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The linearization of a microwave photonic link based on a dual-parallel Mach-Zehnder
modulator is theoretically described and experimentally demonstrated. Up to four different
radio frequency tones are considered in the study, which allow us to provide a complete
mathematical description of all third-order distortion terms that arise at the photodetector.
Simulations show that a complete linearization is obtained by properly tuning the DC
bias voltages and processing the optical carrier band. As a result, a suppression of 17 dB is
experimentally obtained for the third-order distortion terms, as well as a SDFR improvement
of 3 dB. The proposed linearization method enables the simultaneous modulation of four
different signals without the need of additional radio frequency components, which is
desirable to its implementation in integrated optics and makes it suitable for several
applications in microwave photonics.

1 Introduction

Microwave photonics links (MPL) provide several advantages in terms of bandwidth, low
loss, lightweight and immunity to electromagnetic interference compare to conventional
electrical links, which makes them suitable for radio frequency (RF) applications such
as wireless communications, radio-over-fiber and antenna remoting, among others [1, 2].
However, nonlinear distortion arises as the main limitation factor of MPLs, wherein the
electro-optic modulator is the one that contributes the most to produce this effect. Nonlinear
distortion can be classified as harmonic distortion (HD) or intermodulation distortion (IMD)
and the spurious free dynamic range (SFDR) is the figure of merit normally used to measured
IMD. [3]. HD lie away from the fundamental signals so that they can be filtered out. In
contrast, the third-order intermodulation distortion (IMD3) is so close to the fundamental
frequencies and it cannot be easily removed using filters [4].

To improve the linearity of the MPL, first approaches were proposed decades ago by
using additional modulation structures to produce complementary IMD3 terms so that they
cancel the primary modulator distortion at the photodetector (PD) [5]. These schemes
are designed using complementary Mach-Zehnder modulators (MZM) either in series or
parallel to provide broad-band linearization but at the expense of increasing the structural
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complexity, size and power consumption. Another linearization technique is based on optical
spectrum processing in order to identify the main contributors of IMD3 and cancel them
by tuning the carrier and sidebands of the modulated signal. This was first proposed
for intensity-modulation where it was demonstrated that only a phase shift in the optical
carrier band is needed to suppress IMD3 terms in a MZM [6, 7, 8, 9]. This method was later
extended to phase modulators (PM) providing the advantages of low loss and simplicity but
requiring a more complex optical spectrum processing since the phase and amplitude of the
sidebands must be also considered [10, 11, 12, 13].

In parallel, more complex structures such as dual-parallel MZM (DPMZM) have also
been investigated for linearization by adjusting the power between the electrical drive signals
[14, 15], input and output optical power splitting ratios [16, 17], optimizing the working
points of single-drive configurations [18], or properly designing electrical phase shifters to
have an active control of the RF inputs [19, 20]. Likewise, similar DPMZM are linearized
using complementary IMD3 terms at each MZM [21], or even another DPMZM in parallel as
a polarization-multiplexing configuration [22]. Nevertheless, in all aforementioned DPMZM
the underlying idea stems from introducing a certain predistortion in the RF domain to
compensate existing non-linearities in one of the MZM, which reduces the bandwidth limited
by the electrical components. So far, an exhaustive analysis of the DPMZM linearization
by means of optical processing remains unexplored as well as its implementation without
additional RF techniques.

In this paper, we present the linearization of a DPMZM by processing the carrier band
in the optical domain. To this end, both MZM are configured in push-pull configuration so
that no additional RF components are needed. In addition, a four tone test is considered in
the linearization scheme which allows us to demonstrate that two different RF signals can
be modulated at the same time in each MZM without third-order distortion. Experimental
measurements are also provided, showing a good agreement with theoretical predictions and
simulations. The proposed work extends the use of optical processing for the linearization
of a more complex structure such as DPMZM with interesting results and applications.

2 Operation principle

The proposed MPL is shown in Fig. 1. It is composed by a DPMZM with both individual
MZM in push-pull configuration, —i.e., a phase shift of π between driving RF signals applied
to each of the MZM arms. In this scheme, the optical carrier is modulated by two different
RF signals: ω1,2 and ω3,4 in the case of the upper and lower MZM, respectively, so that a
four-tone test is considered. We can define the optical field at the output of the upper and
lower MZM, E1 and E2 respectively, as:

E1(t) = −j
√
Pie

jωct
√
k − k2

·
[
ejφ1ejm sinω1tejm sinω2t + e−jm sinω1te−jm sinω2t

] (1)

E2(t) = −j
√
Pie

jωct
√
k − k2

·
[
ejφ2ejm sinω3tejm sinω4t + e−jm sinω3te−jm sinω4t

] (2)

where Pi is the input optical power, ωc the optical carrier angular frequency, k the coupling
coefficient, φ the phase shifts that control the bias point of each MZM and m the modulation
index. Note that the exponent of the second term is considered negative due to the push-pull
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configuration of the MZM. Therefore, the output field of the complete DPMZM in turn can
be calculated as the sum of Eq. (1) and (2) as

Eout(t) =
√
k − k2

[
ejφ3E1(t) + E2(t)

]
. (3)

For the sake of simplicity and in order to expand the field into Bessel functions of the
first kind, we must first define these two variables

S1(m) =

+∞∑
n=−∞

Jn(m)ejnω1t
+∞∑

k=−∞
Jk(m)ejkω2t (4)

S2(m) =

+∞∑
n=−∞

Jn(m)ejnω3t
+∞∑

k=−∞
Jk(m)ejkω4t (5)

so that the modulated optical spectrum of the field in Eq. (3) can be rewritten as

Eout(t) ∝ ejφ3
[
ejφ1S1(m) + S1(−m)

]
+
[
ejφ2S2(m) + S2(−m)

]
. (6)

