
Open Access. © 2018 Cardell et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 License.

Open Math. 2018; 16: 646–655

Open Mathematics

Research Article

Sara D. Cardell*, Amparo Fúster-Sabater, and Adrián H. Ranea

Linearity in decimation-based generators:
an improved cryptanalysis on the shrinking
generator
https://doi.org/10.1515/math-2018-0058
Received October 9, 2017; accepted January 23, 2018.

Abstract:Decimation-based sequence generators are a class of non-linear cryptographic generators designed
to be used in hardware implementations. An inherent characteristic of such generators is that their output
sequences are interleaved sequences. This pro�table characteristic can be used in the cryptanalysis of those
generators. In this work, emphasis is on the most representative decimation-based generator, the shrinking
generator, which has been cryptanalyzed just by solving linear equation systems. Compared with previous
cryptanalysis, computational complexity and intercepted sequence requirements are dramatically reduced.
Although irregularly decimated generators have been conceived and designed as non-linear sequence gener-
ators, in practice they can be easily analyzed in terms of simple linear structures.

Keywords: Decimation, Shrinking generator, Interleaved sequence, Stream cipher, Secret-key cryptography

MSC: 94A55, 94A60

1 Introduction
Nowadays stream ciphers are the fastest among the encryption procedures. They are designed to generate,
from a short key, a long sequence (keystream sequence) of seemingly random bits. Some well known designs
in stream ciphers can be found in [1, 2]. Typically, a stream cipher consists of a keystream generator whose
output sequence is bit-wise XORed with the plaintext (in emission) to obtain the ciphertext or with the
ciphertext (in reception) to recover the original plaintext. References [3–5] provide a solid introduction to
the study of stream ciphers.

There are many proposals of keystream generators that are based on maximal-length Linear Feedback
Shift Registers (LFSRs) [6]. Such registers are linear structures characterized by their length L, their character-
istic polynomial p(x) and their initial state is (currently the key of the cryptosystem). Their output sequences,
the so-called PN-sequences, are usually combined in a non-linear way in order to break their linearity and to
produce new pseudorandom sequences of cryptographic application. LFSRs with dynamic feedback, clock-
controlled generators, nonlinear �lters or irregularly decimated generators are just some of the most popular
keystream generators, see above references.

*Corresponding Author: Sara D. Cardell: Instituto de Matemática, Estatística e Computação Cientí�ca, Universidade Estadual
de Campinas, Brazil, E-mail: sdcardell@ime.unicamp.br
Amparo Fúster-Sabater: Instituto de Tecnologías Físicas y de la Información, Consejo Superior de Investigaciones Cientí�cas
(CSIC), Spain, E-mail: amparo@iec.csic.es
Adrián H. Ranea: Instituto de Tecnologías Físicas y de la Información, Consejo Superior de Investigaciones Cientí�cas (CSIC),
Spain

https://doi.org/10.1515/math-2018-0058


An improved cryptanalysis on the shrinking generator | 647

Irregularly decimated generators produce sequences with good cryptographic properties: long periods,
right correlation, excellent run distribution, balancedness, simplicity of implementation, etc. The underlying
idea of this kind of generators is the irregular decimation of a PN-sequence according to the bits of another
one. The result of this decimation is a binary sequence that will be used as keystream sequence in the
cryptographic procedure of stream cipher.

Inside the family of irregularly decimated generators, we can enumerate:

1. The shrinking generator proposed by Coppersmith, Krawczyk and Mansour [7] that involves two LFSRs.
2. The self-shrinking generator designed by Meier and Sta�elbach [8] involving only one LFSR.
3. The generalized self-shrinking generator proposed by Hu and Xiao [9] that generates a family of binary

sequences.
4. Themodi�ed self-shrinking generator, a decimation-based keystream sequence generator, introduced by

Kanso in [10] as an improved version of the self-shrinking generator.

In addition, di�erent linear structures based in Cellular Automata that model such generators can also be
found in the literature [11–13].

