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The objective of this paper is to assess both the applicability and the accuracy of lineariza-

tion method in several problems of general nonlinear integral equations. This method

provides piecewise linear integral equations which can be easily integrated. It is shown

that the accuracy of linearization method can be substantially improved by employing

variable steps which adjust themselves to the solution. This approach can reveal that,

under this method, the nonlinear integral equations can be transformed into the linear

integral equations which may be integrated using classical methods. Numerical examples

are used to illustrate the preciseness and effectiveness of the proposed method.
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1. Introduction

Modeling and analysis of physical phenomena in applied sciences often generates nonlin-

ear mathematical problems. Nonlinearity may be an inner feature of the model, that is,

evolution equations with nonlinear terms, or of the problem, that is, nonlinear boundary

conditions. The interplay between applied sciences and mathematics then leads to the

development of initial and/or boundary value problems for nonlinear partial differential

or integral or integrodifferential equations modeling real physical systems. The theory

and application of integral equations is an important subject within applied mathemat-

ics. Integral equations are used as mathematical models for many and varied physical

situations, and also occur as reformulations of other mathematical problems. Since many

physical problems are modeled by integral equations, the numerical solutions of such in-

tegral equations have been highly studied by many authors. In recent years, numerous

works have been focusing on the development of more advanced and efficient methods

for integral equations such as implicitly linear collocation methods [1], product integra-

tion method [3], and Hermite-type collocation method [2] and semianalytical-numerical

techniques such as Adomian’s decomposition method [4].
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The linearization method presented in this paper for integral equations is based on the

piecewise linearization of the nonlinear integral equations and the analytical solution of

the resulting linear integral equation. Thus, linearization methods provide closed-form

solutions in a piecewise fashion and are not iterative; therefore, they do not need a judi-

cious guess to the solution. Furthermore, since these methods are based on the lineariza-

tion of the nonlinear integral equations, they also provide a means to adapt the step size

to the solution. If one is only interested in the values of the dependent variables at dis-

crete values of the independent variable, linearization methods provide explicit nonlinear

mappings.

2. Model problems and method

We will consider the general nonlinear Volterra integral equation of the form

y(x)= f (x) + λ

∫ x

a
K
(

x, t, y(t)
)

dt, (2.1)

where y(x) is an unknown function, a is a real constant, and the functions f (x) and

K(x, t, y(t)) are analytical on R and R3, respectively.

Note that K(x, t, y(t)) is a nonlinear function which may be singular at x = x0.

Now, we are interested to find the numerical solution to (2.1) in domain T = [a,+∞).

Consider the interval [a,b)⊆ T , and divide it into a series of subintervals [xn,xn+1) such

that x0 = a. In each subinterval K(x, t, y) may be linearized as follows.

(1) If K(x, t, y) is regular, K may be approximated by the first three terms of its Taylor

series expansion around (xn, tn, yn) in the following form:

K(x, t, y)=K
(

xn, tn, yn
)

+
(

x− xn
)∂K

(

xn, tn, yn
)

∂x

+
(

t− tn
)∂K

(

xn, tn, yn
)

∂t
+
(

y− yn
)∂K

(

xn, tn, yn
)

∂y
.

(2.2)

By substituting (2.2) in (2.1), we obtain

y(x)= f (x) + λ

∫ x

a

[

Kn +
(

x− xn
)

Jn +
(

t− tn
)

Qn +
(

y− yn
)

Zn

]

dt, xn ≤ x < xn+1, (2.3)

where

y
(

xn
)

= yn, (2.4)

Kn = K
(

xn, tn, yn
)

, Jn =
∂K
(

xn, tn, yn
)

∂x
,

Qn =
∂K
(

xn, tn, yn
)

∂t
, Zn =

∂K
(

xn, tn, yn
)

∂y
.

