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LINEAR WEINGARTEN HYPERSURFACES
IN A UNIT SPHERE

Haizhong Li, Young Jin Suh, and Guoxin Wei

Abstract. In this paper, we have considered linear Weingarten hyper-
surfaces in a sphere and obtained some rigidity theorems. The purpose
of this paper is to give some extension of the results due to Cheng-Yau
[3] and Li [7].

1. Introduction

Let M be a hypersurface in an (n + 1)-dimensional unit sphere Sn+1(1). As
is well known to us, there are many rigidity results for hypersurfaces in a unit
sphere with constant mean curvature or with constant scalar curvature. Now
we want to introduce an well-known theorem due to Cheng-Yau [3] as follows:

Theorem 1.1. Let M be an n-dimensional compact hypersurface in a unit
sphere Sn+1(1). If

(1) M has nonnegative sectional curvature,
(2) the normalized scalar curvature r of M is constant and r ≥ 1,

then M is either totally umbilical, or M = Sn−k(a) × Sk(
√

1− a2), 1 ≤ k ≤
n− 1.

On the other hand, Li [7] studied some hypersurfaces in a unit sphere with
scalar curvature proportional to mean curvature and proved the following the-
orem.

Theorem 1.2. Let M be an n-dimensional compact hypersurface in a unit
sphere Sn+1(1). If

(1) M has nonnegative sectional curvature,
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(2) the normalized scalar curvature r of M is proportional to mean curvature
H of M , that is,

r = aH, a2 ≥ 4n

n− 1
,

where a is a constant, then M is either totally umbilical, or M = Sn−k(a) ×
Sk(

√
1− a2), 1 ≤ k ≤ n− 1.

Now let us introduce a notion for linear Weingarten hypersurfaces in an
(n + 1)-dimensional unit sphere Sn+1(1) as follows:

Definition 1.1. Let M be a hypersurface in an (n+1)-dimensional unit sphere
Sn+1(1). We call M a linear Weingarten hypersurface if cR+dH+e = 0, where
c, d and e are constants such that c2 + d2 6= 0, R and H respectively denote
the scalar curvature and the mean curvature of M .

Remark 1.1. When the constant d = 0 in Definition 1.1, a linear Weingarten hy-
persurface M reduces to a hypersurface with constant scalar curvature. When
the constant c = 0 in Definition 1.1, a linear Weingarten hypersurface M re-
duces to a hypersurface with constant mean curvature. In such a sense, the
linear Weingarten hypersurfaces can be regarded as a natural generalization of
hypersurfaces with constant scalar curvature or with constant mean curvature.

By investigating Cheng-Yau’s operator ¤ given in [3] and using some new
estimations, we want to study linear Weingarten hypersurfaces in a unit sphere
as follows:

Theorem 1.3. Let M be an n-dimensional compact hypersurface in a unit
sphere Sn+1(1). If

(1) M has nonnegative sectional curvature,
(2) the normalized scalar curvature r and the mean curvature H of M sat-

isfies the following conditions: r = aH + b, (n− 1)a2 − 4n + 4nb ≥ 0, then M

is either totally umbilical, or M = Sn−k(a)× Sk(
√

1− a2), 1 ≤ k ≤ n− 1.

Remark 1.2. Since R = n(n− 1)r, a hypersurface M in Theorem 1.3 satisfying
r = aH + b is just a linear Weingarten hypersurface in Definition 1.1.

Remark 1.3. When the constant a in above identically vanishes, our Theo-
rem 1.3 reduces to Theorem 1.1. When the constant b vanishes, our Theo-
rem 1.3 reduces to Theorem 1.2.

In all of theorems mentioned above, we have assumed that M has nonneg-
ative sectional curvature. In the following theorem, we want to study linear
Weingarten hypersurfaces in a unit sphere without the assumption of nonneg-
ative sectional curvature. In fact, we prove the following:

Theorem 1.4. Let M be a hypersurface in Sn+1(1). If
(1) r = aH + b, (n− 1)a2 − 4n + 4nb ≥ 0,
(2) |B|2 ≤ 2

√
n− 1,
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then either |B|2 = 0 and M is a totally umbilical hypersurface or |B|2 =
2
√

n− 1 and M = S1(c)× Sn−1(
√

1− c2).