This work focuses on themost representative element in the class of decimation-based sequence genera-
tors: the shrinkinggenerator. Taking advantage of the fact that its output sequence is an interleaved sequence,
a simple cryptanalytic attack has been developed. The basic ideas of this attack can be generalized to other
elements in the same class of generators.

The paper is organized as follows: in Section 2 fundamentals and basic concepts are provided. In
Section 3, we introduce some important properties of the shrinking generator that will be used in Section 4
to perform a recovering algorithm for the generated sequence. Section 5 compares the attack here presented
with other ones found in the literature. Finally, conclusions in Section 6 end the paper.

2 Preliminaries
Notation and basic concepts are now introduced. First of all, we introduce the concept of decimation, which
will be used repeatedly throughout this paper. Let {ui} (i = 0, 1, 2, . . . ) be a linear recursive sequence over a
�nite �eld. The decimation of the sequence {ui} by d is a new sequence obtained by taking every d-th term
of {ui} [14].

Next, the de�nition of interleaved sequence is provided [15].

De�nition 2.1. Let g(x) be a polynomial of degree r over GF(q) (the Galois �eld of q elements) and let n be a
positive integer. For any sequence w = {wk} over GF(q), write k = i n + j (i = 0, 1, 2, . . . j = 0, . . . , n − 1). If
all the subsequences wj = {wi n+j}i≥0 (j = 0, . . . , n − 1) are generated by g(x), then w is called an interleaved
sequence over GF(q) of size n associated with g(x).

We can write w = (w0,w1, . . . ,wn−1) where each wj (j = 0, . . . , n − 1) is a subsequence of w. In fact, each
wj is an n-decimation of the sequence w obtained from such a sequence by taking one out of n terms. In the
sequel, GF(q) will be the binary �eld GF(2).

The shrinking generator (SG) was �rst introduced in [7]. It is made up of two maximal-length LFSRs
denoted by R1 and R2. Let L1 and L2 (L1 < L2) be the LFSR lengths, the primitive polynomials p1(x), p2(x)
their characteristic polynomials, and is1 and is2 their initial states, respectively. Moreover, let {ai} and {bi}
be the PN-sequences generated by R1 and R2, respectively. In this case, the sequence {ai} decimates the
other sequence {bi}. The decimation rule is very simple: given two bits ai and bi, the output sequence of the



648 | S.D. Cardell et al.

generator {sk} is computed as
⎧⎪⎪
⎨
⎪⎪⎩

If ai = 1 then sk = bi
If ai = 0 then bi is discarded.

We call the sequence {sk} as the shrunken sequence (SS). Assume that gcd(L1, L2) = 1, then the period of
SS is T = 2L1−1(2L2 − 1).

The linear complexity of a sequence, denoted by LC, is de�ned as the length of the minimum LFSR that
generates such a sequence. As gcd(L1, L2) = 1, then the linear complexity of the shrunken sequence is given
by L22L1−2 < LC ≤ L22L1−1. Moreover, its characteristic polynomial is of the form p(x)m where p(x) is a
primitive polynomial of degree L2 and m an integer satisfying 2L1−2 < m ≤ 2L1−1.

As usual, the key of this generator is the initial state of the both registers R1 and R2.
Next a simple illustrative example is introduced.

Example 2.2. Consider two LFSRs R1 and R2 with lengths L1 = 2 and L2 = 3, characteristic polynomials
p1(x) = 1 + x + x2 and p2(x) = 1 + x2 + x3, and initial states is1 = (1, 0) and is2 = (1, 0, 0), respectively.

The shrunken-sequence can be computed as follows:

{ai} ∶1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1

{bi} ∶1 ��AA0 0 1 ��AA1 1 0 ��AA1 0 0 ��AA1 1 1 ��AA0 1 0 ��AA0 1 1 ��AA1 0

{sk} ∶111 000 111 111 000 000 000 111 111 111 000 111 111 000

The shrunken sequence {sk} has period 14 and it is easy to check that its characteristic polynomial is p(x)2 =
(1 + x + x3)2, consequently its linear complexity equals 6.