(2.5)
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Since in the integral part of (2.3) t is an independent variable, y is a dependent variable,

and x is a parameter, therefore by integrating it respect to t, we have

y(x)= f (x) + λZn

∫ x

a
y(t)dt+ λ

[

Kn +
(

x− xn
)

Jn− ynZn

]

∫ x

a
dt+ λQn

∫ x

a

(

t− tn
)

dt. (2.6)

From this equation and after some computations, we obtain

y(x)= f (x) + λ
[

Kn +
(

x− xn
)

Jn− ynZn

]

(x− a)

+
λ

2

[

(

x− tn
)2
−
(

a− tn
)2
]

Qn + λZn

∫ x

a
y(t)dt, xn ≤ x < xn+1.

(2.7)

With differentiating (2.7), respect to x, we obtain

y′(x)− λZny(x)= f ′(x) + λ
[

Kn +
(

2x− xn− a
)

Jn− ynZn +Qn

(

x− tn
)]

. (2.8)

It is clear that, this equation is a linear ordinary differential equation, whose analytical

solution may be written as

y(x)= y
(

xn
)

+ f (x) + λZn exp
(

λZnx
)

∫ x

xn
f (t)exp

(

− λZnt
)

dt

−
1

Zn

{

Kn +

[

(

x− xn
)

+ (x− a) +
2

λZn

]

Jn +

(

x− tn +
1

λZn

)

Qn

}

+ exp
(

λZn

(

x− xn
))

{

1

Zn

[

Kn +

(

xn− a+
2

λZn

)

Jn

+

(

xn− tn +
1

λZn

)

Qn

]

− f (xn)

}

, xn ≤ x < xn+1.

(2.9)

Equation (2.9) provides the following nonlinear mapping

y
(

xn+1

)

= y
(

xn
)

+ f
(

xn+1

)

+ λZn exp
(

λZnxn+1

)

∫ xn+1

xn
f (t)exp

(

− λZnt
)

dt

−
1

Zn

{

Kn +

[

(

xn+1− xn
)

+
(

xn+1− a
)

+
2

λZn

]

Jn +

(

xn+1− tn +
1

λZn

)

Qn

}

+ exp
(

λZn

(

xn+1− xn
))

{

1

Zn

[

Kn +

(

xn− a+
2

λZn

)

Jn

+

(

xn− tn +
1

λZn

)

Qn

]

− f
(

xn
)

}

.

(2.10)

Note that, since the integral equation (2.1) is one-dimensional and x is independent

variable, therefore x and t are equivalent. Now, we will use (2.10) and initial condition
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(2.4) for solving (2.1) by taking tn = xn. By this assumption, the numerical solution of

(2.1) at the grid points xn+1, for n= 0,1,2, . . . , can be obtained from

yn+1 = yn + fn+1 + λZn exp
(

λZnxn+1

)

∫ xn+1

xn
f (t)exp

(

− λZnt
)

dt

−
1

Zn

{

Kn +

[

△xn +
(

xn+1− x0

)

+
2

λZn

]

Jn +

(

△xn +
1

λZn

)

Qn

}

+ exp
(

λZn△xn
)

{

1

Zn

[

Kn +

(

xn− x0 +
2

λZn

)

Jn +
1

λZn
Qn

]

− f
(

xn
)

}

,

(2.11)

where△xn = xn+1− xn is the local size step and y(x0)= y0.

On the other hand, if we set △xn = h for n = 0,1,2, . . . , namely, xn = x0 + nh, then

(2.11) will be reduced to the following equation:

yn+1 = yn + fn+1 + λZn exp
(

λZnxn+1

)

∫ xn+1

xn
f (t)exp

(

− λZnt
)

dt

−
1

Zn

{

Kn +

[

(n+ 2)h+
2

λZn

]

Jn +

(

h+
1

λZn

)

Qn

}

+ exp
(

λZnh
)

{

1

Zn

[

Kn +

(

nh+
2

λZn

)

Jn +
1

λZn
Qn

]

− f
(

xn
)

}

.

