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Linear Viscoelasticity of Colloidal Hard Sphere Suspensions near the Glass Transition
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The frequency-dependent viscoelastic shear modulus of concentrated suspensions of colloidal hard
spheres is shown to be strongly modified as the volume fraction approaches the glass transition.
The elastic or storage componef, becomes larger than the viscous or loss compor@ft, The
frequency dependence 6’ develops a plateau while that 6" develops a minimum. We propose
a physical model to account for these data, using a description of the glasslike behavior based on
mode-coupling theory, and a description of the high-frequency behavior based on hydrodynamic flow
calculations.

PACS numbers: 83.50.Fc, 64.70.Pf, 82.70.Dd, 83.70.Hq

Suspensions of solid particles with an interaction po<les leads to a liquid-glass transition @&t = 0.56 [5].
tential determined solely by excluded volume, or hardLess monodisperse spheres do not exhibit the ordered
spheres, represent one of the most important classes sblid phase but do form colloidal glasses, albeit with a
colloidal dispersions [1]. Understanding their behaviorsomewhat differentp, [6]. The liquid-glass transition
is an essential first step in understanding more complei hard sphere colloids has been studied extensively with
suspensions of technological significance. Of particulatight scattering [7]. However, a colloidal glass is a solid,
importance are their rheological properties, as they coneven though it exists at volume fractions well below ran-
trol the flow behavior as well as the viscosity and thedom close packing. As aresult, the glass transition should
elasticity of the suspension. A key measure of these arkave profoundly affected the linear viscoelasticity, but this
the linear viscoelastic moduli which determine the re-has never been investigated.
sponse of the suspension to small oscillatory shears which In this Letter we show that the liquid and glass phase be-
weakly perturb the equilibrium structure. At low frequen- havior of hard spheres dramatically affects their viscoelas-
cies, shear-induced perturbations are relaxed by Browniaticity; as ¢ approaches the colloidal glass transition, the
motion; this dissipates energy, and the suspension is prstructure of the suspension results in a strongly frequency
dominantly viscous. However, at higher frequencies, thend volume fraction dependent contribution to both the
perturbations can no longer be relaxed in the period of thetorage modulug;’(»), and the loss modulu&”(w). To
oscillation; the change in the equilibrium configuration re-account for this behavior, we present a physical model that
sults in energy storage and hence in an increase in theombines a description of the onset of the glass phase using
elastic component. The characteristic frequency is determode-coupling formalism with the high-frequency contri-
mined by the ratio of the convection rate due to the sheabution of Brownian motion. The observed behavior pre-
to the diffusional relaxation rate, or the Peclet numberludes the simple scaling of the data reported previously,
Pe = a’y/D,, wherea is the particle radiusy the shear and directly probes the effects of the phase behavior.
rate, andD, the short-time diffusion coefficient which is  We used suspensions of uncoated silica spheres in ethy-
dependent on the particle volume fractiah, The mag- lene glycol, which interact as hard spheres [3]. Their poly-
nitude of the elasticity is set by the temperaturg] /a®,  dispersity was about 20%, which prevented crystallization;
the only energy density scale in the system. Both the vishowever, they could form a colloidal glass. Their hy-
cosity and the elasticity should diverge as the volume fracdrodynamic radius was measuredaas- 0.21 wm, using
tion approaches random close packig = 0.64, where  dynamic light scattering from a dilute suspension. Mea-
the packing constraints no longer allow for particle mo-surements oiG'(w) and G"(w) were performed with a
tion. Nevertheless, within this picture, data for the stor-strain controlled rheometer, using a double wall Couette
age and loss moduli for differert and7 should all scale geometry, and al' = 23 °C, where the solvent viscosity
onto a unique pair of curves. Exactly this sort of behaviowasny = 17 cP. The most concentrated suspension was
has been reported in earlier important studies of the linegorepared by centrifugation and had a volume fraction of
viscoelasticity of hard spheres [2,3]. ¢ = 0.56, determined with pycnometric and vacuum des-

