗~x: ~m be ~v in w as an

abbreviation for ⊗L
m1...mr

(; (; ~x)w)(; v), where ~m = m1 . . . mr.

• The set AA contains:

1. All well-formed equalities of the form:

(⊗ − β) Γ; ∆ ⊢ let ⊗~x~y be w1 ⊗ w2 in v = let ⊗~x be w1 in let ⊗~y be w2 in v :n

where Γ; ∆1 ⊢ w1 :⊗~m, Γ; ∆2 ⊢ w2 : ~m′, Γ; ∆′, ~x : ~m, ~y : ~m′ ⊢ v :n and

∆ = ∆′#∆1#∆2.

2. All well-formed equalities of the form:

(⊗ − η) Γ; ∆ ⊢ let ⊗~x be v in ⊗~x = v : ⊗~m

3. All well-formed equalities of the form:

(⊗ − 1) Γ; ∆ ⊢ ⊗(⊗~v1, . . . , ⊗~vr) = ⊗(~v1 . . .~vr):n
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4. All well-formed equalities of the form:

(⊗ − 2) Γ; ∆ ⊢ ⊗(v) = v :n

5. For any r, all equality judgements in any of the sets ONat(OA, ⊗L
m1...mr

)

for any m1 . . . mr.

Having given this definition, it is worth noting that we could present an equi-

valent type theory without any type constructors if we used general sequents of

the form Γ; ∆ ⊢ ∆′, where the sequence ∆′ on the right is intended to be read

as a tensor of linear prime arities, as is the sequence ∆ on the left. Given this

logic we could annotate each sequent having such a form with a term v such that

the typing Γ; ∆ ⊢ v :∆′ would correspond to an action a : |∆| → |∆′| having free

names in Γ. This is the approach taken in [BGHP97].

6.3 The Translations

We present the translations which make LinA(K) isomorphic to the action calculus

AC(K).

Action Calculi to Type Theory

We first give a translation which will take the action calculus AC(K) to the type

theory LinA(K). We define the function ( )† which takes pairs of a sequence of

distinct variables and an action to pre-terms of LinA(K), where the sequence of

variables has the same length as the sequence of prime arities m for the action

a:m → n.

Definition 6.3.1 (The Translation ( )†)

We define the translation over the structure of actions as follows:

(~y, idm)† = ⊗(y1 . . . yr) (where m = l1 . . . lr)

(~y, a · b)† = let ⊗~y′ be (~y, a)† in (~y′, b)†

(~y~y′, a ⊗ b)† = (~y, a)† ⊗ (~y′, b)† (where ~y = y1 . . . yr and a:l1 . . . lr → n)

(~y~y′,pm,n)
† = (⊗~y′) ⊗ (⊗~y) (where ~y = y1 . . . yr and m = l1 . . . lr)

(y′~y, (xp)a)† = let x be y′ in (~y, a)†

(ε, 〈xp〉)† = x

(~y′, K(a1 . . . ar))
† = K((~y1)(~y1, a1)

† . . . (~yr)(~yr, ar)
†, ~y′)

where the y′ and yi for all i are fresh in each clause.
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We can now easily show by induction over the structure of actions the following

lemma:

Lemma 6.3.2

Given an action a : m → n with free names ~x such that |~x| = ~p, we have that

~x:~p; ~y :~l ⊢ (~y, a)† :n in LinA(K), where ~y = y1 . . . yr and m = ~l = l1 . . . lr.

Further, we can show that this map translates equalities between terms in

AC(K) to equality judgements of LinA(K). In order to do this we first prove an

easy lemma.

Lemma 6.3.3

Given an action a : m → n with free names ~x such that |~x| = ~p and where

m = ~l = l1 . . . lr, we have that:

~x:~p; ~z :~l ⊢ let ⊗~y be ⊗~z in (~y, a)† = (~z, a)† :n

Lemma 6.3.4 (Soundness)

Given action a :m → n and b :m → n, whose free names are included in ~x such

that |~x| = ~p, we have that if a = b in the theory of AC(K),

~x:~p; ~y :~l ⊢ (~y, a)† = (~y, b)† :n

where ~y = y1 . . . yr and m = l1 . . . lr.

Proof We prove this simply by considering each axiomatic equality of AC(K),

since the congruence, symmetry, transitivity and reflexivity rules of AC(K) are

duplicated in LinA(K). For brevity we will write (~y, a)† as a†
~y from now on, and

we assume that in all the clauses below Γ = ~x:~p.

A1) In this case, we need to show the equality

Γ; ~y :~l ⊢let ⊗~y′ be a†
~y in let ⊗~y′′ be b†

~y′ in c†
~y′′

= let ⊗~y′′ be (let ⊗~y′ be a†
~y in b†

~y′) in c†
~y′′ :n′

However, this is one of the output-naturality equalities for this operator.

A2) In this case, we need to show the equality:

Γ; ~y :~l ⊢ let ⊗~y′ be a†
~y in ⊗~y′ = a†

~y :n

which is clearly just one of the η-equalities we have given for this type-

theory.
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A3) In this case, we need to show the equality:

Γ; ~y1 :~l1, ~y2 :~l2 ⊢let ⊗~y′
1 be a†

~y1
in b†

~y′
1
⊗ let ⊗~y′

2 be c†
~y2

in d†
~y′
2

= let ⊗~y′
1~y

′
2 be a†

~y1
⊗ c†

~y2
in b†

~y′
1
⊗ d†

~y′
2
:⊗(n′

1n
′
2)

which holds via a use of ⊗ − β and some commuting conversions which are

due to output naturality.

A4) In this case, we need to show the equality:

; ~y1 :~l1, ~y2 :~l2 ⊢ (⊗~y1) ⊗ (⊗~y2) = ⊗~y1~y2 :⊗(~l1~l2)

but this follows from our tensor equality.

A5) In this case we need to show the equality:

Γ; ~y1 :~l1, ~y2 :~l2, ~y3 :~l3 ⊢ a†
~y1

⊗ (b†
~y2

⊗ c†
~y3

) = (a†
~y1

⊗ b†
~y2

) ⊗ c†
~y3

:⊗(n1n2n3)

But again this follows directly from our tensor equality.

A6) In this case, we need to show the equality:

Γ; ~y :~l ⊢ a†
~y ⊗ (⊗ε) = a†

~y :n

and its symmetric variant. However, these again follow from our tensor

equality.

ζ1) In this case we need to show the the equality:

Γ; ~y1 : ~l2, ~y2 : ~l2 ⊢ let ⊗~y′
2
~y′

1 be (⊗~y2) ⊗ (⊗~y1) in b†
~y′
2
⊗ a†

~y′
1

= a†
~y′
1
⊗b†

~y′
2

: ⊗(n1n2)

which is true via the α-conversion result lemma 6.3.3.

ζ2) In this case, we need to show the equality:

Γ; ~y1 :~l1, ~y2 :~l2, ~y3 :~l3 ⊢(⊗~y3) ⊗ (⊗~y2~y1) =

let ⊗~y′
1~y

′
3~y

′
2 be (⊗~y1) ⊗ (⊗~y3~y2) in (⊗~y′

3~y
′
1) ⊗ (⊗~y′

2):⊗(~l3~l1~l2)

which is true by virtue of the tensor equality, the ⊗ − β-equality and our

result on α-conversion lemma 6.3.3.

ζ3) In this case we need to show the equality:

; ~y :~l ⊢ ⊗(~yε) = ⊗~y :⊗~l

which is true by definition since ε is the empty sequence.
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ζ4) In this case we need to show the equality:

; ~y1 :~l1, ~y2 :~l2 ⊢ let ⊗~y′
2~y

′
1 be ⊗~y2~y1 in ⊗~y′

1~y
′
2 = ⊗~y1~y2 :⊗(~l1~l2)

which follows by ⊗ − β and our α-conversion result lemma 6.3.3.

σ) In this case we need to show the equality:

Γ, y :p; ~z :~l ⊢ let ⊗z′′~z′ be y ⊗ (⊗~z) in let x be z′′ in a†
~z′ = a†

~z{y/x}:n

which follows by ⊗ − β, F − β and our α-conversion result lemma 6.3.3.

δ) In this case we need to show the equality:

Γ; y′ :p, ~y :~l ⊢ let x be y′ in let ⊗z′~z be x ⊗ ~y in a†
z′~z = a†

y′~y :n

which follows by ⊗ − β, cc − 4, F − η and an instance of linear naturality,

using our α-conversion result lemma 6.3.3. �

Type Theory to Action Calculi

We now give a translation which maps the type theory LinA(K) to the action

calculus AC(K). In contrast to the previous translations, we proceed in this case

by defining an action corresponding to each Γ; ∆ term.

Definition 6.3.5 (The Translation ( )‡)

We define the translation ( )‡ on Γ; ∆-terms of LinA(K) as follows, where we write

(v)‡
Γ;∆ for the action which is the image of the Γ; ∆-term v.

(x)‡
Γ,x:p,Γ′; = 〈x〉

(x)‡
Γ;x:m = idm

(let x:p be v in w)‡
Γ;∆ = perm∆,∆1∆2 · ((v)‡

Γ;∆1
⊗ id⊗|∆2|) · (x)(w)‡

Γ,x:p,∆2

(K((~y1 :~l1)v1 . . . (~yr :~lr)vr, ~w))‡
Γ;∆ = mperm∆,∆1...∆s · ((w1)

‡
Γ;∆1

⊗ . . . ⊗ (ws)
‡
Γ;∆s

) ·

K((v1)
‡

Γ;~y1:~l1
. . . (vr)

‡

Γ;~yr:~lr
)

(⊗(v1 . . . vr))
‡
Γ;∆ = mperm∆,∆1...∆r · ((v1)

‡
Γ;∆1

⊗ . . . ⊗ (v1)
‡
Γ;∆1

)

(let ⊗~y : ~m be v in w)‡
Γ;∆ = perm∆,∆2,∆1 · (id⊗|∆2| ⊗ (v)‡

Γ;∆1
) · (w)‡

Γ;∆2,~y:~m

where firstly, perm∆,∆1,∆2 is the canonical action with arity ⊗|∆| → (⊗|∆1|) ⊗

(⊗|∆2|), where ∆ = ∆1#∆2 and ∆1 and ∆2 are uniquely determined from the

derivation of the terms v and w, and secondly mperm∆,∆1...∆r is the multiary

version.
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We now show that this translation is sound with respect to equality judge-

ments Γ; ∆ ⊢ v = w :n in LinA(K). This is done by induction over the structure

of equality judgements, but by familiar arguments we need only show it for the

axiomatic equalities of LinA(K). First we prove a substitution lemma.

Lemma 6.3.6

Given that Γ; ∆1 ⊢ v :m and Γ; ∆2, y :m ⊢ w:n, we have that:

(w{v/y})‡
Γ;∆ = perm∆,∆2,∆1 · (id|∆2| ⊗ (v)‡

Γ;∆1
) · (w)‡

Γ;∆2,y:m

where ∆ = ∆1#∆2.

Lemma 6.3.7 (Soundness)

Given an equality judgement Γ; ∆ ⊢ v = w : m of LinA(K), we have that the

actions (a)‡
Γ;∆ and (b)‡

Γ;∆ are equal in the theory AC.

Proof This is proved by induction over the structure of equality judgements,

but by familiar arguments we need only show it for the axiomatic equalities of

LinA(K). Considering firstly the axiomatic equalities common to all the type-

theories Lin(O), we have:

F − βV ) In this case we need to show the equality between actions:

perm∆, ∆ · ((y)‡
Γ,y:p,Γ′; ⊗ id⊗|∆|) · (x)(w)‡

Γ,y:p,Γ′,x:p;∆ = (v{x/y})‡
Γ,y:p,Γ′;∆

This is a direct consequence of the σ axiom of the action calculus, given the

fact that the permutation perm∆, ,∆ is just the identity.

F − η) In this case we need to show the equality between actions:

((v)‡
Γ;∆ ⊗ idε) · (x)(x)‡

Γ,x:p; = (v)‡
Γ;∆

But this follows directly as an instance of the δ equality.

cc’s) In the case of the cc’s (1-4) and cc-5 for the linearly natural operators

⊗ and let − ⊗, the equalities are preserved by properties of tensor and

composition.

Now, considering the axiomatic equalities in the set AA, we have:

1. Considering the ⊗−β equality, we need to show the equality between actions

perm∆,∆2,∆′·(id⊗|∆2| ⊗ (perm∆′,∆′
1,∆′

2
· (w1)

‡
Γ;∆′

1
⊗ (w2)

‡
Γ;∆′

1
)) · (v)‡

Γ;∆2,~x:~m,~y:~m′ =

perm∆,∆′′,∆′
1
· (id|∆′| ⊗ (w1)

‡
Γ;∆′

1
) · perm∆′′,(∆2,~x:~m),∆′

2

· (id|∆2,~x:~m| ⊗ (w2)
‡
Γ;∆′

2
) · (v)‡

Γ;∆2,~x:~m,~y:~m′
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where ∆′′ is the unique sequence of typings satisfying ∆ = ∆′′#∆′
1. This

is true by virtue of tensor and composition properties, and the definition of

perm.

2. Considering the ⊗−η equality, we need to show the equality between terms:

perm∆, ,∆ · (idε ⊗ (v)‡
Γ;∆) · id⊗~m = (v)‡

Γ;∆

which is clear since perm∆, ,∆ = id|∆|.

3. Considering the ⊗ − 1 equality, the appropriate equality holds by virtue of

the uniqueness of the multi-permutation action mperm.

4. Considering the ⊗ − 2 equality, we need to show the equality on actions;

mperm∆,∆ · (v)‡
Γ;∆ = (v)‡

Γ;∆

which clearly holds since by uniqueness mperm∆,∆ must be the identity.

5. Considering the let −n equality, we need to show the following equality on

actions.

perm∆,∆1,∆′·(id|∆1| ⊗ (perm∆′,∆′
2,∆′

1
· (id|∆′

2| ⊗ (v′)‡
Γ;∆′

1
· (w′)‡

Γ;∆′
2,~x:~m)))

· (w)‡
Γ;∆1,y:m′ =

perm∆,∆′′,∆′
1
· (id|∆′′| ⊗ (v′)‡

Γ;∆′
1
) · perm(∆′′,~x:~m),∆1,(∆′

2,~x:~m)

· (id|∆1| ⊗ (w′)‡
Γ;∆′

2,~x:~m) · (w)‡
Γ;∆1,y:m′

where ∆′′ is the unique sequence of typings satisfying ∆ = ∆′′#∆′
1. This

clearly holds using the substitution lemma 6.3.6.

Hence we have completed the proof. �

The Translations are Inverse

We can now show that these two translations make an inverse pair.

Lemma 6.3.8 (Inverse Pair)

The translations ( )† and ( )‡ are inverse up to provable equality, in the sense

that for any action a :m → n of AC(K) having free names ~x where m = l1 . . . lr,

~y = y1 . . . yr and |~x| = ~p,

((a)†
~y)

‡

~x:~p;~y:~l
= a

holds in the equational theory AC, and for any Γ; ∆-term v of LinA(K) we have

the equality judgement:

Γ; ∆ ⊢ ((v)‡
Γ;∆)†

~y = v :n

where n is the unique type ascribed to v in the context Γ; ∆ and ∆ = ~y : ~m.
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Proof We prove this as before by induction over the structure of actions and

terms. Assume in the following that Γ = ~x : ~p. Firstly, considering actions a :

m → n, we have:

Identity In this case we have that:

((id~l
)†
~y)

‡

;~y:~l
= (⊗~y)‡

;~y:~l
= mperm

~y:~l,(y1:l1)...(yr:lr) · idl1 ⊗ . . . ⊗ idlr

but this is clearly equal to id~l.

Composition In this case, we have that:

((a · b)†
~y)

‡

Γ;~y:~l
= (let ⊗~y′ be (a)†

~y in (b)†
~y′
)‡

Γ;~y:~l

= perm~y:~l, ,~y:~l · ((a)†
~y)

‡

Γ;~y:~l
· ((b)†

~y′)
‡

Γ;~y′:~l′

but by induction we have that this is equal to a · b.

Tensor In this case we have that:

((a ⊗ b)†
~y1~y2

)‡

Γ:~y1:~l1,~y2:~l2
= ((a)†

~y1
⊗ (b)†

~y2
)‡

Γ:~y1:~l1,~y2:~l2

= perm(~l1~l2),~l1,~l2
· ((a)†

~y1
)‡

Γ:~y1:~l1
⊗ ((a)†

~y2
)‡

Γ;~y:
~l2

but again by induction this is the identity.

Permutation In this case we have that:

((p~l1,~l2
)†
~y1~y2

)‡

;~y2:~l2,~y1:~l1
= (⊗~y2~y1)

‡

;~y2:~l2,~y1:~l1

= perm(~l1~l2),~l2,~l1
· (id~l2

⊗ id~l1
)

but by uniqueness perm(~l1~l2),~l2,~l1
is just p~l1,~l2

.

Abstraction In this case we have that:

(((x′q)a)†
y′~y)

‡

Γ;y′:q,~y:~l
= (let x′ be y′ in (a)†

~y)
‡

Γ;y′:q,~y:~l

= perm(y′:q,~y:~l)(y′:q),~y:~l · (idq ⊗ id~l
)der : ·(x′)((a)†

~y)
‡

Γ,x′:q;~y:~l

but by induction this is equal to (x′)a.

Datum In this case we have that:

((〈xp〉)†
ε)

‡
x:p; = (x)‡

x:p; = 〈x〉
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Control In this case we have:

((K(a1 . . . ar))
†
~y′)

‡

Γ;~y′:~l′
= (K((~y1)(a1)

†
~y1

. . . (~yr)(ar)
†
~yr

, ~y′))‡

Γ;~y′:~l′

= mperm(~y′:~l),y′
1:l′1...y

′
s:l′s

· (idl1 ⊗ . . . ⊗ idls) ·

K(((a1)
†
~y1

)‡

Γ;~y1:~l1
. . . ((ar)

†
~yr

)‡

Γ;~yr :~lr
)

But again this is by induction just K(a1 . . . ar).

For the second part, we prove the result over the structure of the unique

derivation of the Γ; ∆ term.

I-Ax In this case we have:

((x)‡
Γ,x:p,Γ′; )†

ε = (〈xp〉)†
ε = x

and so the appropriate equality judgement is easy by reflexivity.

L-Ax In this case we have:

((x)‡
Γ;x:l)

†
x = (idl)

†
x = x

and so the appropriate equality judgement is easy by reflexivity.

F-Rule In this case we have:

((let xp be v in w)‡
Γ;∆)†

~y1~y2

= (perm∆,∆2,∆1 · (id|∆2| ⊗ (v)‡
Γ;∆1

) · (x)(w)‡
Γ,x:p;∆2

)†
~y1~y2

= let ⊗~y′
2~y

′
1 be ~y in let ⊗~y′′

2 , z be ⊗~y′
2 ⊗ ((v)‡

Γ;∆1
)†
~y′
1

in let x be z in ((w)‡
Γ;∆2

)†
~y′′
2

and the required equality judgement is obtainable by induction using ⊗−η,

⊗ − β and cc equalities.

Control In this case we have:

((K((~y1 :~l1)v1 . . . (~y2 :~l2)v2, ~w))‡
Γ;∆′)

†
~y′

= (mperm∆′,∆′
1...∆′

s
· ((w1)

‡
Γ;∆′

1
⊗ . . . ⊗ (ws)

‡
Γ;∆′

s
) · K((v1)

‡
Γ;∆1

. . . (vr)
‡
Γ;∆r

))†
~y′

= let ⊗~z1 . . . ~zs be ~y′ in let ⊗~z′ be ((w1)
‡
Γ;∆′

1
)†
~y′
1
⊗ . . . ⊗ ((ws)

‡
Γ;∆′

s
)†
~y′

s

in K((~y1)((v1)
‡
Γ;∆1

)†
~y1

. . . ((~yr)(vr)
‡
Γ;∆r

)†
~yr

, ~z)

and the required equality can again be obtained by induction using ⊗ − β,

⊗ − η and cc equalities.
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Tensor-Intro In this case, we have:

((⊗(v1 . . . vr))
‡
Γ;∆)†

~y′ = (mperm∆,∆1...∆r · ((v1)
‡
Γ;∆1

⊗ . . . ⊗ (vr)
‡
Γ;∆r

))†
~y′

= let ⊗~y1 . . . ~yr be ~y′ in ((v1)
‡
Γ;∆1

)†
~y1

⊗ . . . ((vr)
‡
Γ;∆r

)†
~yr

and by induction using ⊗ − β and our α-conversion result lemma 6.3.3 the

required equality can be deduced.

Tensor-Elim In this case, we have:

((let ⊗~y : ~m be v in w)‡
Γ;∆′)

†
~y′

= (perm∆′,∆2,∆1 · (id⊗|∆2| ⊗ (v)‡
Γ;∆1

) · (w)‡
Γ;∆2,~y:~m)†

~y′

= let ⊗~y1~y2 be ~y′ in let ⊗~y′
2~y be ⊗~y2 ⊗ ((v)‡

Γ;∆1
)†
~y1

in ((w)‡
Γ;∆2,~y:~m)†

~y2~y

and the required equality can again be obtained by induction using ⊗ − β,

⊗ − η and cc equalities.

6.4 Extensions

We now present three extensions of action calculi, which add functional or higher-

order behaviour to the basic action calculi. Essentially, these work by adding

certain higher-order operators to the standard definition of action calculi, and

certain axiomatic equalities on them to the theory of action calculi. This idea

was first introduced by Milner in [Mil94b], where he extends the action calculus

by adding an abstraction operator and an application operator similar to the ab-

straction and application of the λ-calculus. The first higher-order action calculus

we present is just this one as amended by Hasegawa [HG], generalised to allow

linear and intuitionistic primes in the same way as we have generalised Milner’s

action calculi.

Definition 6.4.1 (Higher-Order Action Calculus)

Given a signature K = (PI , PL, K), the higher-order action calculus AC⇒(K) is

given by extending the definition of generalised action calculi as follows:

1. the derived sets P⇒
I and P⇒

L of primes and the set M⇒ of arities are con-

structed from the following abstract grammars:

set of intuitionistic primes P⇒
I p ::= p ∈ PI | m ⇒ m

set of linear primes P⇒
L l ::= l ∈ PL | p ∈ P⇒

I

set of arities M⇒ m ::= l ∈ P⇒
L | m ⊗ m | ε
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2. the terms of AC⇒(K) are generated by the rules in definition 6.1.3, plus the

rules

a : m → n

λλλa : ε → m ⇒ n
ap : (m ⇒ n) ⊗ m → n

3. the equational theory of AC⇒ is that generated from the axioms in defini-

tion 6.1.4, plus the axioms

((λλλa) ⊗ idm) · ap = a (β)

λλλ((〈x〉 ⊗ idm) · ap) = 〈x〉 (ηV )

(λλλ(a) ⊗ id) · (x)b = b{λλλ(a)/〈x〉} (σ)

The action calculus AC⇒(K) is the quotient of the terms by the equality.

Extensionality The amendment made by Hasegawa [HG] to Milner’s original

definition is the addition of a ηV -equality similar to that given here in the case of

Milner’s action calculi. If we say that the η-equality for an action a : ε → (n ⇒ m)

is the equality

λλλ((a ⊗ idm) · ap) = a

then in AC⇒(K) we can derive η-equalities for any copyable action of AC⇒(K),

and in fact the converse is true. We can read this as saying that the functional

structure is extensional over copyable actions, which we might regard as the

intuitionistic subsystem of the action calculus. We could ask what would happen

if we replaced ηV by the η-equality for all actions a of the appropriate arities.

In [Mil94b], Milner points out that this addition collapses the structure of action

calculi by making it simply that of a cartesian closed category. We can see this in

the syntax since if we add the η rule in general, then all actions of the appropriate

arity would become copyable and hence fall into the intuitionistic subsystem, so

that this subsystem would then be the whole system.

We now present two systems based on a linear decomposition of the arrow

constructor in the previous system. The first of these has just the ⊠ operator,

which corresponds to the ! of linear logic, and which acts as a ‘coding’ operator

in this setting. This was discovered independently by the author and Masahito

Hasegawa.

Definition 6.4.2 (Action Calculus with Code)

Given a signature K = (PI , PL, K), the action calculus with code AC�(K) is given

by extending the definition of action calculi as follows:
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1. the sets P�I and P�L of intuitionistic and linear primes and the set M� of

arities are constructed from the following abstract grammars:

set of intuitionistic primes P�I p ::= p ∈ PI | ⊠ (m)
set of linear primes P�L l ::= l ∈ PL | p ∈ P�I
set of arities M� m ::= l ∈ P�L | m ⊗ m | ε

2. the terms of AC�(K) are generated by the rules in definition 6.1.3, plus the

rules

a : ε → m

code(a) : ε → ⊠(m)
decode : ⊠(m) → m

3. the equational theory of AC� is that generated from the axioms in defini-

tion 6.1.4, plus the axioms

code(a) · decode = a (β)

code(〈x〉 · decode) = 〈x〉 (η)

(code(a) ⊗ id) · (x)b = b{code(a)/〈x〉} (σ)

The action calculus AC�(K) is the quotient of the terms by the equality.

Secondly, we introduce a system which extends AC�(K) by adding the linear

function type, with abstraction and application operators.

Definition 6.4.3 (Linear Higher-Order Action Calculus)

Given a signature K = (PI , PL, K), the linear higher-order action calculus AC�,((K)

is given by extending the definition of action calculi as follows:

1. the sets PI and PL of intuitionistic and linear primes and the set M�,( of

arities are constructed as follows:

set of intuitionistic primes P
�,(
I p ::= p ∈ PI | ⊠ (m)

set of linear primes P
�,(
L l ::= l ∈ PL | p ∈ P

�,(
I | l ⊸ n

set of arities M�,( m ::= l ∈ P�,(
L | m ⊗ m | ε

2. the terms of AC�,((K) are generated by the rules in definition 6.1.3 and

definition 6.4.2, plus the rules

a : m ⊗ l → n

λλλl
La : m → (l ⊸ n)

where l ∈ PL apl
L : (l ⊸ n) ⊗ l → n
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3. the equational theory AC�,( is the set of equations upon terms generated

from the axioms in definitions 6.1.4 and 6.4.2, plus the axioms

((λλλl
La) ⊗ idp) · apl

L = a (β)

λλλl
L((a ⊗ idp) · apl

L) = a (η)

λλλl
L((x)a) = (x)(λλλl

La) where a : m ⊗ p → n (cc)

λλλl
L(a ⊗ idp · b) = a · (λλλl

Lb) (cc)

where a : m → n and b : n ⊗ p → n′

The action calculus AC�,((K) is the quotient of the terms by the equality.

Extensionality Revisited We note that in contrast to the situation with the

extended action calculus AC⇒(K), the η-equality holds in the system AC�,((K)

for all actions of the appropriate arity. However, the structure does not collapse

to that of a CCC in the case of AC�,((K) since it is no longer possible to prove

that any action for which the η-equality holds is copyable. Hence this theory

provides an account of extensional functions at a linear level.

We can extend the definition of the linear arrow type to arbitrary arities.

Given an arity m = l1 . . . lr, define on arities m ⊸ n = l1 ⊸ (. . . (lr ⊸ n)..), and

on actions λλλm
L (a) = λλλl1

L (. . .λλλlr
L (a)..) and apm

L = (apl1
L ⊗ idl2 ⊗ . . . lr) · . . .·ap

lr
L . Note

that this definition makes ε ⊸ m = m, and correspondingly on term constructs

makes λλλε
L(a) = a and apε

L = id.

Relating the Extensions

Having presented these extensions, we can give some relationships between them.

It is clear firstly that there are trivial embeddings ι1 : AC(K) → AC�(K) and

ι2 : AC�(K) → AC�,((K). However, there also exist translations ι3 : AC�(K) →

AC⇒(K) and ι4 : AC⇒(K) → AC�,((K).

Definition 6.4.4 (The Translation ι3)

Define the translation ι3 : AC�(K) → AC⇒(K) as the obvious embedding on

shared constructs, augmented with:

ι3(⊠(m)) = (ε ⇒ m)

ι3(code(a)) = λλλ(ι3(a))

ι3(decode) = ap
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Definition 6.4.5 (The Translation ι4)

Define the translation ι4 : AC⇒(K) → AC�,((K) as the obvious embedding on

shared constructs, augmented with:

ι4(m ⇒ n) = ⊠(m ⊸ n)

ι4(λλλ(a)) = code(λλλm
L (ι4(a))) where a : m → n

ι4(ap) = decode ⊗ id · ap

AC(K)

AC�(K)
❄

ι1

AC⇒(K)
ι4
✲

✛

ι 3

AC�,((K)
❄

ι2

Figure 6.1: Translations between AC(K) and its extensions

We summarise the translations in figure 6.1. It can easily be shown that the

triangle at the bottom of this diagram commutes up to equality in AC�,((K).

Extending LinA(K)

We now extend our generalised linear type-theory LinA(K) to provide type-theories

corresponding to the extended action calculi defined previously. We introduce

some notation for these definitions, where E denotes any extension from ⊠, → or

⊠, ⊸:

• When we say that an operator set OAE

L contains all control operators we

will mean that it contains every operator OK of OA
L.

• When we say that an operator set OAE

L contains all ⊗R
m1...mr

operators we will

mean that it contains instances of the operator ⊗R
m1...mr

for all m1 . . . mr ∈

MAE

L .
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• When we say that an operator set OAE

L contains all ⊗L
m1...mr

operators

we will mean that it contains instances of every operator in the output-

parameterised set ⊗L
m1...mr

for all m1 . . .mr ∈ MAE

L .

• When we say that an axiom set AAE

contains all l-equalities, for some

identifying label l, we will mean that contains every well-formed equality

having the form of the equality l in the typing system LinA(OE).

Definition 6.4.6 (The Type Theory LinA⇒

(K))

We define the type theory LinA⇒

(K) over a signature K = (PI , PL, K) as the

type theory LNat(OA⇒

, AA⇒

) where OA⇒

= (MA⇒

I , MA⇒

I , OA⇒

I , OA⇒

L ) and we define

these objects as follows:

• The set MA⇒

I is the set of singleton sequences of elements of P⇒
I .

• The set MA⇒

L is the set of sequences of elements of P⇒
L .

• The set OA⇒

L contains all control operators, all ⊗R
m1...mr

operators and all

⊗L
m1...mr

operators and also:

1. For each m and n in MA⇒

L , an operator λλλm,n of arity:

(; m)n ;

(; )m ⇒ n

We will write the general operator application λλλm,n((; x)v; )(; ) in the

form λx:m.v.

2. For each m and n in MA�

L an operator ap of arity:

;

(; (m ⇒ n), m)n

We will write ap(; )(; vw) in the familiar way as vw.

• The set OA⇒

I is the subset of OA⇒

L containing for each m and n the operator

λλλm,n.

• The set AA⇒

contains all ⊗− β, ⊗− η, ⊗− 1 and ⊗− 2 equalities and also:

1. All well formed equality judgements of the form:

(λλλ − β) Γ; ∆ ⊢ (λx.v)w = v{w/x}:m

2. All well formed equality judgements of the form:

(λλλ − ηV ) Γ, y :m ⇒ n; ⊢ λx.(yx) = y :m ⇒ n
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3. All the equality judgements in the sets ONat(OA⇒

, ⊗L
m1...mr

), for any

m1 . . .mr.

