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Abstract To achieve a stable evaluation of the linear

viscoelasticity of bubble suspensions, which have diffi-

culties for conventional rheometers from spatial distri-

butions of rheological properties with bubble deforma-

tions, we proposed a novel rheometry based on spatio-

temporal velocity data obtained by ultrasonic veloc-

ity profiling (UVP). A frequency-domain algorithm was

adopted to overcome a critical influence of measure-

ment noise on the rheological assessment, which is in-

ferred from error propagation characteristics through

the equations of motion in discretized form. Applica-

bility and advantage of the present rheometry with the

frequency-domain algorithm were verified by two kinds

of fluids; high viscous oil as a Newtonian fluid, and poly-

acrylamide aqueous solution as a shear thinning, vis-

coelastic fluid. The rheometry was finally adopted for
bubble suspensions subject to high oscillatory shear,

and it could validly extract elasticity-originated mo-

mentum transfer as a function of space.

Keywords Rheometry · Ultrasonic velocimetry ·
Linear viscoelasticity · Bubble suspensions

1 Introduction

Regarding aspects such as quality control of products,

safety issues, and more efficient processing in any indus-
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trial field, details of rheological properties of fluid media

are required. The developments of highly precise torque

meters has made it possible to provide good estimations

of such details. Along with rheological models that are

constitutive equations describing the stress response in

materials, rotational rheometry has provided details of

properties using only a small number of characteristic

constants. Nevertheless, rotational rheometry assumes

simple Couette flows produced in a narrow gap between

stator and rotor connected to torque meters. However,

dispersed multiphase media, which are not seen as con-

tinuum even at macroscopic scale, are difficult to mea-

sure. Non-ideal conditions run counter to the assump-

tion of Couette flows required to solve the “Couette in-

verse problem” to obtain the original rheological prop-

erties (e.g. Yeow et al. (2000); Ancey (2005); Heirman

et al. (2008)). Furthermore, in measurements of multi-

phase media, additional complexities arise for example

from the presence of interfaces in gap size (e.g., Doi and

Ohta (1991); Stickel and Powell (2005)).

A focus of our studies on the rheology of multi-

phase media is bubble suspensions for understanding

the mechanisms underpinning drag reduction from in-

jected bubbles (e.g., Ceccio (2010); Murai (2014)). Bub-

bles accumulated in flow elements, strong shear layers

and vortices, create locally different rheological proper-

ties in conditions of unsteady shear flow in turbulence.

Beginning with the appearance of the classical theory

on dilute spherical suspensions (assuming that surface

tension is strong enough to sustain the spherical shape)

in Einstein (1906) and Taylor (1932), the study of sus-

pension rheology has a century-long history. By consid-

ering capillary number, the theory was extended to de-

formable bubbles in simple steady shear flows (Frankel

and Acrivos (1970)), and its applicability was validated

by experiments (Rust and Manga (2002)). Choi and
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Schowalter (1975) provided a more sophisticated equa-

tion that considered higher orders in the volume frac-

tion to extend the theory to larger volume fractions. De-

spite the progress made over the century, there remain

aspects to be explained about the elastic response at-

tributed to surface tension effect in unsteady shear flows

(Llewellin et al. (2002); Llewellin and Manga (2005);

Tasaka et al. (2015)).

For a rheological evaluation of multiphase media,

there are two issues to be solved: (1) the narrow-gap

problem and (2) the inverse Couette problem. The Stokes-

type rheometry, for instance, the falling sphere rheome-

try (bubble suspensions; e.g., see Murai and Oiwa (2008))

and commercial turning sphere rheometry (BMS, An-

ton Paar GmbH), can avoid the issues arising from

Couette-type rheometry. However, the rheological prop-

erties evaluated using these methods correspond to ag-

gregated rheological properties because of the multidi-

mensional, multicomponent flows dealt with. Thus, the

rheological properties obtained are difficult to interpret

along standard approaches in rheology.

In solving the issues in regard to Couette-type rheom-

etry, a combination of a wide-gap cylinder system and

velocimetry has been tried; spatial profiling of velocity

measured in a wider gap using different kinds of ve-

locimetry can reveal deviations to ideal Couette flow

that arises from complex rheological properties, for ex-

ample, shear banding (e.g., Dimitriou et al. (2012)).

Supplementing the data by torque measurements to

give an integrated boundary condition on a rotor in the

system has supported evaluation of complex rheological

properties. The kinds of velocimetry adopted include

particle image velocimetry (PIV), specially named “Rheo-

PIV” (Rodŕıguez-González et al. (2010); Dimitriou et al.

(2012); Pérez-González et al. (2012); Serrano-Aguilera

et al. (2016)), magnetic resonance imaging velocime-

try (Jarny et al. (2005); Ovarlez et al. (2005)), laser

Doppler velocimetry (Quinzani et al. (1995); Rothstein

and Gareth (2002)), and ultrasonic imaging velocime-

try (Gurung et al. (2016)).

In contrast to these types of velocimetry, ultrasonic

Doppler velocimetry or ultrasonic velocity profiling (UVP)

(Takeda (2012)) offers ease of handling and access to

opaque fluids. Also UVP is being further developed

both in hardware and software (Fischer et al. (2008);

Meacci et al. (2016); Muramatsu et al. (2015)), and

we can expect in the near future greater sophistica-

tion in its methodology. Moreover, recent progress in

combining it with Doppler optical coherent tomography

has overcome several disadvantages of UVP in near-

wall measurements of the velocity field (Salmela et al.

