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Linear Viscoelasticity of Colloidal Hard Sphere Suspensions near the Glass Transition
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The frequency-dependent viscoelastic shear modulus of concentrated suspensions of colloidal hard
spheres is shown to be strongly modified as the volume fraction approaches the glass transition.
The elastic or storage component,G0, becomes larger than the viscous or loss component,G00. The
frequency dependence ofG0 develops a plateau while that ofG00 develops a minimum. We propose
a physical model to account for these data, using a description of the glasslike behavior based on
mode-coupling theory, and a description of the high-frequency behavior based on hydrodynamic flow
calculations.

PACS numbers: 83.50.Fc, 64.70.Pf, 82.70.Dd, 83.70.Hq
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Suspensions of solid particles with an interaction p
tential determined solely by excluded volume, or ha
spheres, represent one of the most important classe
colloidal dispersions [1]. Understanding their behavi
is an essential first step in understanding more comp
suspensions of technological significance. Of particu
importance are their rheological properties, as they co
trol the flow behavior as well as the viscosity and th
elasticity of the suspension. A key measure of these
the linear viscoelastic moduli which determine the r
sponse of the suspension to small oscillatory shears wh
weakly perturb the equilibrium structure. At low frequen
cies, shear-induced perturbations are relaxed by Brown
motion; this dissipates energy, and the suspension is p
dominantly viscous. However, at higher frequencies, t
perturbations can no longer be relaxed in the period of
oscillation; the change in the equilibrium configuration r
sults in energy storage and hence in an increase in
elastic component. The characteristic frequency is det
mined by the ratio of the convection rate due to the she
to the diffusional relaxation rate, or the Peclet numb
Pe ­ a2 ÙgyDs, wherea is the particle radius,Ùg the shear
rate, andDs the short-time diffusion coefficient which is
dependent on the particle volume fraction,f. The mag-
nitude of the elasticity is set by the temperature,kBTya3,
the only energy density scale in the system. Both the v
cosity and the elasticity should diverge as the volume fra
tion approaches random close packingfc ø 0.64, where
the packing constraints no longer allow for particle m
tion. Nevertheless, within this picture, data for the sto
age and loss moduli for differentf andT should all scale
onto a unique pair of curves. Exactly this sort of behavi
has been reported in earlier important studies of the lin
viscoelasticity of hard spheres [2,3].

While very basic and appealing, this picture neglec
an essential feature of hard spheres: their phase beh
ior. Highly monodisperse particles undergo an entrop
cally driven liquid-solid transition [4], forming structures
with long range order atf ø 0.49. When quenched
from a disordered configuration, crowding of the part
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cles leads to a liquid-glass transition atfg ø 0.56 [5].
Less monodisperse spheres do not exhibit the ordered
solid phase but do form colloidal glasses, albeit with a
somewhat differentfg [6]. The liquid-glass transition
in hard sphere colloids has been studied extensively with
light scattering [7]. However, a colloidal glass is a solid,
even though it exists at volume fractions well below ran-
dom close packing. As a result, the glass transition should
have profoundly affected the linear viscoelasticity, but this
has never been investigated.

In this Letter we show that the liquid and glass phase be-
havior of hard spheres dramatically affects their viscoelas-
ticity; as f approaches the colloidal glass transition, the
structure of the suspension results in a strongly frequency
and volume fraction dependent contribution to both the
storage modulus,G0svd, and the loss modulus,G00svd. To
account for this behavior, we present a physical model that
combines a description of the onset of the glass phase using
mode-coupling formalism with the high-frequency contri-
bution of Brownian motion. The observed behavior pre-
cludes the simple scaling of the data reported previously,
and directly probes the effects of the phase behavior.