Definition 6.4.7 (The Type Theory LinA�(K))

We define the type theory LinA�(K) over a signature K = (PI , PL, K) as the type

theory LNat(OA� , AA�) where OA� = (MA�

I , MA�

I , OA�

I , OA�

L ) and we define these

objects as follows:

• The set MA�

I is the set of singleton sequences of elements of P�I .

• The set MA�

L is the set of sequences of elements of P�L .

• The set OA�

L contains all control operators, all ⊗R
m1...mr

operators and all

⊗L
m1...mr

operators and also:

1. For each m ∈ MA�

L an operator codem of arity:

(; )m ;

(; ) ⊠ (m)

We will write the general operator application codem((; )v; )(; ) as code(v).

2. For each m ∈ MA�

L an operator decodem of arity:

;

(; ⊠(m))m

We will write the general operator application decodem(; )(; v) as decode(v).

• The set OA�

I is the subset of OA�

L containing for each m the codem operator.

• The set AA� contains all ⊗ − β, ⊗− η, ⊗ − 1 and ⊗ − 2 equalities and also:

1. All well formed equality judgements of the form:

(⊠ − β) Γ; ⊢ decode(code(v)) = v :m

2. All well formed equality judgements of the form:

(⊠ − η) Γ; ⊢ code(decode(x)) = x:⊠(m)

3. All equality judgements in the sets ONat(OA�, ⊗L
m1...mr

), for all m1 . . . mr.

Definition 6.4.8 (The Type Theory LinA�,(

(K))

We define the type theory LinA�,(

(K) over a signature K = (PI , PL, K) as the

type theory LNat(OA�,(

, AA�,(

) where OA�,(

= (MA�,(

I , MA�,(

I , OA�,(

I , OA�,(

L )

and we define these objects as follows:
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• The set MA�,(

I is the set of singleton sequences of elements of P
�,(
I .

• The set MA�,(

L is the set of sequences of elements of P
�,(
L .

• The set OA�,(

L contains all control operators, all ⊗R
m1...mr

operators and all

⊗L
m1...mr

operators and also:

1. For each m ∈ MA�

L an operator codem of arity:

(; )m ;

(; ) ⊠ (m)

We will write the general operator application codem((; )v; )(; ) as code(v).

2. For each m ∈ MA�

L an operator decodem of arity:

;

(; ⊠(m))m

We will write the general operator application decodem(; )(; v) as decode(v).

3. For each l ∈ P
�,(
L and each n ∈ MA�,(

L , an operator λλλL
l,n of arity:

; (; l)n

(; )l ⊸ n

We will write the general operator application λλλL
l,n(; (; x)v)(; ) as λLx:

l.v.

4. For each l ∈ PA�,(

L and n ∈ MA�

L an operator apL
l,n of arity:

;

(; l, (l ⊸ n))n

We will write apL
l,n(; )(; vw) as vw.

• The set OA�,(

I is the subset of OA�,(

L containing just the codem operators

for each m ∈ MA�,(

L .

• The set AA�,(

contains all ⊗ − β, ⊗ − η, ⊗ − 1, ⊗ − 2, ⊠ − β and ⊠ − η

equalities and also:

1. All well formed equality judgements of the form:

(λ − β) Γ; ∆ ⊢ (λx.v)w = v{w/x}:m

2. All well formed equality judgements of the form:

(λ − η) Γ; ∆ ⊢ λx.(vx) = v :l ⊸ n
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3. All equality judgements in the sets ONat(OA�,(

, ⊗L
m1...mr

) for m1 . . . mr ∈

MA�,(

L .

We can see that the embeddings and translations ι1 . . . ι4 induce similar em-

beddings and translations amongst our extended type theories. We overload

notation to call these ι1 . . . ι4 as well.

We can extend our functions ( )† and ( )‡ to relate each extended action

calculus with its corresponding type theory. Here, we just summarise all of these

translations together by giving their definitions on the various arity and term

constructs.

Definition 6.4.9 (The Extended Translation ( )†)

We define the translation ( )† on the various extended action calculi as follows:

(~y,λλλ(a))† = λz.(let ⊗~y be z in (z~y, a)†)

(y1y2, ap)† = y1y2

(ε, code(a))† = code((ε, a)†)

(y, decode)† = decode(y)

(~y,λλλl
L(a))† = λLz.(~yz, a)†

(y1y2, ap
l
L)† = y1y2

Definition 6.4.10 (The Extended Translation ( )‡)

We define the translation ( )‡ on the various type theories corresponding to ex-

tended action calculi as follows:

(λx:m.v)‡
Γ = λλλ(v)‡

Γ;x:m

(vw)‡
Γ;∆ = perm∆,∆1,∆2 · ((v)‡

Γ;∆1
⊗ (w)‡

Γ;∆2
) · ap

(code(v))‡
Γ; = code((v)‡

Γ; )

(decode(v))‡
Γ;∆ = (v)‡

Γ;∆ · decode

(λx:l.v)‡
Γ;∆ = λλλl

L(v)‡
Γ;∆,x:l

(vw)‡
Γ;∆ = perm∆,∆1,∆2 · ((v)‡

Γ;∆1
⊗ (w)‡

Γ;∆2
) · apL

We can now easily extend our results on the basic translations to these exten-

sions.
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Lemma 6.4.11 (The Extended Translations)

The extended translations ( )† and ( )‡ make AC⇒(K) and LinA⇒

(K) isomorphic,

they make AC�(K) and LinA�(K) isomorphic, and they make AC�,((K) and

LinA�,(

(K) isomorphic.

6.5 Semantics

Since the theory of action calculi itself is a relatively recent development, there

is less work on the semantics of action calculi than on that of ILL. A semantics

was first given in the form of control structures [MMP95], which are symmet-

ric monoidal categories with abstractors to represent the name-structure. A

fibrational equivalent not requiring naming structure was given by Hermida and

Power [HP95]. Then this was proved equivalent by Power to an alternative for-

mulation using an adjunction [Pow96]. These models were used as the basis for

the models of Gardner et al. [HG, BGHP97], and in this section we will use this

definition. In the higher-order case, there has been less work, but definitions of

models have been given [HG, BGHP97], which we will use in the following.

In this section, we will say “LinA(K)-model” to mean “output-natural-in-

⊗L
m1...mr

-for-all-r, m1 . . .mr LinA(K)-model”.

The Basic Case

Since we are not using precisely the original definition of action calculi, we will

need to recast the definition of [HG] slightly, to take account of our linear prime

arities.

The carrier of an action model is a triple (C, S, F ), where C is a strict cartesian

closed category, S is a symmetric monoidal closed category, and F : C → S is an

injective-on-objects strict symmetric monoidal functor.

Definition 6.5.1 (Action Model)

Action models over an action calculus signature K, ranged over by A . . . , are given

by a carrier (C, S, F ) supplemented with:

• a function [[ ]]PI
: PI → obj(C) and a function [[ ]]PL

: PL → obj(S) such that

for p ∈ PI , we have [[p]]PI
= [[p]]PL

in S,

• for each control K with arity ((m1, n1), . . . , (mr, nr)) → (m, n) we have a

natural transformation

[[K]]K :
∏

i=1...r

S(F ( ) ⊗ [[mi]], [[ni]]), S(F ( ) ⊗ [[m]], [[n]])
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under the obvious interpretation of arities into S given by

[[l1 . . . lr]] = ⊗([[l1]] . . . [[lr]])

Now this definition is very reminiscent of our definition of models for our

general linear logic. We can in fact prove:

Lemma 6.5.2

Every action model gives rise to a LinA(K)-model.

Proof This is easily shown; given an action model A, we will construct a

LinA(K)-model GA. Firstly, the carrier of GA is exactly the carrier of A. The

interpretation of intuitionistic prime arities in MI is exactly the interpretation of

PI given by A, since the two sets are the same, and the interpretation on elements

of ML, which are sequences of elements of PL, is simply given by the strict tensor

of the the interpretations of the elements of PL using the interpretation function

from A. Finally, the interpretation of the operators corresponding to the controls

is exactly the interpretation of the controls themselves, and the interpretation of

the ⊗R and ⊗L-operators is given in the obvious way using the tensor structure

on the s.m.c. �

We can also define action morphisms:

Definition 6.5.3 (Action Morphisms)

An action morphism over an action calculus signature K, F : A → A′ between

two action models A and A′ having carriers (C, S, F ) and (C′, S ′, F ′) respectively

is a pair (FC : C → C′, FS : S → S ′) of morphisms such that:

• FC is strict cartesian and FS is strict symmetric monoidal,

• the following diagram commutes:

C
F ✲ S

C′

FC

❄ F ′
✲ S ′

❄

FS

• FC([[ ]]API
) = [[ ]]A

′

PI
: PI → obj(C′),

• FS([[ ]]APL
) = [[ ]]A

′

PL
: PL → obj(S ′),
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• for every control K with arity ((m1, n1), . . . , (mr, nr)) → (m, n) from the

signature K, and for every element X of C and morphisms of S fi : F (X)⊗

[[mi]] → [[ni]] for i = 1 . . . r, we have:

FS([[K]]AK(X)(f1, . . . , fr)) = [[K]]A
′

K (FC(X))(FS(f1), . . . , FS(fr))

Given this definition, we have:

Lemma 6.5.4

Any action morphism F gives rise to a LinA(K)-morphism.

It is easy to check the necessary conditions, which are very close to those of

the definition of LinA(K)-morphism.

We can now define the category CatAC(K) of small action models and morph-

isms over a signature K. Further, call the category of small LinA(K)-models

and LinA(K)-morphisms CatLinA(K). From our results, we can see that we have a

functor CatAC(K) → CatLinA(K).

It is clear that a general LinA(K)-model may fail to be an action model, firstly

because the functor F of the carrier may well not be injective on objects. We can,

however, use a result of Power and Robinson [PR94], in the intuitionistic case.

Lemma 6.5.5

For an intuitionistic action calculus signature K, any LinA(K)-model gives rise to

an action model.

Proof Given a LinA(K)-model G, we will construct an action model AG. First

note that by section 5, corollary 5.1 of [PR94] given that the carrier G is (C, S, F ),

we have a strict symmetric monoidal category S ′, an identity-on-objects functor

F1 : C → S ′ and a fully faithful functor F2 : S ′ → S, such that F = F1; F2. These

are unique up to unique isomorphism. Take the carrier of AG to be (C, S ′, F1).

Then take the interpretation on intuitionistic prime arities to be [[ ]]MI
: PI →

obj(C) of G. Take the interpretation on linear prime arities (which because the

signature is intuitionistic are precisely the same as the intuitionistic prime arities)

to be given

[[ ]]PL
= F1([[ ]]MI

) : PI → obj(S ′)

Now note that using the natural transformations present in S that

[[p1 ⊗ . . . ⊗ pr]]ML
≃ [[p1]] ⊗ . . . ⊗ [[pr]]

Using these isomorphisms, and the full faithfulness of F2, we can obtain natural

transformations interpreting the controls over the carrier. �
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The Higher-Order Case

We now consider the case of Milner’s higher-order extension of an action calculus,

AC⇒(K). Again, we slightly adapt the definition given in [HG] to take account of

our linear prime arities.

Definition 6.5.6 (Higher-Order Action Model)

Higher-order action models over an action calculus signature K, again ranged over

by A . . . , are action models over K such that the functor F ( ) ⊗ X : C → S has

a right adjoint X ⇒ : S → C, where the interpretation [[ ]]PI
: PI → obj(C) is

extended by saying that [[m ⇒ n]]PI
= [[m]]PL

⇒ [[n]]PL
.

We can now prove

Lemma 6.5.7

Each higher-order action model gives rise to a LinA⇒

(K)-model.

Proof This is quite easy to show since we know that the higher-order action

model is in fact an action model over signature K, and hence we know that it

gives rise to a LinA(K)-model. However, this LinA(K)-model has the required

interpretation of the new intuitionistic prime arities of LinA⇒

(K) by virtue of

the functor ⇒, and the abstraction and application are interpreted using natural

transformations existing because of the adjunction. �

Definition 6.5.8 (Higher-Order Action Morphism)

A higher-order action morphism over an action calculus signature K, F : A → A′,

between two higher-order action calculus models A and A′ is an action morphism

(FC, FS) such that functors per-serve the functor ⇒ and the adjunction (which

is to say that the following diagrams commute):

S
X ⇒ ✲ C

S ′

FS

❄

FC(X) ⇒′
✲ C′

❄

FC
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S(F (X) ⊗ Y1, Y2)
( )∗

✲ C(X, Y1 ⇒ Y2)

S ′(FS(F (X) ⊗ Y1), FS(Y2))

FS

❄
C′(FC(X), FC(Y1 ⇒ Y2))

❄

FC

|| ||

S ′(F ′FC(X) ⊗′ FS(Y1), FS(Y2))
( )∗

✲ C′(FC(X), FS(Y1) ⇒′ FS(Y2))

As before, we have:

Lemma 6.5.9

Any higher-order action morphism gives rise to a LinA⇒

(K)-morphism.

Proof The underlying action morphism gives rise to a LinA(K)-morphism, and

this is seen also to preserve the added structure of LinA⇒

(K) since it preserves the

adjunction which underlies that structure. �

Now we can define the category of small higher-order action models and

morphisms, written CatAC⇒(K), and the category of small LinA⇒

(K)-models and

morphisms, written Cat⇒
LinA(K). We then have a functor CatAC⇒(K) → Cat⇒

LinA(K)

as before, but we also have the obvious forgetful reducts CatAC⇒(K) → CatAC(K)

and Cat⇒
LinA(K) → CatLinA(K).

Following the definition of higher-order action models for Milner’s higher-

order action calculus AC⇒(K), we could define models for AC�(K), based on the

functor F having an adjoint, and for AC�,((K), based on F having an adjoint and

S being strict symmetric monoidal closed. Then results analogous to those above

relating AC�(K)-models and LinA�(K)-models and morphisms, and AC�,((K)-

models and LinA�,(

(K)-models and morphisms would hold. This development is

pursued in [BGHP97], and the reader is referred there for the details. However, we

prefer to develop a more uniform account of higher-order behaviour in the context

of our generalised linear type-theory. This we will give in the next chapter.
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Chapter 7

Higher-Order Type Theories

In this chapter we give a general higher-order (functional) version of our general-

ised linear type-theory. We see how any generalised linear type-theory gives rise

to a higher order extension, and show that the embedding of the original theory

into the higher-order extension is conservative, using a semantic argument. We

consider some consequences of this for our case study in action calculi.

Then, we introduce a higher-order type-theory which is isomorphic to our type

theory DILL(C), hence showing that the notion of higher-order extension which

we have given is well founded.

7.1 Higher-Order Type Theories

It will be the case that a higher-order generalised linear type-theory (which hence-

forth we will call just a higher-order type-theory) is an instance of a generalised

type-theory with certain higher-order operators and axioms. We will need to give

a generalised signature for this instance.

First, given type-sets MI and ML, define the higher-order type sets MH
I and

MH
L as follows, inductively:

Q ∈ MH
I ::= Q ∈ MI | !A (for A ∈ MH

L)

A ∈ MH
L ::= A ∈ ML | I | A ⊗ A | A ⊸ A | !A

We can now define a higher-order signature, which is essentially a signature

in which the operators may use higher-order types over the primitive types given

in the signature.

Definition 7.1.1 (Higher-Order Signature)

Define a higher-order signature, ranged over by H, to be a quadruple (MI , ML, OI, OL)

such that (MH
I , MH

L, OI, OL) is a generalised signature.
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Now, given a higher-order signature (MI , ML, OI, OL), define the higher-order

operator sets OH
I and OH

L as follows, again inductively:

O ∈ OH
I ::= O ∈ OI | !

O ∈ OH
L ::= O ∈ OL | IR | IL

A | ⊗R
A,B | ⊗L

A,B−C | λA,B | apA,B | !A |

!

A

for A, B, C ∈ MH
L, where:

• the operator IR is a constant with arity I ,

• the output-parameterised set of operators IL have arity:

; (; )( )

(; I)( )

• for each A and B, the operator ⊗R
A,B has arity:

; (; )A (; )B

(; )A ⊗ B

• for each A and B, the output-parameterised set of operators ⊗L
A,B has arity:

; (; A, B)( )

(; A ⊗ B)( )

• for each A and B, the operator λA,B has arity:

; (; A)B

(; )A ⊸ B

• for each A and B, the operator apA,B has arity:

;

(; A, A ⊸ B)B

• for each A, the operator !A has arity:

(; )A ;

(; )!A

• for each A, the operator

!

A has arity:

;

(; !A)A
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From now on, we will use standard abbreviations for these operators as follows:

∗ for IR

let ∗ be v in w for IL
A(; ()w)(; v)

w ⊗ v for ⊗R
A,B (; ()w, ()v)()

let x ⊗ y : A ⊗ B be v in w for ⊗L
A,B−C (; (; x:A, y :B)w)(; v)

λx:A.v for λA,B(; (; x:A)v)()

vw for apA,B(; )(; v, w)

!v for !A(v; )()

!

v for

!

A(; )(; v)

We will write OH for the generalised signature (MH
I , MH

L, OH
I , OH

L), where H is

the higher-order signature (MI , ML, OI , OL).

Now we can define the higher-order typing-system.

Definition 7.1.2 (Higher-Order Typing System)

The higher-order typing system over a higher-order signature H, which we will

write LinH(H), is just the generalised linear typing system Lin(OH).

Say that a higher order axiom set is just an axiom set A over the higher-order

typing system LinH(H).

Definition 7.1.3 (Basic Higher-Order Axiom Set)

Define the basic higher order axiom set AH over a higher-order signature H to

be the axiom set containing the equality judgements in the sets ONat(OH , IL)

and ONat(OH , ⊗L
A,B) for all A, B ∈ MH

L, and every instance for types of H of the

equality judgements:

β η

Γ; ∆ ⊢ let ∗ be ∗ in v = v :A Γ; ∆ ⊢ let ∗ be v in ∗ = v :I

Γ; ∆ ⊢ let x ⊗ y be v1 ⊗ v2 in w = w{v1, v2/x, y}:A Γ; ∆ ⊢ let x ⊗ y be v in x ⊗ y :A ⊗ B

Γ; ∆ ⊢ (λx.v)w = w{v/x}:A Γ; ∆ ⊢ λx.(vx):A ⊸ B

Γ; ⊢

!

(!v) = v :A x :!A; ⊢!(

!

x) = x :!A

We are now in a position to define the higher-order type-theory over a given

higher-order signature and axiom set.
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Definition 7.1.4 (Higher-Order Type-Theory)

Given a higher-order signature H and a higher-order axiom set A, define the

higher-order type theory over H and A, written LinH(H, A), as the generalised

linear type-theory Lin(OH, A ∪ AH).

Derived Typing Rules

Given this definition, LinH(H, A) has the following typing rules for its higher-order

operators:

Γ; ⊢ ∗:I

Γ; ∆1 ⊢ v :I Γ; ∆2 ⊢ w:A

Γ; ∆ ⊢ let ∗ be v in w:A

Γ; ∆1 ⊢ v :A Γ; ∆2 ⊢ w:B
Γ; ∆ ⊢ v ⊗ w:A ⊗ B

Γ; ∆1 ⊢ v :A ⊗ B Γ; ∆2, x:A, y :B ⊢ w:C
Γ; ∆ ⊢ let x ⊗ y be v in w:C

Γ; ∆′, x:A ⊢ v :B

Γ; ∆′ ⊢ λx.v :A ⊸ B

Γ; ∆1 ⊢ v :A ⊸ B Γ; ∆2 ⊢ w:A

Γ; ∆ ⊢ vw:B

Γ; ⊢ v :A

Γ; ⊢!v :!A

Γ; ∆′ ⊢ v :!A

Γ; ∆′ ⊢

!

(v):A
where ∆ = ∆1#∆2.

The Higher-Order Extension of Lin(O, A)

Having defined higher-order type-theories, we can now show that we immediately

have a family of such things. Firstly, note that given any generalised signature

O = (MI , ML, OI , OL), we have another generalised signature (MH
I , MH

L, OI , OL).

Therefore, O is itself a higher-order signature. Further, the embedding on pre-

terms in fact maps Γ; ∆-terms of Lin(O) to Γ; ∆-terms of LinH(O).

Now, note that if A is an axiom set over the generalised linear typing system

Lin(O), then it is also one over the generalised typing system (MH
I , MH

L, OI , OL).

Hence, it is itself a higher-order axiom set. We have, therefore, that LinH(O, A) is

a higher-order type-theory, and we call this higher-order type-theory the higher-

order extension of the original type-theory. It follows easily that the embedding

on terms Lin(O, A) → LinH(O, A) is sound; later in this chapter, we will use

semantic methods to demonstrate that it is also conservative.

Operators as Higher-Order Constants

One advantage of higher-order structure is that it allows us to code general oper-

ators as constants of higher types. Unfortunately, there is a slight problem with
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encoding operators in OI, which arises since we need to make the image of any

instance of such an operator copyable in the higher-order type-theory. In general,

there is no way to give a constant encoding of the operator which will achieve

this without adding equalities to the system. However, we can prove a result:

Lemma 7.1.5

The arbitrary linear type-theory Lin(O, A) is equivalent to the linear type theory

Lin((MI , ML, ∅, OL), A ∪
⋃

O∈OI
Int(O, O)), where Int(O, O) is defined as the set of

all equality judgements of the form

Γ; ∆ ⊢let x be O((~x1; ~y1)v1, . . . , (~xr; ~yr)vr; )() in w

= w{O((~x1; ~y1)v1, . . . , (~xr; ~yr)vr); )()/x}:A

in the typing system Lin(O).

Proof This can be seen using the translations which are the identity on types

and terms in both directions. The only issue is whether these translations preserve

provable equality, but this is easily seen since in one direction we map an instance

of the F -rule for the operator O to an equality judgement in Int(O, O), and in

the other direction we map an equality judgement in a set Int(O, O) back to an

instance of the F − β-axiom for the intuitionistic operator O. �

This result assures us that any linear type-theory is equivalent to one with no

intuitionistic operators at the level of terms and provable equality.

Given a linear operator set OL, define the operator constant set corresponding

to it, written OC
L, to be the set which contains for each operator O ∈ OL having

arity:

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)Br ; (~Q′
1; ~A′

1)B
′
1, . . . , (~Q′

s; ~A′
s)B

′
s

(~Q′′; ~A′′)B′′

a constant cO with arity:

(⊗i=1...r!(⊗~Qi
~Ai ⊸ Bi)) ⊗ (⊗j=1...s(⊗~Q′

j
~A′

j ⊸ B′
j)) ⊸ (⊗~Q′′ ~A′′

⊸ B′′)

where ⊗ ~A is the standard left-bracketed tensor.

Now, given a higher-order signature H = (MI , ML, ∅, OL), we can easily see

that (MI , ML, ∅, OC
L) is another higher-order signature. Write LinHC(H) for the

higher-order typing system LinH(MI , ML, ∅, OC
L).

Having made this definition, we can give a translation from LinH(H) to LinHC(H)˙
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Definition 7.1.6 (The Translation ( )�)

Define the translation ( )� from LinH(H) to LinHC(H) as the identity on types,

and on pre-terms as follows:

(x)� = x

(let x be v in w)� = let x be (v)� in (w)�

(O((~x1; ~y1)v1, . . . , (~xr; ~yr)vr; (~x′
1; ~y

′
1)w1, . . . , (~x′

s; ~y
′
s)ws)(~v′; ~w′))� =

cO(⊗i=1...r!(λz.let ⊗~x′′
i ~yi be z in let ~xi be ~x′′

i in (vi)�))
⊗ (⊗j=1...s(λz.let ⊗~x′′′

j ~y′
j be z in let ~x′

j be ~x′′′
j in (wj)�)) (⊗(~v′ ~w′)�)

This translation can be shown to take Γ; ∆-terms of LinH(H) to Γ; ∆-terms of

LinHC(H).

Now, given a higher-order signature H = (MI , ML, ∅, OL), we can define the

generalised linear type theory LinHC(H, A) to be the higher-order type-theory

LinH((MI , ML, ∅, OC
L), A�). Given this definition, the translation ( )� is sound.

7.2 Higher-Order Semantics

Having given our definition of higher-order type theories, we now need to consider

the semantics of such type-theories. Since every higher-order type theory is in

fact an instance of a generalised linear type theory, we already have a definition of

model for any higher-order signature. However, this inherited definition of model

is not ideal, for example because it requires us to give a primitive interpretation of

all the new higher-order types which exist in a general higher-order type-theory.

We would much prefer that these, and indeed the operators which exists in every

higher-order type theory, were interpreted into primitive structure already present

in the models in a standard way.

We can make such a definition by considering the semantics of DILL(C). It

is no coincidence that in fact many of the operators of the higher-order type

theory have typing rules very similar to those of DILL(C), or that the models

of DILL(C) which we defined were built on a carrier having a cartesian category

with a strong monoidal functor to a symmetric monoidal category, augmented

with extra structure. In fact, we will define models of higher-order type theories

using most of the structure of DILL(C)-models.

The carrier of a LinH(H, A)-model is a quadruple (C, S, F, G) such that C is

a cartesian category, S is a symmetric monoidal closed category, F : C → S is

strict monoidal and G ⊢ F . Note that C need not necessarily be closed, and that

neither C nor S need be strict.
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Now, the carrier of a LinH(H, A)-model easily yields a carrier for a Lin(O, A)-

model, which we call the underlying carrier; simply take the triple (C, S, F ) with

the strict cartesian structure on C given by the left-bracketed product, and the

strict symmetric monoidal structure on S given by the left-bracketed tensor, and

F as before.

Definition 7.2.1 (Higher-Order LinH(H)-interpretation)

A higher-order interpretation of the higher-order typing system LinH(H), which

we write H, is a carrier (C, S, F, G) together with:

• primitive interpretation functions [[ ]]HMI
: MI → obj(C) and [[ ]]HML

: ML →

obj(S) such that for all Q ∈ MI , we have [[Q]]HML
= F ([[Q]]HMI

)

• for each operator O ∈ OL having arity

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)Br ; (~Q′
1; ~A′

1)B
′
1, . . . , (~Q′

s; ~A′
s)B

′
s

(~Q′′; ~A′′)B′′

a natural transformation

[[O]]HOL
:(×i=1...rS(F (=) ⊗ [[ ~Qi; ~Ai]]

G, [[Bi]]
G
ML

)) ×

(×j=1...sS(F (=) ⊗ [[ ~Q′
j]] ⊗ ( j) ⊗ [[ ~A′

j]]
G, [[B′

j]]
G
ML

))

→ S(F (=) ⊗ [[ ~Q′′]] ⊗ (⊗j=1...s( s)) ⊗ [[ ~A′′]]G, [[B′′]]GML
)

which is natural independently in each of the s + 1 arguments (=) and

( 1), . . . , ( s), and where the interpretation [[ ]]G is extended to arbitrary

contexts in the obvious way, as given shortly,

• for each operator O ∈ OI having arity

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)Br;

(; )R

a natural transformation

[[O]]HOI
: ×i=1...r S(F (=) ⊗ [[ ~Qi; ~Ai]]

G, [[Bi]]
G
ML

)

→ C(=, [[Q′′]]GC)

where the interpretation is again given shortly, such that for all objects X

of C and all arrows fi : F (X) ⊗ [[ ~Qi; ~Ai]] → [[Bi]] where i = 1 . . . r in S,

[[O]]GOL
(X)(f1, . . . , fr) = F ([[O]]GOI

(X)(f1, . . . , fr))
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We can now easily extend the interpretation functions [[ ]] to higher order

types:

[[I ]] = I

[[A ⊗ B]] = [[A]] ⊗ [[B]]

[[A ⊸ B]] = [[A]] ⊸ [[B]]

[[!A]] = FG([[A]])

[[!A]]C = G([[A]])

and to sequences of such types using the left-bracketed product and tensor

in the familiar way. Further, we can extend the interpretation of operators as

follows:

[[∗]](X) = F (dX)

[[IL
A]](X; Y )(f) = liF (=)⊗ ; f

[[⊗R
A,B]](X; Y1Y2)(f1f2) = admin1; (f1 ⊗ f2)

[[⊗L
A,B−C]](X; Y )(f) = admin2; f

[[λA,B]](X; Y )(f) = λf

[[apA,B ]](X; ) = (F (dX) ⊗ ap); ri[[B]]

[[!A]](X)(f) = F (unX ; G(f))

[[

!

A]](X) = (F (dX) ⊗ nu[[A]]); ri[[A]]

[[!A]]C(X)(f) = unX; G(f)

where admin! and admin2 are the obvious morphisms in the s.m.c.:

admin1 :(FX ⊗ Y1) ⊗ Y2 → (FX ⊗ Y1) ⊗ (FX ⊗ Y2)

admin2 :((FX ⊗ [[A]])⊗ [[B]])⊗ Y → (FX ⊗ ([[A]] ⊗ [[B]]))⊗ Y

Now, we have a lemma:

Lemma 7.2.2

Given a LinH(H)-interpretation, its underlying carrier (with the strict left-bracketed

product and tensor) and the extended interpretation functions defined above make

up all the information required for a Lin(OH)-interpretation.
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We can therefore interpret terms of LinH(H) into our model by the derived

interpretation, and henceforth we will use this derived interpretation of LinH(H)

into LinH(H)-interpretations. Given this derived interpretation, we have a lemma

on the axiom set AH .

Lemma 7.2.3

Any LinH(H)-interpretation H interprets the equality judgements in the axiom

set AH as categorical equalities in the s.m.c. part of H.

This is easily shown by analogy with soundness for DILL(C) in DILL(C)-

models, since we have the same underlying categorical structure. With this

lemma, we can now define LinH(H, A)-models.

Definition 7.2.4 (LinH(H, A)-model)

A LinH(H, A)-model is a LinH(H)-interpretation H such that the derived interpret-

ation given by lemma 7.2.2 maps equality judgements of the higher-order axiom

set A to equalities in the category S which is the s.m.c. part of the carrier of H.

Soundness for these models is easy to prove:

Lemma 7.2.5 (Soundness)

Given a LinH(H, A)-model H, and equality judgement Γ; ∆ ⊢ v = w : A of

LinH(H, A), we have that:

[[Γ; ∆ ⊢ v :A]]H = [[Γ; ∆ ⊢ w:A]]H

Proof The equality rules are soundly interpreted since categorical equality is a

congruence, the basic axioms of the generalised linear type-theory are soundly in-

terpreted by virtue of the fact that the interpretation is derived from a generalised

linear type-theory interpretation for which we already have soundness, the axioms

in the set AH are soundly interpreted by lemma 7.2.3 and finally the axioms in

the set A of the higher-order signature are soundly interpreted by definition. �

We now consider completeness. As usual, we will proceed by defining a term

model.

Definition 7.2.6 (The Linear Term Category)

We define the linear term category, HST , as follows:

• The objects of HST are linear types of LinH(H, A).

• HST (A, B) = {[(x, v)A,B]| ; x : A ⊢ v : B}, where we write [(x, v)A,B] as

normal to denote the equivalence class of (x, v)A,B under the equivalence

≡′′ defined by

(x, v)A,B ≡′′ (y, w)A,B if ; x:A ⊢ v = w{x/y}:A
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As before, we omit type annotations where convenient and write [(x, v)] as

[x, v].

Identities and composition are defined as for the term model of DILL(C), and

further, the closed monoidal structure is also defined as for the term model of

DILL(C).

Definition 7.2.7 (The Intuitionistic Term Category)

We define the intuitionistic term category, HCT , as follows:

• The objects of HCT are sequences of intuitionistic types of LinH(H, A).