(2013)). UVP was applied to a circular Couette system

(Murai (2012); Derakhshandeh et al. (2012)) and also

to pipe flow with measurements of the pressure drop

along the pipe (Ouriev and Windhab (2002); Wiklund

and Standing (2008)). The latter technique has been

termed the in-line UVP-PD method and has been rec-

ognized as a semi-standard evaluation tool in food rhe-

ology (Rao et al. (2014)) as ultrasonic velocimetry has

been applied avidly in the food processing industry.

Because of its spatio-temporal velocity profiling, UVP

has also been explored in visualizing rheological behav-

iors (Shiratori et al. (2013)). Our group has been de-

veloping ultrasonic spinning rheometry (USR) that uses

such data to evaluate rheological properties modeled by

equations of motion of fluid media and has extended its

applicability to viscoelastic analyses of multiphase me-

dia including bubble suspensions.

This study evaluates the applicability of USR in lin-

ear viscoelastic analysis in general and bubble suspen-

sions, in particular. We investigate the influence of mea-

surement noise on spatio-temporal velocity data mea-

sured by UVP that is required for a viscoelastic anal-

ysis. We propose a novel algorithm for USR applying

Fourier transform theory to the velocity data to achieve

more stable analysis. The structure of this paper is as

follows: USR including theory and fundamental mea-

surement configuration is briefly summarized in § 2.

The applicability of the USR and the numerical exper-

iments in investigating the influence of the measure-

ment noise on USR are presented in § 3. The theory

of “frequency-domain analysis” is described. Its appli-

cability to viscosity analysis is evaluated in numerical

experiments and on actual velocity data obtained from

viscous oil treated as a Newtonian fluid. Then linear

viscoelasticity analysis using the algorithm on bubble

suspension is performed in § 4. Finally, concluding re-

marks are presented in § 5.

2 Ultrasonic spinning rheometry (USR)

2.1 Measurement configuration

The USR process involves two main steps, the measure-

ments of the velocity profile of test fluids placed in a

cylindrical vessel and the post-processing of the velocity

data to evaluate rheological properties. In preparation

for explaining the post-processing, brief explanation of

the measuring of velocity profiles is given here. The ba-

sic configuration of the measurement [Fig. 1(a)] com-

prises an open-type cylindrical vessel of radius R filled

with a test fluid rotating under set conditions. Measure-

ments of the velocity are performed using an ultrasonic

transducer (TDX) mounted on the outside of the cylin-

der. The measurement line for ultrasonic velocity pro-

filing (UVP) (e.g., Takeda (2012)) is set parallel to the
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centerline of the cylinder with a certain displacement of

∆y to measure the azimuthal component of velocity u;

UVP measures the on-axis velocity component uξ along

the measurement line ξ, and thus the azimuthal veloc-

ity component is given as u = uξr/∆y when the radial

velocity component is negligibly small. Test fluids are

required to be seeded where there are no ingredients

that can scatter ultrasonic waves. Further details of in-

dividual measurements are described elsewhere (Tasaka

et al. (2015); Yoshida et al. (2017)).

Measurement line

Test fluid

TDX
Rotating cylinder

u u

2
R

 

∆y

ξ

ξr

ξ(a) (b)

TDX

Fig. 1 Schematics of (a) the experimental setup showing the
rotating cylinder and the measurement line for ultrasonic ve-
locity profiling (UVP) and (b) the measurement volume of
UVP

In measurements by UVP, representative velocities

in the disk-shaped volume of the test sample are cap-

tured as on-axis velocity components at each radial

position along the measurement line [Fig. 1(b)]. The

diameter and width of the measurement volume are

determined from the size of the Piezo-element in the

transducers and the wavelength of the ultrasonic wave

in the test fluids; typically these are around 5 mm and

1 mm, respectively. Velocities u(r, t) calculated from

the on-axis velocity component measured in UVP at

each volume are processed. They reflects flow behav-

iors determined by the local characteristics of the test

fluids responding to cylinder motions. These charac-

teristics include rheological characteristics, for exam-

ple, shear-rate-dependent viscosity, viscoelasticity, and

non-uniformity of ingredients and local structures. USR

extracts from u(r, t) the local characteristics with post-

processing, which shall be summarized below.

2.2 USR concept and procedure

USR is concerned with deriving rheological character-

istics from spatio-temporal velocity distributions mea-

sured by UVP.

Here we summarize the post-processing procedure

used in USR. The rheological characteristics of fluids

are reflected in the spatio-temporal velocity distribu-

tions which are governed by the equation of motions

and the constitutive equations (in rheological modeling)

describing the relationships between stress τ , strain γ,

and strain rate γ̇. To simplify the model, we assume just

two-dimensional one-directional flows in the azimuthal

direction that can be realized in the setup mentioned in

the last section. The corresponding equation of motion,

Cauchy’s equation, is

ρ
∂u

∂t
=
∂τ

∂r
+

2τ

r
, (1)

where ρ is the density of the fluid. To determine the rhe-

ological properties, Murai (2012) proposed minimizing

a cost function expressed by the least-squares approxi-

mation,

F (A,B,C, · · · ) =

(
ρ
∂u

∂t
− ∂τ

∂r
− 2τ

r

)2

, (2)

where the parameters, A,B,C, · · · , denote constants in

rheological models representing rheological properties.