2. Preliminaries

There are many studies on compact hypersurfaces in an (n+1)-dimensional
unit sphere Sn+1(1) (see [1], [2], [3], [5]-[12]). In this paper, let us also denote
by M a compact hypersurfaces in Sn+1(1). We choose a local orthonormal
frame {eA}1≤A≤n+1 in Sn+1(1), with dual coframe {ωA}1≤A≤n+1, such that,
at each point of M , e1, . . . , en are tangent to M and en+1 is the positively
oriented unit normal vector. We shall make use of the following convention on
the ranges of indices:

1 ≤ A, B,C, . . . ,≤ n + 1; 1 ≤ i, j, k, . . . ,≤ n.

Then the structure equations of Sn+1(1) are given by

(2.1) dωA =
n+1∑

B=1

ωAB ∧ ωB , ωAB + ωBA = 0,

(2.2) dωAB =
n+1∑

C=1

ωAC ∧ ωCB − ωA ∧ ωB .

When restricted to M , we have ωn+1 = 0 and

(2.3) 0 = dωn+1 =
n∑

i=1

ωn+1i ∧ ωi.

By Cartan’s lemma, there exist functions hij such that

(2.4) ωn+1i =
n∑

j=1

hijωj , hij = hji.

This gives the second fundamental form of M , B =
∑

i,j hijωiωjen+1. The
mean curvature H is defined by H = 1

n

∑
i hii. From (2.1)-(2.4) we obtain the

structure equations of M

(2.5) dωi =
n∑

j=1

ωij ∧ ωj , ωij + ωji = 0,

(2.6) dωij =
n∑

k=1

ωik ∧ ωkj − 1
2

n∑

k,l=1

Rijklωk ∧ ωl

and the Gauss equation

(2.7) Rijkl = δikδjl − δilδjk + hikhjl − hilhjk.

Then it follows that

(2.8) n(n− 1)(r − 1) = n2H2 − |B|2,
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where Rijkl denotes the components of the Riemannian curvature tensor of M ,
n(n−1)r is the scalar curvature of M and |B|2 =

∑n
i,j=1 h2

ij is the square norm
of the second fundamental form of M .

Let hijk denote the covariant derivative of hij . We then have

(2.9)
∑

k

hijkωk = dhij +
∑

k

hkjωki +
∑

k

hikωkj .

Thus, by exterior differentiation of (2.4), we obtain the Codazzi equation

(2.10) hijk = hikj .

The second covariant derivative of hij is defined by

(2.11)
∑

i

hijklωl = dhijk +
∑
m

hmjkωmi +
∑
m

himkωmj +
∑
m

hijmωmk.

By exterior differentiation of (2.9), we can get that the following Ricci iden-
tities hold

(2.12) hijkl − hijlk =
∑
m

hmjRmikl +
∑
m

himRmjkl.

For a smooth function f defined on M , the gradient, the hessian (fij) and
the Laplacian 4f of f are defined by

(2.13) df =
∑

i

fiωi,
∑

j

fijωj = dfi +
∑

j

fjωji, 4f =
∑

i

fii.

Let φ =
∑

i,j φijωi ⊗ ωj be a symmetric tensor defined on M , where

(2.14) φij = nHδij − hij .

Following Cheng-Yau [3], we introduce an operator ¤ associated to φ acting
on any smooth function f by

(2.15) ¤f =
∑

i,j

φijfij =
∑

i,j

(nHδij − hij)fij .

Since φij is divergence-free, it follows that the operator ¤ is self-adjoint
relative to the L2 inner product of M , i.e.,

(2.16)
∫

M

f¤gdv =
∫

M

g¤fdv.

We choose e1, . . . , en such that

(2.17) hij = λiδij ,

then we have

(2.18)

¤(nH) = nH4(nH)−∑
i λi(nH),ii

= 1
24(nH)2 −∑

i(nH)2,i −
∑

i λi(nH),ii

= 1
2n(n− 1)4r + 1

24|B|2 − n2|∇H|2 −∑
i λi(nH),ii.
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On the other hand, we can deduce from (2.10) and (2.12) that

(2.19)
1
2
4|B|2 =

∑

i,j,k

h2
ijk +

∑

i

λi(nH),ii +
1
2

∑

i,j

Rijij(λi − λj)2.

Putting (2.19) into (2.18), we obtain

(2.20) ¤(nH) =
1
2
n(n− 1)4r + |∇B|2 − n2|∇H|2 +

1
2

∑

i,j

Rijij(λi − λj)2.