• HCT ( ~A, ~B) = {[(~x,~v)
~A, ~B ]|~x : ~A; ⊢ vi : ⊗Bi and each vi is intuitionistic},

where we write [(~x,~v)
~A, ~B] to denote the equivalence class of ( ~X, ~V )

~A, ~B under

the equivalence ≡′′
C defined by:

(~x,~v)
~A, ~B ≡′′

C (~y, ~w)
~A, ~B

if the sequences ~v and ~w are the same length, the sequence ~x and ~y are the

same length, and for each i, we have ~x: ~A; ⊢ vi =I wi{~x/~y}:Bi.

As before, we omit type information where convenient, abbreviate [(~x,~v)]

to [~x,~v] and assume that in such an arrow, all the variables in ~x are distinct.

We define identities, composition and a strict cartesian structure over this just

as for the term model of DILL(C).

Now we define FT on objects of HCT as the left-bracketed tensor, and on

arrows as

FT ([~x,~v]) = [y, let ⊗~x′ be y in let ~x be ~x′ in ⊗~v]

This can be seen to be functorial. Define GT on objects of HST to take A to

the intuitionistic type !A. On objects, define

GT ([x, v]) = [y, !(v{

!

y/x})]

Now we can define the term model:

Definition 7.2.8 (Higher-Order Term Model)

Define the higher-order term model, written HT , to have carrier (HCT , HST , FT , GT ),

with interpretation functions given in the obvious way.

It is a straightforward exercise to give these interpretation functions and show

that the definitions given make HT into a LinH(H, A)-model.

We can also easily show that
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Lemma 7.2.9

Given a Γ; ∆-term v of LinH(H, A) having type A, we have:

[[Γ; ∆ ⊢ v :A]]HT = [z, let ⊗~x′~y be z in let ~x be ~x′ in v]

where z and ~x′ are fresh, Γ = ~x: ~Q and ∆ = ~y : ~A.

Now we can prove completeness by the standard method.

Lemma 7.2.10 (Completeness)

Given two Γ; ∆-terms v and w of type A in LinH(H, A), we have a provable equality

judgement Γ; ∆ ⊢ v = w:A iff in all LinH(H, A)-models, we have:

[[Γ; ∆ ⊢ v :A]] = [[Γ; ∆ ⊢ w:A]]

This is proved as normal.

We can define LinH(H)-morphisms as follows:

Definition 7.2.11 (LinH(H)-morphisms)

A LinH(H)-morphism is a pair of functors (FC : C → C′, FS : S → S ′) such that:

• FC is strict cartesian and FS is strict monoidal closed,

• the following diagrams commute:

C
F ✲ S

C′

FC

❄ F ′
✲ S ′

❄

FS

C ✛ G
S

C′

FC

❄
✛ G′

S ′
❄

FS

• (FC, FS) is a Lin(OH)-morphism.

It is easy to see that the third of these conditions can be replaced by the

weaker condition that the pair of functors preserve the primitive interpretations

on MI ,ML,OI and OL, as the condition as stated can be deduced from the fact

that they preserve the structure of the carrier of the LinH(H)-interpretation.

Define CatLinH(H, A) to be the category of small LinH(H, A)-models and morph-

isms. Further, define CatLinHC(O, A) to be the category of small LinHC(O, A)-

models and morphisms

It is now possible to define a LinH(H, A)-morphism from HT to any arbitrary

LinH(H, A)-model H using the interpretation.
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Definition 7.2.12 (Initiality Morphism)

Given a LinH(H, A)-model H, we have a LinH(H, A)-morphism FT = (FT C , FT S) :

HT → H. Define FT C on objects of HCT as the left-bracketed product of the

interpretations of the sequence of types, and on arrows [~x,~v] as the pairing of the

[[~x: ~A; ⊢ vi]]
H
C .

Further, define FT C on objects just as their interpretation, and on arrows

[x, v] as the interpretation [[ ; x:A ⊢ v :B]]H.

Now we can show that this initiality morphism is a LinH(H, A)-morphism and

is unique up to isomorphism.

It is now worth noting that since we know that every LinH(H, A)-model gives

rise to a Lin(OH , A ∪ AH) model and similarly for morphisms, we have a functor

from CatLinH(H, A) to the category of Lin(OH, A ∪ AH)-models and morphisms.

7.3 Conservativity

In this section we will use the Yoneda Lemma to prove that the translation of

the Lin(O, A) into its higher-order extension LinHC(O, A) is sound and conservat-

ive. Since we know by lemma 7.1.5 that every generalised linear type-theory is

isomorphic to one without any intuitionistic operators, for the remainder of this

section we only consider generalised signatures of this form.

Summary of the Proof To show conservativity of the translation, the basic

procedure is as follows. Given the term model of Lin(O, A), we can construct via

the Yoneda lemma a new Ĉ, Ŝ and F̂ derived from the carrier of the term model

such that Ĉ is a cartesian closed, Ŝ is s.m. closed, and F̂ has a right adjoint

G : Ŝ → Ĉ which is symmetric monoidal. These elements can be used to construct

a LinHC(O, A)-model ϕ(GT (O, A)), and further this LinHC(O, A)-model induces a

Lin(O, A)-model κ(ϕ(GT (O, A))). But the Yoneda lemma also tells us that there

exist a fully faithful cartesian functor YC : C → Ĉ and a fully faithful s.m. functor

YS : S → Ŝ such that YC ◦ F̂ ≃ F ◦ YS up to monoidal natural isomorphism.

These can be used to construct a Lin(O)-morphism GT (O, A) → κ(ϕ(GT (O, A)))

which is fully faithful in its s.m. component.

Now, assume that the translations from Lin(O, A) to LinHC(O, A) of two Γ; ∆-

terms of type A are provably equal in LinHC(O, A). Then by soundness their

interpretations must be equal in ϕ(GT (O, A)). Now we use the fact that their

interpretations in the s.m.c. part of this model must be the same as the inter-

pretation of the original Γ; ∆ terms of Lin(O, A) in the s.m.c. part of the induced
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model κ(ϕ(GT (O, A))). But by initiality we know that the fully faithful Lin(O)-

morphism we constructed must be the canonical Lin(O)-morphism from the term

category, which takes each term arrow to its interpretation. Hence the interpret-

ations of our two terms in the induced Lin(O, A)-model are the images under the

morphism of their interpretations in the term model GT (O, A), but since their

interpretations are equal in the induced category by faithfulness their interpret-

ations in the term model will be equal, and hence by completeness the terms

themselves are equal.

The outline of the proof is simple, but there are a number of problems to be

overcome which we have glossed over in this account under the phrase “can be

used to construct”. These include size problems and strictness issues.

Preliminaries

We now give some type-theoretic results which will be used in the proof of con-

servativity.

Definition 7.3.1

We define an embedding of categories κ : CatLinHC(O, A) → CatLin(O, A) as follows:

Given a LinHC(O, A)-model G with carrier (C, S, F, G) and interpretation functions

[[ ]]G, let κ(G) have carrier (C, S, F ) with the strict left-bracketed product and

tensor, interpretation functions on types those of G, and finally the interpretation

on operators in OL given via the interpretation of constants in G and the following

isomorphism:

S(I, [[
⊗

i=1...r

!(⊗~Qi
~Ai ⊸ Bi) ⊗ (

⊗

j=1...s

(⊗~Q′
j
~A′

j ⊸ B′
j)) ⊸ (⊗~Q′′ ~A′′

⊸ B′′)]])

≃NatS,... ,S,C(
∏

i=1...r

S(F (=) ⊗ [[ ~Qi; ~Ai]], [[Bi]]) ×
∏

j=1...s

S(F (=) ⊗ j ⊗ [[ ~Q′
j; ~A′

j]], [[B
′
j]]),

S(F (=) ⊗ 1 ⊗ . . . ⊗ s ⊗ [[ ~Q′′; ~A′′]], [[B′′]]))

Having defined this embedding, we give a lemma on interpretations in Lin(O, A)-

models.

Lemma 7.3.2

For any Γ; ∆-term v of type A in Lin(O, A), and any Lin(O, A)-model G, [[Γ; ∆ ⊢

v :A]]G = FT G([[Γ; ∆ ⊢ v :A]]), where FT G : GT (O, A) → G is the unique initiality

map.

This is easily seen from the definition of the canonical morphism (definition

5.5.3, on page 111). We also need a lemma relating the interpretations of Lin(O, A)

and LinHC(O, A).
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Lemma 7.3.3

Given a LinHC(O, A)-model G and a Γ; ∆-term v of type A in Lin(O, A), then

[[Γ; ∆ ⊢ v� :A]]G = [[Γ; ∆ ⊢ v :A]]κ(G) in the s.m. category which is common to G

and κ(G).

In order to see this, we need to note firstly that the structure used by both

interpretations is all on the carrier and hence shared apart from the primitive

interpretation of the operators, and it is straightforward isomorphism-chasing to

show that the interpretation of any operator instance is the same when it is first

mapped to LinHC(O, A) as it is when interpreted directly from Lin(O, A) into κ(G).

Given this last result, we can now show soundness of the translation ( )� using

our semantic results.

Lemma 7.3.4 (Soundness)

If Γ; ∆ ⊢ v = w:A in Lin(O, A), then Γ; ∆ ⊢ (v)� = (w)� :A in LinHC(O, A).

Proof Assume that we have an arbitrary LinHC(O, A)-model G, and two terms

Γ; ∆ ⊢ v = w :A in Lin(O, A). Now by soundness of the Lin(O, A)-interpretation

we must have that [[Γ; ∆ ⊢ v : A]]κ(G) = [[Γ; ∆ ⊢ w : A]]κ(G) in the induced Lin(O, A)-

model, and also by our lemma [[Γ; ∆ ⊢ v� : A]]G = [[Γ; ∆ ⊢ w� : A]]G under the

interpretation of LinHC(O, A) in the arbitrary LinHC(O, A)-model. But then by

completeness of LinHC(O, A), we must have that Γ; ∆ ⊢ v� = w� :A as required.

�

The Yoneda Construction

We now consider the details of the Yoneda construction which we will use to obtain

a LinHC(O, A)-model ϕ(G) from any given Lin(O, A)-model G, and also to show

that the unique Lin(O)-morphism FT κ(ϕ(GT (O,A))) : GT (O, A) → κ(ϕ(GT (O, A)))

has a fully faithful s.m. part. As we noted at the beginning of this section, there

are some technical problems which we must consider carefully. First we state the

Yoneda lemma in the form that we will use it.

Lemma 7.3.5 (Yoneda)

Given a locally small category C, define Ĉ to be the functor category SetC
op

, and

define YC : C → Ĉ to be the functor which takes any object of C, X, to the

hom-functor C( , X) and which takes any arrow of C, f : X → Y , to the natural

transformation C( , f) : C( , X) → C( , Y ) with the obvious compositional action.

This construction has the following properties [Day70a, Day70b, Day73]:

• If C is symmetric monoidal, then Ĉ is symmetric monoidal closed, and YC is

strong symmetric monoidal.
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• If C is cartesian, then Ĉ is cartesian closed, and YC is strong cartesian.

• Given a strong symmetric monoidal functor F : C → S, we have a strong

symmetric monoidal functor F̂ : Ĉ → Ŝ which is unique up to isomorphism,

has a right adjoint and such that we have a symmetric monoidal natural

isomorphism F̂ ◦ YC ≃ YS ◦ F .

As we have previously said, given this lemma there are some technical dif-

ficulties to overcome before we can achieve our aim, which is to find a small

LinHC(O, A)-model, based on the Yoneda construction over the term model, such

that the initiality morphism to κ of this model in the category CatLin(O, A) is

faithful in its s.m. part.

The first problem is a size problem. The categories yielded by the Yoneda

construction are not small in general, and hence no model we construct directly

using them will be in any of our categories of models. However, we can avoid this

by taking full subcategories of the categories Ĉ containing (the image of) C and

closed under the relevant operations.

The second difficulty is that although models of Lin(O, A) have strict tensor

structure and strict cartesian structure, the Yoneda construction yields categories

which have corresponding structure which may not be strict. We therefore present

our first proposition:

Proposition 7.3.6 (Strictness)

Given a symmetric monoidal category C, there exists a strict symmetric monoidal

category Cs which is equivalent to C. Similarly, given a cartesian category C,

there exists a strict cartesian category Cs which is equivalent to C. Also, given a

symmetric monoidal functor F : C → C′, there exists a strict symmetric monoidal

functor Fs : Cs → C′
s such that the following diagram commutes, where UC and

SC are the fully faithful functors witnessing the equivalence:

C
F ✲ C′

Cs

SC

❄

✻

UC

Fs ✲ C′
s

SC′

❄

✻

UC′

The final difficulty is that given a Lin(O, A)-model G with carrier (C, S, F ),

the candidate carrier for a LinHC(O, A)-model, (Ĉs, Ŝs, F̂ , G) has the property

that YC ; F̂ ≃ F ; YS, where we will want to use the Yoneda functors YC and YS to

construct a Lin(O, A)-map from G to the LinHC(O, A)-model based on the Yoneda

construction. Hence we recall the following proposition:
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Proposition 7.3.7 (Skeleton)

Given a category C, there exists a category sk(C) which is equivalent to C such

that any two objects of sk(C) which are isomorphic are equal and any two arrows

of sk(C) which are isomorphic in the arrow category of sk(C) are equal, where

the arrow category of a category S has objects the arrows of S and as arrows

(f : X → Y ) → (g : X ′ → Y ′) pairs of arrows of S, (h1, h2) where h1 : X → X ′

and h2 : Y → Y ′ and the obvious diagram commutes.

Note that the fully faithful functors K : S → sk(S) and I : sk(S) → S given

by this proposition are strict symmetric monoidal under the obvious (strict) s.m.

structure over the skeleton. Given this machinery, we can now define a small

LinHC(O, A)-model using the Yoneda construction over a small Lin(O, A)-model.

Lemma 7.3.8

Given a small Lin(O, A)-model G, we can define a small LinHC(O, A)-model ϕ(G).

Proof For the purposes of this proof, we will assume that the categories Ĉ and

Ŝ are the small categories obtained by taking full subcategories of the Yoneda

constructions as mentioned earlier.

Firstly, we consider the carrier. Given that the carrier of G is (C, S, F ), we

make the following definitions. Let SC : Ĉ → Ĉs and UC : Ĉs → Ĉ be the fully

faithful cartesian functors given by the equivalence of Ĉ and Ĉs, such that S; U ≃

: Ĉ → Ĉ. Also, let SS : Ŝ → Ŝsand US : Ŝs → Ŝ be the fully faithful

symmetric monoidal functors given by the equivalence of Ŝ and S. Finally, let

K : Ŝs → sk(Ŝs) and I : sk(Ŝs) → Ŝs be the fully faithful strict symmetric-

monoidal functors given by the equivalence of Ŝs and sk(Ŝs).

Now, let the carrier of ϕ(G) be (Ĉs, sk(Ŝs), F̂s; K, I ; Gs) where F̂ ⊣ G. In order

to show that this has the right form we need just to show that F̂s; K ⊣ I ; Gs, but

this follows from the original adjunction via the diagram of proposition 7.3.6 and

the properties of K and I .

We will now define Y ′
C : C → Ĉs as YC ; SC and Y ′

S : S → sk(Ŝs) as YS ; SS ; K.

Now we consider the interpretation functions. Firstly, define [[ ]]ϕ(G)

MH
L

as follows:

[[A ∈ ML]]ϕ(G)

MH
L

= Y ′
S([[A]]GML

)

[[I ]]
ϕ(G)

MH
L

= I

[[A ⊗ B]]ϕ(G)

MH
L

= [[A]]ϕ(G)

MH
L

⊗ [[B]]ϕ(G)

MH
L

[[A ⊸ B]]ϕ(G)

MH
L

= [[A]]ϕ(G)

MH
L

⊸ [[B]]ϕ(G)

MH
L

[[!A]]
ϕ(G)

MH
L

= F̂sGs[[A]]
ϕ(G)

MH
L
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and define [[ ]]
ϕ(G)

MH
I

as follows:

[[Q ∈ MI ]]
ϕ(G)

MH
I

= Y ′
C([[Q]]GMI

)

[[!A]]
ϕ(G)

MH
I

= Gs[[A]]
ϕ(G)

MH
L

Now these two definitions satisfy the required property:

F̂s([[ ]]
ϕ(G)

MH
I

) = [[ ]]
ϕ(G)

MH
L

: MH
I → Ŝs

by virtue of the natural isomorphism:

Y ′
C ; F̂s; K ≃ YC ; SC; F̂s; K ≃ YC ; F̂ ; SS; K ≃ F ; YS; SS ; K ≃ F ; Y ′

S

and the fact that since any two isomorphic objects or arrows in sk(Ŝs) are equal,

Y ′
C; F̂s = F ; Y ′

S.
Finally, we need to give the operator interpretation on elements of OL. Since

we know that the isomorphism

sk(Ŝs)(I, [[
⊗

i=1...r

!(⊗~Qi
~Ai ⊸ Bi) ⊗ (

⊗

j=1...s

(⊗~Q′
j
~A′

j ⊸ B′
j)) ⊸ (⊗~Q′′ ~A′′

⊸ B′′)]])

≃Nat
sk(Ŝs),... ,sk(Ŝs),Ĉs

(
∏

i=1...r

sk(Ŝs)(F (=) ⊗ [[ ~Qi; ~Ai]], [[Bi]])

×
∏

j=1...s

sk(Ŝs)(F (=) ⊗ j ⊗ [[ ~Q′
j;

~A′
j]], [[B

′
j]]),

sk(Ŝs)(F (=) ⊗ 1 ⊗ . . . ⊗ s ⊗ [[ ~Q′′; ~A′′]], [[B′′]]))

holds given the interpretations we have already defined, it suffices to show that
for each operator we have an instance of the second natural transformation. By
consideration of the equivalences, though, these natural transformations arise
from natural transformations:

NatŜ,... ,Ŝ,Ĉ(
∏

i=1...r

Ŝ(F (=) ⊗ [[ ~Qi; ~Ai]], [[Bi]]) ×
∏

j=1...s

Ŝ(F (=) ⊗ j ⊗ [[ ~Q′
j;

~A′
j]], [[B

′
j]]),

Ŝ(F (=) ⊗ 1 ⊗ . . . ⊗ s ⊗ [[ ~Q′′; ~A′′]], [[B′′]]))

but this set is isomorphic by virtue of the Yoneda embedding to the set:

NatS,... ,S,C(
∏

i=1...r

S(F (=) ⊗ [[ ~Qi; ~Ai]], [[Bi]]) ×
∏

j=1...s

S(F (=) ⊗ j ⊗ [[ ~Q′
j; ~A′

j]], [[B
′
j]]),

S(F (=) ⊗ 1 ⊗ . . . ⊗ s ⊗ [[ ~Q′′; ~A′′]], [[B′′]]))

Hence we have given the model ϕ(G). �

Lemma 7.3.9 (Fully Faithful)

The initiality map FT κ(ϕ(GT (O,A))) : GT (O, A) → κ(ϕ(GT (O, A))) is fully faithful

in both its component functors.
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Proof We can prove this by showing that the pair of the two fully faithful

functors Y ′
C and Y ′

S is a Lin(O)-morphism with the appropriate domain and codo-

main. This will then imply the result since the initiality map is unique and hence

must be this map. In order to check that (Y ′
C , Y

′
S) is a Lin(O)-morphism, we need

simply to check that it has the right behaviour with respect to the primitive in-

terpretation and the functor F of the model, both of which hold by virtue of the

equality Y ′
C; F̂s = F ; Y ′

S for a general Yoneda construction, and with respect to the

operator interpretation, the result is given by the isomorphisms of lemma 7.3.8.

�

Theorem 7 (Conservativity of ( )�)

If, given two Γ; ∆-terms v and w of type A in Lin(O, A), we can derive the equality

judgement Γ; ∆ ⊢ v� = w� :A in LinHC(O, A), then we must be able to derive the

equality judgement Γ; ∆ ⊢ v = w:A in Lin(O, A).

Proof Consider the (small) LinHC(O, A)-model ϕ(GT (O, A)). Given the deriv-

able equality judgement Γ; ∆ ⊢ v� = w� :A in LinHC(O, A), we know that

[[Γ; ∆ ⊢ v� :A]]ϕ(GT(O,A)) = [[Γ; ∆ ⊢ w� :A]]ϕ(GT(O,A))

in ϕ(GT (O, A)).

Now this means that [[Γ; ∆ ⊢ v : A]]κ(ϕ(GT(O,A))) = [[Γ; ∆ ⊢ w : A]]κ(ϕ(GT(O,A)))

in κ(ϕ(GT (O, A))), by lemma 7.3.3. But since we know by lemma 7.3.9 that the

s.m. part of the initiality Lin(O)-morphism FT κ(ϕ(GT (O,A))) is faithful, this implies

that [[Γ; ∆ ⊢ v :A]]GT(O,A) = [[Γ; ∆ ⊢ w :A]]GT (O,A) . This then gives the result by

completeness. �

7.4 Corollaries

We note some simple consequences of this result in general. Firstly, we give a

lemma:

Lemma 7.4.1

For any linear type theory Lin(O′, A′) such that the following diagram commutes:

Lin(O, A)
( )� ✲ LinHC(O, A)

Lin(O′, A′)

θ 2

✲

θ
1

✲

and θ1 and θ2 are sound, θ1 is conservative.
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Proof Given θ1(Γ; ∆) ⊢ θ1(Γ; ∆ ⊢ v :A) = θ1(Γ; ∆ ⊢ w :A):θ1(A) in Lin(O′, A′),

we have that

θ2(θ1(Γ; ∆)) ⊢ θ2(θ1(Γ; ∆ ⊢ v :A)) = θ2(θ1(Γ; ∆ ⊢ w:A)):θ2(θ1(A))

and hence Γ; ∆ ⊢ (v)� = (w)� :A. But by the conservativity of ( )�, this means

that Γ; ∆ ⊢ v = w:A. �

This then gives us the most important corollary; that our conservativity result

implies that for the more primitive embedding:

Corollary 7.1

The trivial embedding Lin(O, A) → LinH(O, A) is conservative for any generalised

signature O.

Proof First note that since the map ( )� : LinH(O, A) → LinHC(O, A) is sound

for signatures having no intuitionistic operators, by our lemma the trivial embed-

ding Lin(O, A) → LinH(O, A) is conservative for such signatures. But now note

that any generalised type theory is isomorphic to one having no intuitionistic

operators, and furthermore that the following square commutes, where O′ and A′

are the signature with no intuitionistic operators and the associated axiom set:

Lin(O′, A′)
emb✲ LinH(O′, A′)

Lin(O, A)
❄

✻

emb
✲ LinH(O, A)

❄

✻

This implies that the trivial embedding is also conservative in the general

case where the signature may have intuitionistic operators, since isomorphisms

are conservative. �

Output Natural Operators

We now use this result to show how we can represent any output-natural set of

operators in a linear type-theory as a single constant in the higher-order exten-

sion of the type-theory. The idea behind this is best seen through an example.

Consider the output-natural set of operators O with arity

(~Q; ~A)B ; (~Q′
1; ~A′

1)B
′
1 (~Q′

2; ~A′
2)( )

(~Q′′; ~A′′)( )
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We claim that this can be represented in a higher-order setting by the constant

cO with arity:

!(⊗~Q~A ⊸ B) ⊗ (⊗~Q′
1
~A′

1 ⊸ B1) ⊸ (⊗~Q′′ ~A′′
⊸ ⊗~Q′

2
~A′

2)

In order to see how this works, consider the translation of a general operator

instance:

OC((~x; ~y)v; (~x′
1; ~y

′
1)w1, (~x

′
2; ~y

′
2)w2)(~v

′ ~w′)

7→let ⊗ z~y′
2 be (cO!(λz′.let ⊗~x′′~y be z′ in let ~x be ~x′′ in v) ⊗

(λz′.let ⊗~x′′~y′
1 be z′ in let ~x′

1 be ~x′′ in w1)(⊗~v′ ~w′))

in w2

We can clearly see that this term has output-natural behaviour inherited from

that of the let -construct. Now consider the arity of the constant cOC
which

represents the operator OC in the standard encoding given earlier in this chapter:

!(⊗~Q~A ⊸ B) ⊗ (⊗~Q′
1
~A′

1 ⊸ B1) ⊗ (⊗~Q′
2
~A′

2 ⊸ B2) ⊸ (⊗~Q′′ ~A′′
⊸ C)

We can now express cn in terms of this set of constants as follows:

cn 7→ λx.cO
⊗ ~Q′

2
~A′

(x ⊗ (λy.y))

and also, when we compose the mappings taking the output-natural set of operat-

ors to the (system with the) constant cn and taking the (system with the) constant

cn to the (standard higher-order system with) constants cOC
, the results are the

same up to provable equality, by a simple application of the output-naturality

axioms.

To state this formally, given a higher-order signature (MI, ML, ∅, OL∪O) where

the set of operators O is output-parameterised over the set ML and has arity:

(~Q1; ~A1)B1, . . . , (~Qr; ~Ar)(Br); (~Q′
1; ~A′

1)B
′
1, . . . , (~Q′

s−1; ~A′
s−1)B

′
s−1, (~Q′

s; ~A′
s)( )

(~Q′′; ~A′′)( )

we say that the output-natural-in-O operator constant set, written (OL ∪ O)OC is

defined as OC
L ∪ {cO}, where cO is a constant with arity:

(
⊗

i=1...r

!(⊗~Qi
~Ai ⊸ Bi) ⊗

⊗

j=1...(s−1)

(⊗~Q′
j
~A′

j ⊸ B′
j)) ⊸ (⊗~Q′′ ~A′′

⊸ ⊗~Q′
s
~A′

s)

Now, we have as before that given a higher-order signature H = (MI , ML, ∅, OL)

such that OL contains an output-parameterised-in-ML set of operators,
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H
OC
O (MI , ML, ∅, OOC

L )

is another higher-order signature. Write LinHC
O (H) for the higher-order typing

system over this higher-order signature HOC
O .

Definition 7.4.2 (The Translation ( )�)

Define the translation ( )� from LinH(MI , ML, ∅, OL) to LinH(MI , ML, ∅, OOC
L )as

the identity on types and on pre-terms as follows:

(x)� = x

(let x be v in w)� = let x be (v)� in (w)�

(O′((~x1; ~y1)v1, . . . , (~xr; ~yr)vr; (~x′
1; ~y

′
1)w1, . . . , (~x′

s; ~y
′
s)ws)(~v′; ~w′))� =

cO(⊗i=1...r!(λz.let ⊗~x′′
i ~yi be z in let ~xi be ~x′′

i in (vi)�))
⊗ (⊗j=1...s(λz.let ⊗~x′′′

j ~y′
j be z in let ~x′

j be ~x′′′
j in (wj)�)) (⊗(~v′ ~w′)�)

on operators O′ 6∈ O

(OC((~x1; ~y1)v1, . . . , (~xr; ~yr)vr; (~x′
1; ~y

′
1)w1, . . . , (~x′

s; ~y
′
s)ws)(~v′; ~w′))� =

let ⊗ ~z~y′
s be cn(⊗i=1...r!(λz.let ⊗~x′′

i ~yi be z in let ~xi be ~x′′
i in (vi)�))

(⊗j=1...(s−1)(λz.let ⊗~x′′′
j ~y′

j be z in let ~x′
j be ~x′′′

j in (wj)�))
(⊗(~v′ ~w′)�)

in let ~x′
s be ~z in ws

We can extend the typing system LinHC
O (MI , ML, ∅, OL) to a type theory by

letting LinHC
O ((MI , ML, ∅, OL), A) be defined as the higher-order type theory

LinH((MI , ML, ∅, OOC
L ), (A)�)

This translation can be shown to be easily invertible.

7.5 Action Calculi

We now consider the action calculi we have defined in the light of our conser-

vativity result. First we need to define another translation.
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Definition 7.5.1 (The Translation ι5)

Define the translation ι5 : LinA�,(

(K) → LinH(OA, AA) as follows:

ι5(⊠m) =!(ι5(m))

ι5(l ⊸ m) = ι5(l) ⊸ ι5(m)

ι5(m ⊗ l) = ι5(m) ⊗ ι5(l)

ι5(x) = x

ι5(let x be v in w) = let x be ι5(v) in ι5(w)

ι5(⊗(~v)) = ⊗ι5(~v)

ι5(let ⊗~x be v in w) = let ⊗~x be ι5(v) in ι5(w)

ι5(K((~x1)v1, . . . , (~xr)vr, w1 . . . ws)) = K((~x1)ι5(v1), . . . , (~xr)ι5(vr), ι5(w1) . . . ι5(ws))

ι5(code(v)) =!ι5(v)

ι5(decode(v)) =

!

ι5(v)

ι5(λx:l.v) = λx:l.ι5(v)

ι5(vw) = ι5(v)ι5(w)

This translation is easily shown to be sound. Further, we have the following

translation lemma:

Lemma 7.5.2 (AC Translations)

The following diagram of translations commutes:

LinA�(K) ✛ι1
LinA(K) =Lin(OA, AA)

LinA⇒

(K)
ι4
✲

✛

ι 3

LinA�,(

(K)

❄

ι2

ι5
✲ LinH(OA, AA)

❄

emb

Now we can use our conservativity result as follows:

Corollary 7.2

The maps ι1 : LinA(K) → LinA�(K), ι1; ι2 : LinA(K) → LinA�,(

(K) and ι1; ι3 :

LinA(K) → LinA⇒

(K) are all conservative. Equivalently, the embeddings AC(K) →

AC�(K), AC(K) → AC�,((K) and AC(K) → AC⇒(K) are all conservative.

Proof The first statement is immediate by lemma 7.4.1, the diagram of the pre-

vious lemma and corollary 7.1 of the conservativity theorem. The second follows

by the isomorphisms between the various action calculi and the corresponding

linear type theories. �
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7.6 Linear Logic

We now show that we can present the type theory of linear logic, in the form

of DILL, as an instance of our higher-order generalised linear type theory. This

demonstrates that our notion of general linear type theory captures at least the

notion of linearity found in the canonical example, linear logic.

Consider an arbitrary DILL-signature C = (PL, C). Let OC
L be the set of

operators just consisting of the constants C and their types. Now define the

higher-order signature HC = (∅, PL, ∅, OC
L). We claim that the higher-order type

theory LinH(HC , ∅), which we will refer to as LinD(C), is isomorphic to DILL(C).

Having now defined the type-theory LinD(C), we proceed to translate the type-

theory DILL(C) into LinD(C), and show the soundness of this translation.

Translating DILL(C) to LinD(C)

We define a map ( )◦ which will take a pair of a sequence of variables and a

pre-term of DILL(C), and return a pre-term of LinD(C). The intuition behind this

translation is that whenever the pre-term t is a Γ; ∆-term such that Γ = ~y : ~A,

the translation on that pre-term and sequence ~y and the pre-term t will give a

~y :! ~A; ∆-term of LinD(C).

Definition 7.6.1 (The Translation ( )◦)

We define the translation ( )◦, which takes pairs of a sequence of distinct variables

and a pre-term of DILL(C), and returns a pre-term of LinD(C), as follows:

(~yx~y′, x)◦ =

!

x

(~y, x)◦ = x if x 6∈ ~y

(~y, c)◦ = c

(~y, ∗)◦ = ∗

(~y, let ∗ be t in u)◦ = let ∗ be (~y, t)◦ in (~y, u)◦

(~y, t ⊗ u)◦ = (~y, t)◦ ⊗ (~y, u)◦

(~y, let x ⊗ x′ be t in u)◦ = let x ⊗ x′ be (~y, t)◦ in (~y, u)◦

(~y, λx.t)◦ = λx.(~y, t)◦

(~y, tu)◦ = (~y, t)◦(~y, u)◦

(~y, !t)◦ =!(~y, t)◦

(~y, let !x be t in u)◦ = let x be (~y, t)◦ in (~yx, u)◦

It is now easy to show that for terms ~x :Γ; ∆ ⊢ t :A of DILL(C), we have the

typing judgement ~x :!Γ; ∆ ⊢ (~x, t)◦ :A in LinD(C). We give two lemmas to show
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the action of the translation on substitutions.