In the equation above, u(r, t) is given as measurement

data in circular shear flows measured by UVP, and τ is

also calculated from u(r, t) through a rheological model

adopted.

3 Influence of measurement error on USR

3.1 Viscoelastic analysis of bubble suspensions

We performed an analysis using the above equations

of motion to evaluate viscoelasticity of bubble suspen-

sions having examined their effective Newtonian vis-

cosity in a previous paper (Tasaka et al. (2015)). Ex-

periments measuring velocity profiles were performed

with a cylinder of inner diameter 2R = 145 mm filled

with 1000 mm2/s silicone oil to a depth of 330 mm.

Small bubbles of around 1-mm diameter were dispersed

in the fluid layer to a volume fraction of about 2%. The

cylinder underwent sinusoidal oscillations of frequency

f0 = 1 Hz and a 90◦ angular amplitude. The spatio-

temporal velocity profiles were captured in ultrasonic

velocimetry at a spatial resolution 0.99-mm long the

measurement axis and a time resolution of 30-ms.

We recall Cauchy’s equation of motion, Eq. 1, and

adopt Maxwell’s spring-dashpot model in describing vis-

coelastic fluids,

τ +
µ

E

∂τ

∂t
= µ

(
∂u

∂r
− u

r

)
, (3)
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in establishing the simplest model to describe linear

viscoelasticity, which is evaluated by first determining

viscosity µ and elasticity E from measurement data of

u(r, t). A suitable set of µ and E that satisfy these equa-

tions is derived as a constraint condition on τ . Mathe-

matically, the calculation is

min
τ,µ,E

∫
r

∫
t

[
τ +

µ

E

∂τ

∂t
− µ

(
∂u

∂r
− u

r

)]2
dtdr, (4)

s.t. : ρ
∂u

∂t
− ∂τ

∂r
− 2τ

r
= 0. (5)

In terms of difference expressions for u(r, t) and τ(r, t),

these become

min
τ,µ,E

∑
i

∑
j

[
τi,j +

µ

E

τi+1,j − τi,j
∆t

− µ

(
ui,j+1 − ui,j

∆r
− ui,j

rj

)]2
,

(6)

s.t. : ρ
ui+1,j − ui,j

∆t
− τi,j+1 − τi,j

∆r
− 2τi,j

rj
= 0,

(7)

where ∆t and ∆r correspond to the spatial and radial

resolution of the velocity profile measurements. More

precisely, the radial positions are calculated from the

positions on the measurement line with ξ and ∆r vary-

ing depending on radial positions.

The calculations described above are performed af-

ter applying a filter to u(r, t) to suppress the influence

of measurement noise. Here we adopt a Savitzky–Golay

FIR smoothing filter (Savizky and Golay (1964)) with

various filter sizes in time and space to examine the
influence of the filter. As radial variations of the vis-

coelasticity are expected, a narrow radial range of ve-

locity profiles in r/R = 0.86–0.96 are analyzed over a

period of 4 s. The evaluation results for viscosity µ and

elasticity E under different filter sizes are summarized

in Table 1. The phase difference in linear viscoelasticity

δ is defined as the fraction of storage modulus to loss

modulus and has following relation with elasticity and

viscosity in the Maxwell model,

tan δ =
G′′

G′
=

E

2πf0µ
. (8)

Phase values of around 90◦ mean that a fluid is close to

a pure viscous body and smaller values indicate larger

elastic contributions to stress in the fluids.

From the various analyses with different filter sizes,

designated by the serial number # in Table 1, the eval-

uation results of µ and E are widely scattered. Taking

similar values for different analysis, the phase difference

δ, however, is stable against the variation in filter size.

This trend may arise from two factors: one that µ and E

appear as a fraction (or product) in the equation to be

analyzed, and the other is that the influence of measure-

ment error and noise on u(r, t) including the influence

of filtering buries local minimums on the surface of the

cost function, Eq. 6, in parameter space. We therefore,

evaluated the influence of noise in determining the local

minima of the cost function.

3.2 Numerical evaluation of influence of noise

For this purpose, we reduce the problem to a Newtonian

viscosity analysis. For Newtonian fluids, the equation of

motion in Eq. 1 becomes,

∂u

∂t
= ν

(
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

)
= νDru, (9)

where ν is kinematic viscosity and Dr is a differential

operator with respect to r defined as

Dr =
∂2

∂r2
+

1

r

∂

∂r
− 1

r2
.

This can be reduced into the cylindrical Bessel differ-

ential equation by separation of variables about t and

r. Then it can be solved by inserting the infinite series

u(r, t) =
U

Φ2
R + Ψ2

R

[(ΦΦR + ΨΨR) sinωt

+(ΦRΨ − ΦΨR) cosωt] , (10)

where U is angular velocity of the side wall, and

Φ(r) =

∞∑
m=0

φm(r), ΦR =

∞∑
m=0

φm(r = R),

Ψ(r) =

∞∑
m=0

ψm(r), ΨR =

∞∑
m=0

ψm(r = R),

and

φm(r) =
2m

m!(m+ 1)!