While very basic and appealing, this picture neglectsccation techniques. We lowerehl by diluting with pure
an essential feature of hard spheres: their phase behasthylene glycol supernatant recovered from the centrifu-
ior. Highly monodisperse particles undergo an entropigation. Although samples of higher concentration could
cally driven liquid-solid transition [4], forming structures be obtained by further centrifugation, their very long re-
with long range order awp = 0.49. When quenched laxation times made them impossible to load in the cell,
from a disordered configuration, crowding of the parti-precluding their study.
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FIG. 1. The dependence of the storage (solid symbols) and S
loss (open symbols) moduli on the maximum applied strain E5
for several different volume fractions. The measurements are g 1
performed at a frequency of 1 r&&l Note the large increase = 10
with ¢ and the dominance of the storage modulus at lgh 3
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measured at a frequency @ = 1 rad/s, are shown
in Fig. 1 for several different volume fractions. For FIG. 2. The frequency dependences of the (a) storage and
sufiienty mal sains, ot andG are ndeperdent (1) 25 o0, (1, SHEr, WU TaCtee A e
of y. We obsgr\{e a dramatic onset of a dominant Storag% the linear regime. pThe solid lines repregent the fit to the
modulus as¢ is increased over a very small range. At ,o4el discussed in the text.
¢ = 0.50, the loss modulus is larger than the storage
modulus, and the suspension is primarily viscous. By
contrast, at¢ = (.56, the Storage modulus is |arger, and fluctuations reflects the localized motion of the individual
the suspension is dominantly elastic. Furthermore, thépheres, entailing the full details of the hydrodynamic
strain where the response becomedependent decreases interactions. However, at longer times particles are
with increasing¢. In addition, for the largerp, the trapped in cages formed by their neighbors. Belpw
apparent loss modulus increases, exceeding the storafite cages slowly break up, making the system ergodic.
modulus at highery, indicating that the elastic behavior By contrast, abovep,, the cages cannot break up, and
is limited to low strains. These results underscore théhe system is nonergodic. Changes in the configuration
importance of a sufficiently low strain to ensure a linearof these cages provides a mechanism for energy storage
response. and dissipation, contributing to the moduli; the evolution
The frequency dependence®@f(w) andG”(w) for dif- of these cages determines the frequency dependence. This
ferent¢ is shown in Figs. 2(a) and 2(b), respectively. At sort of particle dynamics is observed in these samples with
the lower ¢, G'(w) is dominant, and both moduli in- diffusing wave spectroscopy [8].
crease with frequency. However, dsincreasesG/(w) To describe the cage dynamics, we use the formal-
begins to dominate over an extended range of frequenciei$m of mode-coupling theory [9,10], which describes light
moreover, it develops a plateau where it varies only venypcattering data from hard spheres near [7]. Within
slowly with frequency, whileG”(w) exhibits a definite mode-coupling theory, the cage dynamics are described
and reproducible minimum. At higher frequencies, bothby the decay. We take advantage of a feature predicted
moduli begin to increase, with”(w) rising more sharply, by mode-coupling theory neap,: The temporal auto-
ultimately overtakingG”(w). This behavior is dramati- correlation functions of all variables coupled to density
Ca”y different from the Sca”ng form previous|y reported_ fluctuations are identical in form. Thus we assume that
To understand the data, we develop a physical modédhe stress autocorrelation function has the same functional
that incorporates the relevant features of the scalindorm as the density autocorrelation function that accounts
picture, but also includes the consequences of the phader the light scattering data, and use the generic, asymp-
behavior of the hard spheres. We hypothesize that thi®tic mode-coupling form for thgg regime on the liquid
increase in the elasticity and the plateau behavior ofide of¢, [7,9],
G'(w) reflects the effects of the approach to the colloidal PN A\
glass transition a,. The essential physics that mustbe  C..(1) = c + hT-,-CO—|:<—> — B<—> } @
included describes the relaxation of density fluctuations of te te
the spheres, which has been probed with light scatteringlere the mode-coupling parameters include the nonergod-
[7]. At very short times, the relaxation of these densityicity parameterf¢_, the critical amplitude and scalg,
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andc,, and thegB-scaling time,t,. Mode-coupling the- whereI is the gamma function. The plateau modulus,
ory places significant constraints on the behavior of thes&p, = Gyf¢,, contributes only toG'(w) and represents
parameters; it predicts th#f, andi,, are¢ independent, the overall magnitude of the near-glass elasticity. More-
while ¢, ~ ¢'/? andt, ~ o'/?%) where the separation over, as expected from the mode-coupling description, the
parameter isoc = (¢, — ¢)/¢,. It also predictsa’ =  storage modulus has an inflection point at the plateau
0.301, b’ = 0.545, and B = 0.963 for hard spheres [9]. value, while the loss modulus has a minimum; the fre-
The near-glass contribution to the complex shear moduluguency of these is set by/t,. The viscoelastic ampli-

is given byG(w) = GoliwC; (w)], whereC; (w) isthe  tude,G, = Goh,,c,, determines the degree of variation
unilateral complex Fourier transform of the stress autocoref G'(w) about its plateau value and the magnitude of
relation function, and5, is the thermodynamic derivative G"(w) at the minimum. To compare this model with
of the stress with respect to the strain, which sets the scaleur data, we simultaneously fit boii’(w) and G"(w)

of the stress relaxation. The real and imaginary parts dby Egs. (3) and (4) for each volume fraction, usifg,
G,(w) contribute to the storage and loss moduli, respec&,, t,, Dy, and 7. as fitting parameters. As shown by
tively. the solid lines in Fig. 2, excellent agreement is obtained