Lemma 7.6.2 (Intuitionistic Substitution)

Given a Γ; -term t of type A in DILL(C) and a x :A, Γ; ∆-term u of type B in

DILL(C), we have the following derivable equality judgement in LinD(C):

~y :! ~A′; ∆ ⊢ (~y, u{t/x})◦ = (~yx, u)◦{!(~y, t)◦/x}:B

where Γ = ~y : ~A′.

Proof This is proved by induction over the structure of the x :A, Γ; ∆-term u

of type B in DILL(C). We give the key cases.

Firstly assume that u is an intuitionistic variable x (and hence that A = B).

Then (~yx, x)◦ =

!

x, and so

(~yx, x)◦{!(~y, t)◦/x} =

!

!(~y, t)◦

and ~y : ~A′; ⊢ (~y, t)◦ =

!

!(~y, t)◦ :!A, so that the result holds.

Secondly assume that u is a linear variable y′. Then (~yx, y′)◦ = y′, and so

(~yx, y′)◦{!(~y, t)◦/x} = y′

and ~y : ~A′; y′ :C ⊢ (~y, y′{t/x}) = y′ :C so that we have the result. The inductive

cases follow easily. �

Lemma 7.6.3 (Linear Substitution)

Given a Γ; ∆1-term t of type A in DILL(C) and a Γ; ∆2, x:A-term u of type B in

DILL(C), we have the following derivable equality judgement in LinD(C):

~y :! ~A; ∆ ⊢ (~y, u{t/x})◦ = (~y, u)◦{(~y, t)◦/x}:B

where Γ = ~y : ~A and ∆ = ∆1#∆2.

The proof of this lemma is very similar to that of the last, but simpler. It

again goes by induction over the term u.

We can now prove that the translation is sound:

Lemma 7.6.4 (Soundness of ( )◦)

Given an equality judgement ~y :Γ; ∆ ⊢ t = u :A of DILL(C), we have an equality

judgement ~y :!Γ; ∆ ⊢ (~y, t)◦ = (~y, u)◦ :A in LinD(C).
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Proof The proof is by considering the structure of equality judgements in

DILL(C). Clearly the reflexivity, transitivity, symmetry and context rules are

translated to the corresponding rules of LinD(C). The βη-equalities of DILL(C)

are translated to the corresponding equalities of LinD(C), which is clear except in

the case of the !-βη equalities; in the case of ! − β, we have the typed equality in

DILL(C):

~y :Γ; ∆ ⊢ let !x be !t in u = u{t/x}:B

In LinD(C), we have (~y, let !x be !t in u)◦ = let x be !(~y, t)◦ in (~yx, u)◦. If (~y, t)◦ =

v and (~y, u)◦ = w, then we can derive the equality judgement:

~y :!Γ; ∆ ⊢ let x be !v in w = w{!v/x}:B

since ! is intuitionistic, but now by our lemma we have the equality judgement:

~y :!Γ; ∆ ⊢ (~y, u{t/x})◦ = w{!v/x}:B

In the case of ! − η, we have the typed equality in DILL(C):

~y :Γ; ∆ ⊢ let !x be t in !x = t :!A

In LinD(C), we have (~y, let !x be t in !x)◦ = let x be (~y, t)◦ in !

!

x . Now using the

! − η equality of LinD(C) and the let -rule, we have the equality judgement:

!Γ; ∆ ⊢ let x be (~y, t)◦ in !

!

x = (~y, t)◦ :!A

as required.

Finally, we have to consider the commuting conversions. These are provable

using output-naturality and lemma 7.6.3. �

Translating Lin
D(C) to DILL(C)

We now define a map ( )• from the type-theory LinD(C) into the type theory

DILL(C), along exactly the same lines as in the previous subsection.

Definition 7.6.5 (The Translation ( )•)

As before, we define the translation ( )•, which takes a pair of a sequence of

distinct variables and a pre-term of LinD(C), and gives a pre-term of DILL(C), as
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follows:

(~yx~y′, x)• =!x

(~y, x)• = x if x 6∈ ~y

(~y, let x be v in w)• = let !x be (~y, v)• in (~yx, w)•

(~y, c)• = c

(~y, ∗)• = ∗

(~y, let ∗ be v in w)• = let ∗ be (~y, v)• in (~y, w)•

(~y, v ⊗ w)• = (~y, v)• ⊗ (~y, w)•

(~y, λx.v)• = λx.(~y, v)•

(~y, vw)• = (~y, v)•(~y, w)•

(~y, !v)• =!(~y, v)•

(~y,

!

v)• = let !x be (~y, v)• in x

We can now easily show that if ~y :!Γ; ∆ ⊢ v :A in LinD(C), we have the typing

judgement ~y :Γ; ∆ ⊢ (~y, v)• :A in DILL(C).

We have the following lemmas on substitution:

Lemma 7.6.6 (Intuitionistic Substitution)

Given a Γ; -term v of type A in LinD(C) and a Γ, x :A; ∆-term w of type B in

LinD(C), we have the derivable equality judgement:

~y : ~A′; ∆ ⊢ (~y, w{v/x})• = (~yx, w)•{(~y, v)•/!x}:B

where Γ = ~y; ! ~A′.

We can see from the definition of the translation that the variable x always

occurs in a subterm of the form !x in the pre-term (~yx, v)•.

Lemma 7.6.7 (Linear Substitution)

Given a Γ; ∆1-term v of type A in LinD(C) and a Γ; ∆2, x :A-term w of type B in

LinD(C), we have the derivable equality judgement:

~y : ~A; ∆ ⊢ (~y, w{v/x})• = (~y, w)•{(~y, v)•/x}:B

where ∆ = ∆1#∆2 and Γ = ~y :! ~A.

Now we can prove that the translation is sound.

Lemma 7.6.8 (Soundness of ( )•)

Given an equality judgement ~y :!Γ; ∆ ⊢ v = w :A in LinD(C), we have an equality

judgement ~y :Γ; ∆ ⊢ (~y, v)• = (~y, w)• in DILL(C).
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Proof Again the proof is by considering the structure of equality judgements

if LinD(C). Again, the symmetry, reflexivity, transitivity and context rules are

easily seen to be sound under the translation. Further, the F − βv rule is sound

since firstly, if the intuitionistic term is a variable, we have:

(~yy′, let x be y′ in w)• = let !x be !y′ in (~y, w)•

and secondly, for the case where the intuitionistic term is an instance of !, we

have that

(~y, let x be !v in w)• = let !x be !(~y, v)• in (~yx, w)•

But then we have that in DILL(C),

Γ; ∆ ⊢ let !x be !(~y, v)• in (~yx, w)• = (~yx, w)•{(~y, v)•/x}

However, the image of the right-hand side of the σ-equality is (~yx, w)•{!(~y, v)•/!x}

and since x always occurs in a subterm of the form !x in the image of (~yx, w),

this is equal to the translation of the left-hand side.

Now for the F − η rule we have that

(~y, let x be w in x)• = let !x be (~y, w)• in !x

and from these definitions the required typed equality judgements can be shown.

The other let -rules are instances of commuting conversions which hold of the

let !x be t in u-construct in DILL(C).

As for the output naturality equalities for the operators IL and ⊗L
A,B , these

are soundly mapped into DILL(C) by virtue of the commuting conversions of

let ∗ be t in u and let x ⊗ y be t in u.

This leaves us just with the βη-equalities. Those for I , ⊗ and λ are translated

directly to their counterparts in DILL(C). For the ! − β equality of LinD(C), we

have:

~y :!Γ; ∆ ⊢

!

!v = v :A

Now (~y,

!

!v)• = let !x be !(~y, v)• in x and so we have the required equality

judgement:

~y :Γ; ∆ ⊢ let !x be !(~y, v)• in x = (~y, v)• :A

by virtue of the ! − β equality of DILL(C). For the ! − η equality of LinD(C), we

have:

x :!A; ⊢!(

!

x) = x :!A

Now (x, !(

!

x))• =!(let !x be !x in x) and so we have the required equality judge-

ment:

x:A; ⊢!(let !x be !x in x) =!x :!A

again by virtue of the ! − β equality of DILL(C). �
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The Translations are Inverse

Having given translations relating LinD(C) and DILL(C), we now show that they

form an inverse pair.

Lemma 7.6.9 (Inverse Pair)

The translations ( )◦ and ( )• are inverse up to provable equality, in the sense

that for any term of DILL(C) ~y :Γ; ∆ ⊢ t:A, we have the equality judgement:

~y : Γ; ∆ ⊢ (~y, (~y, t)◦)• = t:A

and for any term of LinD(C) ~y :!Γ; ∆ ⊢ v :A we have the equality judgement:

~y :!Γ; ∆ ⊢ (~y, (~y, v)•)◦ = v :A

Proof We prove this by considering the structure of the pre-terms of the source

type theory. Considering firstly (~y, (~y, t)◦)•, we have:

(~yx~y′, (~yx~y′, x)◦)• = (~yx~y′,

!

x)• = let !x be !x in x
(~y, (~y, x)◦)• = (~y, x)• = x
(~y, (~y, c)◦)• = (~y, c)• = c
(~y, (~y, ∗)◦)• = (~y, ∗)• = ∗

(~y, (~y, let ∗ be t in u)◦)• = (~y, let ∗ be v in w)• = let ∗ be t′ in u′

(~y, (~y, t ⊗ u)◦)• = (~y, v ⊗ w)• = t′ ⊗ u′

(~y, (~y, let x ⊗ y be t in u)◦)• = (~y, let x ⊗ y be v in w)• = let x ⊗ y be t′ in u′

(~y, (~y, λx.t)◦)• = (~y, λx.v)• = λx.t′

(~y, (~y, tu)◦)• = (~y, vw)• = t′u′

(~y, (~y, !t)◦)• = (~y, !v)• = !t′

(~y, (~y, let !x be t in u)◦)• = (~y, let x be v in (~yx, u)◦)• = let !x be t′ in (~yx, (~yx, u)◦)•

where v = (~y, t)◦, w = (~y, u)◦, t′ = (~y, v)• and u′ = (~y, v)•. Now we can easily

prove the result by induction over the unique derivation of the typing judgement

~y : Γ; ∆ ⊢ t : A of DILL(C), using the ! − β rule in the case of an intuitionistic

axiom, and reflexivity in all other cases.

Now considering (~y, (~y, v)•)◦, we have:

(~yx~y′, (~yx~y′, x)•)◦ = (~yx~y′, !x)◦ =

!

!x
(~y, (~y, x)•)◦ = (~y, x)◦ = x

(~y, (~y, let x be v in w)•)◦ = (~y, let !x be t in (~yx, w)•)◦ = let x be v′ in (~yx, (~yx, w)•)◦

(~y, (~y, c)•)◦ = (~y, c)◦ = c
(~y, (~y, ∗)•)◦ = (~y, ∗)◦ = ∗

(~y, (~y, let ∗ be v in w)•)◦ = (~y, let ∗ be t in u)◦ = let ∗ be v′ in w′

(~y, (~y, v ⊗ w)•)◦ = (~y, t ⊗ u)◦ = v′ ⊗ w′

(~y, (~y, let x ⊗ y be v in w)•)◦ = (~y, let x ⊗ y be t in u)◦ = let x ⊗ y be v′ in w′

(~y, (~y, λx.v)•)◦ = (~y, λx.t)◦ = λx.v′

(~y, (~y, vw)•)◦ = (~y, tu)◦ = v′w′

(~y, (~y, !v)•)◦ = (~y, !t)◦ = !v′

(~y, (~y,

!

v)•)◦ = (~y, let !x be t in x)◦ = let x be v′ in

!

x
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where v′ = (~y, t)◦, w′ = (~y, u)◦, t = (~y, v)• and u = (~y, v)•. Now again we can

prove the result by induction over the unique derivation of the typing judgement

~y :!Γ; ∆ ⊢ v :A in LinD(C), using the ! − β rule for the intuitionistic axiom case

and using two let -rules in the

!

v case. �

Induced Semantics

Since we have given semantics for both DILL(C) and LinD(C), it is natural to ask

how these may be related. Since LinD(C) is a higher-order theory, its models are

closely related to those of DILL(C). In fact, it is a trivial observation that;

Lemma 7.6.10

Any LinD(C)-model H yields a DILL(C)-model.

Proof Clearly we can take the carrier of the DILL(C)-model to be the carrier

of the LinD(C)-model. Further, the interpretation function on the primitive types

PL is given directly by [[ ]]ML
. Finally, the operator interpretation of the LinD(C)-

model gives the interpretation of the constants. �

Before extending this to morphisms, we need to define the concept of morph-

ism between two DILL(C)-models.

Definition 7.6.11 (DILL(C)-Morphism)

A DILL(C)-morphism F : L → L′ between two DILL(C)-models is a pair of

functors (FC : C → C′, FS : S → S ′) such that:

• FC is strict cartesian and FS is strict monoidal closed,

• the following diagrams commute:

C
F ✲ S

C′

FC

❄ F ′
✲ S ′

❄

FS

C ✛ G
S

C′

FC

❄
✛ G′

S ′
❄

FS

• FS([[ ]]LPI
) = [[ ]]L

′

PI
: PI → obj(S ′),

• FS([[c]]LC) = [[c]]L
′

C for each c:A in C.

We now call the category of DILL(C)-models and morphisms CatDILL(C).

Now we can extend our previous result to morphisms:

Lemma 7.6.12

Any LinD(C)-morphism F between two LinD(C)-models yields a DILL(C)-morphism

between the resultant DILL(C)-models.
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Proof Again, it is clear that the LinD(C)-morphism has the right form to be

a DILL(C)-morphism, and it is only necessary to show that it preserves the in-

terpretation functions, which it must do by virtue of their derivation from the

LinD(C)-interpretations. �

Now, call the category of LinD(C)-models and morphisms CatLinD(C). In

fact, we can show also that any DILL(C)-morphism between two DILL(C)-models

arising from LinD(C)-models itself arises from a LinD(C)-morphism, which implies

that we have a functor CatLinD(C) → CatDILL(C) which is an embedding.

Further, using our translation results we can see that the term LinD(C)-model

yields the term DILL(C)-model defined in chapter 3, and hence that the term

DILL(C)-model is initial up to isomorphism in the full subcategory of DILL(C)-

models which arise from LinD(C)-models.
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Chapter 8

Normal Forms for Lin(O, A)

Having introduced a general linear type-theory, given its semantics and shown how

it has interesting systems as instances, we are now motivated to look more closely

at the properties we can prove of the framework in general. In our conservativity

result of the previous chapter, we have made one step in this direction, and in

this chapter and the next we want to discuss another, larger issue.

The aim of our general linear type-theory is to provide a framework in which

the ‘programs’ (or processes, or functions, etc) of a particular language can be

written and equipped with as much typing information as required, and also in

which definitional equality between programs can be proved. What we mean by

‘definitional equality’ is very basic, for example the associativity of sequential

composition would be a definitional equality, whereas any kind of β-evaluation of

a function would not. Given that the idea of definitional equality is so basic, it

seems imperative that we be able to decide whether two terms are definitionally

equal or not, and yet with the machinery we have so far this is certainly not

generally provable.

We present in this chapter and the next a system of normal forms for the

terms of the type-theory Lin(O, A) which will decide the equality of the system

in the particular case when the axiom set A is empty. We will further extend the

system to show that the equality of any system of the form Lin(O, ONat(O, O))

for some O can be decided, as can the higher-order system LinH(H, ∅).

These results then have as simple corollaries the decidability of DILL(C) and

of the higher-order action calculi.

8.1 Proof Nets

One of the innovations associated with the introduction of linear logic by Gir-

ard [Gir87] was the definition of proof nets, which have since become objects
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of study in their own right. One key property of proof nets is that two proofs

which are equivalent by commuting conversions, which we have already seen in

the various linear type-theories we have introduced, are mapped to equal proof

nets. Further, many familiar equalities in type-theories such as the βη-equality

of LinD(C) can be presented as the the symmetric transitive closure of a set of

local rewrites, which can then be shown to be confluent.

In this chapter we will define relations, which are a syntactic presentation of

proof-nets. Proof-nets have shown themselves to be a very natural language for

the proofs of linear logic in particular, as mentioned in the introduction. However,

as they are a graphical syntax, it is difficult to formulate and prove rigidly the

delicate lemmas involved in proving normalisation and confluence, as we wish to

do. Hence rather than working directly with proof-nets, we will briefly present

the theory of proof-nets, but present our development in the language of relations,

which are a non-graphical syntax for proof-nets.

First we outline the theory of nets for the particular case of LinD(C), which

raises most of the issues.

Fundamentals

Proof-nets for the type-theory LinD(C) differ from those for ILL(C), just as the

type-theories do. The most significant difference is that to reflect the distinction

between the linear context and the intuitionistic context, we will define proof-nets

for LinD(C) using two “colours” of wire, linear and intuitionistic, which in this

monochrome environment will be represented by full and dashed lines respectively.

As a convention, where we want to indicate an arbitrary number of wires at

some point in a net, we will use a short dash across the line, as in figure 8.1,

which represents a number of intuitionistic wires.

Figure 8.1: Multiple Wires

Now, proof-nets are built out of basic components, which in the case of the

type-theory LinD(C) are as given in figure 8.2. Note that each input and output

of a component is typed with a type of DILL(C), except for the unit elimination
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which has a possibly unexpected output labelled v. This can be seen as a kind

of zero width multiple wire; we call it a vestigial, and its rôle will be discussed

shortly.

Unit Introduction Tensor Introduction Abstraction Exponential Introduction

I

I

A B

A B

λ
B A

A B
A

Γ

!A

Unit Elimination Tensor Elimination Application Exponential Elimination

I

I

v A B

A B

ap

B

AA B

!

!A

A

Replicator The F -Rule I − Ax

������������������

A

A A
A

A

Γ

d

A

A

Note that the replicator also has a vestigial in the case when it has no outputs.

Figure 8.2: The Elementary Components

A net for LinD(C) is a finite set of components which are connected with

wires. Nets correspond to pre-terms in the sense that so far we have imposed

no restrictions on the typings of wires, or their colours. Now, a path in a net is

simply a sequence of components each of which is connected to the next by a wire

or a vestigial which is not a binding wire (one which is connected to the output

port labelled A of an abstraction A ⊸ B). A maximal path is one which cannot

be extended, and the length of the path is the number of wires it contains. Now,
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a proof-net for LinD(C) is a net for LinD(C) which satisfies a number of conditions:

Colouring Wires must be well-coloured, ie they must be connected to inputs

and outputs of the same colour.

Linearity Wires must be linear, ie they be must connected to at most one output

and at most one input. If a wire is connected to one output only, then we

say it is a free output, and if it is connected to one input only, we say it is

a free input.

Typing Wires must be well-typed, ie they must connect inputs and outputs of

the same type.

Intuitionistic The net must have only one free output wire, which must be

linear.

Boxing Any collection of components occuring inside a box must be a proof-net

having no linear free inputs.

Acyclicity There must not exists two components c and c′ in the net such that

there exist a path from c to c′ and a non-zero length path from c′ to c.

Abstraction For each abstraction component in the net, all maximal paths

starting from the binding output of the abstraction must include the in-

put wire of the same abstraction component.

Most of these conditions are self-explanatory, and we will consider a couple of

examples of proof-net constructions to demonstrate their motivation. We assume

a function Φ which maps terms of LinD(C) to proof-nets for LinD(C). Firstly

consider the proof-net corresponding to an application Γ; ∆ ⊢ vw :B, where we

have Γ; ∆1 ⊢ v : A ⊸ B and Γ; ∆2 ⊢ w : A, and ∆ = ∆1#∆2. The proof net

corresponding to the application is seen in figure 8.3.

The key elements are common to many of the constructions. We use a replic-

ator to copy the intuitionistic context for both sub-nets corresponding to v and

w, and bind the output wires of both subnets, creating a new free output wire

which has the type of the application instance.

Now we can consider the proof-net corresponding to the abstraction Γ; ∆ ⊢

λx.v :A ⊸ B with the obvious derivation, which is seen in figure 8.4.

In this case, the interesting feature is that we have bound the input labelled

x of the subnet corresponding to v using an output of the λ-component. This

output is called a binding output because it must always be used in this way,
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Figure 8.3: Application in Proof Nets
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Figure 8.4: Abstraction in Proof Nets

and the acyclicity condition on proof-nets is not violated since such outputs are

specifically excluded from being part of paths. Notice that the linear naturality

of the λ-operator in LinD(C) is achieved simply by not binding the other linear

inputs of the subnet corresponding to v.

Finally, consider the net corresponding to the derivation Γ; ⊢!v :!A, which

can be seen in figure 8.5. The key points about this construction are firstly that

we enclose the entire subnet corresponding to v in a ‘box’ since the !-operator

of LinD(C) is not linearly natural with respect to this argument, and secondly

that we represent the fact that the !-operator is intuitionistic by allowing it to

return an intuitionistic wire as its result. We then need to regain intuitionistic

naturality by allowing certain components (intuitionistic operator instances and

replicators) to permeate into the box.

The general pattern for the implementation of an arbitrary operator is that we
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Figure 8.5: !-Introduction in Proof-Nets

enclose all the arguments in which it is not linearly natural in a box, as motivated

in the above example, and bind only the variables in the bound positions of those

arguments which it is natural in. Finally, if the operator is intuitionistic, then we

let the box which necessarily exists have an intuitionistic output.

Vestigials

Having given a brief account of proof nets for this specific case, we have still

to explain the role of vestigials. Vestigials are wires which do not correspond

to assumptions and have no types, but which are necessary to establish the

scoping of elimination constructs having no other outputs. Consider the two

derivations Γ; ∆, x : I ⊢ λy : A.(let ∗ be x in v) : A ⊸ B and Γ; ∆, x : I ⊢

let ∗ be x in (λy : A.v) : A ⊸ B. If we used no vestigials, both of these terms

would map to the proof-net in figure 8.6, and hence the scope of the unit-

elimination construct would be lost.

Now this particular case is not a problem because in fact the two derivations

we have given are equal up to commuting conversion equality. However, there

are cases in which this loss of scope causes two terms which are not equal by

commuting conversions to have equal images under Φ. One example, which we

present, is derived from the coherence problem for symmetric monoidal closed

categories, and is due to Kelly and MacLane.

In [KM72] a diagram of natural transformations is presented which does not

commute in every symmetric monoidal category. Hence, by virtue of our com-

pleteness result for DILL(C), we would expect that the the diagram does not com-
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Figure 8.6: Abstraction without vestigials

mute in the term-model, and in particular that the two terms which correspond

to the two possible unequal morphisms are not made equal by the type-theory

DILL(C). The first of these two terms is (where we abbreviate B ⊸ I as BI):

; x:AIII

⊢ λy1 :A
II

.let ∗ be x(λy2 :AI.let ∗ be y1(λy3 :A.let ∗ be y2y3 in ∗)
in ∗

)

in ∗

:AIII

The second of the two terms is:

; x:AIII

⊢ λy1 :A
II

.let ∗ be y1(λy3 :A.let ∗ be x(λy2 :AI.let ∗ be y2y3 in ∗)
in ∗

)

in ∗

:AIII

On inspection, it is clear that the first of these two terms equal to the term

; x :AIII

⊢ x :AIII

, as we would expect since one of the morphisms in the Kelly-

MacLane diagram is the identity.
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Figure 8.7: Kelly and MacLane’s Counterexample
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Now, the left-hand proof-net of figure 8.7 represents the first term, and the

right-hand one the second. They are not equal as they stand, with vestigials, but

we can see that if we were to erase the vestigials from each of the I-elimination

boxes, they would be identical. Hence we can see that vestigials are necessary in

this framework, to distinguish the proof-nets of unequal proofs.

This result shows that we need vestigials in order to distinguish separate nets.

However, one problem with vestigials is that proof-nets with different vestigial

positionings (such as the two in figure 8.7) may represent terms which are equal

via commuting conversions. Hence we must reintroduce a vestigial equality on

nets. This will be decidable.

Proof-Net Rewrites

One of the key properties of proof-nets is that we can give local rewrites over them

which will be confluent and normalising. We show as an example in figure 8.8

the two rewrites which describe the β and η-rules of the arrow type ⊸.

λ

ap
β

ap

λ
η

Figure 8.8: The λ-β and η-Rewrites

An interesting point here is that we use an expansionary η-rewrite, following

Ghani [Gha95]. If we use η-reductions, we cannot obtain confluence due to a

problem with the unit rewrites.

8.2 Relations

We now introduce relations, which are non-graphical analogues of proof-nets for

a general linear typing system Lin(O). Although proof-nets are a very intuitive

language for proofs, and capture very effectively the intuitions involved especially

in proof equivalence, to prove delicate lemmas relating proof-nets to terms is

clumsy, because it involves extended case analysis of graphical situations. In

particular, it is easy to overlook unfamiliar cases. Hence, we have chosen to use a

non-graphical syntax which, however, closely mirrors the behaviour of proof-nets.
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First consider some simple examples. The proof net (for LinD(C)) is given in

figure 8.2.

A B C

A   (B    C)

A    C B

B    C

Figure 8.9:

This corresponds to the term

; x′ :A ⊗ C, y :B ⊢ let x1 ⊗ x2 be x′ in x1 ⊗ (y ⊗ x2):A ⊗ (B ⊗ C)

and the relation

R(x′, y, z) = ∃x1 :A, x2:C, y′:B ⊗ C.(z = x1 ⊗ y′) ∧ (y′ = y ⊗ x2) ∧ (x1 ⊗ x2 = x′)

where by convention we let the (unique) output variable be the last parameter of

the relation, in this case z.

As we can see, each rule instance in the proof is reflected in the proof net

by a component, in the term by a constructor, and in the relation by a clause.

Intuitively, we obtain relations from nets by giving a clause for each component

of the net, conjoining them and binding the variables corresponding to internal

wires. Now consider the term

; x′ :A ⊗ C ⊢ λy :B.let x1 ⊗ x2 be x′ in x1 ⊗ (y ⊗ x2):B ⊸ (A ⊗ (B ⊗ C))

which has the relation

S(x′, z′) = ∀y :B.∃z :(A⊗ (B ⊗ C)).(z′y = z) ∧ R(x′, y, z)
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The only extension to our intuition is that in this case the binding variable

of the term is bound in the relation using a universal quantifier rather than the

existential. This will hold for all binding variables of binding operators.

Now, we can make some simplifications to our syntax. Firstly, note that

because of the associativity of the ∧-operator on relations, and the familiar prenex

normal forms of the expressions we have written, in general a relation can be

written as a sequence of quantifiers followed by the conjunction of a set of clauses:

Qx1. . . . Qxr.c1 ∧ . . . ∧ cs

Clearly, not all relations of this form represent valid proof-nets. We can exactly

characterise those that do, however, as the relations satisfying a certain set of

conditions based on the net conditions of page 181.

Note in particular that all relations corresponding to proof nets will mention

a variable twice exactly iff it is bound, and once exactly iff it is free. Hence we

can decide whether a variable is bound, and since precisely the binding variables

of operator clauses are universally quantified, we can reconstruct the sequence

of quantifiers from the set of clauses. This procedure may seem to introduce

scoping concerns, but we will show by translating our relations soundly to terms

(up to commuting conversion equality) that suitable scopes for all binders can be

inferred from the clause set.

Therefore, from now on we will give relations as sets of clauses. We will work

with the variable set X as usual. Firstly, we construct pre-relations as follows:

Definition 8.2.1 (Pre-Relations)

We define pre-relations and clauses over a generalised signature O = (MI , ML, OI , OL)

mutually inductively as follows:

• Pre-relations, ranged over by D, E . . . are finite sets of clauses, and

• clauses, ranged over by d, e . . . have one of the following forms, where M is

a nonempty finite set of variables and D is a pre-relation:

d ::=( =x:A x:Q) | (M :Q = x:Q) | (x:Q = F (x:Q)) | (F (x:Q) = x:Q)

| x:A = (~x: ~Q; ~x: ~A)O((~x: ~Q; ~x: ~A)D(x:A), . . . , (~x: ~Q; ~x: ~A)D(x:A);

(~x: ~Q; ~x: ~A)(x:A), . . . , (~x: ~Q; ~x: ~A)(x:A))

where we allow the operator clauses respectively for any operator O ∈ OL. We

will refer to the variable x in the clause ( =x:A y :Q) as a vestigial.
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In this definition, the form (~x : ~Q; ~y : ~A)D(z :B) binds the inputs ~x and ~y and

the output z in the pre-relation D. The form (~x : ~Q; ~y : ~A)(z :B) is similar except

that the variables are bound not in a particular pre-relation but in the whole

pre-relation containing the clause. To further clarify the operator clause, which is

the most complex of the definition, we use two familiar examples. First consider

the case where we have an operator ! of arity:

(; )A ;

( ; )!A

The operator clause in this case is (x :!A = ()!(()D(y : A); ). In this, we take a pre-

relation D with output y :A and apply the operator to it to give the pre-relation

with the same intuitionistic inputs and the one output x :A. Now consider the

operator ⊗R having arity:
; ( ; )A ( ; )B

( ; )A ⊗ B

The operator clause here is (x :A ⊗ B = () ⊗ (; ()(y1 :A), ()(y2 :B))), and in this

case because the operator is linearly natural in the arguments, we do not ‘box’

them in the syntax but instead, as in proof-nets, allow the operator clause to bind

variables elsewhere in the body of the pre-relation it occurs in.

We henceforth omit type information except where necessary, in the familiar

way, and further where it is convenient we will omit some details of a general

operator clause for brevity; for example, we might write

(x = (~y1; ~y
′
2)O(. . . , (~x′

1; ~x
′
2)D(x′′), . . . ; . . . ))

to indicate a general operator clause containing the argument (~x′
1; ~x

′
2)D(x′′).

Clauses are equipped with inputs and outputs (which we will call polarities)

and typings similarly to the components of proof nets. Each variable in a clause

will either occur as an input, an output, a binding occurrence or a vestigial,

and will have an associated type (except in the case of vestigials). Intuitively,

clauses are analogous to term constructors or equivalently to rules. The first

and second clauses in the inductive definition are exceptions to this, in that they

correspond to the admissible weakening and contraction rules respectively. We

will discuss the need for such explicit syntax later. The third and fourth clauses

in the definition correspond respectively to the intuitionistic axiom and I-L rule,

and the fifth corresponds to the general operator rule.

Preliminary Definitions

First we define what it means for a pre-relation D to contain a clause.
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Definition 8.2.2

We say that a pre-relation D contains a clause c (at depth r) if c ∈ D (and r = 0)

or if for some operator clause:

(y = (~y′
1; ~y

′
2)O(. . . (~x′

1; ~x
′
2)D

′(x′′) . . . ; . . . )) ∈ D

where D′ contains c (at depth r − 1).

Note that for any pre-relation there is an upper bound on the depth of clauses

contained within it.

Having referred informally to clauses having inputs and outputs, we now need

to define these notions.