3 Linear properties of the shrunken sequence
In this section, we highlight some properties of the shrunken sequence, which will be used in the algorithm
proposed in Section 4. As before, we consider two LFSRs R1 and R2 with lengths L1 and L2, characteristic
polynomials p1(x), p2(x) and initial states is1 and is2. In addition, T1 = 2L1 − 1 and T2 = 2L2 − 1 are the
periods of their corresponding PN-sequences {ai} and {bi}, respectively.

According to De�nition 2.1, the shrunken sequence s = {sk} can be written as s = {s0, s1, . . . , sn−1}
where n = 2L1−1. In fact, every subsequence sj (j = 0, . . . , n−1) is a PN-sequence generated by the L2-degree
primitive polynomial p(x) de�ned as

p(x) =
L2−1
∏
i=0
(x + αei),

where ei = 2i ⋅ T1 mod T2 and α is a root of the polynomial p2(x). Recall that every subsequence sj is just a
decimation of {bi} by d = 2L1−1, thus the resulting sequence is a PN-sequence too. In brief, ei (i = 0, . . . , L2−
1) are the elements of the cyclotomic coset 2L1−1 and p(x) is the polynomial associatedwith such a coset [6].
The subsequences sj (j = 0, . . . , n − 1) are called the interleaved PN-sequences of the shrunken sequence.

Example 3.1. Consider twoLFSRs R1 and R2with lengths L1 = 3and L2 = 4, characteristic polynomials p1(x) =
1 + x + x3 and p2(x) = 1 + x + x4 and initial states is1 = (1, 0, 0) and is2 = (1, 0, 0, 0), respectively. The
shrunken sequence has period T = 60 and its characteristic polynomial is p(x)4 = (1 + x3 + x4)4. Since the
shrunken sequence is an interleaved sequence, it is composed of 4 PN-sequences:



An improved cryptanalysis on the shrinking generator | 649

s0 s1 s2 s3
↓ ↓ ↓ ↓

1 0 0 0
1 1 1 1
1 0 1 0

d3 = 3→ 0 0 0 1
1 0 0 1

d2 = 5→ 0 1 1 0
1 1 0 0
1 1 0 1
0 1 0 0

d1 = 9→ 0 0 1 0
1 1 1 0
0 0 1 1
0 1 1 1
0 1 0 1
1 0 1 1

All of them have the same characteristic polynomial p(x) = 1+ x3 + x4, thus there is a unique PN-sequence but
shifted. This shift depends on the positions of the 1s in the PN-sequence {ai}.

Let {i0, i1, . . . , i2L1−1−1} denote the position of the 2L1−1 ones in the PN-sequence {ai} and let δ be an integer
such that (2L1 − 1)δ = 1 mod (2L2 − 1). Let also dj (j = 1, 2, . . . , 2L1−1 − 1) be the position over s0 of the �rst
element of each subsequence sj (j = 1, . . . , n−1), respectively. If we know such positions dj over s0, then we
can compute the indices ij by means of the following expressions:

dj = δ ⋅ ij mod 2L2 − 1, for j = 1, 2, . . . , 2L1−1 − 1. (1)

In Example 3.1, we had four interleaved subsequences s0, s1, s2 and s3. It is easy to check that d1 = 9, d2 = 5
and d3 = 3. In this case, T1 = 7 and T2 = 15, then δ = 13. With this information, we can determine the
position of the ones in {ai} (i0 = 0, without loss of generality):

13 ⋅ i1 = 9 mod 15→ i1 = 3
13 ⋅ i2 = 5 mod 15→ i2 = 5
13 ⋅ i3 = 3 mod 15→ i3 = 6

Therefore, the set of indices is given by {0, 3, 5, 6} and the PN-sequence {ai} is given by {1, 0, 0, 1, 0, 1, 1}.
In the algorithm proposed in Section 4, the opposite situation occurs. In that case, we know the position

of the ones in the PN-sequence {ai} and we compute the position of the �rst element of each subsequence sj
in s0 by means of the expressions given in (1).