From the Gauss equation, we have Rijij = 1+λiλj , putting this into (2.20),
we get

(2.21)
¤(nH) = 1

2n(n− 1)4r + |∇B|2 − n2|∇H|2

+n|B|2 − n2H2 − |B|4 + nH
∑

i λ3
i .

Next we introduce the following lemma

Lemma 2.1. Let M be a hypersurface in Sn+1(1). If

(2.22) r = aH + b and (n− 1)a2 − 4n + 4nb ≥ 0,

then we have

(2.23) |∇B|2 ≥ n2|∇H|2,
where n(n−1)r is scalar curvature of M , H denotes the mean curvature of M .

Proof. By the formula (2.7), we have

(2.24) |B|2 = n2H2 + n(n− 1)(1− r) = n2H2 + n(n− 1)(1− aH − b),

it follows that

(2.25) 2hijhijk = 2n2HH,k − n(n− 1)aH,k,

then we obtain

(2.26) 4
∑

k


∑

i,j

hijhijk




2

= [2n2H − n(n− 1)a]2|∇H|2.

Hence we deduce that

(2.27)
4


∑

i,j

h2
ij





∑

i,j,k

h2
ijk


 ≥ 4

∑

k


∑

i,j

hijhijk




2

= [2n2H − n(n− 1)a]2|∇H|2,
that is,

(2.28) 4|B|2|∇B|2 ≥ [2n2H − n(n− 1)a]2|∇H|2.
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On the other hand,

(2.29)

[2n2H − n(n− 1)a]2 − 4n2|B|2
= 4n4H2 + n2(n− 1)2a2 − 4n3(n− 1)Ha

− 4n3[nH2 + (n− 1)(1− aH − b)]

= n2(n− 1)[(n− 1)a2 − 4n + 4nb]
≥ 0.

From this, together with Lemma 2.1, we have

4|B|2|∇B|2 ≥ [2n2H − n(n− 1)a]2|∇H|2 ≥ 4n2|B|2|∇H|2,
then we obtain either |B|2 = 0 and |∇B|2 = n2|∇H|2 = 0 or |∇B|2 ≥ n2|∇H|2.
This completes the proof of Lemma 2.1. ¤

Remark 2.1. When the constant a vanishes, our Lemma 2.1 reduce to Lemma
3.2 in [6] due to Li.

In this paper, we also need the following lemma due to Okumura [9].

Lemma 2.2. Let µi, i = 1, . . . , n, be real numbers such that
∑

i µi = 0 and∑
i µ2

i = β2, where β = constant ≥ 0. Then

(2.30) − n− 2√
n(n− 1)

β3 ≤
∑

i

µ3
i ≤

n− 2√
n(n− 1)

β3

and the equality holds if and only if at least (n− 1) of the µi are equal.

3. Proofs of Theorem 1.3 and Theorem 1.4

First in this section, we want to prove Theorem 1.3 as follows:
By (2.20), we can obtain

(3.1) 0 =
∫

M

(|∇B|2 − n2|∇H|2)dv +
1
2

∫

M

∑

i,j

Rijij(λi − λj)2dv.

By using of Lemma 2.1, we can deduce that

(3.2) |∇B|2 ≥ n2|∇H|2.
Since M has nonnegative sectional curvature and (3.1), we know that

(3.3) |∇B|2 = n2|∇H|2,
∑

i,j

Rijij(λi − λj)2 = 0,

that is,

(3.4) |∇B|2 = n2|∇H|2, Rijij = 0 if λi 6= λj .

Then it follows from the Gauss equation Rijij = 1+λiλj and (3.4) that either
M is totally umbilical or M has two distinct constant principal curvatures λ,
µ and 1 + λµ = 0. This completes the proof of Theorem 1.3. ¤
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Next we want to give the proof of Theorem1.4 as follows:
• Case 1: n = 2.
In this case, we obtain from the Gauss equation that

(3.5) 2(r − 1) = 4H2 − |B|2 = 2λ1λ2.