Definition 8.2.3 (Input)

A variable x is an input of the clause c if

• either c is ( =z x), (M = x), (y = F (x)) or (F (y) = x),

• or c is (y = (~x1; ~x2)O(. . . )) where x ∈ ~x1~x2,

• or c is (y = (~y′
1; ~y

′
2)O(. . . ; . . . (~x′

1; ~x
′
2)(x) . . . ))

• or c is (y = (~y′
1; ~y

′
2)O(. . . (~x′

1; ~x
′
2)D

′(x) . . . ; . . . )).

Further, we will say that x occurs as an input in a pre-relation D if D contains

a clause c of which x is an input.

Definition 8.2.4 (Output)

A variable x is an output of the clause c if

• either c is (M = y) where x ∈ M , is (F (x) = y), or is (x = F (y)),

• or c is (x = (~x1; ~x2)O(. . . ; . . . )),

Similarly, we will say that x occurs as an output in the pre-relation D if a

clause c having x as an output is contained in D.

We also define the notion of binding occurrence:

Definition 8.2.5 (Binder)

A variable x is a binder in a clause c if

• c is (x = (~x′
1; ~x

′
2)O(. . . ; . . . (~y1; ~y2)(x′′) . . . )) where x ∈ ~y1~y2,

• or c is (y = (~y′
1; ~y

′
2)O(. . . (~x′

1; ~x
′
2)D

′(x′′) . . . ; . . . )) where x ∈ ~x′
1~x

′
2.
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Again, a variable x occurs as a binder in a pre-relation D if there is a clause

contained in D which has x as a binder.

A variable x occurs as a vestigial in a pre-relation D if D contains a clause

( =x y), and we may say that the clause has vestigial x. A child of a variable

x is a clause which has an input occurrence of x. A clause c has a dependent x

if c has vestigial x or c has an output x. Note that every clause has exactly one

dependent.

Definition 8.2.6 (Connectedness)

Two clauses c and c′ are connected by a variable x in a pre-relation D if x is a

dependent of c and has child c′.

We must now define a notion of path over a pre-relation, which will be central

to our development. Intuitively, a path through a pre-relation is analogous to

a path through the corresponding net. For the following definitions, we fix a

particular pre-relation D.

Definition 8.2.7 (Path)

A path between two clauses c and c′ in a pre-relation D is a pair of sequences

(c1 . . . cr, x1, . . . xr−1) such that c1 = c, cr = c′ and xi connects ci and ci+1 for

i = 1 . . . r − 1.

Paths may be concatenated in the obvious way, so that a path from c to c′ and

one from c′ to c′′ yield a path from c to c′′. A complete path from a clause c to

another c′ in a pre-relation D is a path such that c′ has a dependent which occurs

only as an output. Complete paths cannot be extended by post-concatenation.

Now we need to define linear and intuitionistic occurrences.

Definition 8.2.8 (Intuitionistic Occurrence)

A variable x occurs intuitionistically in a pre-relation D if

• D contains a clause ( =z x) or a clause (M = y) where x ∈ M or y = x,

• or D contains a clause:

– (y = F (x)),

– (F (x) = y),

– (y = (~y1; ~y2)O(. . . (~x; ~y′)D′(x′) . . . ; . . . )) where x ∈ ~x,

– (y = (~y1; ~y2)O(. . . ; . . . (~x; ~y′)(x′) . . . )) where x ∈ ~x,

– (x = (; )O((~x1; ~y1)v1 . . . (~xr; ~yr)vr; )) where O ∈ OI,
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We now say that a variable occurs linearly in a pre-relation if it has an occur-

rence in a clause which is not intuitionistic.

Definition 8.2.9 (Free Variable)

A variable x is a free input of a pre-relation D if it occurs as an input in D but

does not occur as an output or a binder. Similarly, a variable x is a free output

of the pre-relation if it occurs as an output in D but does not occur as an input.

With this grounding, we can now define relations. Note that rather than being

a construction-based definition like the definition of terms (a term is a pre-term

that can be typed using these rules) it is a definition based on global properties.

Definition 8.2.10 (Relation)

Given a generalised typing context Γ; ∆ and a type A ∈ ML, a Γ; ∆-relation D of

type A over O is a pre-relation over O having the following properties:

Linearity Each variable must occur in D at most once as an input, and at most

once as an output or binder.

Colouring Each variable occurring twice must do so both times intuitionistically

or both times linearly.

Typing Each variable occurring twice must do so both times with the same type

annotation.

Boxing Each pre-relation D that occurs in a clause of D

(y = (~x′
1; ~x

′
2)O(. . . (Γ′; ∆′)D′(y′ :A′) . . . ; . . . ))

must be a Γ′; ∆′-relation of type A′ with result variable y′.

Output There must be at most one variable x which occurs in D only as an

output. If such a variable exists, it must occur linearly and with type A. If

not, there must exist a unique variable x of type A in ∆ but not occurring

as an input, output or binder in D. We refer to the unique variable picked

out by this requirement as the result variable of D for the typing context

Γ; ∆.

Inputs Γ must type at least the intuitionistically-occurring free inputs with the

types they are annotated with in their occurrences. Also, if the result

variable x is not a free output of D, then ∆ must type exactly each free

input of D with the type annotating it in D and x : A. If x is a free output of

D, then ∆ must type exactly each free input of D with the type annotating

it in D.
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Binding For any variable y which occurs as a binder in D in a clause c of the

form

(y′ = (~x′
1; ~x

′
2)O(. . . ; . . . (~y′

1; ~y
′
2)(x

′′) . . . ))

where y ∈ ~y′
1~y

′
2, either y = x′′, or any complete path from a child of y must

contain the clause c as its i + 1th with the ith wire being x′′.

Acyclicity No clause in D may have a path starting and ending at itself which

is not the trivial path (c, ε).

Vestigial If D contains a clause of the form ( =y x′), then y must be the result

variable of D or must occur linearly as an input in D.

Although this definition seems circular, because of the references to relations

occuring within the intuitionistic arguments of an operator clause, it is easy to

decide whether any given pre-relation is a relation. This can be done by induction

on the depth of operator clauses, since for any pre-relation there must be a bound

on the depth of operator clauses contained in it.

Having defined relations over a generalised signature, we will let the set of all

relations over the generalised signature O be denoted by Rel(O).

Basic Results

We now prove some useful lemmas about relations.

Lemma 8.2.11 (Properties of Relations)

Children In a Γ; ∆ relation D of type A, any variable has precisely one child

except the result variable, which is childless.

Complete Paths I The last clause in any complete path from any clause c must

have the result variable as a dependent.

Complete Paths II In a Γ; ∆ relation D of type A, for any clause c there is at

least one complete path from c to some other clause.

Unique Typing Given a generalised typing context Γ; ∆ and a pre-relation D,

there is at most one type A such that D is a Γ; ∆-relation of type A.

Result Variable Given a Γ; ∆-relation D of type A, the result variable can be

determined effectively.
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Proof

Children To prove this, note that the output property specifies that every vari-

able except the result variable x must not be a free output, and hence must

occur as an output and also as an input. Therefore any such variable must

occur as the input to some clause which is then its child. However, such a

variable must only occur once as an input, so there must be precisely one

such clause. Since x is a free output, it cannot be the input of any clause,

and hence it must be childless.

Complete Paths I This is obvious since the result variable is the only possible

variable only occurring as an output.

Complete Paths II To show this, we need to demonstrate that every path

which is not complete can be extended. Note first that every clause has

at least one dependent. Now given a path from c to c′ in a relation D, if c′

has as a dependent the result variable we are done. If not, take a dependent

of c′ and its unique child; these extend the path.

Unique Typing Consider the two possibilities in the output condition of the

definition of relations. If the result variable occurs as an output in D, then

it must occur with a typing and for every typing context Γ; ∆ it must have

the same typing given as an annotation in D. If on the other hand the

result variable does not occur in D but is typed in ∆, then it clearly follows

that given the typing context there can only be one type assigned to the

result variable.

Result Variable There are efficient ways to do this, but to see that it is true

simply take the finite number of variables occurring linearly in D or typed

in ∆, and for each test whether it occurs as an input in D, which is effective.

Precisely one will not and this is the result variable.

We will now define a useful abbreviation. Abbreviate the pre-relation D con-

taining the clauses (M1 = x1), . . . , (Mr = xr) by removing these clauses and

replacing them with the form (M1 . . . Mr = x1 . . . xr) which we will henceforth

call a clause, overloading notation insignificantly. Further, we will in the same

way abbreviate a pre-relation D containing the clauses ( =y x1), . . . , ( =y xr)

by removing them and replacing them with the form ( =y x1 . . . xr), which we

will again call a clause.

Now define the family of a variable x occuring as a dependent in a relation

D to be the set of clauses c such that every complete path in D from c contains
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the variable x. We will write this fam(x, D), omitting the relation D where it is

obvious. Intuitively the family of a variable in a relation corresponds its maximal

sub-relation which has x as its result variable.

We now prove two results on families.

Lemma 8.2.12

Given a relation D, if a clause c is in two families fam(x, D) and fam(y, D), then

either the variable x must have a child in fam(y, D), or y must have a child in

fam(x, D).

Proof We know if a clause c is in two families fam(x, D) and fam(y, D), then

we have that every complete path in D from c contains both x and y. Note that

both x and y must occur as inputs and as dependents since otherwise they could

not occur in a path. Now it must be the case that the unique children cx and

cy respectively of x and y must both occur in every complete path from c in D.

Now assume that in some complete paths from c in D the clause cx occurs before

cy and in others cy occurs before cx. Then, by taking appropriate sub-paths of

these paths we can construct a cyclic path from cx to itself in D, which is a

contradiction. Therefore, one occurs first in every complete path from c in D.

Say w.l.o.g. that it is cx. Then every complete path from cx in D must be part

of a complete path from c in D, and further it occurs in that path before cy, so

that y is in any complete path from cx in D. Therefore, cx is in fam(y, D). �

Lemma 8.2.13

Given a Γ; ∆-relation D and a variable x which occurs linearly in D, fam(x, D)

is a Γ′; ∆′-relation for some Γ′; ∆′.

Proof We can prove this by considering each clause in turn. Clearly linearity,

colouring, typing, boxing and acyclicity are inherited from D.

Of those that are left, first consider the output condition. Note that either

x does not occur as an output in fam(x, D) because it is the empty relation, or

because it occurs only as an output. This is trivial since if it were to occur as

an input it would imply that the child of x, cx, had a complete path in D which

contained x, which would induce a cycle in D. Further, if any clause c is contained

in fam(x, D) then a clause having x as dependent must, since each complete path

in D from c must contain x as a connection between a dependent of x and its

child. Now, having established that x is an appropriate candidate for the result

variable, we must show that there can never be another variable y occuring only

as an output in fam(x, D). For a contradiction, assume there is such a y. Then
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y must occur as the output of a clause c′ in fam(x, D). Now if y has a child cy

in D then there must be a complete path from c′ in D containing y, which is the

completion of the path (ccy, y). But there is some complete path from cy in D

not containing x, or cy would be in fam(x, D) and y would occur also as an input.

Hence we can construct a complete path from c′ in D which does not contain x.

So y must be childless in D, and hence the result variable of D. But then the

empty path from c′ by definition must contain x, which is a contradiction. Hence

the result variable of D cannot occur only as an output in fam(x, D), and x is

the only such possible variable.

Considering the input condition, we can take Γ′ to be the typing sequence that

types all the intuitionistically occuring variables with the types they are annotated

with, and ∆′ to be the typing sequence which types all the linearly occuring ones

with the types they are annotated with, and types the result variable x with any

type A if it does not occur in fam(x, D). This will make fam(x, D) a Γ′; ∆′-relation

of some type.

Considering the binding condition, we can see that if an operator clause c

with a binder y occurs in fam(x, D), then any complete path in D from a child

of y must contain the clause c, and must therefore contain a complete path from

c in D as a final segment. But this final segment must contain x, and so every

complete path from the child of the binder must contain x and the child of the

binder must be in fam(x, D), and the condition must be satisfied.

Considering the vestigial condition, assume we have a clause ( =y y′) such

that y is not the result variable of fam(x, D) and does not occur as an input in

it. But if this clause occurs in fam(x, D), then it must be the case that there is a

complete path from the clause in D, and such a path must contain x, implying

that the child of y is in fam(x, D), which is a contradiction. �

Now define a Γ′; ∆′ sub-relation E of a Γ; ∆-relation D to be a subset of D

which is a Γ′; ∆′ relation. A fundamental property of subrelations which we will

need is the following:

Lemma 8.2.14

Given a relation R with a subrelation R′ ⊆ R, any complete path in R from

a clause c ∈ R′ must pass through a clause c′ having as dependent the result

variable of R′.

Proof Assume not. Now take the maximal non-zero initial segment of the path

which is within R′. The last clause in this segment must have a dependent which

is not the input of a clause in R′. If the dependent is a vestigial, the vestigial
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condition on R′ implies that the dependent is the result variable of R′, which is

a contradiction. If it is not a vestigial, then it is a variable which does not occur

as an input in R′ and does occur as an output (of the last clause in the initial

segment) and hence it must be the output variable of R′. �

8.3 Relational Equality

We now define the various parts of the equality over relations. Since we are

interested in proving that term equality is decidable via a translation into the

full relational equality, we will need to make sure that each part of the equality

is decidable. This will often be achieved by making a part of the equality the

transitive reflexive closure of a confluent terminating rewrite.

Vestigial Moves

First, we introduce the concept of vestigial moves on a relation. As we shall see,

the vestigial x in a clause of the form ( =x y) gives us essential information

about scoping in the derivations corresponding to the relation. If we do not have

this information, then two relations representing derivations not of provable equal

terms may be the same. However, there is redundancy in that several relations

with different vestigials may correspond to several provably equal terms. Hence

we need to give an equality between such relations. We call this equality =vm,

and we make a definition:

Definition 8.3.1 (Vestigial Moves)

The Γ; ∆-relations D ∪ {( =x y)} and D ∪ {( =x′

y)} of type A are one-step

equal via vestigial moves, if

1. There exists a path in D ∪{( =x y)} from the child of x to a clause having

dependent x′. Note that such a path cannot contain the clause ( =x y) or

a cycle would result.

2. For any clause c of the form

(y′ = (~x′
1; ~x

′
2)O(. . . ; . . . (~y′

1; ~y
′
2)(x

′′) . . . ))

with z ∈ ~y1~y2 such that there is a path from the child of z to ( =x y) in

D ∪ {( =x y)}, all complete paths from the dependent of x′ must contain

the clause c as their i + 1th and the variable x′′ as their ith.

We now say that D =vm D′ if these two relations are shown to be equal by a

finite sequence of one-step vestigial moves.

196



Having given this definition, it is imperative that we show that it is decidable.

Lemma 8.3.2 (Decidability)

Vestigial equality is decidable.

Proof We can prove this by considering the following effective procedure:

Given any finite set of relations, pick any relation, pick any vestigial

and make any valid vestigial move. If the result is not in the set,

add it and continue until no relation in the set has a vestigial move

resulting in a new relation.

First we show that this is effective; note that determining whether a vestigial

move is valid is a matter of considering a finite number of paths in a relation, and

hence is effective. Since we start out with a finite set of relations, each of which

have a finite number of vestigials, it is effectively possible to check whether any

relation has a vestigial move on a particular vestigial.

Now, given this effective procedure, start it with the singleton set containing

any relation. Since there are only a finite number of variables which may be

used as each vestigial (by the vestigial condition, since the variable must occur

elsewhere in the body of the relation not as a vestigial), there are at most a finite

number of relations which may be equal by a vestigial move to any given relation.

Since there must be a finite sequence of one-step vestigial moves relating any two

relations which are equal via vestigial moves (since an infinite sequence would

of necessity repeat in the finite set of vestigially-equal relations), this procedure

must result in the finite set of all relations vestigially equal to the relation we

initially considered. Since the set is finite, we can now simply check to see if the

relation is vestigially equal to another relation by checking to see if it is in the

finite set resulting from the procedure. �

The ∆-rewrite

We now recall that our system includes clauses corresponding not only to the rules

of our logic, but also to its admissible weakening and contraction rules. This is

to ensure that we can express the equality of the system using local rewrites.

Consider DILL(C). Recall from page 41 that in the presence of admissible cut

rules for equality, the equality of DILL(C) is given by axioms which do not involve

substitutions (the substitutions which appear in the η-rules can be equivalently

rewritten as side-conditions on the equalities). However, there is still an infinite
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set of these axiomatic equalities parameterised over terms, for example as in the

equality Γ; ∆ ⊢ let ∗ be x in t{∗/x} = t :A. It is possible in the presence of the

commuting conversions to derive these equalities from a finite set of axioms not

parameterised over terms. Our rewrites on the system of relations for DILL(C)

will be suitable orientations of these.

However, this still leaves us with the problem of giving rewrites verifying the

the admissible cut rules for equality. To do this in a local way for intuition-

istic substitution we need to give a low-level implementation for the copying and

discarding of intuitionistic relations, which is provided by the rewrite →∆.

Definition 8.3.3 (The Rewrite →∆)

We define the rewrite →∆ firstly over pre-relations as the transitive closure of the

following one-step rewrites, where M and M ′ may be any non-empty sets:

D ∪ {( =x y′), (M ∪ {z′, y′} = z)} →∆ D ∪ {(M ∪ {z′} = z)}

D ∪ {({x} = y)} →∆ D{y/x}

D ∪ {(M ′ = y), (M ∪ {z′, y} = x)} →∆ D ∪ {(M ∪ {z′} ∪ M ′ = x)}

We call the clauses which are explicitly mentioned in the redex the key clauses of

the rewrite.

Now it is easy to show that if D →∆ D′, where D is a Γ; ∆-relation of type A,

then D′ is a Γ; ∆-relation of type A. We note here that →∆ is clearly terminating

since in each one-step rewrite the number of clauses is reduced. Given this result,

we now also need to prove the confluence of →∆ over =vm.

Lemma 8.3.4 (Confluence)

The rewrite →∆ is confluent over the equality =vm on Rel(O).

Proof First we note that if D1 →∆ D2 by a one-step ∆-rewrite and D′
1 =vm D1,

then D′
1 →∆ D′

2 by a one-step ∆-rewrite of the same kind, and D′
2 =vm D2. We

can see this in the case where the vestigial moves are one-step by noticing that

since no linear variables are involved in any ∆-rewrite (as all the variables in the

key clauses are occurring intuitionistically), any such rewrite is independent of

the vestigial move. It is also trivial to see that the effect of the ∆-rewrite on

paths cannot disrupt the vestigial move.

Given this, in order to prove the result it suffices to show that if one relation

D has two ∆-rewrites to D1 and D2 respectively, that there exist ∆-rewrites

D1 →∆ D′
1 and D2 →∆ D′

2 such that D′
1 and D′

2 are equal via vestigial moves.

This is trivial by inspection except in the case where D is

D′ ∪ {( =x y1), ( =x′

y2), ({y1, y2} = y)}
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In this case D1 is D′ ∪ {( =x y)} and D2 is D′ ∪ {( =x′

y)}. Hence we need to

show that these two are equal via vestigial moves. Consider an arbitrary binding

clause in D′ ∪ {( =x y1), ( =x′

y2), ({y1, y2} = y)} having a binding variable z

with a path from the child of z to the clause ( =x′

y2). Clearly there must also

exist a path from the child of z to the clause ( =x y2). Hence any binding clause

must contain both discard clauses in its scope or either. Now, by virtue of this

any complete path from either of the vestigial clauses must contain all the binding

clauses that bind them both, and furthermore in each path they must occur in

the same order (or else we could construct a path which omitted one). Take the

binding clause which occurs first in an arbitrary complete path from either clause,

and call it c. We know further that there is an input to c, say x′′, which equally

must be in every complete path. Now we claim that D1 and D2 are both equal

by a one-step vestigial move to D′ ∪ {( =x′′

y)}. To show this note that the

second part of the requirement is satisfied by virtue of our earlier discussion. The

first part, that there exists a path from a child of x or x′ respectively to a clause

having x′′ as dependent in both D1 and D2, can be shown since in each case, any

complete path from the vestigial clause, including the one passing through the

child of x or x′, must contain c and x′′. �

Having defined these two equalities, we will refer to the system of relations

quotiented by the equality generated by the transitive closure of the rewrite →∆

over the equality =vm as Rel(O, =vm,∆).

8.4 Terms to Relations

We now map Lin(O) to Rel(O, =vm,∆) in such a way that when we quotient Lin(O)

by the subset of the provable equality judgements constructed using only the cc-

axioms, it will be isomorphic to Rel(O, =vm,∆).

199



Definition 8.4.1 (The Translation ρ)

The translation ρ takes Γ; ∆-terms of type A in Lin(O) to Γ; ∆-relations of type

A in Rel(O) as follows, where Γ = y1 :R1 . . . yr′′ :Rr′′:

ρΓ(x) = {( =x ~y)} (where x is not typed in Γ)

ρΓ,x:Q(x) = {(x′ = F (x)), ( =x′

~y)}

ρΓ(let x:Q be v in w) = {(F (x) = zv), ({y′
1, y

′′
1} . . . {y′

r′′ , y′′
r′′} = ~y)}

∪ ρ~y:~R(v){~y′/~y} ∪ ρ~y:~R,x:Q(w){~y′′/~y}

(On O ∈ OI) ρΓ(op) = {(M1 . . .Mr′′ = ~y), (x′ = F (x′′))} ∪

{(x′′ = (; )O((~yv1~x1; ~y1)D1, . . . , (~yvr~xr; ~yr)Dr)}

(On O ∈ OL − OI) ρΓ(op′) = (
⋃

i=1...s

Ei) ∪ (
⋃

j=1...r′

D′
j) ∪ (

⋃

i′=1...s′

E′
i′) ∪ {(M ′

1, . . . M
′
r′′ = ~y)} ∪

{(x′′ = (~z′; ~z′′)O((~yv1~x1; ~y1)D1, . . . , (~yvr~xr; ~yr)Dr; (~x
′
1; ~y

′
1)(zw1), . . . , (~x′

s; ~y
′
s)(zws)))}

where x′, x′′ and all the ~y′, ~y′′ and ~yv for terms v are fresh variables and:

Ei = ρΓ,~x′
i:

~Q′
i
(wi){~y

wi/~y}

D′
j = ρΓ(v′

j){~y
v′

j/~y}

E′
i′ = ρΓ(w′

i′){~y
w′

i′/~y}

Dj′ = ρΓ,~xj′ :~Qj′
(vj′)

~z′ = zv′
1
. . . zv′

r′

~z′′ = zw′
1
. . . zw′

s′

Mi = {yv1
1 , . . . , yvr

1 }

M ′
i = {yv1

1 , . . . , yvr

1 , yw1
1 , . . . , yws

1 , y
v′
1

1 , . . . , y
v′

r′

1 , y
w′

1
1 , . . . , y

w′

s′

1 }

op = O((~x1 : ~Q1;~y1 : ~A1)v1, . . . , (~xr : ~Qr; ~yr : ~Ar)vr; )()

op′ = O((~x1 : ~Q1;~y1 : ~A1)v1, . . . , (~xr : ~Qr; ~yr : ~Ar)vr;

(~x′
1 : ~Q

′; ~y′
1 : ~A′)w1, . . . , (~x′

s : ~Q
′; ~y′

s: ~A′)ws)(v
′
1, . . . , v′

r′; w′
1, . . . , w′

s′)

and where we write zv for the result variable of ρΓ(v) and similarly for the terms

w, ~v, ~w, ~v′ and ~w′.

We need to show that definition is well-formed, ie that ρ applied to a term is

always a relation. We can do this by induction over derivations of terms. Consider

the conditions on relations in turn.

Linearity To show that each variable only occurs at most once as an input and

at most once as an output or binder, first consider the axiom clauses. The
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result obviously follows in this case since x and ~y must be distinct, and

x′ is fresh. Now consider the inductive clauses. In each of these, when

we refer inductively to another instance of the translation ρΓ(v), we only

introduce another occurrence of free variables in the translation instance,

and in fact we only introduce new occurrences of variables which are free

inputs of ρΓ(v) as outputs and vice versa. Hence this property is satisfied.

Colouring We can show in a very similar way that the translation preserves

colouring.

Typing Again, we need only to show firstly that the base clauses of the definition

satisfy the typing property, which is obvious since in each case there is only

ever one reference to each variable, which has an obvious type, and secondly

by showing that in the inductive clauses we only ever refer twice to variables

which are free in an instance ρΓ(v) of the translation, and in this case since

all the free variables in the instance of the translation are typed in the

typing context Γ; ∆ of the term v, we can see that they are assigned the

correct types in their other occurrence.

Boxing This clearly follows by induction, since we only ever use instances of the

translation in boxed clauses.

Output Consider the base cases. In these, the unique result variable is clear;

it is x in the first and x′ in the second. We can then show that the result

variables of the two inductive cases are zw and x′′ respectively.

Inputs This condition is easy to establish in the base cases, and in the induct-

ive cases it can be shown by observing that we bind precisely the correct

variables of the operator arguments using the binding occurrences of the

operator clause.

Binding In order to show this, we consider the only situation in which we in-

troduce a binder, which is in the operator clause of the definition. But we

can easily see that we only introduce binders which are bound variables in

the ith argument of an operator term. Now we know by induction that

in the image of a term under ρ, which is a relation, there must exist a

complete path from any child of a free input. Also, because we know that

no variable in the image of the argument apart from its free variables is

referred to elsewhere in the translation of the operator instance, the only

paths from a child of a binder must contain as initial sequences complete
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paths of the translation of the argument. But we can easily show that every

complete path of the translation can only be extended in the translation of

the operator term by adding the ith output variable and the operator clause

itself, and further that each complete path through the translation of the

argument can be extended in this way in the translation of the operator

term.

Acyclicity This is again seen by induction; in the base cases is is clear that

there is no cyclic path, in the let case if there is no cycle in the inductive

instances of the translation then we can show by inspecting the form of the

definition that there is no cycle possible in the image, and finally in the

operator clause we can do the same thing.

Vestigial This is easy to see by considering the base case, which is the only point

at which we add a vestigial. Clearly in that case it is the result variable of

the image of the translation. �

Now we can show that the fragment of the provable equality defined by the

c-axioms and the rules of Lin(O, A) is mapped soundly by this translation into

relational equality up to =∆.

Lemma 8.4.2 (Soundness)

If two terms are provably equal Γ; ∆ ⊢ v = w :A in the fragment of Lin(O, A)

using just the cc axioms and the symmetry, reflexivity, transitivity and congruence

rules, then their images ρΓ(v) and ρΓ(w) are equal up to =vm,∆ on relations.

Proof We prove this by considering the structure of a derivation of an equality

judgement in this fragment of the theory. Since the rewrite is congruent, and we

are taking the transitive reflexive closure of it, we have that the equality =∆ is a

congruence. Hence we need only check that the cc equalities are soundly mapped

to relations. We consider some sample cases.

cc − 1) In this case, the image of the left hand side easily reduces using the free

variable condition to the relation

ρΓ,y:Q(w′){~y′/~x′}∪ρΓ,x:R(v){~y′′/~x′} ∪ ρΓ(w){~y′′′/~x′}

∪ {({y′
1, y

′′′
1 }, . . . {y′

r, y
′′′
r } = ~x′′), ({y′′

1 , x
′′
1}, . . . {y′′

r , x
′′
r} = ~x′)}

where Γ = x′
1 :Q

′
1 . . . x′

r :Q
′
r. But this reduces to

ρΓ,y:Q(w′){~y′/~x′} ∪ ρΓ,x:R(v){~y′′/~x′} ∪ ρΓ(w){~y′′′/~x′}

∪ {({y′′
1 , y

′
1, y

′′′
1 }, . . .{y′′

r , y
′
r, y

′′′
r } = ~x′)}
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and the image of the right-hand side easily reduces using the free variable

condition to the relation

ρΓ,y:Q(w′){~y′/~x′} ∪ ρΓ,x:R(v){~y′′/~x′} ∪ ρΓ(w){~y′′′/~x′}

∪ {({y′′
1 , y

′′′
1 }, . . .{y′′

r , y
′′′
r } = ~x′′), ({y′

1, x
′′
1}, . . . {y′

r, x
′′
r} = ~x′)}

which has the same reduct as the left hand side.

cc − 2) This is almost identical to the previous case.

cc − 3) and cc − 4) These cases follow the same principle as that of cc − 1 since

we have a union of the sets ρΓ(v) and ρΓ(v′
i).

cc − 5) This is the crucial case, since it shows that our relational equality handles

linear naturality correctly. In order to make the process clearer, we only

prove this in the case we there are no intuitionistically natural arguments

(since these are peripheral to the equality) and precisely two linearly nat-

ural arguments. The more general case is proved using exactly the same

techniques. In the restricted case, the equality is as follows:

Γ; ∆ ⊢let x′ be v in O(; (~x1; ~y1)w1, (~x2; ~y2)w2)(~v′; ~w′)

= O(; (~x1; ~y1)w1, (~x2; ~y2)(let x′ be v in w2))(~v
′; ~w′)

The image of this easily reduces under the free variable condition to the

relation

(∪i=1...r′ρΓ(v′
i){~y

v′
i/~y}) ∪ (∪j=1...s′ρΓ(w′

j){~y
w′

j/~y}) ∪ ρΓ,~x1:~Q1
(w1){~y

w1/~y}

∪ ρΓ,x′:Q′,~x2:~Q2
(w2){~y

w2/~y} ∪ ρΓ(v){~yv/~y} ∪ {({y′
1, y

v
1}, . . . , {y′

r, y
v
r} = ~y),

({y
v′
1

1 , . . . , y
v′

r′

1 , y
w′

1
1 , . . . , y

w′

s′

1 , yw1
1 , yw2

1 }, . . . , {yv′
1

r , . . . , y
v′

r′

r , yw′
1

r , . . . , y
w′

s′

r , yw1
r , yw2

r } = ~y′)}

where Γ = y1 :R1 . . . yr :Rr. But this has reduct

(∪i=1...r′ρΓ(v′
i){~y

v′
i/~y}) ∪ (∪j=1...s′ρΓ(w′

j){~y
w′

j/~y}) ∪ ρΓ,~x1:~Q1
(w1){~y

w1/~y}

∪ ρΓ,x′:Q′,~x2:~Q2
(w2){~y

w2/~y} ∪ ρΓ(v){~yv/~y} ∪

{({y
v′
1

1 , . . . , y
v′

r′

1 , y
w′

1
1 , . . . , y

w′

s′

1 , yw1
1 , yw2

1 , yv
1}, . . . ,

{yv′
1

r , . . . , y
v′

r′

r , yw′
1

r , . . . , y
w′

s′

r , yw1
r , yw2

r , yv
r} = ~y)}

But in a similar way the right-hand side has precisely this reduct. �
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8.5 Relations to Terms

Having given the sound translation from terms to relations, we now need to

give a translation in the reverse direction. In fact, this is a complex procedure,

largely because relations are not inherently a sequential syntax, whereas terms

are. Hence the problem of inverting ρ is a version of what is historically known

as the sequentialisation problem, first stated for proof-nets. As we already know,

there is no one canonical proof derivation associated with a particular relation,

although each relation does have an associated equivalence class of derivations

(under the fragment of equality we are considering).

It is not clear how to give a direct translation from relations to terms, as we

have no direct inductive characterisation of relations, and although we do for pre-

relations, not all pre-relations can be mapped to terms in a uniform way. Hence,

the way we will define the inverse translation is non-standard. First we define a

class of intermediates, which are as the name suggests half-way houses between

relations and terms, and then we define a rewrite on these which is confluent and

terminating up to an equality on these intermediates. Such a rewrite defines a

function on intermediates, and we use it in conjunction with a map from relations

to intermediates and a map from intermediates to terms to give a function from

relations to terms.