The presence of PN-sequences inside the shrunken sequence reveals severe dependencies among its bits.
These linear relationships will be advantageously used in the proposed attack. In fact, given N intercepted
bits of this sequence, the goal is to determine the pair of initial states (is1, is2) of both registers.

4 Cryptanalytic attack
Prior to the attack’s description, the following notation is introduced:
– is1 = (a0, a1, . . . , aL1−1), is2 = (b0, b1, . . . , bL2−1)
– S = {s0, s1, . . . , sN−1} are the N intercepted bits of the shrunken sequence. Currently, the number N can

be written as N = N1 + N2 where N1 bits are used to compute the pair (is1, is2) while N2 bits are used to
check the correctness of the previous pair.



650 | S.D. Cardell et al.

– δ as before is an integer δ ∈ {1, 2, 3, . . . , T2 − 1}, such that T1δ = 1 mod T2.

The N1 intercepted bits are elements of any interleaved PN-sequence sj. Nevertheless, in this attack we only
focus on the �rst interleaved PN-sequence s0. For simplicity it will be denoted by {ui} (i = 0, 1, . . . , 2L2 −2).
According to the properties of the PN-sequences, any term uk of {ui} can be expressed as a function of the
�rst L2 bits (u0, u1, . . . , uL2−1) by means of the modular expression

q(x) = xk mod p(x),

where q(x) = cL2−1x
L2−1 + . . . + c1x + c0 with ci ∈ GF(2). Thus,

uk = cL2−1uL2−1 + . . . + c1u1 + c0u0.

This cryptanalytic attack is based on solving systems of linear equations of the form:

Ax = b, (2)

where A is an (N1 × L2) binary coe�cient matrix, x is the (L2 × 1) vector of unknowns and b is the (L2 × 1)
right side vector of intercepted bits. Each initial state is1 parametrises the coe�cientmatrixA, then the Linear
Consistency Test (LCT) [16] checks the consistency of the corresponding equation system (2). If is1 considered
is the right initial state, then the equation system certainly will be consistent. On the other hand, if is1 is
not the initial state used in the generation of the intercepted bits, then by [16, Theorem 1] the consistency
probability of the system will be very small when the intercepted segment is long enough. In order to make
the number of false consistency alarms as small as possible, the number of equations in (2) should exceed
L1 + L2 signi�cantly, see [16] and [17].

The attack is divided into two phases. In phase 1, we check the 2L1−1 initial states is1 starting by 1 (as only
the 1s of {ai} generate bits in the shrunken sequence) to determine a set Q of possible candidates to initial
state of R1. In phase 2, for every is1 in Q its corresponding is2 will be computed. The pair (is1, is2) able to
generate all the intercepted shrunken sequence will be the key of the cryptosystem. In brief, the algorithm
can be described as follows:

INPUT : The lengths L1 and L2 of both registers, the characteristic polynomials p1(x), p2(x) and the N
intercepted bits S = {s0, s1, . . . , sN−1} of the shrunken sequence.
1. Computation of PHASE 1
2. Computation of PHASE 2

OUTPUT : The initial states is1 and is2 (key of the cryptosystem) that generate the shrunken sequence.

In the sequel, the whole attack is described in detail.
PHASE 1:
For each is1 considered do:

1. Starting in is1, generate a portion of sequence {ai} until N1 ones are obtained. Such ones will be located
at positions ik (k = 0, 1, . . . , N1 − 1) over {ai}.

2. Determine N1 positions in the sequence {ui} as

dk = δ ⋅ ik mod T2 (k = 0, 1, . . . , N1 − 1).

3. Assign the N1 intercepted bits to the previous positions

udk = sk (k = 0, 1, . . . , N1 − 1).

4. Express each udk as a function of the �rst L2 terms of {ui}, that is udk = fk(u0, u1, . . . , uL2−1), by means
of

xdk mod p(x) (k = 0, 1, . . . , N1 − 1).