The modulated optical spectrum at the DPMZM output is therein processed by the
spectral shaper to impose a certain amplitude suppression and phase shift on the optical
carrier band (OCB). Considering first and second order sidebands (±OSB and ±2OSB)
in the optical spectrum, there are four beating products (BPs) that produce IMD3 at the
photo-diode, as it is detailed in Fig. 2a. The first one is the beating between the frequency
component from the OCB: ωc with the components from the ±OSB: ωc + 2ω1,2−ω2,1(ωc−
2ω1,2+ω2,1) and ωc+2ω3,4−ω4,3(ωc−2ω3,4+ω4,3). This BP produces direct IMD3 terms that
only depend on one of the RF frequencies, —e.g., 2ω1−ω2. The second BP in turn includes
the mixing between the component from the OCB: ωc + ω1,2 − ω2,1 and ωc + ω3,4 − ω4,3

with the component from the ±OSB: ωc +ω1,2(ωc−ω1,2) and ωc +ω3,4(ωc−ω3,4). This BP
produces direct IMD3 terms as before, but also crossed IMD3 terms that depend on both
RF1 (ω1,2) and RF2 (ω3,4) frequencies —e.g., ω1−ω2+ω3. The third BP involves the mixing
of the component from the ±OSB: ωc − ω2,1(ωc + ω2,1) and ωc − ω4,3(ωc + ω4,3) with the
component from ±2OSB ωc+2ω1,2(ωc−2ω1,2) and ωc+2ω3,4(ωc−2ω3,4). This BP produces
both direct and crossed IMD3 terms —e.g., 2ω1 − ω2 and 2ω1 − ω3, depending on whether
the beating is between the same RF signal or not, respectively. Finally, there is a fourth BP
between the component from the ±OSB: ωc−ω2,1(ωc+ω2,1) and ωc−ω4,3(ωc+ω4,3) with the
component from ±2OSB: ωc+ω1,2+ω2,1(ωc−ω1,2−ω2,1) and ωc+ω3,4+ω4,3(ωc−ω3,4−ω4,3).
This BP produces only crossed terms —e.g., ω1 +ω2−ω3. It is worth noting that the fourth
BP also produces coefficients I1 when the mixing is between frequency components of the
same RF signal —e.g., ω1 + ω2 − ω2 = ω1.

Once the optical spectrum has been processed, it is photo-detected and reconverted to
the electrical domain where all the aforementioned IMD3 terms appear, including both direct
and crossed contributions, see the RF spectrum shown in Fig. 2b. Note that direct terms
lie close to the fundamental tones, while crossed ones depend on the frequency separation
between ω1,2 and ω3,4. Calculations yield 2 contributions for the fundamental coefficients
and up to 8 contributions for IMD3 terms (see the supplemental document for detailed
derivation). Taking this into account, the current at the PD can be expressed in terms of
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the fundamental tones I1 and IMD3 coefficients I3 as

IPD = RPD|Ep|2

= I1,1 sinω1,2t+ I1,2 sinω3,4t

+ I3,1 sin(2ω1,2 − ω2,1)t+ I3,2 sin(2ω3,4 − ω4,3)t

+ I3,3 sin(2ω1,1,2,2 − ω3,4,3,4)t+ I3,4 sin(2ω3,3,4,4 − ω1,2,1,2)t

+ I3,5 sin(ω3,3,4,4 − ω4,4,3,3 + ω1,2,1,2)t

+ I3,6 sin(ω1,1,2,2 − ω2,2,1,1 + ω3,4,3,4)t

+ I3,7 sin(ω1,1 + ω2,2 − ω3,4)t+ I3,8 sin(ω3,3 + ω4,4 − ω1,2)t,

(7)

where RPD is the responsivity of the PD, I3,1, I3,2 are direct IMD3 terms represented in
red in Fig. 2b, and I3,3, I3,4, I3,5, I3,6, I3,7 and I3,8 are crossed IMD3 terms, shown in green
and purple in Fig. 2b.

By multiplying Eq. (6) by its conjugate we obtain the current at the PD so that we can
relate it to all I3 terms using Eq. (7). For the first direct IMD3 coefficient I3,1, this yields

I3,1 = 4RPDPi(k − k2) ·
[

1

2
β sinφ1 + Φ1AJ

2
0J1J2

]
(8)

whence β is defined as

β = AJ2
0J1J2 cos θ +AJ0J

3
1 cos θ + J2

0J1J2, (9)

and Φ1 as

Φ1 = sin(φ1 − φ2 + φ3 − θ) + sin(φ1 + φ3 − θ)
− sin(−φ2 + φ3 − θ)− sin(φ3 − θ),

(10)

where A and θ is the amplitude suppression and phase shift imposed to the OCB by the
spectral shaper, respectively. Similarly, the calculation of the second direct IMD3 coefficient
I3,2 yields

I3,2 = 4RPDPi(k − k2) ·
[

1

2
β sinφ2 − Φ2AJ

2
0J1J2

]
(11)

where Φ2 is defined as

Φ2 = sin(φ1 − φ2 + φ3 − θ)− sin(φ1 + φ3 + θ)

+ sin(−φ2 + φ3 + θ)− sin(φ3 + θ).
(12)

On the other hand, assuming φ1 = −φ2 and no OCB processing —i.e., A = 1 and θ = 0,
all crossed IMD3 terms (I3,3, I3,4, I3,5, I3,6, I3,7, I3,8) are directly proportional to the phase
shifts, and can be expressed by the following expression

I3,C ∝ sin(2φ1 + φ3)− sin(φ3). (13)

To cancel crossed IMD3 terms, we must first equal Eq. (13) to zero. Fixing φ3 = 2φ1
the equation is solved for φ3 = π, thus φ1 = π/2 and φ2 = −π/2. Now, to calculate θ, we
introduce these values in Φ1 and Φ2 expressions and equal them to zero as follows{

sin(2π − θ) − sin(π − θ) = 0

sin(2π + θ) − sin(π + θ) = 0
(14)
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where this system of equations is met when θ = π. Finally, to fully cancel direct IMD3

terms, we solve β in Eq. (9) for this value of θ as

β = −AJ2
0J1J2 −AJ0J3

1 + J2
0J1J2 = 0, (15)

applying Taylor series expansion to the third order in m (small signal approximation) we
can rewrite this expression as

β =
m3

16
(1− 3A) = 0, (16)

where this condition if fulfilled when an amplitude suppression of A = 1/3 is applied to the
OCB, so that direct IMD3 contributors in Eq. (8) and (10) are theoretically canceled.