(
kr

2

)2m+1

fm, k =

√
ω

2ν
,

fm =

{
(−1)(m+2)/2 : m = even number

(−1)(m+1)/2 : m = odd number

ψm(r) =
2m

m!(m+ 1)!

(
kr

2

)2m+1

gm,

gm =

{
(−1)m/2 : m = even number

(−1)(m+1)/2 : m = odd number
.

Details of the derivation are described in Tasaka et al.

(2015). We performed numerical experiments to evalu-

ate the influence of measurement noise using this exact
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Table 1 Evaluation results of viscosity µ and elasticity E, with phase difference in linear viscoelasticity δ for the differently
filtered data of u(r, t) for measurements ranging from r/R = 0.86–0.96 over a period of 4 s; Nt and Ns correspond to the
number of time and space points used in filtering

# Nt Ns µ [Pa·s] E [Pa] δ [deg] # Nt Ns µ [Pa·s] E [Pa] δ [deg]

1 15 19 1.05 69.6 84.57 5 15 11 0.70 46.2 84.54
2 15 17 0.99 64.8 84.55 6 15 9 0.58 37.9 84.54
3 15 15 0.91 60.3 84.56 7 35 15 0.02 1.2 84.49
4 15 13 0.82 53.6 84.54 8 27 15 0.39 125.9 84.52

solution, Eq. 10 with as sufficiently large number of

terms and f0 = ω/(2π) = 1 Hz.

To represent measurement noise, and in particular

the typical spikey noise seen in UVP measurements,

the Mersenne twister method (Saito and Matsumoto

(2008)) was used to artificially generate the random

noise by modifying the standard deviation σN in regard

to noise level. The cost function to be minimized is

derived from Eq. 9 in differential form,

F (ν) =
∑
r,t

[
ui+1,j − ui,j

∆t
− ν

(
ui,j+1 − 2ui,j + ui,j−1

∆r2

+
ui,j+1 − ui,j

2rj∆r
− ui,j

r2j

)]2
.

(11)

The correct value for the kinematic viscosity is set at

ν0 = 1000 mm2/s, and the cost function is calculated

over the range ν = 800–1200 mm2/s in increments of

∆ν = 4 mm2/s over radial range r/R = 0.95 – 0.98.

The dependence of the cost function on ν (Fig. 2) is

calculated from the exact solution without noise us-

ing Eq. 11; note that F (ν) has been normalized by the

number of velocity data, Ntotal, used for the calcula-

tion. In the range explored for ν, the cost function has

a unique minimum corresponding to ν0 signifying that

the methodology to evaluate ν from spatio-temporal

velocity distributions works well in instances without

noise.

ν [mm2/s]

F
( ν

)/
N

to
ta

l

800 900 1000 1100 1200
0

0.1

0.2

0.3

Fig. 2 Variation of the cost function with ν around minimum
setting value of ν0 = 1000 mm2/s

In assessing the influence of noise on the evalua-

tion of ν, the variation of the cost function is inves-

tigated near where it takes a minimum value. Here

Gaussian noise of zero-mean is generated at every data

point of u(r, t), and is added to the velocity data. Noise

level σN is given as the fraction normalized by the lo-

cal maximum velocity Umax(r). Actual noise level on

u(r, t) measured by UVP is at least larger than 0.1%

(σN/Umax(r) > 10−3). The results obtained from the

velocity data calculated from the exact solution in Eq. 10

with different time resolutions, ∆t, f0∆t = 0.03 and

0.005, are plotted in Fig. 3. Here fitted parabolic curves,

obtained using the least-squares method, have been su-

perimposed on the plots. The viscosities evaluated de-

crease monotonically with respect to −σ2
N for both time

resolutions, and have large deviations even at relatively

small noise levels of around 0.01% in σN/Umax(r). For

larger ∆t, there is less influence from the added noise

because enhancements of noise contributed by the nu-

merical differentials is smaller.

f
0
∆t

0.03

0.005

0.03 (POD filter)

0.005 (POD filter)

0.03
(Frequency-domain analysis)

σ

[m
m

2
/s

]
ν

N
/U

max
(r)

10-5 10-4 10-3
800

850

900

950

1000

Fig. 3 Estimated values of ν for different noise levels σN ob-
tained using two different sampling times, w/o POD filtering
and frequency domain analysis; the solid and dashed lines
represent fitted parabolic curves of the plots obtained using
the least-squares approximation

The monotonic decrease of ν may be explained as

larger noise amplification in the radial derivative in

Eq. 9, especially 2nd-order derivative (the other two
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terms produce no strong impact on noise transfer). The

radial derivative term in Eq. 11 always has a larger de-

viation from the correct values without noise than the

time derivative term, because of the 2nd-order deriva-

tive in the radial term. To satisfy the balance of equa-

tion, the estimated ν must be smaller. By simplifying

the equation for the cost function, Eq. 11, this is mod-

eled simply as

F (∆ν, ε) =
∑

[A− (ν0 +∆ν)Bε]
2

(12)

where A and B are values of the differential calcula-

tions in condition without noise, so that A ≈ ν0B, and

∆ν and ε are the deviations from ν and the noise am-

plification rate, ε > 1. The local minimum of the cost

function is found to be ν0 +∆ν satisfying the relation,

∂F

∂∆ν
= −2

∑
ABε+ 2(ν0 +∆ν)

∑
B2ε2 = 0.