First we define intermediates.

Definition 8.5.1 (Intermediates)

A Γ′; ∆′-intermediate of type A over a signature O is a triple (v, D, (Γ; ∆)) such

that v is a Γ; ∆-term of type A, D is a finite set of clauses, (the clause set),

ρΓ(v) ∪ D is a Γ′∆′ relation of type A, all the variables occuring only as outputs

in D are typed in Γ; ∆ and there are no clauses in D having dependents variables

occuring as outputs in ργ(v).

We will write the set of intermediates over a signature O as Int(O), ranged

over by I . . . , and identify intermediates up to permutation on the linear and

intuitionistic parts of the typing context.

Now we define a rewrite on intermediates, →S:
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Definition 8.5.2 (The Sequentialisation Rewrite)

We define the one-step sequentialisation rewrite →S on intermediates as follows:

1) (v, D ∪ {( =x y :Q)}, (Γ; ∆, x:A)) →S (v, D, (Γ, y :Q; ∆, x:A))
2) (v, D ∪ {(M = x:Q)}, (Γ, M :Q; ∆)) →S (v{x/M}, D, (Γ, x:Q; ∆))
3) (v, D ∪ {(x = F (y):Q)}, (Γ; ∆, x:Q)) →S (v{y/x}, D, (Γ, y :Q; ∆))
4) (v, D ∪ {(F (x) = y :Q)}, (Γ, x:Q;∆)) →S (let x be y in v, D, (Γ; ∆, y :Q))
5a) (v, D ∪ {op}, (Γ, x:Q; ∆)) →S (v{w/x}, D, (Γ, Γ′′; ∆)
5b) (v, D ∪ D′

1 ∪ . . . ∪ D′
s ∪ {op′}, (Γ; ∆, y :B′′)) →S (v{w′/y}, D, (Γ, Γ′; ∆, ∆′))

where this last rewrite holds if D has no clauses ( =x′′

y′′) for x′′ occurring as an

output in D′
1 . . .D′

s, for all i = 1 . . . r and all j = 1 . . . s, we have:

(zvi
, Di, ( ; zvi

:Bi)) →S (vi, ∅, (Γvi, ~xi : ~Qi; ~yi: ~Ai))

(zwj
, D′

j , ( ; zwj
:B′

j)) →S (wj, ∅, (Γwj , ~x′
j : ~Q

′
j; ∆

wj , ~y′
j : ~A′

j))

and given Γvi = ~xvi : ~Avi for i = 1 . . . r, we abbreviate:

op = (y = (; )O((~xv1~x1; ~y1)D1, . . . , (~xvr~xr; ~yr)Dr; ))

op′ = (y = (~x′′; ~y′′)O((~xv1~x1; ~y1)D1, . . . , (~xvr~xr; ~yr)Dr; (~x
′
1; ~y

′
1)zw1 , . . . , (~x′

s; ~y
′
s)zws))

w = O((~x1; ~y1)v1, . . . (~xr; ~yr)vr; )(; )

w′ = O((~x1; ~y1)v1, . . . (~xr; ~yr)vr; (~x
′
1; ~y

′
1)w1, . . . (~x

′
s; ~y

′
s)ws)(~x

′′; ~y′′)

Γ′′ = Γv1 , . . . , Γvr

Γ′ = Γv1 , . . . , Γvr , Γw1 . . . , Γws

∆′ = ∆, ~x′′ : ~Q′′, ~y′′ : ~A′′, ∆w1, . . . , ∆ws

We specify further that a one-step rewrite of type 3 or 5b removing a variable

x from the linear typing context here can only occur when there is no clause

( =x y) for some y which could be rewritten by a rewrite of type 1.

We need to check that this definition is well-formed, ie that the reduct of an

intermediate is still an intermediate. This can be seen using simple properties of

relations and of the translation ρ.

Intuitively, a sequentialisation rewrite on Γ′′; ∆′′-A-intermediates

(v, D, (Γ; ∆)) →S (v′, D′, (Γ′; ∆′))

moves structure from the relation part of the intermediate to the term part in a

sound way. By this we mean that the Γ′′; ∆′′-A-relations ρΓ(v)∪D and ρΓ′(v′)∪D′

will be equal up to =∆,vm.

We can now start to prove the results which we need about this rewrite. First

note that each rewrite reduces the clause set by at least one clause. In the case
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of rewrites 1 − 4 this is the obvious one, in 5a it is op, and in 5b it is op′. We

call this clause the active clause in a rewrite. Further, note that any rewrite

may only occur if all the output variables of its active clause are present in the

typing context. This is not a sufficient condition because of the 1st rewrite and

the restriction on rewrite order. We will refer to the rewrites which are given

as conditions for the 5bth rewrite as subsidiary rewrites of that main rewrite.

Similarly, we will call the intermediates which are rewritten by the subsidiary

rewrites the subsidiary intermediates.

Now since ρΓ(v) ∪ D must be a Γ′; ∆′-relation of type A, we know that no

variable in D can occur more than once as an output, and hence we know that it

may only be the output variable of one clause. This implies that any two instances

of rewrites with a shared output variable must have the same active clause. In

the cases of rewrites 2 − 4 this implies that they are the same. We also note that

variables are only added to the typing context when they are the inputs of active

clauses in rewrites. This is clear except in the case of rewrite 5b, but can be seen

by induction even in that case.

We can also easily see that the only way of removing a clause from the clause

set is via a rewrite of which it is an active clause, or equivalently via a rewrite

which removes its output variables from the typing context. We will say that

an intermediate rewrites totally if it rewrites to an intermediate with an empty

clause set.

We firstly now show that every intermediate rewrites totally. This will require

two lemmas.

Lemma 8.5.3

Under the assumption:

For all D containing fewer than n clauses, if (v, D, (~x : ~Q; ~y : ~A)) has

a clause c with all its dependents in ~x~y, then it has a sequence of

one-step rewrites whose last rewrite has active clause c.

we can show that any intermediate with a clause set having less than n elements

rewrites totally.

Proof To show this, we prove that any intermediate with a non-empty clause

set has at least one rewrite. Then note that given any intermediate since the

clause set must be finite, the result follows. Firstly, take any intermediate with

clause set having less than n elements. If it has no elements then we are done. If

it has at least one then take one arbitrarily. This clause then must have at least
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one dependent, and these dependents are either all free output variables, in which

case they are all in ~x~y and by the assumption there exists a rewrite, or there is

one dependent of the clause which is the input of another clause c′. Using this

clause we can then either find a rewrite or a third clause, and this procedure if

continued will give us a rewrite with active clause the ith clause we select, or it

will give us an infinite sequence of clauses such that each has as input a dependent

of the previous one. However, since the clause set must be finite, such a sequence

of clauses must contain a cycle, and it is easy to see that from the clauses and

the dependents we can therefore construct a cyclic path in the clause set, which

is a contradiction. �

Having proved this conditional result, we now go on to prove the main lemma,

which is also the assumption of the conditional in the general case:

Lemma 8.5.4

If (v, D, (~x : ~Q; ~y : ~A)) has a clause c with all its dependents in ~x~y, then it has a

sequence of one-step rewrites whose last rewrite has active clause c.

Proof We will prove this by induction over the size of the clause set. If the

clause set D is empty the lemma is vacuous. If the clause set has n + 1 elements,

then assume it has a clause c satisfying the premise of the lemma. There are

now three possible cases. Firstly we may have that this clause has the form

( =x y), in which case the assumption implies that the rewrite (of type 1) can

proceed. Secondly we may have that this clause is not an operator clause and is

not a clause ( =x y), in which case we know that the assumption must allow the

rewrite unless there is a possible rewrite of type 1 which may take precedence.

Note however that if there are such rewrites, there can only be finitely many of

them, and note also that they merely increase the size of the typing context, and

therefore do not block the rewrite removing the clause c. Hence we can perform

the sequence of rewrites of type 1 followed by the rewrite having active clause c.

The third and most complex case is when the clause is an operator clause. In

this case the assumption is that the sole output variable of the operator is in ~x~y,

but we also need to know that there exists suitable subsidiary intermediates and

rewrites on them. However, since such intermediate must have smaller clause sets

than D, we know that any subsidiary intermediate of the appropriate form must

rewrite totally. Hence it suffices to show that suitable subsidiary intermediates

exist. However, since we know that the family of any variable is a relation, we can

simply take as subsidiary intermediates (zwj
, fam(zwj

, D ∪ρΓ′ (v)), ( ; zwj
)). These

are disjoint since we know that no clause can be in the families of two distinct
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variables unless one is in the family of the other, and this is clearly impossible

since the active clause of the operator rewrite cannot be in any family of the zwj
.

Further, they are all subsets of D since any complete path in D ∪ ρΓ′(v) from a

clause in ρΓ′(v) cannot contain zwj
or it would induce a cycle. Hence we have

appropriate subsidiary intermediates and the rewrite can occur, and so the result

follows by induction. �

Now using our previous lemma, we can see that we have the consequence:

Proposition 8.5.5

Any intermediate rewrites totally.

This is clear since we know that for any intermediate with a clause set having

n elements, it follows from the result we have just proved, for intermediates with

clause sets of n or fewer elements. However, we have just proved this last result

for all n, and hence the proposition holds.

We now proceed to prove confluence of →S up to the cc-fragment of provable

equality on the term part of intermediates.

Lemma 8.5.6 (Relative Confluence)

If an intermediate I has two rewrites, I →S I1 and I →S I2, then I1 and I2

respectively have rewrites I1 →S I ′
1 and I2 → I ′

2 such that I ′
1 and I ′

2 differ only

on their term part, and if I ′
1 has term part v1 and I ′

2 has term part v2, these two

terms are provably equal in the fragment of the equality theory having only the

cc axioms and the rules.

Proof We prove this by considering all possible pairs of one-step rewrites in

turn. Note that some combinations are prohibited by the restriction on the order

of rewrites.

1 and 1 If we have two different rewrites of type 1, then clearly the resultant

intermediate forms are the same up to exchange on the intuitionistic part

of the typing context, and hence we have the result.

Any choice of two from {2, 3, 5a} In these cases the result follows again by

exchange on the typing context and by commutation of independent sub-

stitutions.

2 and 4, 3 and 4 In these cases the result follows by exchange and since the

substitutions go through the let -construct.

4 and 4 In this case the result follows by the commuting conversion which allows

two let -constructs to commute under appropriate free-variable restrictions.
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5b and 2, 5b and 3, 5b and 4 Say that the rewrite 2, 3 or 4 is I →S I1, called

rewrite a, and that the other rewrite I →S I2 of type 5b is called rewrite

b. Now, we know that the active clause of rewrite a is the only clause

containing any output variables of the clause, because any other occurrence

in D would have to be an input occurrence, which is not possible by our

earlier discussion. Now if we consider the subsidiary rewrites of rewrite b,

we can see that the output variable of the active clause of the rewrite a

can never be introduced into the typing context, and hence the rewrite a

can never take place as part of a subsidiary rewrite of rewrite b. This then

means that after rewrite b, rewrite a is still possible since its output variable

is still in the typing context and the clause is still in the clause set. On the

other hand, if we first do rewrite a, clearly we can still do rewrite b since the

active clause of rewrite a was not involved, and we have merely altered the

typing context in a way which will not affect rewrite b. Having established

that the rewrites can be done in either order, the equality of the resultant

intermediate forms is given by the commutativity of substitution.

5b and 5b This is the most complex case, since there are two subcases. The first

is the case in which the two rewrites of type 5b have different active clauses,

and the second is the case in which the active clauses are the same but the

sets D′
i are different. First consider the case in which the active clauses are

different.

In this case we first note that no clause in one of the sets Di for one rewrite

can be in any of the corresponding set for the other rewrite. This is because

any two such sets are sub-relations of the relation D ∪ ρΓ(v), and hence by

lemma 8.2.14 any maximal path in D ∪ ρΓ(v) from such a shared clause

must pass through one clause having dependent the result variable of the

first subrelation and another having dependent the result variable of the

second subrelation. If these clauses are the same, then both active clauses,

which are the children of the respective result variables, are the same, which

is a contradiction. Otherwise, we must have that there is a path from the

clause having dependent the result variable of (say) the first subrelation to

that having dependent the result variable of the second subrelation. But this

then implies that there exists a path from the child of the result variable of

the first subrelation to the child of the result variable of the second relation,

or in other words a path from the active clause of the first rewrite to that

of the second rewrite. This then implies that the first rewrite cannot occur

until the second has, which is again a contradiction. Thus it follows that the
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two rewrites are independent as they do not affect any of the same clauses

or variables, and so they can be performed in either order. The resulting

intermediates in each case are the same, by virtue of the commutativity of

substitution.

Now consider the second case, in which the active clauses of the two rewrites

are the same. In order for the two rewrites to be distinct, it must be the case

that one of the sets D′
j differs from its counterpart E′

j. Note that for this to

be the case, at least one of the sets must contain a clause having dependent

zwj
or else both sets would be empty and hence equal. Now we can see that

both the sets D′
j and E′

j must be subsets of fam(zwj
) since if not, we would

have that some clause having a complete path from itself not including

zwj
would be rewritten in the subsidiary rewrite of the 5b-rewrite. This is

impossible since we know that for a rewrite to occur all its dependents must

be in the typing context, and inductively this is only possible for variables

whose children are in the family of the initial variable. Given this and the

fact that since fam(zwj
), it suffices to show that the two rewrites using D′

j

and using fam(zwj
) respectively have a common reduct. This follows by

observations on substitution, however, since any clause which is not in D′
j

but in fam(zwj
) must be rewriteable after the 5b-rewrite using D′

j because

we simply add the typing context present after the subsidiary rewrite to the

main typing context. �

Now we can define a function based on the rewrite →S. Note that for any Γ; ∆-

relation D of type A with result variable x, (x, D, ( ; x : A)) is an intermediate and

hence rewrites totally.

Definition 8.5.7 (The Translation σ)

Given a Γ; ∆-relation D such that

(x, D, ( ; x:A)) →S (v, ∅, Γ′; ∆′)

define σΓ;∆(D) = v.

This is a total function by the earlier remarks. Further, we can easily show that

v is a Γ; ∆-term of type A by considering the structure of the sequentialisation

rewrite.

We now need to show that this translation is sound with respect to the equality

=vm,∆. In order to do this we will first prove a lemma:
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Lemma 8.5.8

Given an intermediate (v, D ∪ D′, (Γ, ~x : ~Q; ~y : ~A, ∆)) which has a one-step se-

quentialisation rewrite to another intermediate (f(v), D, (Γ, ~x′ : ~Q′; ~y′ : ~A′, ∆)), we

have for any other intermediate (w, E ∪ D′, (Γ′, ~x: ~Q; ~y : ~A, ∆′)) a rewrite:

(w, E ∪ D′, (Γ′, ~x: ~Q; ~y : ~A, ∆′)) →S (f(w), E, (Γ′, ~x′ : ~Q′; ~y′ : ~A′, ∆′))

if E has no clause with a vestigial occurrence of any variable in ~y, where f is a

function constructed from substitutions of terms for variables and the primitive

function which takes v to let x be y in v.

Proof We can prove this by simple consideration of the form of the one-step

rewrite. In the case of the first to 5ath rewrite, the set D′ must consist of the

single clause which is the active clause of the relevant rewrite. Further, the typing

sequences ~x : ~Q and ~y : ~A must be precisely the output variables of the active

clause. Now given that the intermediate (w, E ∪ D′, (Γ′, ~x : ~Q; ~y : ~A, ∆′)) also

has the active clause and the output variables of the active clause in the typing

context, the only reason the required rewrite might not take place is because of

the restriction that a rewrite of type 1 must take precedence over a rewrite of

type 3 or 5a on the same output variable. But since the ~y are the linear output

variables of the active clause, the condition on the lemma makes sure this cannot

happen. �

Lemma 8.5.9 (Soundness)

If two Γ; ∆-relations of type A, D1 and D2 are equal under the equality =vm,∆,

then Γ; ∆ ⊢ σΓ;∆(D1) = σΓ;∆(D2) :A using just the cc-fragment of the provable

equality.

Proof In order to show this there are two proof obligations, firstly to show that

the rewrite →S is mapped to a provable equality and secondly to show that the

equality =vm is preserved by σΓ;∆.

For the first, taking each rewrite in turn, we first take the starting intermediate

of a relation, (x, D, (Γ; ∆)), and rewrite until the first dependent of a key clause

of the rewrite appears in the typing context. Now the result of rewriting the

redex and the result of rewriting the reduct at this point are the same, modulo

the α-conversion in one case. Therefore the result holds in this case.

The second is much more complex. Imagine that two Γ; ∆-relations of type

A, D ∪ { =x y)} and D ∪ {( =x′

y)} are equal via a one-step vestigial move.

Without loss of generality, suppose that the path that exists by the first clause of
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the definition of vestigial move is from the child of x to a clause having dependent

x′. Now consider the Γ; ∆-intermediates (z, D ∪ { =x y)}, ( ; z :A)) and (z, D ∪

{( =x′

y)}, ( ; z : A)) of type A, where z is the result variable of both the relations.

Taking the second of these, we first claim that there must exist a sequence of

rewrites not containing any rewrite with an active clause having output variable

x and not containing any rewrite with active clause ( =x′

y) as follows:

(z, D ∪ {( =x′

y)}, ( ; z :A)) →∗
S (f(z), D′ ∪ {( =x′

y)}, (Γ′; x′ :A′, ∆′))

We first note that since the vestigial clause ( =x′

y) cannot rewrite unless the

variable x′ is present in the typing context, any rewrite sequence to an interme-

diate with empty clause set must pass through an intermediate with the variable

x′ present in the typing context and the vestigial clause ( =x′

y) in the clause

set.

We can now prove by induction over the size of the part of the clause set D

of the intermediate that given a path from a child of x to a clause having x′ as a

dependent, there must either be a rewrite of the intermediate not having active

clause with output x, or the typing context contains x′.

Firstly, if the set D is empty, then since any intermediate with non-empty

clause set has a rewrite and the only possible rewrite is the one having active

clause the only clause in the clause set ( =x′

y), and this means that x′ must be

in the typing context, or the rewrite would not be possible.

Secondly, if the set D has r + 1 elements, it suffices to find one rewrite which

satisfies the criteria, as then the resulting intermediate must have a smaller set

D. Now since there exists a rewrite by the termination of →S, assume that

this rewrite has active clause with output x. Then x must occur in the typing

context of the intermediate. But we can see from this that if the intermediate is

(v, D∪{( =x′

y)}, (Γ; x : B, ∆′)) every path from x in ρΓ′;x:B,∆′(v)∪D∪( =x′

y)}

must be entirely within ρΓ′;x:B,∆′(v) and hence cannot contain x′, which is a

contradiction.

But now we need only check the vestigial condition of the previous lemma to

see that by repeated applications of it, we have that there exist rewrites:

(z, D ∪ { =x y)}, ( ; z :A)) →∗
S (f(z), D′ ∪ { =x y)}, (Γ′; x′ :A′, ∆′))

The vestigiality condition is guaranteed by the existence of the rewrites on the

intermediate (z, D ∪{ =x′

y)}, ( ; z :A)) for all variables except x. So we need to

check that at no point in the sequence of rewrites does a rewrite occur which has

an active clause with the output variable x. But we already know this.
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Now we have a one-step rewrite:

(f(z), D′ ∪ {( =x′

y)}, (Γ′; x′ :A′, ∆′)) → (f(z), D′, (Γ′; x′ :A′, ∆′))

Also, we have a sequence of rewrites

(f(z), D′, (Γ′; x′ :A′, ∆′)) →S (f ′(f(x)), D′′, (Γ′′; x:B, ∆′′))

and hence by our previous lemma we also have a sequence of rewrites:

(f(z), D′ ∪ { =x y)}, (Γ′; x′ :A′, ∆′)) →S (f ′(f(x)), D′′ ∪ { =x y)}, (Γ′′; x:B, ∆′′))

The vestigial condition on that lemma is satisfied obviously. Now we have a

rewrite

(f ′(f(x)), D′′ ∪ { =x y)}, (Γ′′; x:B, ∆′′)) →S (f ′(f(x)), D′′, (Γ′′; x:B, ∆′′))

and therefore we have that both (z, D ∪ { =x y)}, ( ; z :A)) and (z, D ∪ {( =x′

y)}, ( ; z :A)) rewrite to (f ′(f(x)), D′′, (Γ′′; x :B, ∆′′)) so that they must rewrite

by confluence to the same intermediate with empty clause set, which then implies

that σ is sound with respect to vestigial moves. �

We can now prove that σΓ;∆(ρΓ(v)) = v by straightforward calculation on each

term construct.

Lemma 8.5.10 (Inversion)

Given a Γ; ∆-term v of type A, σΓ;∆(ρΓ(v)) = v.

This then shows by standard arguments that:

Lemma 8.5.11

Γ; ∆ ⊢ v = w : A using the cc-fragment of provable equality if and only if ρΓ(v) =∆

ρΓ(w)

We can go further and show that relations under the equality =vm,∆ are exactly

equivalent to terms quotiented by the provable cc-equality. First we prove a

lemma:

Lemma 8.5.12 (Invariant)

Given a Γ; ∆-intermediate of type A, (v, D, (Γ′; ∆′)), such that (v, D, (Γ′; ∆′)) →S

(w, E, (Γ′′; ∆′′)), we have that:

ρΓ′;∆′(v) ∪ D =vm,∆ ρΓ′′;∆′′(w) ∪ E

as Γ; ∆-relations of type A.

This is easily proved by considering each sequentialisation rewrite in turn.

This then allows us to prove the following result:

Lemma 8.5.13 (Inversion II)

Given a Γ; ∆-relation D of type A, ρΓ;∆(σΓ;∆(D)) =vm,∆ D.
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Proof First note that we have a rewrite:

(x, D, ( ; x:A)) →S (σΓ;∆(D), ∅, (Γ; ∆))

where D has the result variable x in the context Γ; ∆. But then by the invariant

lemma, we have that

ρ ;x:A(x) ∪ D =vm,∆ ρΓ;∆(σΓ;∆(D)) ∪ ∅

which immediately gives us the required result. �

Hence we have that Rel(O, =vm,∆) is isomorphism to Lin(O) quotiented by the

provable equality built from the cc axioms and the rules. In the next chapter

we consider rewrites on relations which will correspond to the F − βV η equality

judgements on Lin(O)-terms.
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Chapter 9

Normal Forms and Decidability

In this chapter we continue the study of relations as normal forms for linear

type-theories, showing that we can extend the results proved in the previous

chapter to allow us to decide the linear typing system with F − βV η-axioms and

further to decide the system with output-naturality equalities ONat(O, O) for

some signature O having an output-parameterised set of operators O. However,

to do so will involve some delicate proofs.

9.1 Proof-Nets

As in the previous chapter, we motivate our definitions and proofs using proof-

nets, in which we can raise all the problems we will face in a more understandable

way.

In modelling not only the provable equality built over Lin(O) from the com-

muting conversions, but the full provable equality of Lin(O, A), we need to consider

the F −βV and F −η axiomatic equalities. However, there are three issues which

are immediately raised.

Firstly, we have the issue of orientation of the rewrites that we shall give.

It is by no means certain that the conventional reductive rewrite orientation is

the correct one in general, and in fact we will be using a rewrite in which the

βv-rewrites are taken as reductions and the η-rewrites as expansions (see Ghani’s

thesis [Gha95]). Secondly, the F −βV -equality contains within its right-hand side

an intuitionistic substitution of an intuitionistic term for a variable, and in order

for our relational system to model this, we will need to augment the rewrites

of the replicators to copy intuitionistic operators, amongst other administration.

The techniques we will use to do this are based in a number of proof–net-like

systems, notably those inherited from nets for the λ-calculus.

Thirdly, and perhaps most substantially, we need to take account of the
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output-naturality equalities which hold of the ⊗L and IL operators. In order

to do this we adopt a different approach, which is based on the observation that

in modelling the linear naturality of operators in proof-nets, we simply leave wires

which are not bound by the operator. The intuition behind output-natural oper-

ators is that the output wire (or result) is not bound by the operator application,

and so our new proof nets proceed by not binding them; for example, a repres-

entation of the DILL(C)-term let x ⊗ y be t in u which does not bind the result

wire is seen in figure 9.1.

C

x:A y:BA B Γ

Γ∆ ∆1 2

Φ( )

Φ( )u

t

Figure 9.1: Proof-Nets for Output Naturality

Given this approach, output-naturality equalities map to identities on proof-

nets, which is one of their major virtues. However, there is a slight complication

in the treatment of operators with no binding behaviour, as for example in IL.

As explained in section 8.1 on page 183, such a non-binding operator requires a

vestigial, since otherwise too many proof-nets would be identified.

9.2 The F -Equalities

We now introduce an additional rewrite on relations, the F -rewrite, which models

the effect of the F -equalities of Lin(O, A). We proceed to extend the result of

the previous section to show that the derivable equality judgement of Lin(O, ∅)

soundly and completely maps to relations under the equality =vm∆F generated in

the obvious way from the rewrites →F and →∆ and the equality =vm. First we

make a definition:
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Definition 9.2.1 (Resolved Variable)

Say a variable x of type Q ∈ MI is resolved in the relation D if it is linear and

is not the input of a clause (F (z) = x) or the output of a clause (x = F (z)).

Conversely, if a variable is linear and is not resolved, call it unresolved.

We must define the concept of common variable. A common variable for a

clause in a relation is a linear variable which occurs in any complete path from the

clause. Each clause has at least one common variable unless it has dependent the

result variable, because the result variable will be a common variable. Further, for

any clause having an input which occurs as a vestigial elsewhere in the relation,

we can always find a common variable which is a valid vestigial move away. This

holds simply by taking the common variable which occurs first in each complete

path (it must always be the same one since if not a cycle would occur).

Now we define the rewrite on relations which we will use:

Definition 9.2.2 (The Rewrite →F )

Define the one-step rewrite →F on relations using the following rules, where the

F − η-rule is only permitted on unresolved variables x:

D ∪ {(F (x′) = y), (y = F (x))} →F−β D{x/x′, z/y}

D{x/x′} →F−η D ∪ {(F (y) = x), (x′ = F (y))}

where in the second of these, y is fresh, and in the first, z is the first common

variable in every complete path from (F (x′) = y) in the relation D ∪ {(F (x′) =

y), (y = F (x))}.

Now we need to extend the rewrite ∆ in order to deal with intuitionistic

operators. We will overload notation to refer to the extended rewrite also as →∆.

We now introduce some substitution notation; for any relation D let Dσ(1) be

D with all its variables replaced by fresh variables, such that if i 6= j then Dσ(i)

and Dσ(j) share no variables. We extend this to intuitionistic operator clauses,

meaning that each relation within the operator instance has the substitution

applied to it, with corresponding α-conversion for the binding instances.
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Definition 9.2.3 (The Rewrite →∆)

Let the one-step rewrite →∆ be given by the following cases, extending the rewrite

→∆ of the previous chapter:

D ∪ {( =x y), (M ∪ {z′} ∪ {y′} = z)} →∆−1 D ∪ {(M ∪ {z′} = z)}

D ∪ {({x} = y)} →∆−2 D{y/x}

D ∪ {(M ′ = y), (M ∪ {z′} ∪ {y} = x)} →∆−3 D ∪ {(M ∪ {z′} ∪ M ′ = x)}

D ∪ {(z = (~x; ~y)O(. . . (~x′; ~y′)D′ ∪ {(M = y′′)}(x′′) . . . ; . . . ))} →∆−4

D ∪ {(z = (~x; ~y)O(. . . (~x′; ~y′)D′(x′′) . . . ; . . . )), (M = y′′)}

D ∪ {(z = (~x; ~y)O(. . . (~x′; ~y′)D′(x′′) . . . ; . . . )), (z′ = (; )O′(. . . ; ))} →∆−5

D ∪ {(z = (~x; ~y)O(. . . (~x′; ~y′)D′ ∪ {(z′ = (; )O(. . . ; ))}(x′′) . . . ; . . . ))}

where O′ ∈ OI and z′ occurs as an input only in D′

D ∪ {(M = z), (z = (; )O′(. . . ; ))} →∆−6

D ∪ {(z′
1 = (; )O′(. . . ; )σ(1)), . . . , (z′

r = (; )O′(. . . ; )σ(n)), (M ′
1 . . . M ′

r = ~x)}

where in this last rewrite, the free intuitionistic variables occurring as inputs in

(; )O′(. . . ; ) are ~x , we have M ′
i = ~xσ(i) and M = {z′

1, . . . , z′
r}.

We will now define the equality =vm∆F in the obvious way as the reflexive

transitive closure of the union of the one-step rewrites →∆ and →F over the

equality =vm.

We can now start to extend the results of the previous chapter to these new

rewrites.

9.3 Deciding the Equality

Confluence

It is straightforward to check confluence for our rewrite by considering all possible

critical pairs.

Lemma 9.3.1 (Confluence)

The transitive closure →∆F of the union of the rewrites →F and →∆ is confluent

over the equality =vm.
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Proof As before, the key to the proof is the locality of the rewrites. However,

since we now have rewrites which manipulate operator clauses, we have to also

allow for the possibility that redexes may occur inside the relations which are in

the operator clause. We consider pairs of rewrites case by case.

Any of {∆ − 1, 2, 3} with F − β In this case we can clearly see that there is

no possibility of these two rewrites sharing a clause. Hence the rewrites are

independent.

Any of {∆ − 1, 2, 3} with F − η In this case we can see that an F − η-rewrite

can never occur on any variable in a ∆ − 1, 2, 3-redex, since F − η can only

occur on linear variables and all those occurring in the rewrites ∆ − 1, 2, 3

are intuitionistic. Hence the rewrites are independent.

Either of ∆ − 4 or ∆ − 5 with either of F − β or F − η In this case we can

see that the only interaction between these two redexes can be if the F -redex

occurs in an operator instance occurring in the ∆-redex. But no F -clause or

linear variable in such an operator instance is affected, and so the rewrites

are independent.

The ∆ − 6-rewrite and either the F − β or F − η-rewrite In both these cases

we can see that the F -redex may be copied any number of times (including

none, when it is deleted). The result of doing the F -rewrite and then the

∆− 6 rewrite is the same as that of doing the ∆ − 6-rewrite and then some

number of copies of the F -rewrite.

Any combination of two from {∆ − 1, 2, 3} This case was dealt with in the

previous proof.

∆ − 4 and itself In this case clearly the redexes are non-overlapping unless the

two duplicators are leaving the same operator construct, in which case they

are still independent.

∆ − 4 and any of {∆ − 1, 2, 3} This case is easily seen, with the rewrites only

interacting if the duplicator which leaves the operator construct in the ∆−4-

rewrite is also involved in the ∆−1, 2, 3-rewrite. If the rewrites do interact,

the reducts will themselves have a common reduct using more instances of

the same rewrites.

∆ − 6 and and any of {∆ − 1, 2, 3} This is very similar to the previous case,

we the added possibility that the ∆ − 1, 2, 3-rewrite might be duplicated.

219



∆ − 6 and ∆ − 5 These rewrites interact only if the copied operator construct

is the operator construct which is the active one in the ∆ − 5 rewrite, or in

the case where the ∆−6-rewrite copies the ∆−5 redex. In the second case

the two reducts can easily be shown to have a common reduct by repeated

∆−5 rewrites, and in the first case another instance of ∆−6 and a number

of instances of ∆ − 5 are needed.