On the other hand, calculations (see supplementary for detailed derivation) yield that
the coefficients for the fundamental signals I1 under small signal condition are

I1,1 = −4mA cos θ sinφ1, (17)

I1,2 = −4mA cos θ sinφ2. (18)

Note that maximum transmission is achieved because of the quadrature operation of
both MZM. In contrast, because of the OCB processing, a penalty of 1/3 is imposed to the
fundamental tones in the optical spectrum, which is translated into MPL losses of 9.4 dB
in the RF domain.

3 Simulations

To verify the theoretical analysis, several simulations have been carried out using a software
tool in Matlab that analytically calculates the electric field output of the DPMZM in the
time domain and later computes the fast Fourier transform (FFT) to obtain the resulting
spectrum. The input parameters configured in the simulation are: input optical power Pi =
18 dBm, RF power PRF = 8 dBm, Vπ = 5V, ω1 = 7.9 GHz, ω2 = 8.1 GHz, ω3 = 10.85
GHz, ω4 = 11.15 GHz, RPD = 1 A/W and link losses considered of L = 17 dB. Figure 3a
shows the simulation without linearization, —i.e., with the bias voltages of the DPMZM
φ1 = φ2 = π/2, φ3 = 0 and no OCB processing, θ = 0 and A = 1. The resulting RF
spectrum contains all the IMD3 theoretically described including both direct and crossed
terms. A fundamental to IMD3 ratio (FIR) of 56.1 dB is obtained at this stage. Figure
3b contains the RF spectrum with only the DC bias voltages adjusted to suppress IMD3

crossed terms in Eq. (12), —i.e., φ1 = π/2, φ2 = −π/2, φ3 = π and no OCB processing,
θ = 0, A = 1. Only direct IMD3 are obtained in the spectrum, as well as the fundamental
tones which are reduced 6.1 dB because of the cancellation of the phase relation (Φ1,2) in
crossed IMD3 terms that are also present in I1 coefficients. Figure 3c in turn depicts the
linearized RF spectrum with the theoretical values obtained before: φ1 = π/2, φ2 = −π/2,
φ3 = π, an attenuation of A = 1/3 and phase of θ = π imposed on the OCB. Simulated
results show a FIR over 90 dB, which means an IMD3 suppression above 33.9 dB compared
to Fig. 3a. As this figure illustrates, all IMD3 terms go below the noise floor and only the
fundamental tones are visible in the simulation, which match the theoretical predictions and
indicate that the proposed linearization method is feasible to reduce IMD3. Note also that
the fundamental signals I1,1 and I1,2 are reduced 9.4 dB compared to the last configuration
in Fig. 3b because of the amplitude suppression imposed to the OCB.
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4 Experimental results

Experimental measurements are carried out following the setup detailed in Fig. 1. A
laser source (Tunics T100S) at 1550 nm wavelength and 10 dBm of optical power with a
polarization-maintaining fiber is intensity modulated by a DPMZM (Photline MXIQ-LN-40)
where up to four tone RF signals are injected. Two of these RF signals centered at
14.99 GHz, separation bandwidth of 3 MHz and power of 6 dBm are generated by a first
vector signal generator (E8267C Agilent). Another set of two RF signals centered at 15.01
GHz, separated by 5 MHz and with 6 dBm power are produced by a second vector signal
generator (R&S SMW200A). The modulated signal is thereafter processed by an optical
spectral shaper (Waveshaper 4000s), with losses around 10 dB, to impose a certain phase
an amplitude on the OCB. To compensate optical losses, an erbium-doped fiber amplifier
(EDFA Amonics) is disposed at the output, which is directly connected to the photo-detector
(Finisar 70 GHz) to retrieve the electrical signal at the MPL output, measured by a RF
spectrum analyzer (R&S FSW43).

The experimental RF spectrum obtained at the MPL output is shown in Fig. 4 with 10
dBm and 6 dBm of optical and RF power, respectively. Firstly, in Fig. 4a the DPMZM is
tuned into a reference state without linearization (φ1 = π/2, φ2 = π/2, φ3 = 0) and no OCB
processing, —i.e., is the waveshaper configured as an all-pass filter. At this stage, third-order
distortion is clearly visible near the fundamental signals with a FIR around 32 dB respect to
crossed IMD3 terms. It is worth noting that both RF1 and RF2 signals are not completely
balanced, as it is seen in the difference between the fundamental coefficients (I1,1, I1,2).
This is caused by fabrication deviations in the DPMZM, which limit its performance and
will be present in all experimental measurements. Nevertheless, in Fig. 4b the linearization
of crossed IMD3 terms is measured by properly adjusting the DC bias voltages (φ1 = π/2,
φ2 = −π/2, φ3 = π) that have been theoretically calculated. At this stage, the waveshaper
continues working as an all-pass filter so no OCB processing is imposed. The FIR of crossed
terms is reduced up to 52.9 dB and 50.1 dB, for the case of the fundamental tones centered
at 14.99 GHz and 15.01 GHz, respectively. That means a suppression of almost 20 dB for
the crossed IMD3 terms by only tuning the DC voltages, as it was theoretically predicted.
However, because of the DPMZM imbalances a degradation around 10 dB is obtained in
the fundamental coefficients, which is different from the 6 dB calculated in simulations
previously shown. Direct IMD3 terms at this stage are not canceled and present a FIR
around 42 dB. In Fig. 4c, the complete linearized spectrum is shown by processing the
OCB with a phase of θ = π and amplitude suppression of A = 1/3. After applying these
filter conditions, a FIR of direct IMD3 terms of 58.9 dB and 58.2 dB is obtained for the
fundamental tones at 14.99 GHz and 15.01 GHz, respectively. That means a suppression
of direct terms around 17 dB respect to the previous stage without linearization. The
optical power is compensated by the EDFA after applying the filter so that fundamental
tones remain constant before and after linearization of direct IMD3 terms. Specifically, the
optical power is increased 9.4 dBm to compensate the amplitude attenuation of 1/3 imposed
by the waveshaper. Note also that crossed terms are not fully canceled at this stage and
they remain visible above direct terms because of internal deviation errors in the DPMZM.
That is why results regarding the SFDR are given respect to the direct IMD3 terms, which
are the critical ones since they are canceled by the OCB processing.