(2.12)

(2) If K(x, t, y(t)) is singular at xn, the above derivation is not valid, but K(x, t, y) may

be approximated by the first three terms of its Taylor series expansion around (xn+1, tn+1,

yn), so (2.1) may be approximated by

y(x)= f (x) + λ
[

Kn+1 +
(

x− xn+1

)

Jn+1− ynZn+1

]

(x− a)

+
λ

2

[

(

x− tn+1

)2
−
(

a− tn+1

)2
]

Qn+1 + λZn+1

∫ x

a
y(t)dt, xn < x ≤ xn+1,

(2.13)

where

Kn+1 = K
(

xn+1, tn+1, yn
)

, Jn+1 =
∂K
(

xn+1, tn+1, yn
)

∂x
,

Qn+1 =
∂K
(

xn+1, tn+1, yn
)

∂t
, Zn+1 =

∂K
(

xn+1, tn+1, yn
)

∂y
,

y
(

xn
)

= yn,

(2.14)
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whose analytical solution may be expressed as

y(x)= y
(

xn
)

+ f (x) + λZn+1 exp
(

λZn+1x
)

∫ x

xn
f (t)exp

(

− λZn+1t
)

dt

−
1

Zn+1

{

Kn+1 +

(

2x− xn+1− a+
2

λZn+1

)

Jn+1

+

(

x− tn+1 +
1

λZn+1

)

Qn+1

}

+ exp
(

λZn+1

(

x− xn
))

×

{

1

Zn+1

[

Kn+1 +

(

2xn− xn+1− a+
2

λZn+1

)

Jn+1

+

(

xn− tn+1 +
1

λZn+1

)

Qn+1

]

− f
(

xn
)

}

, xn < x ≤ xn+1.

(2.15)

From (2.15), solution of (2.1) at the grid points xn+1 can be obtained from

yn+1 = yn + fn+1 + λZn+1 exp
(

λZn+1xn+1

)

∫ xn+1

xn
f (t)exp

(

− λZn+1t
)

dt

−
1

Zn+1

{

Kn+1 +

(

xn+1− x0 +
2

λZn+1

)

Jn+1 +
1

λZn+1
Qn+1

}

+ exp
(

λZn+1△xn
)

{

1

Zn+1

[

Kn+1 +

(

xn−△xn− x0 +
2

λZn+1

)

Jn+1

+

(

1

λZn+1
−△xn

)

Qn+1

]

− f
(

xn
)

}

,

(2.16)

where△xn, and tn+1 are as above.

In the similar manner, if we set △xn = h, for n= 0,1,2, . . . , (xn = x0 +nh), then (2.16)

will be reduced to the following equation:

yn+1 = yn + fn+1 + λZn+1 exp
(

λZn+1xn+1

)

∫ xn+1

xn
f (t)exp

(

− λZn+1t
)

dt

−
1

Zn+1

{

Kn+1 +

(

(n+ 1)h+
2

λZn+1

)

Jn+1 +
1

λZn+1
Qn+1

}

+ exp
(

λZn+1h
)

{

1

Zn+1

[

Kn+1 +

(

(n− 1)h+
2

λZn+1

)

Jn+1

+

(

1

λZn+1
−h

)

Qn+1

]

− f
(

xn
)

}

.

(2.17)

The nonlinear mappings or difference equations corresponding to (2.12) and (2.17)

have been derived by considering that K is a function of three variables x, t, and y.



6 On the numerical solutions of integral equations

Moreover, since these equations have been obtained by approximating K by the first three

terms of its Taylor series expansion, while higher-order terms have been neglected, the lo-

cal step size△xn may be determined from the condition that higher-order terms be much

smaller than the first-order ones, or from the condition that yn+1 does not differ signifi-

cantly from yn.

3. Error analysis

In this section, we perform the estimating error for the integral equations. Since the trun-

cated nonlinear mappings or difference equations corresponding to (2.12) and (2.17) are

an approximate solution of (2.1), hence, the error function e(x) for (2.1) is defined as

follows:

e(x)=
∣

∣y(x)−Y(x)
∣

∣, (3.1)

where in the regular point xn, we have

Y(x)= y
(

xn
)

+ f (x) + λZn exp
(

λZnx
)

∫ x

xn
f (t)exp

(

− λZnt
)

dt

−
1

Zn

{

Kn +

[

(

x− xn
)

+ (x− a) +
2

λZn

]

Jn +

(

x− tn +
1

λZn

)