An improved cryptanalysis on the shrinking generator | 651

It turns out to be a system of linear equations

{udk = fk(u0, u1, . . . , uL2−1) = sk

(k = 0, 1, . . . , N1 − 1) with N1 equations in the (u0, u1, . . . , uL2−1) unknowns.
5. Apply the Linear Consistency Test (LCT) [16] to check the consistency of the previous system,

if the system is consistent, then include is1 in Q
else is1 is rejected.

end do
The result of this phase is the set Q of possible candidates to initial state of LFSR R1. Once the set Q has

been computed, the second step of the attack is performed.
PHASE 2:
For each is1 in Q do:

1. Express each bik as a function of the �rst L2 terms of {bi}, that is bik = gk(b0, b1, . . . , bL2−1), by means
of

xik mod p2(x) (k = 0, 1, . . . , N1 − 1).

It turns out to be a system of linear equations

{bik = gk(b0, b1, . . . , bL2−1) = sk

(k = 0, 1, . . . , N1 − 1) with N1 equations in the (b0, b1, . . . , bL2−1) = is2 unknowns.
2. Apply the Linear Consistency Test (LCT) to check the consistency of the previous system,

if the system is not consistent, then reject (is1, is2)
else if the pair (is1, is2) can generate the shrunken sequence by using the N2 bits for checking,
then cryptosystem broken !!!
else is1 is rejected.

end do
The result of this phase is the pair (is1, is2) generating the shrunken sequence, that is the key of the

cryptosystem.
A software implementation of the previous attack has been performed on a laptop device with the

following speci�cations:
– Operative system: Arch Linux
– CPU: Dual core Intel Core i7-4510U, Cache 4096 KB, Freq. 3100 MHz
– RAM: 8 GB, Type: DDR3
– Hard Disk: Type SSD, Size 256.1 GB

Somenumerical results are depicted inTable 1where L1, L2 are the lengths of registersR1 andR2, respectively,
T is the period of the corresponding shrunken sequence,N1 is the number of intercepted bits for computation,
c(Q) is the cardinality of Q, that is the number of candidates to initial state of R1, and t is the running time
expressed in seconds. It must be noticed that the period of the shrunken sequence is much greater than
the number of intercepted bits needed to successfully run the algorithm within a reasonable time. For our
computations, N1 = 2 ⋅ L2 while N2 is chosen N2 = N1. In brief, the requirements of intercepted sequence are
extremely low. In Table 2, the same results are shown but now the number of intercepted bits N1 equals L2.
In this case, since N1 has been reduced, the execution time has been reduced too. Nevertheless, the number
of candidates has grown considerably. Table 3 shows the numerical results corresponding to the veri�cation
of a unique initial state is1 in the phase 1 of the algorithm. Recall that even for large values of L1 and L2 the
execution time of such routine is very low.



652 | S.D. Cardell et al.

Table 1. Numerical results for the algorithm

L1 L2 T N1 c(Q) t(sec)
4 5 248 10 1 0.0064
5 6 1008 12 1 0.0173
9 10 261888 20 1 0.3856
10 11 1048064 22 1 0.8552
11 12 4193280 24 1 1.8114
12 13 16775168 26 1 4.2623
13 14 67104768 28 1 9.0739
14 15 268427264 30 1 20.0681
15 16 1.0737⋅109 32 1 44.9963
16 17 4.2949⋅109 34 2 98.1865
17 18 1.7180⋅1010 36 1 217.9489
18 19 6.8719⋅1010 38 2 477.1288
19 20 2.7488⋅1011 40 1 1092.7125
20 21 1.0995⋅1012 42 1 2327.2800
21 22 4.3980⋅1012 44 1 4997.0925