Assuming A = ν0B, the estimated value from the con-

dition above is a fraction of the correct value of ν, ν0,

specifically,

ν0 +∆ν

ν0
=

∑
B2ε∑
B2ε2

. (13)

This fraction is always smaller than unity. That is, the

monotonic decreasing trend in ν stems from the en-

hancement in noise from the 2nd-order derivative in

the radial direction.

From Fig. 3, the influence of measurement noise on

the evaluation of ν is significant and non-negligible, and

therefore eliminating noise from the velocity data is re-

quired. From the standard treatment of measured UVP

data, filterng based on the (snapshot) proper orthog-

onal decomposition (POD)(Sirovich (1987)) provides
an effective solution in achieving this purpose (Takeda

(1999); Furuichi et al. (2003); Tasaka et al. (2016)).

POD is good and objective at extracting organized flow

structures. In the present configuration, the flows are

well-organized structures and unorganized components

are filtered out as noise. From Fig. 3, the present POD

filtering can suppress the influence of noise, but there is

still a certain influence of noise remaining in the evalua-

tion. Here we remark that, after the filtering, data with

fine time resolution provides much better results than

rougher ones. This is because the enhancement of noise

by taking numerical differentials is reduced by POD fil-

tering, and the fine time resolution now can provide

better estimation of the differentials.

4 Frequency domain analysis

As examined above, the influence of noise and its en-

hancement using numerical differentials cannot be avoided

completely by filtering the velocity data. Instead, here

we propose a novel algorithm to evaluate rheological

properties from the velocity data employing the equa-

tion of motion as method of analysis in the frequency

domain free of difference calculation.

4.1 Theory

Taking the Fourier transform with respect to t, Eq. 3

becomes

τ̂ + iω
µ

E
τ̂ = µ

(
∂û

∂r
− û

r

)
, (14)

where, the Fourier transform is denoted

τ̂(r, ω) = F [τ(r, t)], û(r, ω) = F [u(r, t)]. (15)

The Fourier transform changes the differential equation

into an algebraic equation that can be solved for τ̂ ,

τ̂(r, ω) =
µ
(
∂û
∂r −

û
r

) (
1− iω µ

E

)
1 +

(
ω µ
E

)2 . (16)

Cauchy’s equation of motion, Eq. 1, is also converted

into

iωρû =

(
∂

∂r
+

2

r

)
τ̂ . (17)

Using Eqs. 16 and 17, finding µ and E becomes an

optimization problem for the cost function,

F (E,µ; r) =

∫ Ω

0

[
iωρû−

(
∂

∂r
+

2

r

)
τ̂

]2
dω. (18)

That is, µ and E are determined by minµ,EF (E,µ; r).

Inside the square bracket of Eq. 18 is a complex function

that needs to be decomposed into its real and imaginary

parts for the numerical calculation. We define,

τ̂(r, ω) =
µ

1 +
(
ω µ
E

)2 [Re(r, ω) + iIm(r, ω)] , (19)

where

Re(r, ω) = ∂r<[û]− 1

r
<[û] + ω

µ

E

(
∂r=[û]− 1

r
=[û]

)
,

Im(r, ω) = ∂r=[û]− 1

r
=[û]− ω µ

E

(
∂r<[û]− 1

r
<[û]

)
.

Substituting these into Eq. 18, the integrand becomes[
iωρû−

(
∂

∂r
+

2

r

)
τ̂

]2
=

[
ωρ=[û] + Γ

(
∂

∂r
+

2

r

)
Re

]2
+

[
ωρ<[û]− Γ

(
∂

∂r
+

2

r

)
Im

]2
,

(20)

where

Γ =
µ

1 +
(
ω µ
E

)2 .
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4.2 Viscometry

To evaluate the applicability of the frequency-domain

analysis proposed in this study, we perform a viscosity

analysis on both velocity data created from the exact

solution in Eq. 10 with artificial noise and UVP mea-

surement data.

Taking the Fourier transform of the equation for

Newtonian fluids yields

iωû = νDrû, û = Ru(r, ω) + iIu(r, ω). (21)

The cost function defined in Eq. 18 becomes

F (ν; r) =

∫
Ω

[iωû− νDrû]
2
dω

=

∫
Ω

[
(νDrRu + ωIu)

2
+ (ωRu − νDrIu)

2
]
dω.

(22)

The actual flows in the USR system are time periodic

and discrete Fourier transform (DFT) is applicable for

the analysis. From the definition of the Fourier series

expansion,

u(r, t) =
a0(r)

2
+

N∑
k=1

[ak(r) cos∆ωkt+ bk(r) sin∆ωkt] ,

(23)

where

∆ω = 2π∆f, (24)

the cost function is expressed as

F (ν; r) =

N∑
k=1

(
A2
k +B2

k

)
, (25)

where,

Ak(r) = ∆ωkbk − νDrak, Bk = ∆ωkak + νDrbk. (26)

The range of frequencies (or range of k) for the summa-

tion above is determined from the sampling frequency

on u(r, t), ∆f , and the number of data, N from ∆f

(k = 1) to N∆f (k = N). Taking a wide range of fre-

quencies, however, would induce noise caused by mea-

surement error that is not related to the cylinder os-

cillation. A narrow range, k1∆f < f0 < k2∆f , is set

around the driving frequency of the cylinder oscillation

f0. The cost function is little modified as

Ff0(ν; r) =

k2∑
k=k1

(
A2
k +B2

k

)
. (27)