Qn

}

+ exp
(

λZn

(

x− xn
))

{

1

Zn

[

Kn +

(

xn− a+
2

λZn

)

Jn

+

(

xn− tn +
1

λZn

)

Qn

]

− f
(

xn
)

}

, xn ≤ x < xn+1,

(3.2)

and in the singular point xn, we have

Y(x)= y
(

xn
)

+ f (x) + λZn+1 exp
(

λZn+1x
)

∫ x

xn
f (t)exp

(

− λZn+1t
)

dt

−
1

Zn+1

{

Kn+1 +

(

2x− xn+1− a+
2

λZn+1

)

Jn+1

+

(

x− tn+1 +
1

λZn+1

)

Qn+1

}

+ exp
(

λZn+1

(

x− xn
))

×

{

1

Zn+1

[

Kn+1 +

(

2xn− xn+1− a+
2

λZn+1

)

Jn+1

+

(

xn− tn+1 +
1

λZn+1

)

Qn+1

]

− f
(

xn
)

}

, xn < x ≤ xn+1.

(3.3)
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Now, by substituting the solutions y(xr) (r = 0,1, . . .) in the error function e(x) we

have

e
(

xr
)

=
∣

∣y
(

xr
)

−Y
(

xr
)
∣

∣, (3.4)

then our aim is e(xr) ≤ 10−kr (kr is any positive integer). If we prescribe max(10−kr) =

10−k, then we decrease the step size h as far as the following inequality holds at each point

xr :

e
(

xr
)

≤ 10−k. (3.5)

In other words, by decreasing h the error function e(xr) approaches to zero.

4. Presentation of results

In order to assess both the applicability and accuracy of the theoretical results of Section 2,

we have applied them to a variety of nonlinear integral equations in the following exam-

ples.

Example 4.1. The nonlinear Volterra integral equation in [0,1]

y(x)= exp(x)−
1

2

(

exp(2x)− 1
)

+

∫ x

0
y2(t)dt (4.1)

has the following analytical solution y(x) = exp(x), and therefore, provides an example

to verify the accuracy of this method.

Equation (4.1) by using (2.7) is reduced to the linear integral equation in the following

form:

y(x)= exp(x)−
1

2

(

exp(2x)− 1
)

− y2
nx+ 2yn

∫ x

0
y(t)dt, xn ≤ x < xn+1, (4.2)

and from (2.12), numerical solution of (4.2) at the grid points xn+1, n= 0,1,2, . . . , can be

obtained from

yn+1 =
yn
2

+ exp
(

xn+1

)

−
1

2

(

exp
(

2xn+1

)

− 1
)

+ exp
(

2ynh
)

(

yn
2
− exp

(

xn
)

+
1

2

(

exp
(

2xn
)

− 1
)

)

+ 2yn exp
(

2ynxn+1

)

∫ xn+1

xn

(

exp(t)−
1

2

(

exp(2t)− 1
)

)

exp
(

− 2ynt
)

dt.

(4.3)
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Figure 4.1. The result for h= 0.1 and 0.01 and analytical solution of (4.1).

The result for h = 0.1 and 0.01 and analytical solution are presented in Figure 4.1

which indicates that the numerical solutions obtained from (4.3) and step sizes equal

to 0.0001, 0.001, 0.01, and 0.1 are nearly identical. The exact solution at x = 0.7 is

2.013752707000, whereas the numerical solutions corresponding to step sizes equal

to 0.0001,0.001,0.01, and 0.1 are 2.0137523240, 2.0137511060, 2.0136061360, and

2.0005244930, respectively. These results indicate that, if we use the time steps smaller

than about 0.01, then we obtain the numerical solutions of minimum error. In other

words, by decreasing h the error function e(xr)≤ 10−5.

Table 4.1 shows the errors-involved presented method with h = 0.0001,0.001,0.01,

and 0.1 along with the exact solution.

Example 4.2. Consider the nonlinear weakly singular Volterra-Hammerstein integral

equation with algebraic nonlinearity

y(x)=−
x4

10
+

5

6
x2 +

3

8
+

∫ x

0

1

2x
y2(t)dt, x ∈ [0,1], (4.4)

with exact solution y(x)= x2 + 1/2 and singular point x0 = 0.