The SFDR measurements are shown in Fig. 5 for both RF1 and RF2 fundamental
signals. They are studied in separated graphs since they behave differently depending on
the filter applied, thus the SDFR obtained might not be the same. RF output power is
depicted as a function of increasing RF input powers without and with linearization, —i.e.,
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without and with OCB processing of θ = π and A = 1/3 with common DC bias voltages
at φ1 = π/2, φ2 = −π/2, φ3 = π. A SFDR of 83.17 dB · Hz2/3 and 83.98 dB · Hz2/3 with
a noise floor of -130.79 dBm/Hz is measured without linearization for the case of RF1 and
RF2 signals, respectively. Likewise, a SFDR of 86.92 dB · Hz2/3 and 86.87 dB · Hz2/3 with
a noise floor of -128.85 dBm/Hz is obtained in turn after linearization for RF1 and RF2

signals, respectively. An improvement around 3 dB is observed, which is in part limited
by the increase of the noise floor due to the increment of optical power injected by the
EDFA at the PD. It is worth noting that the noise floor is relatively high because of the
waveshaper and modulator losses, which drastically increases the optical power supplied
by the EDFA and so the noise reference level. If we consider the same noise level with
and without linearization, a SFDR improvement up to 5 dB could be obtained without
compensation penalty.

Compared to other similar approaches, our results in terms of IMD3 suppression and
SFDR improvement are very similar to those reported in the linearization of a PM using
optical processing [13] (21.7 dB of IMD3 suppression and a SFDR improvement of 7 dB) and
are not as good as those obtained in the linearization of DPMZMs [20, 21, 22] (between 25-45
dB of IMD3 suppression and a SFDR improvement around 11 dB). However, in all these
DPMZM examples the linearization has been demonstrated using external RF components
and under a two-tone analysis. In contrast, our results are based on optical processing which
can be integrated in a photonic chip and the linearization is generalized to simultaneously
modulate up to four different signals without IMD3.

5 Discussion

Although experimental measurements prove that the linearization of a DPMZM by means
of OCB processing is feasible, the results shown in Fig. 5 for IMD3 terms present a slope
of 3, instead of 5, which suggest that IMD3 terms are not completely suppressed. Similar
results have been already discussed in other works involving sideband processing [13], where
it was demonstrated that the non-constant amplitude and phase applied on the modulated
spectrum cause incomplete cancellation of IMD3 terms. In our case, the resolution of
the waveshaper (10 GHz) is close to the filter requirements where only the OCB must
be processed. That is the reason why relatively high RF frequencies have been configured,
mainly to provide a certain bandwidth margin in the modulated optical spectrum where the
linearization filter could fit. However, waveshaper filters are designed within the minimum
resolution so that the amplitude and phase imposed over the entire OCB bandwidth is not
perfectly constant to fully satisfy Eqs. (13) and (15).

To further analyze the behavior of the waveshaper and its influence on the linearization,
several deviations in phase and amplitude over the theoretical obtained filter have been
experimentally measured. Figure 6 shows the imbalance between fundamental signals (I1,2−
I1,1) as well as the FIR for RF1 and RF2 signals, FIR1 and FIR2, respectively. It is shown in
Fig. 6a that OCB phase deviations of ±0.1 over π have a critical influence on the intensity
of the fundamental signals in the RF spectrum. For lower values of π, RF1 signals centered
at 14.99 GHz present higher power values than RF2 signals at 15.01 GHz, and vice versa,
for higher values of π RF2 is higher than RF1. Conversely, the amplitude variation has
a much lower impact on the imbalance than the phase variation, see Fig. 6b. Note that
best results are obtained for a zero deviation in phase where both fundamental signals are
balanced (I1,1 = I1,2), which perfectly match the theoretical predictions. Figure 6c and d
in turn shows the FIR for phase and amplitude deviations. Again, the phase has a higher
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influence on the results since FIR values drop drastically for deviation errors around ±0.1
over π. The results demonstrate how critical is the filter design in the linearization method,
mainly due to the non-constant phase imposed in the OCB which produces a incomplete
suppression of IMD3 terms.