To avoid the propagation of measurement noise caused

by the numerical differentials of r included in the differ-

ential operator Dr, an Mth power series approximation

on ak(r) and bk(r) is introduced,

ak(r) =

M∑
m=0

αmr
m, bk(r) =

M∑
m=0

βmr
m. (28)

Substituting this into definitions of Ak and Bk, Eq. 26,

provides

Ak(r) = ∆ωk

M∑
m=0

βmr
m − ν

M∑
m=0

(m2 − 1)αmr
m−2,

(29)

Bk(r) = ∆ωk

M∑
m=0

αmr
m + ν

M∑
m=0

(m2 − 1)βmr
m−2.

(30)

We perform numerical experiment as in § 3.2 to

check the applicability of the present theory and pro-

cedure. The velocity data is processed by DFT, and

ak and bk in the Fourier series are approximated by

fifth-order polynomials (i.e., M = 5 in Eq. 28). In the

power spectrum of
√
a2k + b2k, there is sharp peak cor-

responding to the oscillation frequency f0. Because the

frequency resolution, ∆f , is determined by the number

of data and the time resolution, the peak frequency fc
does not always coincide with f0 and spreads over sev-

eral frequencies. In the present case, fc = 1.0101 Hz and

three frequencies nearby contribute more than 97% of

the total fluctuation in kinetic energy. Within the fre-

quency band, k1–k2 in Eq. 27, two conditions, f = fc ∼
f0 and f = fc±∆f , are examined. Nevertheless, there is

no quantitative difference in values of ν associated with

the conditions. Hence we adopt the condition f = fc,

from here on. The results of evaluation of kinematic vis-

cosity at different noise levels are summarized in Fig. 3

with the original results (without noise treatment) and

the POD-filtered velocity data. The value of ν evaluated

in the present frequency-domain analysis stays the same

value regardless of the noise level, whereas the oth-

ers decrease with increasing noise level. The frequency-

domain analysis provides slightly smaller values than

the others and the correct value, ν0 = 1000 mm2/s, in

relatively low noise conditions. This is mainly caused by

small disagreement between fc and f0 due to the sam-

pling frequency and sampling data number of u(r, t).

Nevertheless, it produces the small deviation even at

relatively large noise levels than expected in actual sit-

uations with UVP measurements.
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4.3 Application of viscometry

The frequency-domain analysis is applied on spatio-

temporal velocity measurement data obtained from sil-

icone oil (ν = 300 mm2/s at 25◦C) and presented in

Yoshida et al. (2017) with an evaluation of its kinematic

viscosity using phase information. A 145-mm-diameter

acrylic cylinder filled with oil was periodically oscillated

with f0 = 1 Hz frequency and through an 80◦ angular

amplitude. The measurement line of the velocity pro-

files was set at ∆y = 15 mm; the UVP was performed

with a 30-ms time resolution and a 0.62-mm spatial

resolution (measurement direction). Fig. 4 shows the

spatio-temporal velocity distribution over three oscil-

lation cycles. The velocity variation appears smooth

compared with typical velocity profile measurements,

considerable roughness is apparent in comparison with

ideal velocity profiles.

0.2

0.4

0.6

0.8

1

0 1 2 3

tf
0

r/
R

0.2

-0.2

u
/U0

Fig. 4 Spatio-temporal velocity distribution measured for
300 mm2/s silicone oil in a cylinder oscillating at f0 = 1 Hz
frequency through an 80◦ angular amplitude

We processed the velocity distribution using the DFT

method, and obtained Fourier coefficients ak and bk as

radial profiles. Then a fifth-order polynomial fitting was

performed on the profiles with f = fc ≈ f0 to ensure a

smooth radial dependence. An unavoidable character-

istic of the UVP measurement is relatively large devi-

ations near the boundaries around r/R = 1. The de-

viations appear mainly in bk(r), and therefore we have

omitted these points in the fitting. The fitted curves ap-

proximate the plotted data well apart from data points

for bk near the cylinder wall. Following the process es-

tablished in the last section, the cost function, Eq. 27,

was calculated at each radial position in the range ν,

100 ≤ ν ≤ 500 and is displayed as a distribution over

the ν - r plane (Fig. 6). The local viscosity is taken

to be the local minimum of the cost function at each

radial position. The radial profiles of the cost function

form a “valley” with ν uniquely determined. This valley

is shallower in the inner region of the cylinder because

the amplitude of the velocity fluctuations is smaller and

information is not sufficient for the evaluation.

r/R

a
k
, 
b

k

ak

bk

0.2 0.4 0.6 0.8 1

-0.05

0

0.05

0.1

Fig. 5 Fifth-order polynomial fittings (white curve) of the
radial profiles for ak and bk, where red and blue plots repre-
sent the original discrete values of ak and bk, respectively
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0.8

1

r
/R

300200 400

ν [mm2/s]

> 0.008

< 0.001

F(r;ν)

0.004

0.002

Fig. 6 Gray-scale distribution of the cost function F (r; ν)