Combining (2.21) and the Gauss equation (3.5), we obtain

(3.6)

¤(2H) = 4r + |∇B|2 − 4|∇H|2 + 2|B|2 − 4H2 − |B|4 + 2H

2∑

i=1

λ3
i

= 4r + |∇B|2 − 4|∇H|2 + 2|B|2 − 4H2 − |B|4
+ 2H(λ1 + λ2)(λ2

1 − λ1λ2 + λ2
2)

= 4r + |∇B|2 − 4|∇H|2 + 2|B|2 − 4H2 − |B|4
+ 4H2(|B|2 − (r − 1))

= 4r + |∇B|2 − 4|∇H|2 + |B|2 − 2(r − 1)− |B|4
+ {|B|2 + 2(r − 1)}{|B|2 − (r − 1)}

= 4r + |∇B|2 − 4|∇H|2 + r(|B|2 + 2− 2r)

= 4r + |∇B|2 − 4|∇H|2 + (4H2 + 2− |B|2)(|B|2 − 2H2),

then we get the following integral equality

(3.7)
∫

M

(|∇B|2 − 4|∇H|2)dv +
∫

M

(4H2 + 2− |B|2)(|B|2 − 2H2)dv = 0.

Since |B|2 ≤ 2, we know that

(3.8) (4H2 + 2− |B|2)(|B|2 − 2H2) ≥ 0.

By Lemma 2.1, we have

(3.9) |∇B|2 − 4|∇H|2 ≥ 0.

Combining (3.7), (3.8) and (3.9), we obtain |∇B|2−4|∇H|2 = 0 and (4H2 +
2−|B|2)(|B|2−2H2) = 0, that is, either H = 0 and |B|2 = 2 or |B|2−2H2 = 0.
If H = 0 and |B|2 = 2, we know that M = S1(c)× S1(

√
1− c2) from a result

of [5]. If |B|2 − 2H2 = 0, M is totally umbilical.
• Case 2: n ≥ 3.
Let µi = λi −H and |Z|2 =

∑
i µ2

i , we get

(3.10)
∑

i

µi = 0, |Z|2 = |B|2 − nH2,

(3.11)
∑

i

λ3
i =

∑

i

µ3
i + 3H|Z|2 + nH3.
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By (3.10) and (3.11), we obtain

(3.12)
¤(nH) =

1
2
n(n− 1)4r + |∇B|2 − n2|∇H|2

+ |Z|2(n + nH2 − |Z|2) + nH
∑

i

µ3
i .

Combining (3.12) and Lemma 2.2, we get

(3.13)

¤(nH) ≥ 1
2n(n− 1)4r + |∇B|2 − n2|∇H|2

+|Z|2
(

n + nH2 − |Z|2 − n(n−2)√
n(n−1)

|H||Z|
)

.

Hence we have the following:

Lemma 3.1. Let M be a compact hypersurface in Sn+1(1). Then we have

(3.14)

0 ≥
∫

M

(|∇B|2 − n2|∇H|2)dv

+
∫

M

|Z|2
(

n + nH2 − |Z|2 − n(n− 2)√
n(n− 1)

|H||Z|
)

dv.

Now, we assume r = aH +b and (n−1)a2−4n+4nb ≥ 0. For a real number
d = n+2

√
n−1

n−2

√
n > 0, we have

(3.15) 2|H||Z| ≤ dH2 +
1
d
|Z|2.

By Lemma 2.1, Lemma 3.1 and (3.15), we obtain
∫

M

|Z|2
{

n + nH2

(
2− (n− 2)d

2
√

n(n− 1)
+

n(n− 2)
2
√

n(n− 1)d

)

− |B|2
(

1 +
n(n− 2)

2
√

n(n− 1)d

)}
dv ≤ 0,

that is,

(3.16) 0 ≥
∫

M

|Z|2
{

n− n

2
√

n− 1
|B|2

}
dv.

Noting that |B|2 ≤ 2
√

n− 1, we know that the right hand side of (3.16) is
nonnegative, it follows that |∇B|2 = n2|∇H|2 and

∫
M
|Z|2

{
n− n

2
√

n−1
|B|2

}
dv

= 0. Then we have either |Z|2 = |B|2−nH2 = 0 and M is totally umbilical or
|B|2 = 2

√
n− 1.

If M is not totally umbilical, we can see that

(3.17) |B|2 = 2
√

n− 1,

it follows from Lemma 2.2, Lemma 3.1 and (3.17) that

(3.18) λ1 = · · · = λn−1 6= λn,
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and M = S1(c)× Sn−1(
√

1− c2). This completes the proof of Theorem 1.4.¤
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