Table 2. Numerical results for the algorithm when N1 = L2

L1 L2 T N1 c(Q) t(sec)
4 5 248 5 5 0.0046
5 6 1008 6 14 0.0099
6 7 4064 7 25 0.0216
7 8 16320 8 46 0.0513
8 9 65408 9 78 0.11969
9 10 261888 10 160 0.2478
10 11 1048064 11 210 0.7123
11 12 4193280 12 708 1.3290
12 13 16775168 13 1183 3.1078
13 14 67104768 14 2227 6.0204
14 15 268427264 15 4494 13.0011
15 16 1.0737⋅109 16 8710 29.4033
16 17 4.2949⋅109 17 6183 57.9891
17 18 1.7180⋅1010 18 35351 151.4661

The most remarkable features of the proposed attack are:

1. The low amount of intercepted bits needed for its execution. Indeed, N1 = n ⋅ L2, n being a small integer
(n = 2, 3, 4), and N2 ≤ N1. Thus the amount of sequence required is linear in the length of the register
R2.

2. The running time of the attack is dominated by phase 1 which has a time complexity of O(2L1−1 ⋅ (N1 ×

L2)3), that is exponential in L1 due to the number of is1 considered and polynomial in L2. In fact, the
work factor needed for each test is that of the Gauss elimination algorithm applied to the augmented
matrix (A, b), which is cubic in the dimension of the matrix. In any case, the cubic factor is irrelevant
compared with the exponential factor.

3. Both phases 1 and 2 are fully parallelizable and some tweaks can be made to optimize the LCT step.



An improved cryptanalysis on the shrinking generator | 653

The program makes use of SageMath, an algebraic computation systems based on Python. In order to
handle polynomials over GF(2), SageMath uses the libraries NLT. In order to compute with matrices over
GF(2), SageMath uses the libraries M4RI. In the LCT application, the system of equations is transformed into
a low reduced echelon form. This step is important in the computation e�ciency as the system consistency
is reduced to test the existence of a row (0, 0, . . . , 0, 1) in the coe�cient matrix of the system.

Table 3. Numerical results for the veri�cation of one is1

L1 L2 N1 t(sec)
5 6 12 0.00080
7 8 16 0.00112
10 11 22 0.00169
20 21 42 0.00911
30 31 62 0.01044
40 41 82 0.01980
50 51 102 0.03160
59 60 120 0.03547
60 61 122 0.03794
61 62 124 0.03806
62 63 126 0.04035
63 64 128 0.04108

5 Other attacks over the shrinking generator
Other attacks against the shrinking generator have been designed in the literature. For example, in [18],
the authors proposed two fault cryptoanalysis. In that work, the attacker is supposed to have a device
implementing the shrinking generator and can use it freely. They also assume that the base and control
generators of the shrinking generator output bits according to the uniform distribution over GF(2) and that
an attacker can disturb clocking of the device, that is, he can stop the control sequence for a couple of steps,
and observe the output of the generator. These attacks require injecting speci�c faults and restarting the
device with partially the same internal state.While injecting such faults is potentially possible, it may require
some design faults (so that potentially vulnerable parts of the devicewere placed on external layers). It shows
at least that a careful examinationof a chipdesignmight benecessary. Furthermore, on the�rst cryptanalysis,
there exists a probability of false solution and algorithm failure. As a consequence, they have to assume
that the number of 0s between two 1s does not exceed a certain parameter maxzeros. They proved that the
probability of a false result grows rapidly with the assumed length of the gap between the 1s. That is why they
assume that the control sequence does not contain a block of more thanmaxzeroes 0s. Of course, when this
assumption is false, the algorithm fails.

Several correlation attacks against the shrinking generator have been proposed too. A correlation attack
was proposed in [19] and was experimentally analyzed in [20], where an exhaustive search through all
initial states and all possible feedback polynomials of R2 was performed. Later, in [21] the author presented
a reduced complexity correlation attack based on searching for speci�c subsequences of the keystream
sequence, whose complexity and required keystream length are both exponential in the length of R2.