6 Conclusion

In conclusion, OCB processing to linearize a MPL based on a DPMZM is theoretically
described and experimentally demonstrated. A four tone test is considered in the study,
which allow us to provide an exhaustive mathematical derivation of all IMD3 terms that are
produced in the PD mixing. Simulations show that crossed IMD3 terms can be canceled
out by properly tuning the DC voltages of the modulator, while direct IMD3 terms need
from a precise OCB processing to completely linearize the link. Experimental results are
also presented, showing a good agreement with theory and simulations. Specifically, a
suppression of crossed and direct IMD3 terms of 20 dB and 17 dB is measured, and a SFDR
improvement of 3 dB is observed in the experiments. Furthermore, a complete study on
phase and amplitude deviations in the OCB processing is also carried out, demonstrating
how critical is the phase imposed on the MPL performance. Overall, the theoretical
description herein presented extends mathematical derivations in previous works to a more
complete structure, enabling the modulation of two different RF signals simultaneously,
up to 4 frequencies, with complete isolation and no distortion between them. Moreover,
the linearization method do not need any extra RF components and other pre-distortion
devices, which allows its integration and development in integrated circuits. These results
suggest the use of this linearization method in many different MWP applications, such as
radio over fiber schemes for high speed and large bandwidth communication systems, among
others.
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Supplementary information

This supplementary material provides a comprehensive mathematical derivation of some
of the equations given in the main text about a linearization method for a dual-parallel
Mach-Zehnder modulator (DPMZM) using optical side band (OSB) processing. Specifically,
we focus on how to calculate the square of the electric field after imposing a certain phase θ
and amplitudeA on the OCB, which is related to the current at the photo-detector. By doing
this, we obtain all third-order intermodulation distortion (IMD3) terms and fundamental
I1 coefficients that are studied and analyzed in the main text.

As it is explained in the Eq. (4) of the main text, the electric field after the modulator
and its conjugate can be expressed as follows

Eout(t) ∝ ejφ3
[
ejφ1S1(m) + S1(−m)

]
+
[
ejφ2S2(m) + S2(−m)

]
, (19)

E∗out(t) ∝ e−jφ3
[
e−jφ1S∗1(m) + S∗1(−m)

]
+
[
e−jφ2S∗2(m) + S∗2(−m)

]
, (20)

so that by multiplying them we obtain the square of the field after the OCB processing as

|Ep|2 = Ep(t)E
∗
p(t) =

S1(m)S∗1(m)︸ ︷︷ ︸
1

+ ejφ1S1(m)S∗1(−m)︸ ︷︷ ︸
2

+ ejφ1e−jφ2ejφ3S1(m)S∗2(m)︸ ︷︷ ︸
3

+ ejφ1ejφ3S1(m)S∗2(−m)︸ ︷︷ ︸
4

e−jφ1S1(−m)S∗1(m)︸ ︷︷ ︸
5

+S1(−m)S∗1(−m)︸ ︷︷ ︸
6

+ e−jφ2ejφ3S1(−m)S∗2(m)︸ ︷︷ ︸
7

+ ejφ3S1(−m)S∗2(−m)︸ ︷︷ ︸
8

e−jφ1ejφ2e−jφ3S∗1(m)S2(m)︸ ︷︷ ︸
9

+ ejφ2e−jφ3S∗1(−m)S2(m)︸ ︷︷ ︸
10

+S2(m)S∗2(m)︸ ︷︷ ︸
11

+ ejφ2S2(m)S∗2(−m)︸ ︷︷ ︸
12

e−jφ1e−jφ3S∗1(m)S2(−m)︸ ︷︷ ︸
13

+ e−jφ3S∗1(−m)S2(−m)︸ ︷︷ ︸
14

+ e−jφ2S2(−m)S∗2(m)︸ ︷︷ ︸
15

+S2(−m)S∗2(−m)︸ ︷︷ ︸
16

.

(21)

Up to 16 contributions are obtained (due to 4x4 multiplication of the field and its
conjugate). From these contributions, some of them are direct: S1(m)S1(m) or S2(m)S2(m)
and others crossed S1(m)S2(m) or S2(m)S1(m). This fact will yields beating products
between ω12 and ω34 that will produce crossed I3 terms dependent on sin(2ω12 − ω43)t, for
instance. It is also worth noting that all these 16 terms are grouped in pairs, for example,
term 1 and 6 are the same but with opposite sign (m is the modulation index and −m
refers to the internal push-pull operation of the DPMZM). Specifically these pairs are: 1-6,
2-5, 3-9, 4-13, 7-10, 8-14, 11-16, 12-15. In the next sections, we calculate all these pairs in
detail.

Calculation of I3 coefficients

Now, we are going to calculate each one of all the contributions shown in Eq. (13), and
group them in the aforementioned pairs.

Firstly, let us obtain the first three BP of contribution 1, which is expressed in terms of
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Bessel functions as

S1(m)S∗1(m) =[
AejθJ2

0 + J−1J2(e
j(2ω1−ω2)t + ej(2ω2−ω1)t) + J1J−2(e

−j(2ω1−ω2)t + e−j(2ω2−ω1)t)
]
·[

Ae−jθJ2
0 + J−1J2(e

−j(2ω1−ω2)t + e−j(2ω2−ω1)t) + J1J−2(e
j(2ω1−ω2)t + ej(2ω2−ω1)t)

]
︸ ︷︷ ︸

1st beating product

+[
AejθJ−1J1(e

−j(ω1−ω2)t + ej(ω1−ω2)t) + J0J1(e
jω1t + ejω2t) + J0J−1(e

−jω1t + e−jω2t)
]
·[

Ae−jθJ−1J1(e
j(ω1−ω2)t + e−j(ω1−ω2)t) + J0J1(e

−jω1t + e−jω2t) + J0J−1(e
jω1t + ejω2t)

]
︸ ︷︷ ︸

2nd beating product

+[
J0J1(e

jω1t + ejω2t) + J0J−1(e
−jω1t + e−jω2t) + J0J2(e

j2ω1t + ej2ω2t) +

J0J−2(e
−j2ω1t + e−j2ω2t)

]
·
[
J0J1(e

−jω1t + e−jω2t) +

J0J−1(e
jω1t + ejω2t) + J0J2(e

−j2ω1t + e−j2ω2t) + J0J−2(e
j2ω1t + ej2ω2t)

]︸ ︷︷ ︸
3rd beating product

= −4[AJ2
0J1J2 sin θ︸ ︷︷ ︸
1st BP

+AJ0J
3
1 sin θ︸ ︷︷ ︸

2nd BP

+ J2
0J1J2︸ ︷︷ ︸
3rd BP

] sin(2ω1,2 − ω2,1)t,

(22)

where A and θ are the amplitude suppression and phase shift imposed to the OCB,
respectively.