∆ − 6 and F − βη These rewrites can only interact if the F − βη-redex occurs

in the operator construct duplicated by the ∆−6 rewrite, and we can easily

rewrite the reducts to a common form using a number of F − βη-rewrites

and a∆ − 6-rewrite.

Any two of F − βη These rewrites may share a clause, but if they do the result

of performing either rewrite first is the same form.

∆ − 5 and ∆ − 1, 2, 3 These rewrites must be independent, as they share no

clause and no rewrite in the body of the operator clauses is affected by

the ∆ − 5 rewrite.

∆ − 5 and ∆ − 4 In this case the rewrites may interact in two interesting ways,

one for each operator construct in the ∆ − 5 rewrite. In the case where the

∆ − 4-rewrite places a replicator between the two operator clauses of the

∆− 5rewrite, the two reducts have a common reduct using a ∆− 6-rewrite

and possibly several ∆−5-rewrites. In the other case, the required rewrites

to form a common reduct are simply two ∆ − 5 rewrites.

∆ − 5 and ∆ − 5 In this case, the only interesting interaction between the two

instances of the rewrite can be resolved simply using more instances of ∆−5.

Normalisation

Having established the confluence of this rewrite, we need to show that it is nor-

malising, which is to say that every one-step rewrite sequence is finite. Although

this is not as hard as it is for the higher-order case, because of the presence of

the expansionary rewrites F − η and ∆ − 6 it is not trivial. However, it can be

shown by defining a measure on terms which we will now present.

First consider the action of our rewrites on an arbitrary replicator in a relation.

In each of the rewrites ∆−1, 2, 3 and ∆−6 the tendency is for a replicator to move

further away from the result variable of a relation, or to disappear altogether. The

problem is that in the case of the ∆−6-rewrite, this is accomplished at the cost of
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increasing the number of clauses, which in the previous chapter was the measure

which ensured termination. This is the key to the measure we will define, but

there are complexities due to the ∆ − 4 and ∆ − 5 rewrites.

In the case of the F − η-rewrite, we notice that the rewrite cannot occur

unless the variable is unresolved. Since all the variables introduced by a F − η-

rewrite are resolved, we can make such rewrites reduce the measure by weighting

each unresolved variable more heavily than the subnet which replaces it after the

rewrite.

First we introduce some theory. We will be using polynomials of a single

variable, which we will write p(x), q(x) . . . for the variable x; polynomials will only

be used in this section, so this slight overloading of notation will be transparent.

A general polynomial in a single variable has the form
∑

i=−r...s cixi where the

ci are (possibly negative) integer coefficients. We can then define addition and

subtraction (and the product of two polynomials) in the obvious way We can also

define an ordering on polynomials of a single variable by saying p(x) > q(x) iff

the coefficient of the largest power of x in p(x) − q(x) is strictly positive.

We now need to make some definitions formalising our earlier discussion of

the measure. Recall that a path from c to c′ in a relation D is a pair of sequences

(c1 . . . cr, x1 . . . xr−1) such that c1 = c, cr = c′ and i connects ci and ci+1 for all

i = 1 . . . r − 1. Now say that a total path in a relation D is a path which cannot

be extended by prepending or appending a pair (c, x) to it. Intuitively, the total

paths go from free inputs or inputs bound by an operator clause to a clause having

dependent the result variable of either the relation D, or some relation D′ in an

operator clause contained in D. Write the set of all total paths in a relation D

as TPath(D), and let φ . . . range over paths for this chapter only. Clearly there

exists a total path containing any clause contained in D.

Definition 9.3.2 (Complexity I)

Given a path φ, define the first complexity of it, written Com1(φ) inductively:

Com1(c, ε) = 1

Com1(~cc′, ~xx′) =







2Com1(~c, ~x) if c′ is a replicator clause and x′ is resolved

2Com1(~c, ~x) + 4 if c′ is a replicator clause and x′ is unresolved

Com1(~c, ~x) + 1 if c′ is not a replicator clause

and x′ is resolved

Com1(~c, ~x) + 4 if c′ is not a replicator clause

and x′ is unresolved

Define the first complexity polynomial as follows:
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Definition 9.3.3 (First Complexity Polynomial)

The first complexity polynomial for a relation D is given:

p1C(D)(x) =
∑

φ∈TPath(D)

xCom1(φ)

Now the intuition is that all our rewrites will at worst replace one path of a

certain complexity with many of lower complexity, but because in the polynomial

ordering one xc of higher coefficient outweighs many xc′

of lower coefficient, the

complexity polynomial will still strictly decrease. We can now show that the

one-step ∆ − 1, 2, 3, 6-rewrites and one-step F − βη-rewrites decrease the first

complexity polynomial of a relation.

Lemma 9.3.4

If D → D′ by a one-step ∆ − 1, 2, 3, 6-rewrite or a one-step F − βη-rewrite, then

p1C(D)(x) > p1C(D′)(x).

Proof We will refer to the form of the rewrites given on page 217. Consider the

rewrites separately:

∆ − 1 In this case, any total path in D′ yields a total path in D simply by

replacing any occurrence of the new replicator clause added by the rewrite

with the replicator clause in D which has as output the required variables.

Further, the first complexity of the generated path in D is the same as that

of the original path in D′, since we have just replaced a replicator clause

with another one. We can see easily that any two distinct total paths in D′

give rise to distinct total paths in D via this procedure. Moreover, there

exists a total path in D which is not a total path in D′, namely that which

passes through the replicator clause deleted by the rewrite. Call this total

path φ. Now we know that the first complexity polynomial of D must have

coefficients greater than or equal to those of the first complexity polynomial

of D′. But the coefficient of xCom1(φ) must be strictly greater in the first

complexity polynomial of D, so that this polynomial must be strictly greater

than the first complexity polynomial of D′.

∆2 In this case we can see that any total path of D′ arises from a total path of D

either identically, or by replacing the subsequence of the variable sequence

yx with y and removing the replicator clause in the clause sequence. This

procedure obviously yields total paths of less than or equal first complexity

in general, and in the case where the replicator clause is removed yields

total paths of strictly lesser first complexity. Note that there exists at least
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one total path which has strictly lesser first complexity by this argument

since at least one total path passes through the replicator clause. This

correspondence gives a one-to-one mapping of total paths and hence since

it is strictly reducing on the first complexity of at least one total path, the

first complexity polynomial of the reduct D′ must be strictly less than that

of D.

∆ − 3 This argument proceeds similarly to the previous one simply by construct-

ing the obvious correspondence between total paths, which turns out to be

strictly reducing of first complexity on total paths passing through the rep-

licator clause which is deleted.

∆ − 6 This is the key case. It is easy to see that given any total path in D

which is not a path of D′, we can give a total path of D′ which has strictly

lesser first complexity. Further, although there are many such candidate

total paths, these all have strictly lesser first complexity, and the only total

paths of D′ which are not paths of D are these paths of lesser first com-

plexity. Consider the total path φ that we know must exist in D passing

through the replicator, and which is therefore not a path of D′. The first

complexity polynomial of D has strictly greater xCom1(φ) coefficient than the

first complexity polynomial of D′, and although by our discussion it may

have strictly lesser coefficients of smaller powers of x, this is still enough to

make the first complexity polynomial of D strictly greater than that of D′.

F − β In this case, there is a straightforward correspondence between total paths

of D and D′, which strictly reduces the first complexity of any path that

passes through either of the clauses which are deleted. Hence by standard

reasoning the first complexity polynomial of D is strictly greater than that

of D′.

F − η This is a more complicated case since the obvious correspondence between

paths increases the length of paths. However, it can be shown that because

the paths contain one fewer unresolved variable, the first complexity of paths

is strictly reduced by going from D to D′ and hence the first complexity

polynomial of D is strictly greater than that of D′. �

This forms the major part of our proof. We can proceed to consider the only

two remaining rewrites, the ∆ − 4 and ∆ − 5-rewrites. First we note that the

first-complexity polynomial is preserved by these one-step rewrites, by virtue of

the lemma:
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Lemma 9.3.5

If D → D′ by a one-step ∆ − 4 or ∆ − 5-rewrite, there is a first-complexity-

preserving correspondence between the total paths of D and D′.

Proof The first-complexity-preserving correspondence is the identity. �

Let Op(D) be the set of operator clauses contained in D, and define the nesting

level of a clause as follows:

Definition 9.3.6 (Nesting Level)

Given a clause c ∈ D, define the nesting level of c in D, written Nest(D)(c),

inductively as follows:

Nest(D)(c) = 0 if c ∈ D

Nest(D)(c) = Nest(D′)(c) + 1

if (y = (. . . )O(. . . , , (~x′
1; ~x

′
2)D(x′′), . . . ; . . . )) ∈ D

and c is contained in D′

Now we can define the nesting polynomial.

Definition 9.3.7 (Nesting Polynomial)

Define the nesting polynomial, of a relation D, written pN (D)(x), as follows:

pN (D)(x) =
∑

c∈Op(D)

x−Nest(D)(c)

Clearly, we can now prove:

Lemma 9.3.8

If D → D′ by a one-step ∆ − 5-rewrite, then pN (D)(x) > pN (D′)(x).

Proof This is quite easy to see since the rewrite reduces by one the coefficient

of x−Nest(D)(c) where c is the intuitionistic operator clause which is moved inside

the other operator clause in the rewrite, and no other operator clause of lesser

nesting (which means higher power of x in the nesting polynomial) is affected.�

Also, we can quite easily see that since the one-step ∆ − 4-rewrite does not

affect the nesting level of any operator clause, it must preserve the nesting poly-

nomial. Hence, we have almost completed the details of normalisation. Finally,

let Rep(D) be the set of replicator clauses occurring in the relation D. We have;

Lemma 9.3.9

If D → D′ by a one-step ∆ − 4 rewrite, then

∑

c∈Rep(D)

Nest(D)(c) >
∑

c∈Rep(D′)

Nest(D′)(c)
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Proof Again, this is easily seen, since the rewrite precisely decreases the nesting

level of the replicator clause involved by one, and leaves all other replicators as

they are. �

We can now put all these pieces together to prove:

Lemma 9.3.10 (Normalisation)

The transitive closure →∆F of the union of the rewrites →F and →∆ over the

equality =vm is normalising.

Proof Consider the set of triples (p(x), q(x), r) consisting of two polynomials

and an integer, ordered by the lexicographic ordering inherited from the polyno-

mial ordering and the integer ordering. We claim that the measure

(p1C(D)(x), pN (D)(x),
∑

c∈Rep(D)

Nest(D)(c))

forces the →∆−F -rewrite to terminate.

In order to show this we need to show that the measure is bounded below in

the ordering for all relations, and that every one-step rewrite strictly reduces the

measure according to the given ordering. We can see firstly that the measure is

bounded below by the element (0, 0, 0) of the measure set, where the polynomial

0 is that polynomial having all zero coefficients. This is the case since clearly the

two polynomials must have nonnegative coefficients which are just the sizes of sets

in each case (the set of total paths of complexity n and the set of operator clauses

of nesting level n), and the nesting level of any clause must be nonnegative.

Secondly, to show that the measure is reduced by each one-step rewrite note

that the ∆ − 1, 2, 3 and F − βη-rewrites strictly reduce the first measure by

lemma 9.3.4, that the ∆ − 5 one-step rewrite preserves the first measure and re-

duces the second by lemma 9.3.8, hence reducing the measure in the lexicographic

order, and finally that the ∆ − 4 one-step rewrite preserves the first-complexity

polynomial and the nesting polynomial, and reduces the final component of the

triple by lemma 9.3.9. Hence there can only be a finite number of rewrites in any

sequence of one-step ∆ − 1, 2, 3, 4, 5, 6, −F − βη-rewrites. �

Hence we have that:

Theorem 8 (Decidability)

The equality =vm∆F is decidable.

Proof This is easy to see since any rewrite sequence on any two relations will

terminate, and by confluence we must have that if the reducts are equal, then

they are equal by =vm, which is also decidable. �
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Relations and Terms

Now we must show that the extended rewrite we have defined over terms is

soundly mapped to and from term equality. We start by considering the transla-

tion ρ.

First we need a lemma on intuitionistic substitution.

Lemma 9.3.11 (Intuitionistic Substitution)

Given an intuitionistic term Γ; ⊢ v :Q of Lin(O, A), for any term Γ, x :Q; ∆ ⊢

w:A, we have

ρΓ;∆(let x be v in w) = ρΓ;∆(w{v/x})

The proof is by induction on the derivation of the term w. However, we note

that if the intuitionistic term w is simply some intuitionistic variable y, then

ρΓ;∆(let x be v in w) is

ρ
~z1:~R,y:Q,x:Q;∆(w) ∪ {({~z1, ~z2} = ~z), ({} =y′

~z2), (y
′ = F (y)), (F (x) = y′)}

and this rewrites to

ρ~z1:~R,y:Q,x:Q;∆(w){~z, y/~z1, x}

as required.

Lemma 9.3.12 (Soundness)

If Γ; ∆ ⊢ v = w:A in Lin(O, ∅), then ρΓ;∆(v) and ρΓ;∆(w) have a common reduct

in the transitive closure of →∆F .

This is again easily shown by calculation.

Now considering the translation σ, we have

Lemma 9.3.13

Given Γ; ∆-relations D and D′ of type A, if D rewrites to D′ by a one-step F - or

∆-rewrite, then

Γ; ∆ ⊢ σΓ;∆(D) = σΓ;∆(D′):A

in Lin(O, ∅).

This is proved by considering suitable rewrite sequences and the term parts

of the resulting intermediates.

Given these results, we have the following corollary of theorem 8:

Corollary 8.1 (Decidability)

Given two Γ; ∆-terms v and w of type A, we can decide whether or not they are

provably equal in the type-theory Lin(O, ∅).

This follows easily since we can see that the two terms are equal iff their

images under ρ are equal, and this latter statement is decidable.
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9.4 The Higher-Order Case

We now need to consider decidability in the higher-order case. We will consider

the system of relations for the higher-order type-theory constructed in chapter 7.

We will then give a confluent and normalising rewrite system for it built on the

one we have just presented for a general linear type-theory.

Intuitively, we will take the expected β-reductions and η-expansions on un-

resolved variables, where we will extend the definition of unresolved variables

appropriately. Then we will be able to extend the definition of complexity of a

path, and define a revised version of the complexity polynomial which will still

enjoy the same properties.

Firstly, however, we need to consider the system of relations for higher-order

type-theories.

Higher-Order Relations

The system of higher-order relations for LinH(H) is the same as the system of

relations for the generalised linear type-theory which defines LinH(H), with the

one exception that we change the syntax for the output-natural sets of operators

⊗L
A,B and IL.

First consider the system Rel(OH). We will use the following abbreviations:

write (x = ∗) for (x = (; )IR(; ))

write (z = x ⊗ y) for (x = (; ) ⊗R (; (; )(x)(; )(y)))

write (z = λx.y) for (z = (; )λ(; (; x)(y)))

write (z = xy) for (z = (; xy)ap(; ))

write (z =!(~x)D(y)) for (z = (; )!((~x; )D(y); ))

write (y =

!

x) for (y = (; x)

!

(; ))

Now we need to define the relational system RelH(H), in which the IL and

⊗L sets of operators are captured using different syntax. Essentially, this is given

by replacing every occurrence of a tensor elimination operator (z′ = (; x′) ⊗L

(; (x1x2)(z))) with a clause (x1 ⊗ x2 =z x′) and replacing z′ by z in the rest of

the relation, and similarly for the IL operator. The intuition is that the output-

naturality of the tensor-elimination and unit-elimination operators corresponds

to the fact that the vestigial in the new clauses should be movable.

Definition 9.4.1 (Clauses of RelH(H))

Given a higher-order signature H = (MI , ML, OI, OL), the clauses of RelH(H) are
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precisely those of Rel(MH
I , MH

L, OI , OL) with the addition of:

(x = ∗) (z = x ⊗ y) (z = λx.y) (z =!(~x)D(y))
(∗ =z x) (x ⊗ y =z′

z) (z = xy) (y =

!

x)

Now,

• In the clause (x = ∗), x is an output occurrence.

• In the clause (z = x ⊗ y), z is an output occurrence and x and y are both

input occurrences.

• In the clause (z = λx.y), z is an output occurrence, x is a binding occurrence

and y is an input occurrence.

• In the clause (z =!(~x)D(y)), z is an output occurrence.

• In the clause (∗ =z x), z is a vestigial occurrence and x is an input occur-

rence.

• In the clause (x ⊗ y =z′

z), x and y are output occurrences, z′ is a vestigial

occurrence and z is an input occurrence.

• In the clause (z = xy), z is an output occurrence and x and y are input

occurrences.

• In the clause (y =

!

x) y is an output occurrence and x is an input occurrence.

Pre-relations of RelH(H) are sets of clauses of RelH(H), and we now define both

connectedness and paths exactly as for Rel(O) given the extended definition of

input, output, vestigial and binding occurrences.

Definition 9.4.2 (Relations of RelH(H))

A relation of RelH(H) is a pre-relation of RelH(H) which satisfies the familiar

conditions of definition 8.2.10 for RelH(H) paths.

We can take pre-relations of Rel(OH) to those of RelH(H) by mapping each

non-higher-order clause to itself, and mapping each higher-order clause to its

familiar abbreviation except for the clause (z′ = (; x)IL(; (; )(z)), which we map

to (∗ =z x) whilst substituting z for the input occurrence of z′, and the clause

(z′ = (; x′)⊗L (; (; x1x2)(z))), which we map to (x1 ⊗x2 =z x′), again substituting

z for the input occurrence of z′.

Conversely, we can take pre-relations of RelH(H) to those of Rel(OH) by map-

ping each non-higher-order clause to itself, and mapping each higher-order clause
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to its familiar abbreviation except for the clause (∗ =z x), which we map to (z′ =

(; x)IL(; (; )(z))) where z′ is fresh, and we substitute it for the input occurrence of

z, and the clause (x1 ⊗ x2 =z x′), which we map to (z′ = (; x′) ⊗L (; (; x1x2)(z)))

where z′ is fresh, and we substitute it for the input occurrence of z. The result

we now want is as follows:

Lemma 9.4.3

The relations of Rel(OH) are isomorphic to the relations of RelH(H).

This is easily seen by considering the mappings we have already given, and

observing that they map paths to paths. Further, we have more importantly that:

Lemma 9.4.4

Under the isomorphism of relations, the vestigial moves and →F∆-rewrites of

RelH(H) are isomorphic to the vestigial moves and →F∆ augmented with the

equalities in ρ(ONat(⊗L, OnH)) and ρ(ONat(IL, OH)), where these equalities cor-

respond to the vestigial moves of the clauses for ⊗L and IL.

We assume firstly that the isomorphism of relations preserves rewrites in both

directions, and also preserves the vestigial equalities of operators other than the

tensor and unit eliminations. This then leaves us with two proof obligations.

The first of these is to show that two relations which are equal via the image

under ρ of the output-naturality equalities for the tensor and unit-elimination

map to relations which are vestigially equal using the vestigial equalities for those

connectives. This is most easily done by demonstrating that the image under ρ

of the output-naturality equalities can be derived from a larger set of simpler

equalities along the lines of those sketched on page 40, which correspond directly

to the individual vestigial moves.

The second proof obligation is to show that relations which are vestigially

equal using the vestigial equality for the tensor and the unit map to relations

which are equal via the image under ρ of the output-naturality equalities. This

is done by considering the elementary vestigial moves on which the equality was

built. These are all easily shown to correspond to elementary output-naturality

equalities.

Rewriting

We will define a rewrite over the relations of RelH(H) which extends the rewrite

previously given over Rel(O). Firstly, we need to extend the definition of resolved

wires in order to restrict the η-rewrite.
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Definition 9.4.5 (Resolved Variables)

Extend the definition of resolved variables in the higher-order case so that, given

a relation D:

• a variable of a type Q ∈ MI is resolved if it is intuitionistic and it is not of

the form !A, or if it is linear and it is the input of a clause (F (y) = x) or

the output of a clause (x = F (y)),

• a variable of type I is resolved if if it is the input of a (∗ =z x) clause or

the output of a (x = ∗) clause,

• a variable of type A ⊗ B is resolved if is the input of a clause (x ⊗ y = x)

or the output of a clause (x = y ⊗ z),

• a variable of type A ⊸ B is resolved if is the input of a clause (z = xy) or

the output of a clause (x = λy.z),

• and finally, an intuitionistic variable of type !A is resolved if it is the input

of a clause (y = F (x)) where y is the input of a clause (z =

!

y), or if it is

the output of a clause (x =!(~y)D′(z)).

We now say that the order of a type is given by the number of connectives

used in its construction, where I, ⊗, ⊸ and ! are constructors for the purpose of

this definition.

We give the rewrite →βη on the relational system RelH(H).

Definition 9.4.6 (The Rewrite →βη)

Define the one-step rewrite →βη to be given by the following cases:

D ∪ {(∗ =y x), (x = ∗)} →β D

D ∪ {(x ⊗ y = z), (z = x′ ⊗ y′)} →β D{x′, y′/x, y}

D ∪ {(z = λx.y), (y′ = zx′)} →β D{x′, y/x, y′}

D ∪ {(z =!(~x)D′(y)), (x′ = F (z)), (y′ =

!

x′)} →β (D ∪ D′){y/y′}

D{x/x′} →η D ∪ {(x′ = ∗), (∗ =x′

x)}

D{x/x′} →η D ∪ {(x′ = y ⊗ z), (y ⊗ z = x)}

D{x/x′} →η D ∪ {(x′ = λy.z), (z = xy)}

D{x/x′} →η D ∪ {(x′ =!(x){(z =

!

y), (y = F (x))}(z))}

Here, η-rewrites are only allowed on unresolved variables, which must also in the

case of the I − η rewrite be variables of type I , in the case of the ⊗ − η-rewrite
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must be variables of type A ⊗ B for some A and B, in the case of the η− ⊸-

rewrite must be variables of type A ⊸ B for some A and B, and finally in the

case of the ! − η-rewrite must be intuitionistic variables of type !A for some A.

Confluence

Confluence is shown for this system of rewrites in exactly the way we showed if for

the last, which is by considering all possible interacting pairs of local rewrites. We

are saved some work in this by noting that the only rewrites which can interact

in the βη-rewrite are the β-rewrite and the η-rewrite corresponding to the same

type constructor.

Lemma 9.4.7 (Confluence of →F−∆−βη)

The transitive closure of the one-step rewrite on RelH(H) defined by the various

cases of →F , →∆ and →βη is confluent.

Proof In order to do this it suffices to show that any two one-step rewrites of

these kinds have reducts which in turn have a common reduct in the transitive

closure. We have already seen that this is true for any two one-step rewrites

of type →∆−F in the case of Rel(O), and the proof in that case goes through

identically in this case. Further, as we observed above, the only way any two

one-step →βη-rewrites might interact is if they were the β and the η-rewrite

corresponding to the same constructor. In this case, any interaction is seen to be

impossible by inspection. Equally, it is obvious that (excepting the case of the !-

constructor) the only interaction between a βη-rewrite and a F∆-rewrite is in the

case where the βη-rewrite in an intuitionistic operator clause and is duplicated or

discarded by an instance of ∆−6. In this case we can see that the confluence holds

using a number of the same βη-rewrites. Finally, considering the !-constructor,

we must check that the non-standard way in which the ! − βη-rewrites include

instances of the clause (x = F (y)) does not interfere with confluence, but it can

be see that in the critical cases, those in which we consider the F − βη-rewrites

and the !−βη-rewrites, there is no failure of confluence. Hence we have the result.

�

Normalisation

The intuition behind the proof of normalisation for this case is exactly the same

as that in the previous case, except that in order to account for the fact that the

η-rewrites are expansionary, we need to weight unresolved variables according to
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the order of their type. Then the intention is that when an η-rewrite occurs, an

unresolved variable of a higher type order is replaced by some possibly unresolved

variables of lower type order and some clauses in the relation. Hence the overall

effect is to reduce the complexity of each path through the η-redex and hence the

complexity polynomial.

There is also a factor which we have not mentioned, which is that the result

of a β-rewrite can increase this measure of complexity for many paths since any

total path whose first clause has as input the binder of the λ-clause will not be

total after the rewrite since the variable is no longer bound. In order to take care

of this problem, we need to weight every application clause with the maximal

complexity of the highest paths above its argument input.

First we define a measure of the order of a type.

Definition 9.4.8 (Type Order)

Define the order of a type A inductively, written o(A) as follows:

o(l) = 0

o(I) = 1

o(A ⊗ B) = o(A ⊸ B) = o(A) + o(B)

o(!A) = 1 + o(A)

Definition 9.4.9 (Variable Order)

Given a variable x and a relation D in which it occurs, define the variable order

of x in D, which we will write oD(x), as:

oD(x) =







2o(A) + 1 if the variable x is linear of type Q in D

2o(A) otherwise

We now define the second complexity of a path in a relation, which is analogous

to the first complexity except for the incorporation of the order of the types of

wires. This amendment means that we need to be a little careful to avoid a circular

definition. Call a path in a relation which cannot be extended by prepending a

(c, x) pair to it an initial path.

Definition 9.4.10 (Complexity II)

Given a path φ in a relation D, define the second complexity of it, written Com2(φ)
inductively over the sum of the lengths of the initial paths terminating at the last
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clause of the path φ:

Com2(c, ε) = 1

Com2(~cc′, ~xx′) =







2Com2(~c, ~x) if c′ is a replicator clause and x′ is resolved

2Com2(~c, ~x) + 4oD(x′) if c′ is a replicator clause and x′ is unresolved

Com2(~c, ~x) + M + 1 if c′ is an application clause and x′ is resolved

Com2(~c, ~x) + M + 4oD(x′) if c′ is an application clause and x′ is unresolved

Com2(~c, ~x) + 1 if c′ is not a replicator or application clause

and x′ is resolved

Com2(~c, ~x) + 4oD(x′) if c′ is not a replicator or application clause

and x′ is unresolved

where M is a number greater than the maximal complexity of an initial path

terminating at a clause having immediately above the application clause.

This is a definition because at any point, the sum of lengths of initial paths

terminating immediately above the application clause are smaller than the sum

of lengths of initial paths terminating at the application clause, and so we can

always determine M .

Definition 9.4.11 (Second Complexity Polynomial)

The second complexity polynomial for a relation D is given:

p2C(D)(x) =
∑

φ∈TPath(D)

xCom2(φ)

We now prove the crucial lemma, which shows that the second complexity

polynomial is reduced by the relevant rewrites.

Lemma 9.4.12

If D → D′ by a one-step ∆−1, 2, 3, 6-rewrite, a one-step βη-rewrite or a one-step

F − βη-rewrite then

p2C(D)(x) > p2C(D′)(x)

Proof As before, we prove this by considering all the named reductions in turn.

∆ − 1, 2, 3 These cases are easily seen to reduce the complexity of at least one

path in exactly the same way as in the previous proof.

∆ − 6 Again, this case goes through exactly as previously.

F − β As before, this rewrite reduces the complexity of any path containing it.
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F − η Note that this rewrite can only occur on a variable of intuitionistic type Q.

Further, there is at most one unresolved variable in the reduct. Assume that

a general path φ contains the variable. Its complexity will be a function of

the expression 4(o(Q) + 1), and that of the path with the variable replaced

by the reduct will be the same function of the expression 4(o(Q)) + 2 or 2

depending on whether the type Q has the form !A or not. In either of these

cases the reduct path has strictly smaller complexity than the original.

I − η,⊗ − η, ⊸ −η and ! − η In each of these cases, any path containing the

variable on which the η-rewrite takes place corresponds to several paths in

the relation given by the rewrite, each of which has lesser complexity than

the original by virtue of the fact that the only unresolved variables which

may be present after the rewrite have lower variable order.

I − β, ⊗ − β and ! − β In each of these rewrites, a path is replaced straightfor-

wardly by another path of lesser complexity.

⊸ −β This case is the most subtle, and is the reason for the addition of the con-

stant M to the definition of complexity. There are two possible restrictions

of total paths to the redex. Consider the redex

{(z = xy), (x = λy′.z′)}

If we abbreviate the first of these clauses as c1 and the second as c2, the

two restrictions of paths are (c2c1, z′xz) and (c1, yz). Now note that any

total path having the second of these restrictions has complexity which is a

function of the expression (M + 1) where M is a number greater than the

maximal complexity of an initial path terminating at a clause immediately

above c1. Hence, when such a path is mapped to a total path in the relation

given by the rewrite in which y′ and y are identified, the complexity of such

a total path is still less than that of the original path, as it is the same

function of some number less than M .

Secondly, any total path restricting to (c2c1, z′xz) has complexity which is a

function of some number less than M . Any total path in the relation given

by the rewrite which is generated from the first total path must also be an

instance of a total path generated from a total path having the other restric-

tion. Since we know that the complexities of such total paths are strictly less

than those of the corresponding total paths of the kind mentioned above,

we know that we have removed one path at the cost of adding others of

lesser complexity, and so the second complexity polynomial is reduced. �
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As before, it is easy to see that both the ∆ − 4 and ∆ − 5-rewrites preserve

the second complexity polynomial. Further, we again have that the nesting poly-

nomial is reduced by the ∆− 5-rewrite, that it is preserved by the ∆− 4-rewrite,

and that
∑

c∈Rep(D) Nest(D)(c) is reduced by the ∆ − 4 rewrite.

Hence we again have the required lemma:

Lemma 9.4.13 (Normalisation)

The transitive closure →∆Fβη of the union of the rewrites →∆, →Fβη and →βη

over the equality =vm is normalising.

Proof As before, consider the set of triples (p(x), q(x), r) consisting of two poly-

nomials and an integer, ordered by the lexicographic ordering inherited from the

polynomial ordering and the integer ordering. The argument proceeds exactly as

before using the measure

(p2C(D)(x), pN (D)(x),
∑

c∈Rep(D)

Nest(D)(c))

and the lower bound (0, 0, 0). �

This then gives us the required result.

Theorem 9 (Strong Normalisation)

If two relations D and E are equal in the transitive reflexive closure of the rewrite

relation →∆Fβη and the equality =vm, then any maximal sequence of one-step

rewrites of either D or E will terminate after a finite number of steps in a common

normal form up to =vm.

This easily follows from confluence and termination of the rewrite.

Relations and Terms

Having given the rewrite on relations of RelH(H), we need to establish that it

corresponds to the equality of LinH(H, ∅), up to vestigial equality.

Lemma 9.4.14

Given two Γ; ∆-terms v and w of type A in LinH(H, ∅), Γ; ∆ ⊢ v = w : A iff ρΓ;∆(v)

and ρΓ;∆(w) have the same normal forms up to vestigial equality.

We already know by the isomorphism of relational systems that the rela-

tions RelH(H) under the =vm,∆,Fβη-equality are isomorphic to the typing system

Lin(H, Onat(H, ⊗L, IL)). Therefore, we only need to show firstly that the higher-

order βη-equalities are soundly mapped to the closure of →βη on RelH(H), and

that this rewrite is soundly mapped to higher-order βη-equality in the type theory.

These proofs follow the standard pattern.
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9.5 Corollaries

Firstly we present some general corollaries of our strong normalisation result.

Corollary 9.1 (Decidability)

Given two Γ; ∆-terms v and w of type A in the type-theory LinH(H, ∅), we can

decide whether or not they are provably equal.

Proof As before, simply reduce the relations corresponding to both terms to

their normal forms and test whether these are equal by =vm decidably. �

Corollary 9.2 (Conservativity (Syntactic))

For Γ; ∆-terms v and w of Lin(O, ∅), if Γ; ∆ ⊢ v = w : A in LinH(O, ∅) then

Γ; ∆ ⊢ v = w:A in Lin(O, ∅).