We used suspensions of uncoated silica spheres in ethy-
lene glycol, which interact as hard spheres [3]. Their poly-
dispersity was about 20%, which prevented crystallization;
however, they could form a colloidal glass. Their hy-
drodynamic radius was measured asa ­ 0.21 mm, using
dynamic light scattering from a dilute suspension. Mea-
surements ofG0svd and G00svd were performed with a
strain controlled rheometer, using a double wall Couette
geometry, and atT ­ 23 ±C, where the solvent viscosity
wash0 ­ 17 cP. The most concentrated suspension was
prepared by centrifugation and had a volume fraction of
f ø 0.56, determined with pycnometric and vacuum des-
iccation techniques. We loweredf by diluting with pure
ethylene glycol supernatant recovered from the centrifu-
gation. Although samples of higher concentration could
be obtained by further centrifugation, their very long re-
laxation times made them impossible to load in the cell,
precluding their study.
© 1995 The American Physical Society
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FIG. 1. The dependence of the storage (solid symbols)
loss (open symbols) moduli on the maximum applied str
for several different volume fractions. The measurements
performed at a frequency of 1 radys. Note the large increas
with f and the dominance of the storage modulus at highf.

Typical results for the storage (closed points) and l
(open points) moduli, as a function of applied staing

measured at a frequency ofv ­ 1 radys, are shown
in Fig. 1 for several different volume fractions. F
sufficiently small strains, bothG0 andG00 are independen
of g. We observe a dramatic onset of a dominant stor
modulus asf is increased over a very small range.
f ø 0.50, the loss modulus is larger than the stora
modulus, and the suspension is primarily viscous.
contrast, atf ø 0.56, the storage modulus is larger, a
the suspension is dominantly elastic. Furthermore,
strain where the response becomesg dependent decrease
with increasingf. In addition, for the largerf, the
apparent loss modulus increases, exceeding the sto
modulus at higherg, indicating that the elastic behavio
is limited to low strains. These results underscore
importance of a sufficiently low strain to ensure a line
response.

The frequency dependence ofG0svd andG00svd for dif-
ferentf is shown in Figs. 2(a) and 2(b), respectively.
the lower f, G00svd is dominant, and both moduli in
crease with frequency. However, asf increases,G0svd
begins to dominate over an extended range of frequen
moreover, it develops a plateau where it varies only v
slowly with frequency, whileG00svd exhibits a definite
and reproducible minimum. At higher frequencies, b
moduli begin to increase, withG00svd rising more sharply,
ultimately overtakingG00svd. This behavior is dramati
cally different from the scaling form previously reported

To understand the data, we develop a physical mo
that incorporates the relevant features of the sca
picture, but also includes the consequences of the p
behavior of the hard spheres. We hypothesize that
increase in the elasticity and the plateau behavior
G0svd reflects the effects of the approach to the colloi
glass transition atfg. The essential physics that must
included describes the relaxation of density fluctuation
the spheres, which has been probed with light scatte
[7]. At very short times, the relaxation of these dens
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FIG. 2. The frequency dependences of the (a) storage and
(b) loss moduli for different volume fractions. All the
measurements were performed at sufficiently low strains to be
in the linear regime. The solid lines represent the fit to the
model discussed in the text.

fluctuations reflects the localized motion of the individual
spheres, entailing the full details of the hydrodynamic
interactions. However, at longer times particles are
trapped in cages formed by their neighbors. Belowfg,
the cages slowly break up, making the system ergodic.
By contrast, abovefg, the cages cannot break up, and
the system is nonergodic. Changes in the configuration
of these cages provides a mechanism for energy storage
and dissipation, contributing to the moduli; the evolution
of these cages determines the frequency dependence. Thi
sort of particle dynamics is observed in these samples with
diffusing wave spectroscopy [8].

To describe the cage dynamics, we use the formal-
ism of mode-coupling theory [9,10], which describes light
scattering data from hard spheres nearfg [7]. Within
mode-coupling theory, the cage dynamics are described
by theb decay. We take advantage of a feature predicted
by mode-coupling theory nearfg: The temporal auto-
correlation functions of all variables coupled to density
fluctuations are identical in form. Thus we assume that
the stress autocorrelation function has the same functional
form as the density autocorrelation function that accounts
for the light scattering data, and use the generic, asymp-
totic mode-coupling form for theb regime on the liquid
side offg [7,9],

Cttstd ­ fC
tt 1 httcs

"µ
t

ts

∂2a0

2 B

µ
t

ts

∂b0
#

. (1)