A few years later, in [22] Golić conducted a probabilistic correlation analysis based on a recursive compu-
tation of the posterior probabilities of individual bits of R2, which revealed the possibility of implementing
certain type of fast correlation attacks on the shrinking generator. A novel distinguishing attack was also
proposed in [23]. In a subsequent paper [24], the author proposed an improved linear consistency attack
based on an exhaustive search through all initial states of R1.



654 | S.D. Cardell et al.

In [22], the author conjectured that the shrinking generator could be vulnerable against fast correlation
attacks thatwouldnot require an exhaustive search through all possible initial states. In [25], the authors tried
to answer this question with length of R2 equal to 61 (as suggested in [26]). They claimed that given 140000
keystream bits, the initial state of R2 with arbitrary weight characteristic polynomial of degree 61 could be
recovered with success probability higher than 99% and complexity 256, which was a good trade-o� between
these parameters.

In brief, the algorithm here developed presents two main advantages against other proposals. First,
compared with other cryptanalytic attacks, the original key of the cryptosystem is always obtained. As
pointed in [16], there is a trade-o� between the number of equations to consider and the false positive ratio.
Nevertheless, in our experiments we consider a minimum number of equations and in most cases only the
original key was retrieved. Furthermore, with the knowledge of the LFSRs’ parameters the attacker just needs
to intercept a part of the keystream sequence and perform the algorithm; our method does not need further
assumptions. Second, the results given in Table 1 show that the required keystream length in our algorithm
grows linearly in the length of R2, in contrast with other proposals where the amount of required sequence
is exponential in the length of any register.

6 Conclusions
The shrinking generator obtains an implicit non-linearity originated from the decimation process. This
process is an attempt to create strong pseudorandom sequences with cryptographically good properties out
of weak components. It is proved that the shrunken sequence has a long period, a desirably high linear
complexity and good statistical properties. However, the linear properties presented in this work make
this generator vulnerable against attacks. This paper presents a cryptanalysis over the shrinking generator
based on solving linear systems. Besides, the number of intercepted bits needed to successfully perform the
algorithm is substantially lower than the period of the sequence, growing linearly with the length of the
register R2.

Acknowledgement: The work of the �rst author was supported by FAPESP with process number 2015/07246-
0. This research has been partially supported by Ministerio de Economía, Industria y Competitividad
(MINECO), Agencia Estatal de Investigación (AEI), and Fondo Europeo de Desarrollo Regional (FEDER, UE)
under project COPCIS, reference TIN2017-84844-C2-1-R, and by Comunidad de Madrid (Spain) under project
reference S2013/ICE-3095-CIBERDINE-CM, also co-funded by European Union FEDER funds.

References
[1] eSTREAM: the ECRYPT Stream Cipher Project, ECRYPT II, eSTREAM portfolio. [Online]. Available:

http://www.ecrypt.eu.org/stream/
[2] Robshaw M., Billiet O., New Stream Cipher Designs: The eSTREAM Finalists, Springer, 2008
[3] Menezes A. J., van Oorschot P. C. , Vanstone S. A., Handbook of Applied Cryptography, Boca Raton, FL: CRC Press, 1996
[4] Paar C., Pelzl J., Understanding Cryptography, Berlin: Springer, 2010
[5] Rueppel R. A., Analysis and Design of Stream Ciphers New York, NY: Springer Verlag, 1986
[6] Golomb S. W., Shift Register-Sequences, Laguna Hill, California: Aegean Park Press, 1982
[7] Coppersmith D., Krawczyk H., Mansour Y., The shrinking generator, Advances in Cryptology – CRYPTO ’93, Lecture Notes

in Computer Science, Springer-Verlag, 1993, 773, 23–39
[8] Meier W., Sta�elbach O., The self-shrinking generator, Advances in Cryptology – EUROCRYPT ’94, Lecture Notes in

Computer Science, Springer-Verlag, 1994, 950, 205–214
[9] Hu Y., Xiao G., Generalized Self-Shrinking Generator, IEEE Trans. Inf. Theory, 2004, 50(4), 714–719
[10] Kanso A., Modi�ed self-shrinking generator, Computers and Electrical Engineering, 2010, 36(5), 993–1001
[11] Fúster-Sabater A., Caballero-Gil P., Linear solutions for cryptographic nonlinear sequence generators, Physics Letters A,