Now we must calculate other terms considering push-pull configuration, so that S(−m)
is introduced, that is J1(−m) = −J1(m) = J−1(m), and therefore J−1(−m) = −J1(−m) =
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J1(m). Therefore, the calculation of contribution 2, yields

S1(m)S∗1(−m) =[
AejθJ2

0 + J−1J2(e
j(2ω1−ω2)t + ej(2ω2−ω1)t) + J1J−2(e

−j(2ω1−ω2)t + e−j(2ω2−ω1)t)
]
·[

Ae−jθJ2
0 + J1J2(e

−j(2ω1−ω2)t + e−j(2ω2−ω1)t) + J−1J−2(e
j(2ω1−ω2)t + ej(2ω2−ω1)t)

]
︸ ︷︷ ︸

1st beating product

+[
AejθJ−1J1(e

−j(ω1−ω2)t + ej(ω1−ω2)t) + J0J1(e
jω1t + ejω2t) + J0J−1(e

−jω1t + e−jω2t)
]
·[

Ae−jθJ1J−1(e
j(ω1−ω2)t + e−j(ω1−ω2)t) + J0J−1(e

−jω1t + e−jω2t) + J0J1(e
jω1t + ejω2t)

]
︸ ︷︷ ︸

2nd beating product

+[
J0J1(e

jω1t + ejω2t) + J0J−1(e
−jω1t + e−jω2t) + J0J2(e

j2ω1t + ej2ω2t) +

J0J−2(e
−j2ω1t + e−j2ω2t)

]
·
[
J0J−1(e

−jω1t + e−jω2t) +

J0J1(e
jω1t + ejω2t) + J0J2(e

−j2ω1t + e−j2ω2t) + J0J−2(e
j2ω1t + ej2ω2t)

]︸ ︷︷ ︸
3rd beating product

= −4[AJ2
0J1J2 cos θ︸ ︷︷ ︸
1st BP

+AJ0J
3
1 cos θ︸ ︷︷ ︸

2nd BP

+ J2
0J1J2︸ ︷︷ ︸
3rd BP

] sin(2ω1,2 − ω2,1)t.

(23)

For the sake of simplicity, we can define two new variables with the results in brackets
of Eq. (S4) and (S5) since they will appear in other calculations:

α = AJ2
0J1J2 sin θ +AJ0J

3
1 sin θ + J2

0J1J2 (24)

β = AJ2
0J1J2 cos θ +AJ0J

3
1 cos θ + J2

0J1J2 (25)

Having this in mind, let us begin with pairs including direct contributions (1-6, 2-5,
11-16, 12-15), which are easier to calculate. For the first case, the calculation of pair 1-6
yields

S1(m)S∗1(m) + S1(−m)S∗1(−m) = −α+ α = 0, (26)

second pair 2-5 can be expressed as

ejφ1S1(m)S∗1(−m) + e−jφ1S1(−m)S∗1(m) =

− jβejφ1 + jβe−jφ1 = jβ(−ejφ1 + e−jφ1) = 2β sinφ1 sin(2ω1,2 − ω2,1),
(27)

pair 11-16 can be calculated as follows

S2(m)S∗2(m) + S2(−m)S∗2(−m) = −α+ α = 0, (28)

and finally last direct contribution, pair 12-15 is expressed as

ejφ2S2(m)S∗2(−m) + e−jφ2S2(−m)S∗2(m) =

− jβejφ2 + jβe−jφ2 = jβ(−ejφ2 + e−jφ2) = 2β sinφ2 sin(2ω3,4 − ω4,3).
(29)
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So far, all the considered contributions only produce direct IMD3 terms, either for
RF1 (ω1,2) or RF2 (ω3,4).

Conversely, now we analyze pairs that include crossed contributions so that four BPs are
considered. These are 3-9, 4-13, 7-10, 8-14 and they can produce both direct and crossed
IMD3 terms.

Let us begin with pair 3-9 which can be calculated as follows

ejφ1e−jφ2ejφ3S1(m)S∗2(m) + e−jφ1ejφ2e−jφ3S∗1(m)S2(m) = (30)

−4A sin(χ+ θ)J2
0J1J2 sin(2ω3,4 − ω4,3)t+ 4A sin(χ− θ)J2

0J1J2 sin(2ω1,2 − ω2,1)t︸ ︷︷ ︸
1st beating product

+

− 4A sin(χ+ θ)J0J
3
1 [sin(ω1 − ω2 + ω3)t]− 4A sin(χ+ θ)J0J

3
1 [sin(ω1 − ω2 + ω4)t]

− 4A sin(χ+ θ)J0J
3
1 [sin(ω2 − ω1 + ω3)t]− 4A sin(χ+ θ)J0J

3
1 [sin(ω2 − ω1 + ω4)t]

+ 4A sin(χ− θ)J0J3
1 [sin(ω3 − ω4 + ω1)t] + 4A sin(χ− θ)J0J3

1 [sin(ω3 − ω4 + ω2)t]

+4A sin(χ− θ)J0J3
1 [sin(ω4 − ω3 + ω1)t] + 4A sin(χ− θ)J0J3

1 [sin(ω4 − ω3 + ω2)t]︸ ︷︷ ︸
2nd beating product

+

− 4 sin(χ)J2
0J1J2 sin(2ω1 − ω3)t− 4 sin(χ)J2

0J1J2 sin(2ω1 − ω4)t

− 4 sin(χ)J2
0J1J2 sin(2ω2 − ω3)t− 4 sin(χ)J2

0J1J2 sin(2ω2 − ω4)t

+ 4 sin(χ)J2
0J1J2 sin(2ω3 − ω1)t+ 4 sin(χ)J2

0J1J2 sin(2ω3 − ω2)t

+4 sin(χ)J2
0J1J2 sin(2ω4 − ω1)t+ 4 sin(χ)TJ2

0J1J2 sin(2ω4 − ω2)t︸ ︷︷ ︸
3rd beating product

+

− 4 sin(χ)J0J
3
1 [sin(ω1 + ω2 − ω3)t]− 4 sin(χ)J0J

3
1 [sin(ω1 + ω2 − ω4)t]

+4 sin(χ)J0J
3
1 [sin(ω3 + ω4 − ω1)t] + 4 sin(χ)J0J

3
1 [sin(ω3 + ω4 − ω2)t]︸ ︷︷ ︸

4th beating product

.

where χ is φ1−φ2+φ3. Note that now different direct and crossed IMD3 terms are obtained.
Later, we will group each one in I3 coefficients.