Here the mode-coupling parameters include the nonergod-
icity parameter,fc

tt , the critical amplitude and scale,htt
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andcs , and theb-scaling time,ts . Mode-coupling the-
ory places significant constraints on the behavior of the
parameters; it predicts thatfc

tt andhtt aref independent,
while cs , s1y2 andts , s1ys2a0d, where the separation
parameter iss ­ sfg 2 fdyfg. It also predictsa0 ­
0.301, b0 ­ 0.545, and B ­ 0.963 for hard spheres [9].
The near-glass contribution to the complex shear modu
is given byGp

gsvd ­ G0fivCp
ttsvdg, whereCp

ttsvd is the
unilateral complex Fourier transform of the stress autoc
relation function, andG0 is the thermodynamic derivative
of the stress with respect to the strain, which sets the sc
of the stress relaxation. The real and imaginary parts
Gp

gsvd contribute to the storage and loss moduli, respe
tively.

The high-frequency behavior is not described with
mode-coupling formalism. Instead, we incorporate t
effects of energy storage due to Brownian motion by usi
the form calculated for a diffusional boundary layer; th
ignores lubrication effects, which will ultimately causeG0

to reach a constant plateau asv increases [11]. Since
our highest normalized frequencies are large,va2yDs ,
101 –102, we consider only the high-frequency asymptot
form predicted by flow calculations [11] and by kineti
theory [12],

G0
Dsvd ­

3
5p

kBT
a3

f2gs2a, fdfvtDg1y2, (2)

where tD ­ a2yDs is the diffusional time determined
by thef-dependent short-time diffusion coefficient. Fo
these high volume fractions, we approximate the r
dial pair distribution function at contact bygs2a, fd ­
0.78ys0.64 2 fd, consistent with computer simulation
that indicate a divergence at random close packing [1,1
Physically,G0

Dsvd reflects the additional driving force for
diffusional motion that arises from the hard sphere inte
action potential, which prevents the particles from touc
ing when the shear makes them approach their neighb
Because of causality, the Kramers-Kronig relations r
quire a similar contribution to the loss modulus,G00

Dsvd ­
G0

Dsvd. We must also include the contribution of th
high-frequency suspension viscosity,G00

S svd ­ h`v.
To obtain the complete elastic modulus, we sum t

individual contributions; this implicitly assumes that th
individual stress autocorrelation functions are statistica
independent, reflecting their significantly different fre
quencies. We obtain

G0svd ­ GP 1 Gs

∑
Gs1 2 a0d cos

µ
pa0

2

∂
svtsda0

2 BGs1 1 b0d cos

µ
pb0

2

∂
svtsd2b0

∏
1 G0

Dsvd ,

(3)

G00svd ­ Gs

∑
Gs1 2 a0d sin

µ
pa0

2

∂
svtsda0

1 BGs1 1 b0d sin

µ
pb0

2

∂
svtsd2b0

∏
1 G00

Dsvd 1 h`v, (4)
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where G is the gamma function. The plateau modulus,
GP ­ G0fc

tt , contributes only toG0svd and represents
the overall magnitude of the near-glass elasticity. More-
over, as expected from the mode-coupling description, the
storage modulus has an inflection point at the plateau
value, while the loss modulus has a minimum; the fre-
quency of these is set by1yts. The viscoelastic ampli-
tude,Gs ­ G0httcs, determines the degree of variation
of G0svd about its plateau value and the magnitude of
G00svd at the minimum. To compare this model with
our data, we simultaneously fit bothG0svd and G00svd
by Eqs. (3) and (4) for each volume fraction, usingGP ,
Gs , ts , Ds, andh` as fitting parameters. As shown by
the solid lines in Fig. 2, excellent agreement is obtained
for virtually all of the data; in particular, this model cap-
tures correctly the plateau behavior observed inG0svd.