2007, 369, 432–437



An improved cryptanalysis on the shrinking generator | 655

[12] Cardell S. D., Fúster-Sabater A., Modelling the shrinking generator in terms of linear CA, Advances in Mathematics of
Communication, 2016, 10(4), 797–809

[13] Cardell S. D., Fúster-Sabater A., Linear models for the self-shrinking generator based on CA, Journal of Cellular Automata,
2016, 11(2-3), 195–211

[14] Duvall P. F., Mortick J. C., Decimation of periodic sequences, SIAM Journal on Applied Mathematics, 1971, 21(3), 367–372
[15] Gong G., Theory and Applications of q-ary Interleaved Sequences, IEEE Trans. Inf. Theory, 1995, 41(2), 400–411
[16] Zeng K., Yang C. H., Rao T. R., On the Linear Consistency Test (LCT) in Cryptanalysis with Applications, Advances in

Cryptology – CRYPTO ’89, Lecture Notes in Computer Science, Springer-Verlag, 1990, 435, 164–174.
[17] Boztas S., Alamer A., Statistical dependencies in the Self-Shrinking Generator, Seventh International Workshop on Signal

Design and its Applications in Communications, IWSDA 2015, Bengaluru, India, 2015, 42–46.
[18] Gomulkiewicz M., Kutylowski M., Wlaź P., Fault cryptanalysis and the shrinking generator, 5th International Workshop on

Experimetal Algorithms (WEA 2006), Lecture Notes in Computer Science, Berlin: Springer-Verlag, 2006, 4007, 61–72.
[19] Golić J. D., Embedding and probabilistic correlation attacks on clock-controlled shift registers, Advances in Cryptology-

EUROCRYPT’94, Lecture Notes in Computer Science, Berlin: Springer-Verlag, 1994, 950, 230–243.
[20] Simpson L., Golić J. D., A probabilistic correlation attack on the shrinking generator, ACISP ’98 – Third Australasian

Conference on Information Security and Privacy, Lecture Notes in Computer Science, Berlin: Springer-Verlag, 1998, 1438,
147–158.

[21] Johansson T., Reduced complexity correlation attacks on two clock-controlled generators, Advances in Cryptology –
ASIACRYPT’98, Lecture Notes in Computer Science, Berlin: Springer-Verlag, 1998, 1514, 342–357

[22] Golić J. D., Correlation analysis of the shrinking generator, Advances in Cryptology-Crypto’2001, Lecture Notes in
Computer Science, Berlin: Springer-Verlag, 2001, 2139, 440–457

[23] Ekdahl P., Johansson T., Predicting the shrinking generator with �xed connections, Advances in Cryptology-
EUROCRYPT’2003, Lecture Notes in Computer Science, Berlin: Springer-Verlag, 2003, 2656, 330–344

[24] Molland, H., Improved linear consistency attack on irregular clocked keystream generators, Fast Software Encryption-
FSE’2004, Lecture Notes in Computer Science, Springer-Verlag, 2004, 3017, 109–126

[25] Zhang B., Wu H., Feng D., Bao F., A fast correlation attack on the shrinking generator, Topics in Cryptology – CT-RSA 2005,
Lecture Notes in Computer Science, Berlin: Springer-Verlag, 2005, 537, 72–86

[26] Krawczyk H., The shrinking generator: Some practical considerations, Fast Software Encryption-FSE’94, Lecture Notes in
Computer Science, Berlin: Springer-Verlag, 1994, 809, 45–46


	Linearity in decimation-based generators: an improved cryptanalysis on the shrinking generator
	1 Introduction
	2 Preliminaries
	3 Linear properties of the shrunken sequence
	4 Cryptanalytic attack
	5 Other attacks over the shrinking generator
	6 Conclusions