Proof Just as the terms v and w of Lin(O) are identically terms of LinH(O),

the relations D = ρΓ;∆(v) and D′ = ρΓ;∆(w) are identically relations in both the

system Rel(O) and the system RelH(O). Moreover, it is easy to see by considering

the form of the rules that if a higher-order relation contains no variables of higher-

order types (and hence no higher-order operator clauses) no higher-order rewrite

can apply to it. Hence, we have that no higher-order rewrite can be used in

rewriting the two relations D and D′ to their normal forms, and so the rewrites

that are used can also be used on the relations in the system Rel(O). Hence the

normal forms of the relations are the same in both systems, and therefore they

are equal up to =vm in the higher-order system iff they are in the general system.

This shows that if two relations are equal in the higher-order system they must

also be equal in the general system. �

We can now use our result to prove a fundamental result about the equality

of DILL(C). This result was first proved directly using similar methods by the

author early in 1996, and subsequently proved independently by Ghani [Gha96]

using a term-based method.

Corollary 9.3 (Decidability of DILL(C))

DILL(C) is decidable.

This follows since DILL(C) is isomorphic by lemma 7.6.9 to the higher-order

type-theory LinH(HC , ∅) which is decidable by corollary 9.1.

Corollary 9.4 (Decidability of ILL(C))

ILL(C) is decidable.
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This follows from the previous result by theorem 1.

In order to give our next corollary, we need a lemma.

Lemma 9.5.1

There is a conservative map of higher-order type-theories:

LinH(OA, AA) → LinH(OA, ∅)

such that two terms in the source not involving the non-strict tensor are equal iff

their images are equal in the target.

Proof We prove this by giving translations in both directions:

ι6 :LinH(OA, AA) → LinH(OA, ∅)

ι7 :LinH(OA, ∅) → LinH(OA, AA)

such that Γ; ∆ ⊢ (ι7(ι6(v)) = v :A is a provable equality judgement for any Γ; ∆-

term v of type A in LinH(OA, AA) which does not involve the non-strict tensor.

We now define the maps. Firstly, ι6 is the identity except on the tensor

constructs, where it maps the strict tensor types and terms to the corresponding

left-bracketed forms of the non-strict tensor.

Conversely, ι7 is the identity except on the (non-strict) tensor constructs,

where it maps these onto the strict tensor constructs.

It is easily seen that both these maps are sound, and that ι6 ◦ ι7 is the identity

up to provable equality on terms not containing non-strict tensors of LinH(OA, AA).

The result now follows since firstly if two such terms are equal then their images

under ι6 are equal by soundness, and if their images under ι6 are equal, it follows

that their images under ι6 ◦ ι7 are equal, from which we can deduce that they are

equal. �

We can now prove that the equational theories of all the action calculi we

have discussed are decidable. Similar results were previously obtained for the

cases AC(K) and AC⇒(K) by Milner [Mil93b], using a normal form syntax.

Corollary 9.5 (Decidability of AC(K))

The theory of AC(K) is decidable, and so are those of AC�(K), AC⇒(K) and

AC�,((K).

First note that we have conservative maps from LinA(K), LinA�(K), LinA⇒

(K)

and LinA�,(

(K) to LinH(OA, AA), so that in order to decide an equality of any

one of these type theories it suffices to decide the image of the equality in

LinH(OA, AA), which can be done. But we can see by the form of the map ι5
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that no term in the image of it involves the non-strict tensors. Hence any two

such terms are equal by lemma 9.5 iff their images are equal in LinH(OA, ∅), but

this is decidable by corollary 9.1. Hence the result follows easily by the isomorph-

isms between the action calculi AC(K), AC�(K), AC⇒(K) and AC�,((K) and their

respective type-theories.

It is interesting to note that it is straightforward to give relations for LinA(K),

and to prove that they have normal forms under rewriting, up to vestigial equality.

These are then normal forms for the action calculus by virtue of lemma 6.3.8.

However, we also have directly normal forms for the intuitionistic action cal-

culus, the molecular forms, due to Milner [Mil93b]. Hence it must be the case

that these two normal forms are ismorphic. We give a brief intuitive outline of

the translation from relations to molecular forms.

Relations map to molecular forms in which each operator clause goes to a

molecule, and the input variables of each clause become the binding inputs of the

molecule, and the outputs become the binding outputs of the molecule. Clauses

other than the operator clauses, which is to say tensor clauses, copy and discard

clauses and F -clauses are mapped to substitutions, as in the intuitionistic action

calculus every arity is intuitionistic prime.

In the reverse direction each molecular form is mapped to a set by taking each

molecule to an operator clause in the set, with inputs and outputs connected to

F -clauses and tensor clauses as appropriate in order to give the correct arity.
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Chapter 10

Conclusions

We now conclude by summarising our results, discussing the implications of the

work presented in this thesis, and then considering directions for further work,

in progress and longer-term. We argue that our generalised linear type-theory is

a useful general tool for the study of systems of typed computation. We showed

that it is expressive enough to account for a wide range of examples, and we

proved a substantial number of general results, applying to each instance of the

type-theory.

10.1 Results

Although we started this thesis by introducing DILL as an alternative formulation

of linear logic, in retrospect the main thread of the thesis is more clearly seen

based on the generalised linear type theory we introduced, and its semantics and

properties. In this view, the starting point is the following triangle:

Logic Lin(O)

Type-Theory Lin(O, A) ✛ ✲

✛

✲

Lin(O, A)-Models

✛

✲

In chapters 4 and 5 we gave the vertices of this diagram, and made precise

their connections. Further, we showed in chapters 8 and 9 that the equality of

the type-theory Lin(O, ∅) is decidable. This equality is analogous to the equi-

valence of proofs naturally generated by some simple permutations, and perhaps
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more significantly, it is analogous to the equality of arrows in the initial Lin(O)-

interpretation. The coherence problem for Lin(O)-interpretations is the problem

of determining which diagrams of arrows built up from those present in every

Lin(O)-interpretation commute in all Lin(O)-interpretations. We solved this prob-

lem using our term Lin(O)-interpretation by showing that any diagram of such

arrows commutes in every Lin(O)-interpretation precisely when it commutes in

the term Lin(O)-interpretation, which by definition is when the appropriate term

equality is provable. Now this is decidable, and so we have an effective procedure

for determining when a diagram of arrows commutes in all Lin(O)-interpretations.

We also considered an important sub-case of the triangle stated above in

chapter 7, as follows:

Logic LinH(H)

Type-Theory LinH(H, A) ✛ ✲
✛

✲

LinH(H, A)-models

✛

✲

This is the higher-order subcase, in which the logic is equipped with an expo-

nential and an arrow type, the type-theory incorporates a linear λ-calculus and the

models also have exponential and closed structure. There is then a very natural

embedding of any linear type-theory into a higher-order linear type-theory built

over it, and we showed using a semantic construction that this is a conservative

extension.

We then extended the techniques used to decide the equality of Lin(O, ∅) in

chapter 9 to decide the equality of LinH(H, ∅). This corresponds to deciding the

coherence problem for the higher-order LinH(H)-interpretations, which is signific-

ant, since for example it includes coherence for models of multiplicative exponen-

tial linear logic. This same extension also enables us to show syntactically that

LinH(O, ∅) conservatively extends Lin(O, ∅).

In addition to presenting this well-developed theory of linear operators in the

case of the logic, the type theory and the models, we considered some examples.

Firstly, we showed that DILL, its type-theory and models arise as instances of

higher-order generalised linear logics, type-theories and models. We then have

as an easy corollary of our decidability results that the equality of DILL(C) is

decidable.
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Secondly, and more surprisingly, we showed that Milner’s action calculi and

their models correspond to a particular range of instances of the generalised linear

type-theories and models, as do their higher-order extensions. Again, our decid-

ability results enabled us to show that all of these action calculi are decidable, and

further we showed that the embedding of an action calculus into its higher-order

extension is conservative, via either our semantic or our syntactic proofs.

10.2 Extending Lin(O, A)

Given the results we already proved in this thesis, we go on to consider some

desirable extensions to the framework, with their advantages and disadvantages.

The first two of these consist of extensions to the syntax and semantics of the

framework, to incorporate important computational ideas which we have so far

overlooked. The last three follow the program of chapter 7, where we pick out

a particular set of types, operators and equalities as a canonical expression of

a certain computational concept. In chapter 7, the computational concept is

higher-order behaviour, and in this section we will consider choice, recursion and

the negation of linear logic.

Rewriting

In contrast to our general linear type theories, Milner’s action calculi [Mil96] are

enriched with a notion of dynamics, which consists of a rewrite over the equal-

ity satisfying certain simple conditions. In the representation of process calculi,

the dynamics is crucial, since as the name suggests, it captures the operational

behaviour of the process calculi, whereas the equality represents a structural

congruence on processes. It therefore seems an obvious idea to add a rewriting

judgement to our general theory, possibly of the form Γ; ∆ ⊢ v → w :A. Such a

rewrite would be closed under the equality, and under certain contexts, although

in action calculi dynamics are not closed under controls. It might further be

subject to some conditions, for example perhaps sufficient to prove the property:

Γ; ∆ ⊢ v → u:A

Γ; ∆ ⊢ v = u:A

for values v. Another possibility would be to add a labelled rewrite, although we

shall not consider this further here.

We might then follow the example of Power [Pow96] and consider the se-

mantics of such a rewrite judgement, modelling it by an enrichment of the SMC

part of the semantics with a preorder. This preorder should then be subject
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to some conditions analogous to those on the rewrite, for example possibly that

morphisms in the image of the functor F are maximal in the preorder.

Such an extension opens many possible lines of enquiry. Obviously results

and techniques of general term rewriting theory become immediately relevant,

and may well be adaptable to this framework, and similarly it makes possible

the study of process calculi dynamics, (even, perhaps, including bisimulation),

in a type-theoretic setting. Another interesting possibility, which we will briefly

sketch, is to relate the equality and the rewrite and study the interplay between

them. Given an extension of our type-theory with a rewrite judgement, firstly

define a morphism of type-theories in the obvious way based on maps on types and

operators, preserving the rewrite and the equality. Then say that one instance of

our type-theory implements another if Γ; ∆ ⊢ v = v′ :A in the first implies that

there exists u in the second such that Γ; ∆ ⊢ v → u :A and Γ; ∆ ⊢ v′ → u :A in

the second, and there is a morphism of type-theories from the second to the first.

Of course, this definition is most useful when there is a sub-rewrite of the re-

write in the first type-theory which has the Church-Rosser property. For example,

an instance of our type theory with the types and terms of LinD(C), but having

the β and η-rewrites rather than equalities would be an implementation of the

version presented with equalities. One might then be able to develop this idea to

relate operational behaviours and equality relations in the same framework.

Structure on Types

We might also extend our framework by adding more structure on types. Whereas

we have a complicated structure allowing us general operators on terms, the only

structure present in the type set PL is the distinction between members of PI and

non-members of PI . However, in many cases there is obvious structure implicit

in the choice of type set, for example in the case of higher-order instances of our

theory. The type set in this case is freely closed under the binary operations ⊸,

⊗, the unary operator !, and the nullary operation I . Hence, we might specify

that the type set be constructed over primitive types using type operators, which

would then have arities of the general form

(
∏

i=1...r

PI) × (
∏

j=1...s

PL) → PL

This should be read as saying that the type operator would take r intuitionistic

arguments and s linear ones, and return an arity. For example, the obvious type

operator ⊗ would then have an arity PL ×PL → PL. Intuitionistic type operators

would then be defined similarly returning arities in PI .
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Given this structure on types, we could refine our specification of operators.

For example, the tensor introduction operator, which for every arities A and B

has an instance with the arity

; ()A ()B

()A ⊗ B

would be specified as a single operator of arity

; () ()=

() ⊗=

This would be interpreted as meaning that for every two arities A and B, there

would be an instance taking pairs of terms of type A and terms of type B, and

returning a term of type the tensor type operator applied to A and B.

This would also have a significant effect on the semantics. Clearly, type op-

erators would be interpreted as a first step as functions on the objects of the

category in question. It would then be natural to insist that in the case of the

tensor, rather than having an appropriate natural transformation for each op-

erator instance over arities A and B, we should have one for each two objects

of the category. This change would substantially simplify the semantics of our

examples, for example by forcing the interpretation of the tensor operator to be

a tensor functor in all models of the appropriate equational theory.

Choice Constructs

Choice constructs are crucial to programming languages. However, although it is

possible to represent a coproduct construction in our general type-theory using

families of operators:

;

(A)B ⊕ A
inrA,B

;

(A)A ⊕ B
inlA,B

(CA)C ′ (CB)C ′;

(CA ⊕ B)C ′
casesA,B,C,C′

with appropriate equalities, this does not capture certain naturality properties

of the cases operator. Consider the bound assumptions C in the above instance

of the operator. The operator is natural in the assumptions C in the sense that

a cut into one of these assumptions should be proof-equivalent to two cuts, one

into each premiss of the operator instance.

Since the naturality we have incorporated into our type-theory is inherently a

multiplicative naturality, based on the implicit tensor of the context on the left, it

is insufficient to represent this additive naturality. We could amend this by adding

a class of additive operators, where we rename the existing operators multiplicative
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operators. These additive operators would have the defining property that an

operator of arity for example:

; (A)A′ (B)B′

(C)C ′

would have the logical rule

Γ; ∆, A ⊢ A′ Γ; ∆, B ⊢ B′

Γ; ∆, C ⊢ C ′

in which the contexts are combined additively rather than multiplicatively. Nat-

urality would then be defined with respect to this additive context discipline, and

the cases operator with its naturality would be satisfactorily captured.

However, it is not clear how this development might be extended to the se-

mantics. It seems likely that the cases operator given above would be soundly

modelled by a coproduct in our models, given suitable distributivity conditions,

exactly as the additive connective + in intuitionistic linear logic is modelled by a

coproduct [BBdPH93a]. However, it is not clear what would constitute a sound

model of a type-theory with arbitrary additive operators. Further, we can already

see that equipping such a type-theory with normal forms based on proof-nets is

a difficult problem, as the proof-net technology handling the additives [Gir96]

is substantially more complicated than that for the multiplicative-exponential

fragment, and in general, the proper treatment of the additives is a key point

in linear logic [Gir94]. Although there are presentations of proof-nets for linear

logic including the additives [Gir96], they all increase the complexity of the proof-

net representation substantially, and any analogous extension of relations would

cause the same complication.

In view of this state of affairs, finding the best way of adding choice constructs

to our framework seems to be one of the most outstanding existing problems.

Recursion

Another essential component of serious programming languages is some form of

iterative or recursive construct. We may define in our framework the obvious

recursion operators with arity
; (A)A

()A

for each arity A, with the expected equalities. We would then expect this to cor-

respond to adding a trace operator on the symmetric monoidal part of the models,

in view of Hasegawa’s work [Has97]. Further, also following work of Hasegawa,
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such a recursion operator might well be modelled primitively in the proof-nets

simply by allowing nets to be cyclic, with certain extra primitive equivalences. It

is not then clear how the extended proof-net framework might be equipped with

a confluent rewrite, and this problem is a substantial one.

We should also note that there are other approaches to adding recursion to our

models, notably by asking that the cartesian category have a fixpoint operator,

as in work of Fiore and Plotkin [Plo93b, FP94]. Since the models of our type-

theories interpret operators as natural transformations on the SM part of the

model, this semantic notion is not captured precisely by any instance of our

general type-theory. It remains ongoing and interesting work to relate these two

possible types of models for recursion.

Negation

Given that the linear type-theory corresponding to the multiplicative fragment

of linear logic has been shown to have a direct relation to the higher-order ac-

tion calculus, it is worth considering other connectives of linear logic, and their

incorporation in general linear type-theories. We have already mentioned the

choice constructions associated with the coproduct of linear logic, and clearly

this is essential to practical programming languages, parallel or not. The one

remaining connective is the classical negation. For as long as linear logic has

existed, there have been connections postulated between it and concurrency, for

example [Gir87, Abr93] and many others.

Further, there has been much work investigating the computational signi-

ficance of the boundary between classical logic and intuitionistic logic in both

conventional and linear situations [Par92, Bie96b, Bie96a, Ong96].

Using our framework, we can incorporate some classical behaviour, motiv-

ated by the semantics of classical linear logic. Just as intuitionistic multiplicative

linear logic (without the exponentials) has as categorical models symmetric mon-

oidal closed categories, *-autonomous categories, which are symmetric monoidal

closed categories with a dualising object (intuitively modelling the nullary ⊥)

are thought to be models of classical linear logic. Moreover, it has been shown

in [CS97] that *-autonomous categories are equivalent to symmetric monoidal

closed categories having a unary negation satisfying certain simple equalities.

Hence, we might add a unary classical negation operator (written ( )⊥) to any

general linear type theory by first closing the arities under the unary operator

( )⊥ and secondly by adding the two constants having arity:

(A⊥⊥)A (A)A⊥⊥
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and suitable equalities, based on the categorical semantics. A first question

is what relationship the instance of our general type-theory corresponding to

DILL(C), augmented with this negation, bears to classical linear logic. Secondly,

we can now consider the extension of the system corresponding to higher-order

action calculi with this negation, and in particular its relationship to type-theories

for process algebra.

Investigating these two questions, we will obtain a better picture of the rela-

tionship between classical linear logic and concurrency not only on the syntactic

level but also via the inherited semantics of our type-theories.

10.3 Aims and Objectives

Finally, we consider general questions and directions for study which we feel are

raised by the work in this thesis.

Frameworks

Some might say (and indeed have!) that there is a needless proliferation of syn-

taxes in general, and of those which are variants of linear λ-calculus in particular.

Moreover, there are many possible syntaxes for the same underlying semantic

situation.

We hope that our general linear type-theory may provide a means of correl-

ating these syntaxes and giving them a uniform presentation. By providing a

tight link between a range of interesting variants of the linear semantics and a

range of our type-theories, we have made it easier to reconstruct syntaxes for

particular semantic situations of this kind, and reason about their properties. In

addition to this uniformity of syntax and semantics, a general framework allows

us to consider a wider picture of syntaxes and translations between them, in an

organised setting.

Turning to the corresponding semantics, this organised setting makes it nat-

ural to study the translations between syntaxes as morphisms between their

categories of models, and characterise interpretations as initiality morphisms,

amongst other things. This perspective leads to interesting insights, including

the Yoneda argument of chapter 7.

On the other hand, we can see in this thesis that there is a place for diversity

of syntax; certainly the action calculus and our linear type-theory for it, whilst

having essentially the same semantics, each have salient features which justify

their use for particular applications. It is interesting to note that although his-
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torically their connection was discovered via the syntax, the semantics provided

by far the clearest indication of the connection once it was clearly established in

both cases.

We feel that the way forward given these points must be towards general

frameworks for syntax, with solid semantic foundations. Such constructions will

limit the proliferation of syntax, if adopted, and important variant syntaxes can

be presented and given semantics via translation to the appropriate instance of

the framework. In order to assist in this, we aim to extend our given framework

with canonical choice and recursion operators, and to consider other common

computational connectives to see if they have a canonical presentation in this

setting.

Proof Nets and Action Graphs

A slightly novel part of our presentation is the work on proof-nets, used to invest-

igate the properties of various equalities. Although this work is not familiar in

the context of type-theories, it is very significant that Milner [Mil96] developed a

theory of action graphs. Furthermore, Milner’s molecular forms [Mil93b] are re-

lated to our relational normal forms. We know from Milner’s work [Mil93b] that

two actions are equal in the theory of action calculi if and only if their molecular

forms are equal. We also know that two terms of the corresponding instance of

our type-theory are equal if and only if their relational normal forms are equal

under the vestigial equality. Hence, it must be the case that molecular forms

and relational normal forms are in one-to-one correspondence up to the relevant

equalities.

This result shows that there exists a close correspondence between these two

systems, but provides very little information about the intuition behind the cor-

respondence. We aim to investigate this correspondence, and the relative advant-

ages of the two syntaxes. More generally, we need to investigate the advantages

of graphical formulations over more traditional approaches for investigating de-

cidability.

Process Algebras and Type-Theories

On a more detailed level, the connection between action calculus and our general

linear type-theory raises many questions. Particularly interesting are those which

are created by the presentation of a familiar syntax in an unfamiliar setting.

Consider for example the π-calculus as an action calculus, and therefore as a type-

theory (given the rewriting extension proposed earlier in this chapter). This is a
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very unfamiliar presentation of a process algebra, which immediately highlights

certain points. One such is that the π-calculus in its original form has very little

typing structure compared to its term structure, in contrast with the normal

pattern in type-theories. It might be more natural to also consider typed variants

such as that proposed for example in [PRT93], and their relationship to the

original. It might also be worth studying the form of the input and output

controls in the type-theory, and comparing them with more familiar logical and

type-theoretic rules. These and other considerations would have an immediate

impact on process algebra theory.

In the reverse direction, we have already seen that the first-class rewriting

of process algebras can profitably be incorporated into our type-theory. Such

rewrites are often very different from those normally encountered in type-theory,

as they are rarely confluent or normalising. However, their behaviour is the key

to the theory of process algebras.

In the same way, we might expect other cross-fertilisation between these two

areas due to their common semantic foundation.

Linear Logic and Process Algebras

As has been previously mentioned in this thesis, broad connections have been

suggested between linear logic and process algebras. More particularly, process

calculi directly built on the proof structure of classical linear logic have been

given [Abr91, Abr94].

We aim to investigate this further, firstly by giving a set of instances of our

framework incorporating the classical negation operator of linear logic, and then

by considering the relationship between these and instances corresponding to

process calculi. There are obvious disparities between the proofs of linear logic

and conventional process calculi, notably the typing of linear logic contrasted with

the less detailed typing of process calculi, and the dynamics of process calculi

contrasted with the essentially static proof equivalence of linear logic.

However, we aim to construct a range of intermediate instances between clas-

sical linear logic and various process algebras, and thereby discover whether clas-

sical linear logic underlies them in the sense of being soundly embeddable into

them.

If this is concluded positively, then it may become possible to consider a

canonical foundation for process algebras and use it to classify some of them.
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10.4 Final Remarks

In this thesis, we have focussed on linearity. The wide range of applications of

our general framework, together with the examples in other areas of computer

science, provide evidence that computation is inherently linear with an underlying

intuitionistic calculus of values. Although the theory of intuitionistic logics, type-

theories and their semantics is very well developed in comparison to that of our

framework and similar constructions, it seems obvious from this work that once

the theory of linear-non-linear situations is equally developed, it will provide a

clearer foundation for studying a wide range of computational situations, from

resource-sensitive though imperative to concurrent computation.
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Appendix A

Basic Definitions

A.1 Syntactic Preliminaries

We need to present certain definitions which will be used throughout the thesis.

For the purposes of this appendix, we let Ob be a set of objects of some sort,

ranged over by o . . . .

Sequences

We will often need to discuss sequences of objects of various types, and will need

to use functions on such sequences. Consequently, we give some notation:

Notation A.1.1 (Sequences)

Given objects o . . . of some kind, we will write ~o to denote an arbitrary sequence

of such objects. Where it is necessary to make explicit the elements of sequence,

we will write it as o1 . . . or. We will generally write concatenation as juxtaposition,

and ǫ for the empty sequence. Further, we will write the common operation of

‘cons-ing’ an element to the head of the sequence using a comma, so that for

example the expression o′, ~O represents the sequence having as first element o′

and as its i + 1th element the ith element of ~O, for i = 1 . . . r where r is the

length of the sequence ~O.

However, we will need to make an exception to this syntax in order to accom-

modate common practice in logics and type-theories; when we give sequences of

formulae of a logic or a type of a type theory, A1 . . . Ar, we will write comma for

concatenation, and for the empty sequence. We will also use this convention

for typings x :A. In this framework we will elide the distinction between a one-

element sequence and the single element it contains, so that A, ~A can be read

either as the ‘cons’ of A onto ~A or the concatenation of the singleton sequence A

and the sequence ~A.
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Next we give some notation for applying functions to the elements of se-

quences. Given a function f : Ob → Ob′, we will write f~o for the function which

takes sequences of objects in Ob to sequences of objects in Ob′ simply by using

the function f on each element of the sequence.

In the presentation of typing rules that we give, we need to say when one

sequence is a merge of two others:

Definition A.1.2 (Merge Relation)

For sequences of objects ~o1 and ~o2, define the merge relation ~o = ~o1#~o2 inductively

as follows:

• ~o = #~o holds, as does ~o = ~o# .

• o′, ~o = o′, ~o1#~o2 holds if ~o = ~o1#~o2 does.

• o′, ~o = ~o1#o′, ~o2 holds if ~o = ~o1#~o2 does.

Typings and Typing Contexts

We define several typing systems in this thesis, and a common component of each

of them is a notion of typing and typing context. Assume that we have a set of

variables X ranged over by x, y, z . . . and a set of types Ty ranged over for the

purposes of this section by T . . . .

Now, a typing is a pair of a variable and a type, which we write x :T . We

will let sequences of typings be ranged over by Γ, ∆ . . . . Where convenient, we

will write the sequence of typings x1 :T1 . . . xr :Tr as ~x : ~T , where ~x and ~T are the

obvious sequences of variables and types respectively. For a sequence of typings

Γ = ~x : ~T , we will then say that |Γ| is the set of elements in the sequence ~T and

further that dom(Γ) is the set of elements in the sequence ~x.

Now, a dual typing context, which we will often refer to just as a typing context

since most of our typing contexts are dual, is a pair of sequences of typings, written

Γ; ∆. The intuitionistic part of the context is Γ and the linear part is ∆.

Conversely, a single typing context is just a sequence of typings.

A.2 Categorical Definitions

In general, we will refer to categories using the symbols C and S, and will use

obj(C) to refer to the objects of a category C, ranged over by X, Y . . . . Also, we

will use C(X, Y ) to refer to the set of arrows between X and Y in the category

C We will let such arrows be ranged over by f, g . . . , and write f : X → Y to
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indicate that f is in C(X, Y ) where the category is clear from the context. We

will write the identity arrow at object X as idX and write the composition of f

and g as f ; g. We will let v, w . . . range over natural transformations, and write

v : F → G to indicate that v is a natural transformation from F to G.

The following definitions can be found in [Mac71].

Definition A.2.1 (Symmetric Monoidal Category)

A Symmetric Monoidal Category (SMC) is a category C with a bifunctor ⊗ :

C × C → C and natural isomorphisms

aX1,X2,X3 : (X1 ⊗ X2) ⊗ X3 → X1 ⊗ (X2 ⊗ X3)
riX : I ⊗ X → X
liX : X ⊗ I → X
sX,Y : X ⊗ Y → Y ⊗ X

s.t.

(aX,Y,X ′ ⊗ idY ′); aX,(Y ⊗X ′),Y ′ ; (idX ⊗ aY,X ′,Y ′) = a(X⊗Y ),X ′,Y ′; aX,Y,(X ′⊗Y ′) (A.1)

aX,I,Y ; (idX ⊗ liY ) = (riX ⊗ idY ) (A.2)

liI = riI (A.3)

(sX,Y ⊗ idX ′); aY,X,X ′; (idY ⊗ sX,X ′) = aX,Y,X ′; sX,(Y ⊗X ′); aY,X ′,X (A.4)

s−1
X,Y = sY,X (A.5)

sI,X ; liX = riX (A.6)

A symmetric monoidal category is strict if the natural transformations li, ri

and a are all the respective identities. This implies that the tensor and unit are

strictly associative. Note that the definition does not insist that the symmetry

be strict.

Definition A.2.2 (Symmetric Monoidal Closed Category)

A (strict) symmetric monoidal closed category (SMCC) is a (strict) SMC s.t. the

bifunctor ⊗ has a right adjoint ⊸, or

C(X ⊗ Y, X ′) ≃ C(X, Y ⊸ X ′)

where ≃ denotes an isomorphism natural in X, Y and X ′. We write the closed

structure as:

apX,Y :(X ⊸ Y ) ⊗ X → Y

λY (f) :X → (Y ⊸ X ′) where f : X ⊗ Y ⊸ X ′

For convenience, we will abbreviate the unit of the adjunction:

λY (idX⊗Y ) = paX,Y : X → (Y ⊸ (X ⊗ Y ))
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Definition A.2.3 (Cartesian Closed Category)

A cartesian (closed) category is a symmetric monoidal (closed) category in which

the tensor product is cartesian. We shall typically use the symbol × to represent

the product of a cartesian category, and use CC (CCC) to denote a cartesian

(closed) category. Further, we will write the arrows giving the cartesian structure

as follows:

dX :X → 1

pi :X1 × X2 → Xi

cX :X → X × X

〈f, g〉 :X → Y1 × Y2 where f : X → Y1 and g : X → Y2

If the cartesian (closed) category is strict, we can use the generic projections

pi,r : X1 × . . . × Xr → Xi.

We now need to define the concept of functor between two SMCCs.

Definition A.2.4 (Symmetric Monoidal Functor)

A symmetric monoidal functor, abbreviated to SM functor,

(F, mX,Y , mi) : (C, ⊗, I, a, li, ri, s) → (C′, ⊗′, I ′, a′, li′, ri′, s′)

is a functor F : C → C′ with a map mi : I ′ → F (I) and a natural transformation

mX,Y : F (X) ⊗′ F (Y ) → F (X ⊗ Y ) s.t.

a′
FX,FY,FX ′; (idFA ⊗′ mY,X ′); mX,Y ⊗X ′ = (mX,Y ⊗′ idFX ′); mX⊗Y,X ′; F (aX,Y,X ′)

(A.7)

ri′FX = (mi ⊗ idFX); mI,X; F (riX) (A.8)

s′
FX,FY ; mY,X = mX,Y ; F (sX,Y ) (A.9)

A SM functor is strong if mi is an isomorphism and mX,Y is a natural isomorph-

ism. It is strict when mi is the identity and mX,Y is the identity transformation.

Under this definition it is easy to check that given two (strict, strong) SM func-

tors (F, mX,Y , mi) and (G, m′
X,Y , mi′) their compose is (strict, strong) symmetric

monoidal when equipped with maps:

(GF, (m′
FX,FY ; G(mX,Y )), (mi′; G(mi)))

Remark A.2.5

Given a SM functor F : C → C′, notice that there is an induced natural trans-

formation

kX,Y = (FX ⊸ (F apX,Y ; mX(Y,X)) ◦ pa′
FX,F (X(Y ) : F (X ⊸ Y ) → (FX ⊸ FY )
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Definition A.2.6 (Symmetric Monoidal Closed Functor)

A symmetric monoidal closed functor, abbreviated SMC functor, is a SM func-

tor. A strong SMC functor is a strong SM functor for which kX,Y is a natural

isomorphism, and a strict SMC functor is a strict SM functor for which kX,Y is

the identity transformation.

Definition A.2.7 (Cartesian (Closed) Functor)

A cartesian (closed) functor between two cartesian (closed) categories is a SM

(SMC) functor which preserves the cartesian structure up to isomorphism. It is

strict when it preserves the cartesian structure up to equality.

Definition A.2.8 (Monoidal Natural Transformation)

A monoidal natural transformation from one symmetric monoidal functor (F, mX,Y , mi) :

C → C′ to another (G, m′
X,Y , mi′) : C → C′ is a natural transformation v : F → G

s.t.

mX,Y ; vX⊗Y = (vX ⊗′ vY ); m′
X,Y (A.10)

mi; vI = mi′ (A.11)
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