From the frequency-domain analysis, the radial pro-

file of ν was estimated (Fig. 7) using the polynomial

approximation and compared with ν estimated from a

phase-slope analysis on the same data given in Yoshida

et al. (2017). The local slope of the phase delay of the

velocity fluctuation with respect to the cylinder oscilla-

tion reflects the local viscosity, and comparing the phase

slopes obtained from the analytical solution, Eq. 10,

and experimental data yields the local kinematic vis-

cosity. Similar values were obtained although with de-

viations; ν given by the phase analysis exhibit large de-

viations in the interior of the cylinder, whereas that ob-

tained from the frequency-domain analysis yields simi-

lar values. The phase analysis also employs the Fourier

transform and suppresses the influence of measurement

error on the velocity fluctuations. Nevertheless, the phase

information extracted from very small velocity fluctua-

tions is not representative of the flow, and hence calcu-

lations using numerical differentials propagate errors. In

contrast, profiles of the Fourier coefficients at the main
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frequency retain almost all information in representing

the flow and thus this method provides an advantage

when analyzing viscometric data. Further, returning to

the original purpose of the study, the frequency-domain

analysis is applicable to linear viscoelastic analysis us-

ing rheological model. We remark that the evaluation

of the kinematic viscosity from the experimental data

of 300 mm2/s oil using the cost function in Eq. 11 is

unable to determine the local minimum of ν over the

range, 100 ≤ ν ≤ 500 even with POD filtering.

 present
 phase analysis

r/R

ν
 [

m
m

2
/s

]

0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

300 cSt

[Yoshida et al. (2017)]

Fig. 7 Radial profiles of the estimated kinematic viscosity
from a frequency-domain analysis (solid line) and for com-
parison a phase profile analysis (circles) from Yoshida et al.
(2017)

4.4 Linear viscoelastic analysis of bubble suspension

According to the same idea on the viscometry adopting

Fourier series expansion of u(r, t) (Eq. 23) and power se-

ries approximation on the Fourier coefficients (Eq. 28),

the cost function for the linear viscoelastic analysis in

Eq. 18 is modified into

Ff0(E,µ; r) =

k2∑
k=k1

(
A2
k +B2

k

)
, (31)

where

Ak(r) =

M∑
m=0

[−ρ∆ωkβmrm

+Γ (m2 − 1)(αm −∆ωkµβm/E)rm−2
]
, (32)

Bk(r) =

M∑
m=0

[ρ∆ωkαmr
m

+Γ (m2 − 1)(βm +∆ωkµαm/E)rm−2
]
. (33)

The algorithm is examined on an analysis of a poly-

acrylamide aqueous solution (1 wt%), which has shear-

rate-dependent viscosity and elasticity, to check its ap-

plicability for more complex fluids before performing

linear viscoelastic analysis of bubble suspensions. Spatio-

temporal velocity information was captured in the same

system of oscillating cylinder (see Fig. 1) that was also

used in our previous studies (Tasaka et al. (2015); Yoshida

et al. (2017)). The setting parameters for the oscilla-

tion are f0 = 1 Hz in the frequency and Θ = 90◦ in

the amplitude. For the analysis, the velocity data was

processed by DFT method to derive Fourier coefficients

ak(r) and bk(r) in Eqs. 32 and 33 corresponding to the

Fourier component of f = f0. Fifth-order power series

approximation is then adopted to approximate their ra-

dial profiles. In evaluation of the cost function in Eq. 31

for the linear viscoelastic analysis, the phase difference

in linear viscoelastic analysis δ is used as a parameter

instead of E. Viscosity µ and δ are obtained at each

radial position by the analysis as shown in Fig. 8; the

values are plotted against the amplitude of shear-rate

variations γ̇0, which is given from the Fourier coeffi-

cients and calculated using power series approximation

in Eq. 28 as

γ̇0 =

√√√√[ M∑
m=0

(m− 1)αmrm−1

]2
+

[
M∑
m=0

(m− 1)βmrm−1

]2
.

(34)

In the figure, the viscosity calculated by phase profile

analysis (Yoshida et al. (2017)) from the same veloc-

ity data is also plotted for comparison. The viscosity

evaluated by the linear viscoelastic analysis gradually
decreases with γ̇0, and expresses shear thinning charac-

teristics of the solution. Along the decrease of viscosity,

δ approaches to 90◦ meaning that the solution loses

elastic property toward pure viscous body.

We now come back to the linear viscoelastic anal-

ysis of a bubble suspension by the frequency domain

analysis established above. Fourier coefficient ak(r) and

bk(r) in Eqs. 32 and 33 are given by DFT method per-

formed on the velocity data of the bubble suspension

used in § 3.1. Then fifth-order power series approxima-

tion is performed on radial profiles of the coefficients

corresponding to f = fc ≈ f0 (1 Hz). The profiles are

approximated well as shown in Fig. 9. In the calculation

of the cost function, phase delay of the linear viscoelas-

ticity described in Eq. 8 is changed as a parameter in-

stead of E in range from 50◦ to 90◦ with increment of

0.1◦. Exploring range of µ was set around the original

viscosity of base liquid of the suspension, 1000 mm2/s

silicone oil, µ0 = 0.97 Pa·s, from 0.5 to 1.5 Pa·s with

increment of 0.005 Pa·s.
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Fig. 8 Variations of viscosity µ and phase difference in lin-
ear viscoelasticity δ with respect to shear rate γ̇ for 1 wt%
polyacrylamide aqueous solution, where µ calculated by the
phase profile analysis (Yoshida et al. (2017)) from the same
velocity data is also plotted

bk

ak

r/R

a
k
, 
b

k

0.2 0.4 0.6 0.8 1

-0.2

0

0.2

Fig. 9 Fifth-order polynomial fittings (white curve) of the
radial profiles for ak and bk obtained in the bubble suspen-
sion, where red and blue plots represent the original discrete
values of ak and bk, respectively