The high-frequency behavior is not described withinfor virtually all of the data; in particular, this model cap-
mode-coupling formalism. Instead, we incorporate thetures correctly the plateau behavior observeditw).
effects of energy storage due to Brownian motion by using Although our model provides an excellent description
the form calculated for a diffusional boundary layer; thisof the form of the data, it does possess many fitting
ignores lubrication effects, which will ultimately cau6¢  parameters. Thus an additional critical test of its validity
to reach a constant plateau asincreases [11]. Since is the ¢ dependence of these parameters; the physics
our highest normalized frequencies are large’/D, ~  of the diffusional boundary layer and mode-coupling
10! -10%, we consider only the high-frequency asymptotictheory places severe constraints on their behavior. The
form predicted by flow calculations [11] and by kinetic high-frequency behavior is dominated ky. and Dy; in
theory [12], fact, the data cannot be adequately fit without including

, 3 kT their contribution. However, theirp dependence is

Gp(w) = ;?d’zg(za’d’)[w”’]l/z’ @ known independently from theoretical pF;edictions and
where 7, = a*/D; is the diffusional time determined experimental measurements of the viscosity and self-
by the ¢-dependent short-time diffusion coefficient. For diffusion coefficients. In Fig. 3(a), we plajy/n- (open
these high volume fractions, we approximate the rapoints) and D,/D, (solid points) as functions ofp,
dial pair distribution function at contact by(2a, ¢) =
0.78/(0.64 — ¢), consistent with computer simulations
that indicate a divergence at random close packing [1,13]. 0.15
Physically,G},(w) reflects the additional driving force for
diffusional motion that arises from the hard sphere inter-
action potential, which prevents the particles from touch-
ing when the shear makes them approach their neighbors.
Because of causality, the Kramers-Kronig relations re- R
quire a similar contribution to the loss moduldgy (w) = R | ~8 (b)
Gp(w). We must also include the contribution of the .
high-frequency suspension viscositys (w) = nxw.

To obtain the complete elastic modulus, we sum the
individual contributions; this implicitly assumes that the
individual stress autocorrelation functions are statistically
independent, reflecting their significantly different fre-
quencies. We obtain