Equation (4.4) by using (2.15) will be reduced to the linear Volterra integral equation

in the following form:

y(x)=−
x4

10
+

5x2

6
+

3

8
−

y2
n

2xn+1

[

1 +
x− xn+1

xn+1

]

x+
yn
xn+1

∫ x

0
y(t)dt, xn < x ≤ xn+1, (4.5)
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Table 4.1. Comparison of numerical solution yi and exact solution y(xi).

x h= 0.1 h= 0.01 h= 0.001 h= 0.0001

0.0 0.000000000e+ 00 0.000000000e+ 00 0.000000000e+ 00 0.000000000e+ 0

0.1 3.779750000e− 04 4.065000000e− 6 5.100000000e− 08 2.000000000e− 8

0.2 9.402320000e− 4 1.015300000e− 5 1.160000000e− 7 5.800000000e− 8

0.3 1.783404000e− 3 1.933700000e− 5 2.150000000e− 7 8.500000000e− 8

0.4 3.063988000e− 3 3.337100000e− 5 3.700000000e− 7 1.190000000e− 7

0.5 5.042530000e− 3 5.519100000e− 5 6.140000000e− 7 1.890000000e− 7

0.6 8.166182000e− 3 8.989100000e− 5 9.900000000e− 7 2.580000000e− 7

0.7 1.322821400e− 2 1.465710000e− 4 1.601000000e− 6 3.830000000e− 7

0.8 2.168746500e− 2 2.421720000e− 4 2.612000000e− 6 6.260000000e− 7

0.9 3.633225600e− 2 4.095920000e− 4 4.382000000e− 6 9.340000000e− 7

1.0 6.271307700e− 2 7.156940000e− 4 7.651000000e− 6 1.600000000e− 6

Table 4.2. Comparison of numerical solution yi and exact solution y(xi).

x yi y(xi) |y(xi)− yi|

0.0 1.000000000000 1.000000000000 0.000000000000e+ 00

0.1 0.894271248000 0.510000000000 3.842712480000e− 01

0.2 0.921230883000 0.540000000000 3.812308830000e− 01

0.3 0.963056591000 0.590000000000 3.730565910000e− 01

0.4 1.020125776000 0.660000000000 3.601257760000e− 01

0.5 1.091795751000 0.750000000000 3.417957510000e− 01

0.6 1.177052811000 0.860000000000 3.170528110000e− 01

0.7 1.274605512000 0.990000000000 2.846055120000e− 01

0.8 1.382907920000 1.140000000000 2.429079200000e− 01

0.9 1.500167373000 1.310000000000 1.901673730000e− 01

1.0 1.624347620000 1.500000000000 1.243476200000e− 01

from (2.17), we get the numerical solution of (4.4) at the grid points xn+1 for n= 0,1,2, . . . ,

in the following form:

yn+1 =
yn
2

(

1 +
(n+ 1)h

xn+1

)

−
x4
n+1

10
+

5

6
x2
n+1 +

11

8

+
yn
xn+1

exp
(

yn
)

∫ xn+1

xn

((

−
t4

10
+

5

6
t2 +

3

8

)

exp

(

−
yn
xn+1

t

))

dt

+ exp

(

yn
xn+1

h

)(

yn
2

(

1−
(n− 1)h

xn+1

)

+
x4
n

10
−

5

6
x2
n−

11

8

)

.

(4.6)

The absolute errors found by presented method are compared with the exact solution in

Table 4.2.
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5. Conclusion

By introducing the Linearization method, the nonlinear Volterra integral equations in

applied sciences and physics can be transformed into the linear Volterra integral equa-

tions which may be integrated using classical methods. Both the applicability and the

accuracy of linearization method for the solution of nonlinear integral equations have

been examined by means of several problems. It has been shown that, for regular prob-

lems, linearization method is robust and accurate techniques whose accuracy is not a

strong function of either the linearization point or the linearization with respect to the

independent variable.
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