An example of the calculated cost function is shown

in Fig. 10 as distribution of F on δ − µ plane for r =

0.9R. The distribution is expressed in logarithmic gray
scale, and there is single local minimum point; values

of δ and µ are given as values on this point. At least

in the range of δ and µ we examined, the cost function

increases monotonically from the local minimum point,

and the values are uniquely given. For r/R < 0.9 the

local minimum point attaches to the boundary of δ =

90◦, but uniqueness of the solution is unchanged.

Results of estimations of δ and µ according to the

cost function calculated at each radial position from

r/R = 0.6 to 0.95 are summarized in Table 2. Elasticity

E is calculated through Eq. 8 with µ and f0 in cases

that δ 6= 90◦. |µ∗| denotes effective complex viscosity

defined as

|µ∗| = µ√
1 + (ωµ/E)2

. (35)

The linear viscoelastic analysis separated influences of

unsteady bubble deformations in the oscillating shear

flows on the momentum propagation into viscous and

F(δ, μ; r)

μ
 [

P
a·

s]

δ [deg]
6050 9070 80
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1.3

ar
b
it

ra
ry

 l
o
g
 s

ca
le

Fig. 10 Gray-scale distribution of the cost function,
F (δ, µ; r = 0.9R) for the bubble suspension

elastic contributions. In the table, δ takes 90◦ without a

region r/R ≥ 0.9, and the elastic contribution appears

in the region. This is reasonable because capillary num-

ber exceeds effectively the critical capillary number to

allow bubble deformations in this range, and the de-

formation bubbles existing nearby the wall show con-

siderable deformations (Tasaka et al. (2015)). In the

oscillating shear flows, the bubbles experience periodi-

cally strong shear and relaxation. The elastic effect may

be provided by restoring the original spherical shape in

the relaxation. Effective viscosity normalized by origi-

nal viscosity of the oil, |µ∗|/µ0, distributes around unity

within the deviation order of volume fraction of bub-

bles, 2% for r/R ≤ 0.8. This is in good agreement with

knowledge of effective viscosity for spherical bubbles.

Table 2 Evaluation results of viscosity µ, phase difference in
linear viscoelasticity δ, and elasticity E calculated from µ and
δ through Eq. 8 at different radial position r/R, where the
amplitude of local shear-rate variation γ̇0 is calculated from
the velocity data through Eq. 34, and |µ∗| indicates effective
viscosity normalized by the original viscosity value of the oil,
µ0 = 0.97 Pa·s

r/R γ̇0 [s−1] µ [Pa·s] δ [deg] E [Pa] |µ∗|/µ0

0.95 15.89 1.46 77.1 39.8 1.46
0.9 14.28 1.32 86.1 121.2 1.36
0.85 12.46 1.17 90.0 – 1.21
0.8 10.53 1.05 90.0 – 1.08
0.75 8.63 0.99 90.0 – 1.02
0.7 6.90 0.97 90.0 – 0.99
0.65 5.45 0.99 90.0 – 1.02
0.6 4.32 1.05 90.0 – 1.08
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5 Conclusion

To achieve a stable evaluation of the linear viscoelas-

ticity in bubble suspensions as complex multiphase flu-

ids using USR, we assessed the influence of measure-

ment noise enhancement in the evaluation of rheological

properties using the equation of motion with measure-

ment data of spatio-temporal velocity fluctuations. By

avoiding calculations of numerical differential using ve-

locity data, a frequency-domain analysis was proposed

for applications in linear viscoelastic analysis. By tak-

ing the Fourier transform of the equation of motion

and the constitutive equations (the rheological models),

time derivatives are converted to algebraic calculations,

and further, approximating the radial profiles of Fourier

coefficients by finite power series enables an evaluation

of the rheological properties without requiring calcu-

lation of numerical differentials. In rheology, this novel

combination of techniques was scrutinized using numer-

ical experiments by considering noise artificially gen-

erated in viscometric data. The present method pro-

vided better estimates of viscosity in comparison with

dealing with raw velocity data and POD filtering. The

technique was also applied to actual velocity data mea-

sured in 300 mm2/s silicone oil as a Newtonian fluid,

and the estimations were reasonable agreement with

previous results. The frequency-domain analysis was

then extended to the linear viscoelastic analysis and its

applicability was examined on polyacrylamide aqueous

solution, which is a shear thinning, viscoelastic fluid.

The analysis finally achieved separation of influences of

unsteady bubble deformation into viscous and elastic

contributions on the momentum propagation.

The algorithm proposed here is aptly applicable in

a wider range of velocity-profiling rheometry. And, it

may be able to support to evaluate, e.g., fluids taking

shear banding effects and solutions with distributions

of concentration.
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