0.1}
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¢
/ 3) FIG. 3. The ¢ dependence of the parameters obtained by
G'(w) = GU[I‘(I —d) Sin(ﬂ)(wtg)a’ the fit to the model. (ayo/n. (open circles) andD,/Dy
2/ (solid squares); the solid line is a published prediction of the
N [Th —p viscosity [15]. (b)(G,/Gp)? (solid diamonds) andz,/z,)**
+BI(1 + b )sm( 2 >(“’t0) } (open diamonds), where, = 27 sec, with fits to the linear
dependence expected from mode-coupling theory, giing=
+ Gh(w) + new, (4)  0.58. (c) The plateau moduluSp.
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where Dy = kgT /677 m0a. They are nearly identical, as is approached. Moreover, they show that a single param-
expected over this range @ [14]; moreover, they are eter, Pe, is not sufficient to scale the data for@lland
consistent with independent measurements and computé&r The temperature dependence ®§ and G;, should
simulations forny/n. [15], as shown by the solid line. depend primarily on that of;.. which controlsD; and
Thus we conclude that the contributions of the diffusionalhence that time scale, consistent with the simple scaling.
boundary layer and the suspension viscosity included iy contrast, the contribution of the near-glass structure
our model correctly describe the high-frequency behaviodepends on the relaxation of cages having much larger
of the data. length scales, and this could conceivably have a very
The remaining three parameters reflect the contributiodlifferent temperature dependence. This may account for
of the mode-coupling theory to the viscoelastic moduluswvhy the behavior reported here was not observed in pre-
and thus should be subject to the constraints of its previous experiments [2,3], which investigated the viscoelas-
dictions. At the lowest volume fraction, the contribution tic behavior at higher frequencies or lower temperatures.
of the near-glass modulus is negligible. However, at thd=inally, while our physical model provides an excellent
higher volume fractions, we find that bofhy andG, in-  account of the data, it is nonetheless a phenomenological
crease dramatically witkh. Nevertheless, mode-coupling model, since the mode-coupling contribution is based on
theory predicts that thé dependence of their ratio is de- an analogy to the density correlation function. Thus these
termined by(G,/Gp)* ~ ¢2 ~ o, and thus should go data do not constitute a test of mode-coupling theory.
linearly to zero asp approachesp,. This is indeed ob- Nevertheless, the success of our model will, we hope, pro-
served, as shown in Fig. 3(b), where we plot thede- vide the impetus for more microscopic calculations of the
pendence ofGy/Gp)* with solid points. Furthermore, shear viscoelasticity predicted by mode-coupling theory
mode-coupling theory predicts thgt?* ~ o below the  for hard sphere suspensions. This would then provide an
glass transition. Thus in Fig. 3(b), we plot with openimportant additional test of the validity of the theory.
points the¢ dependence ofr/t,) >, where we have We have benefited from discussions with Herman
takenry, = 27 sec for convenience; again, the predictedCummins, Wolfgang Goétze, Bill Russel, Rudy Klein, and
linear decrease is observed. These data are consisteédtott Milner. This work was supported in part by NASA.
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each parameter. We emphasize, however, that uncertainty
in the fitting parameters, and in our knowledge of the eX- (1] w.B. Russel, D.A. Saville, and W.R. Schowaltepl-
act volume fraction, preclude a precise determination of  |oidal Dispersions (Cambridge University, Cambridge,
¢, and comparison to other systems. Nevertheless, these 1989).
results support our hypothesis that the low-frequency be-[2] J.C. van der Werff, C.G. de Kruif, C. Blom, and J.
havior of the viscoelastic moduli reflect the approach to Mellema, Phys. Rev. 89, 795 (1989).
glass transition and are correctly modeled by the predic-[3] T. Shikata and D.S. Pearson, J. Rhe38, 601 (1994).
tions of mode-coupling theory. [4] P.N. Pusey and W. van Megen, Nature (Londdap, 340

Finally, we also show in Fig. 3(c) the dependence (1986). d h
of the plateau modulusG, = Gof<,. It displays the [5] P.N. Pusey and W. van Megen, Phys. Rev. L8%.2083

. . 1987).
expected behavior; it goes to zero @sdecreases, and [6] I(E Ba?tsch, M. Antonietti, W. Schupp, and H. Sillescu, J.

diverges with increasingb. We expectGp to depend Phys. Chem97, 3950 (1992).
on the amount of free volume in the system. Thus it 7] w. van Meger; and S.M. Underwood, Phys. Rev4€
should diverge atp. rather than¢,, but unfortunately 4206 (1994).

the experimental uncertainty ih, precludes an accurate [8] T.G. Mason and D.A. Weitz, Phys. Rev. Le®t4, 1250
assessment of this. We note, however, that the decrease (1995).

in the maximumry for linear moduli exhibited in Fig. 1  [9] W. Gotze and L. Sjogren, Rep. Prog. Ph§5, 241 (1992).
suggests a vanishing free volume. There is one theoreticii0] H.Z. Cummins, G. Li, W.M. Du, and J. Hernandez,
suggestion that the zero frequency modulus above the Physica (Amsterdang04A, 169 (1994).

glass transition should depend on the derivative of thé!1l R-A. Lionberger and W.B. Russel, J. Rhe@B, 1885

o - (1994).
(r:a(ilglctdlstlbgtlo?lgijnc_tllz?s,dggaﬁii/ﬂr,mein]l[[uz;tled Ste [12] 1. M. de Schepper, H.E. Smorenburg, and E. G. D. Cohen,
ontact, r = Za : P on might aiso Phys. Rev. Lett70, 2178 (1993).

expected to account foGy near ¢,; however, the¢ 131 | v woodcock, Ann. N.Y. Acad. ScB71, 274 (1981).

dependence of this derivative is not known. ~ [14] E.G.D. Cohen and I.M. de Schepper (private communi-
Our data strongly suggest that the phase behavior of ~ cation).

hard spheres has a pronounced effect on their viscoelastigs] A.J.C. Ladd, J. Phys. Cher@i3, 3484 (1990).
ity, which is dramatically modified as the glass transition[16] J.F. Brady, J. Phys. Cher9, 567 (1993).

2773