Although our model provides an excellent description
of the form of the data, it does possess many fitting
parameters. Thus an additional critical test of its validity
is the f dependence of these parameters; the physic
of the diffusional boundary layer and mode-coupling
theory places severe constraints on their behavior. Th
high-frequency behavior is dominated byh` and Ds; in
fact, the data cannot be adequately fit without including
their contribution. However, theirf dependence is
known independently from theoretical predictions and
experimental measurements of the viscosity and self
diffusion coefficients. In Fig. 3(a), we ploth0yh` (open
points) and DsyD0 (solid points) as functions off,

FIG. 3. The f dependence of the parameters obtained by
the fit to the model. (a)h0yh` (open circles) andDsyD0
(solid squares); the solid line is a published prediction of the
viscosity [15]. (b) sGsyGPd2 (solid diamonds) andst0ytsd2a0

(open diamonds), wheret0 ­ 2p sec, with fits to the linear
dependence expected from mode-coupling theory, givingfg ø
0.58. (c) The plateau modulusGP .
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whereD0 ­ kBTy6ph0a. They are nearly identical, a
expected over this range off [14]; moreover, they are
consistent with independent measurements and comp
simulations forh0yh` [15], as shown by the solid line
Thus we conclude that the contributions of the diffusion
boundary layer and the suspension viscosity included
our model correctly describe the high-frequency behav
of the data.

The remaining three parameters reflect the contribut
of the mode-coupling theory to the viscoelastic modu
and thus should be subject to the constraints of its p
dictions. At the lowest volume fraction, the contributio
of the near-glass modulus is negligible. However, at
higher volume fractions, we find that bothGP andGs in-
crease dramatically withf. Nevertheless, mode-couplin
theory predicts that thef dependence of their ratio is de
termined bysGsyGPd2 , c2

s , s, and thus should go
linearly to zero asf approachesfg. This is indeed ob-
served, as shown in Fig. 3(b), where we plot thef de-
pendence ofsG0yGPd2 with solid points. Furthermore
mode-coupling theory predicts thatt22a0

s , s below the
glass transition. Thus in Fig. 3(b), we plot with ope
points thef dependence ofst0ytsd22a0

, where we have
taken t0 ­ 2p sec for convenience; again, the predict
linear decrease is observed. These data are consi
with fg ø 0.58, as shown by the solid lines which ar
fits with the value offg constrained to be the same fo
each parameter. We emphasize, however, that uncerta
in the fitting parameters, and in our knowledge of the e
act volume fraction, preclude a precise determination
fg and comparison to other systems. Nevertheless, th
results support our hypothesis that the low-frequency
havior of the viscoelastic moduli reflect the approach
glass transition and are correctly modeled by the pred
tions of mode-coupling theory.

Finally, we also show in Fig. 3(c) thef dependence
of the plateau modulus,GP ­ G0fc

tt . It displays the
expected behavior; it goes to zero asf decreases, and
diverges with increasingf. We expectGP to depend
on the amount of free volume in the system. Thus
should diverge atfc rather thanfg, but unfortunately
the experimental uncertainty infg precludes an accurat
assessment of this. We note, however, that the decr
in the maximumg for linear moduli exhibited in Fig. 1
suggests a vanishing free volume. There is one theore
suggestion that the zero frequency modulus above
glass transition should depend on the derivative of
radial distribution function,dgsr , fdydr, evaluated at
contact, r ­ 2a [16]. This prediction might also be
expected to account forG0 near fg; however, thef

dependence of this derivative is not known.
Our data strongly suggest that the phase behavio

hard spheres has a pronounced effect on their viscoela
ity, which is dramatically modified as the glass transiti
ter
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is approached. Moreover, they show that a single param
eter, Pe, is not sufficient to scale the data for allf and
T . The temperature dependence ofG0

D and G00
D should

depend primarily on that ofh` which controlsDs and
hence that time scale, consistent with the simple scaling
By contrast, the contribution of the near-glass structure
depends on the relaxation of cages having much large
length scales, and this could conceivably have a very
different temperature dependence. This may account fo
why the behavior reported here was not observed in pre-
vious experiments [2,3], which investigated the viscoelas-
tic behavior at higher frequencies or lower temperatures.
Finally, while our physical model provides an excellent
account of the data, it is nonetheless a phenomenologica
model, since the mode-coupling contribution is based on
an analogy to the density correlation function. Thus these
data do not constitute a test of mode-coupling theory.
Nevertheless, the success of our model will, we hope, pro-
vide the impetus for more microscopic calculations of the
shear viscoelasticity predicted by mode-coupling theory
for hard sphere suspensions. This would then provide an
important additional test of the validity of the theory.
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Cummins, Wolfgang Götze, Bill Russel, Rudy Klein, and
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