Pair 4-13 in turn can be calculated as

ejφ1ejφ3S1(m)S∗2(−m) + e−jφ1e−jφ3S∗1(m)S2(−m) = (31)
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+4A sin(φ1 + φ3 + θ)J2
0J1J2 sin(2ω3,4 − ω4,3)t+ 4A sin(φ1 + φ3 − θ)J2

0J1J2 sin(2ω1,2 − ω2,1)t+︸ ︷︷ ︸
1st beating product

+ 4A sin(φ1 + φ3 + θ)J0J
3
1 [sin(ω1 − ω2 + ω3)t] + 4A sin(φ1 + φ3 + θ)J0J

3
1 [sin(ω1 − ω2 + ω4)t]

+ 4A sin(φ1 + φ3 + θ)J0J
3
1 [sin(ω2 − ω1 + ω3)t] + 4A sin(φ1 + φ3 + θ)J0J

3
1 [sin(ω2 − ω1 + ω4)t]

+ 4A sin(φ1 + φ3 − θ)J0J3
1 [sin(ω3 − ω4 + ω1)t] + 4A sin(φ1 + φ3 − θ)J0J3

1 [sin(ω3 − ω4 + ω2)t]

+4A sin(φ1 + φ3 − θ)J0J3
1 [sin(ω4 − ω3 + ω1)t] + 4A sin(φ1 + φ3 − θ)J0J3

1 [sin(ω4 − ω3 + ω2)t]︸ ︷︷ ︸
2nd beating product

+

+ 4 sin(φ1 + φ3)J
2
0J1J2 sin(2ω1 − ω3)t+ 4 sin(φ1 + φ3)J

2
0J1J2 sin(2ω1 − ω4)t

+ 4 sin(φ1 + φ3)J
2
0J1J2 sin(2ω2 − ω3)t+ 4 sin(φ1 + φ3)J

2
0J1J2 sin(2ω2 − ω4)t

+ 4 sin(φ1 + φ3)J
2
0J1J2 sin(2ω3 − ω1)t+ 4 sin(φ1 + φ3)J

2
0J1J2 sin(2ω3 − ω2)t

+4 sin(φ1 + φ3)J
2
0J1J2 sin(2ω4 − ω1)t+ 4 sin(φ1 + φ3)J

2
0J1J2 sin(2ω4 − ω2)t︸ ︷︷ ︸

3rd beating product

+

+ 4 sin(φ1 + φ3)J0J
3
1 [sin(ω1 + ω2 − ω3)t] + 4 sin(φ1 + φ3)J0J

3
1 [sin(ω1 + ω2 − ω4)t]

+4 sin(φ1 + φ3)J0J
3
1 [sin(ω3 + ω4 − ω1)t] + 4 sin(φ1 + φ3)J0J

3
1 [sin(ω3 + ω4 − ω2)t]︸ ︷︷ ︸

4th beating product

.

Pair 7-10 calculation yields

e−jφ2ejφ3S1(−m)S∗2(m) + ejφ2e−jφ3S∗1(−m)S2(m) = (32)

−4A sin(−φ2 + φ3 + θ)J2
0J1J2 sin(2ω3,4 − ω4,3)t− 4A sin(−φ2 + φ3 − θ)J2

0J1J2 sin(2ω1,2 − ω2,1)t︸ ︷︷ ︸
1st beating product

+

− 4A sin(−φ2 + φ3 + θ)J0J
3
1 [sin(ω1 − ω2 + ω3)t]− 4A sin(−φ2 + φ3 + θ)J0J

3
1 [sin(ω1 − ω2 + ω4)t]

− 4A sin(−φ2 + φ3 + θ)J0J
3
1 [sin(ω2 − ω1 + ω3)t]− 4A sin(−φ2 + φ3 + θ)J0J

3
1 [sin(ω2 − ω1 + ω4)t]

− 4A sin(−φ2 + φ3 − θ)J0J3
1 [sin(ω3 − ω4 + ω1)t]− 4A sin(−φ2 + φ3 − θ)J0J3

1 [sin(ω3 − ω4 + ω2)t]

−4A sin(−φ2 + φ3 − θ)J0J3
1 [sin(ω4 − ω3 + ω1)t]− 4A sin(−φ2 + φ3 − θ)J0J3

1 [sin(ω4 − ω3 + ω2)t]︸ ︷︷ ︸
2nd beating product

+

− 4J2
0J1J2 sin(−φ2 + φ3) sin(2ω1 − ω3)t− 4J2

0J1J2 sin(−φ2 + φ3) sin(2ω1 − ω4)t

− 4J2
0J1J2 sin(−φ2 + φ3) sin(2ω2 − ω3)t− 4J2

0J1J2 sin(−φ2 + φ3) sin(2ω2 − ω4)t

− 4J2
0J1J2 sin(−φ2 + φ3) sin(2ω3 − ω1)t− 4J2

0J1J2 sin(−φ2 + φ3) sin(2ω3 − ω2)t

−4J2
0J1J2 sin(−φ2 + φ3) sin(2ω4 − ω1)t− 4J2

0J1J2 sin(−φ2 + φ3) sin(2ω4 − ω2)t︸ ︷︷ ︸
3rd beating product

+

− 4 sin(−φ2 + φ3)J0J
3
1 [sin(ω1 + ω2 − ω3)t]− 4 sin(−φ2 + φ3)J0J

3
1 [sin(ω1 + ω2 − ω4)t]

−4 sin(−φ2 + φ3)J0J
3
1 [sin(ω3 + ω4 − ω1)t]− 4 sin(−φ2 + φ3)J0J

3
1 [sin(ω3 + ω4 − ω2)t]︸ ︷︷ ︸

4th beating product

.
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Pair 8-14 can be calculated as

ejφ3S1(−m)S∗2(−m) + e−jφ3S∗1(−m)S2(−m) = (33)

4A sin(φ3 + θ)J2
0J1J2 sin(2ω3,4 − ω4,3)t− 4A sin(φ3 − θ)J2

0J1J2 sin(2ω1,2 − ω2,1)t︸ ︷︷ ︸
1st beating product

+

+ 4A sin(φ3 + θ)J0J
3
1 [sin(ω1 − ω2 + ω3)t] + 4A sin(φ3 + θ)J0J

3
1 [sin(ω1 − ω2 + ω4)t]

+ 4A sin(φ3 + θ)J0J
3
1 [sin(ω2 − ω1 + ω3)t] + 4A sin(φ3 + θ)J0J

3
1 [sin(ω2 − ω1 + ω4)t]

− 4A sin(φ3 − θ)J0J3
1 [sin(ω3 − ω4 + ω1)t]− 4A sin(φ3 − θ)J0J3

1 [sin(ω3 − ω4 + ω2)t]

−4A sin(φ3 − θ)J0J3
1 [sin(ω4 − ω3 + ω1)t]− 4A sin(φ3 − θ)J0J3

1 [sin(ω4 − ω3 + ω2)t]︸ ︷︷ ︸
2nd beating product

+

+ 4J2
0J1J2 sin(φ3) sin(2ω1 − ω3)t+ 4J2

0J1J2 sin(φ3) sin(2ω1 − ω4)t

+ 4J2
0J1J2 sin(φ3) sin(2ω2 − ω3)t+ 4J2

0J1J2 sin(φ3) sin(2ω2 − ω4)t

− 4J2
0J1J2 sin(φ3) sin(2ω3 − ω1)t− 4J2

0J1J2 sin(φ3) sin(2ω3 − ω2)t

−4J2
0J1J2 sin(φ3) sin(2ω4 − ω1)t− 4J2

0J1J2 sin(φ3) sin(2ω4 − ω2)t︸ ︷︷ ︸
3rd beating product

+

+ 4 sin(φ3)J0J
3
1 [sin(ω1 + ω2 − ω3)t] + 4 sin(φ3)J0J

3
1 [sin(ω1 + ω2 − ω4)t]

−4 sin(φ3)J0J
3
1 [sin(ω3 + ω4 − ω1)t]− 4 sin(φ3)J0J

3
1 [sin(ω3 + ω4 − ω2)t]︸ ︷︷ ︸

4th beating product

.

To calculate direct IMD3 terms, we can relate Eqs. (S8, S9, S10, S11, S12, S13, S14,
S15) with each coefficients using the following expression

I3,1 sin(2ω1,2 − ω2,1),

I3,2 sin(2ω3,4 − ω4,3),
(34)

yielding for I3,1:

I3,1 =RPDPi(k − k2)[2β sinφ1 + 4AJ2
0J1J2[sin(φ1 − φ2 + φ3 − θ)+

sin(φ1 + φ3 − θ)− sin(−φ2 + φ3 − θ)− sin(φ3 − θ)]],
(35)

whence β is defined as

β = AJ2
0J1J2 cos θ +AJ0J

3
1 cos θ + J2

0J1J2, (36)

and for I3,2:

I3,2 =RPDPi(k − k2)[2β sinφ2 − 4AJ2
0J1J2[sin(φ1 − φ2 + φ3 + θ)−

sin(φ1 + φ3 + θ) + sin(−φ2 + φ3 + θ)− sin(φ3 + θ)]],
(37)

so that we obtain the same results given in Eq. (8) and (10) of the main text.
Likewise, to calculate crossed IMD3 terms we relate same Eqs. (S8, S9, S10, S11, S12,

S13, S14, S15) with each coefficient using the next expression

I3,3 sin(2ω1,1,2,2 − ω3,4,3,4)t,

I3,4 sin(2ω3,3,4,4 − ω1,2,1,2)t,

I3,5 sin(ω1,1,2,2 − ω2,2,1,1 + ω3,4,3,4)t,

I3,6 sin(ω3,3,4,4 − ω4,4,3,3 + ω1,2,1,2)t,

I3,7 sin(ω1,1 + ω2,2 − ω3,4)t,

I3,8 sin(ω1,1 + ω2,2 − ω3,4)t.

(38)
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which yields for I3,3:

I3,3 = −4RPDPi(k − k2)J2
0J1J2 [sin(φ1 − φ2 + φ3)− sin(φ1 + φ3) + sin(−φ2 + φ3)− sin(φ3)] ,

(39)

for I3,4:

I3,4 = 4RPDPi(k − k2)J2
0J1J2 [sin(φ1 − φ2 + φ3) + sin(φ1 + φ3)− sin(−φ2 + φ3)− sin(φ3)] ,

(40)

for I3,5:

I3,5 =− 4RPDPi(k − k2)AJ0J3
1 [sin(φ1 − φ2 + φ3 + θ)− sin(φ1 + φ3 + θ)

+ sin(−φ2 + φ3 + θ)− sin(φ3 + θ)],
(41)

for I3,6:

I3,6 =4RPDPi(k − k2)AJ0J3
1 [sin(φ1 − φ2 + φ3 − θ) + sin(φ1 + φ3 − θ)−

sin(−φ2 + φ3 − θ)− sin(φ3 − θ)],
(42)

for I3,7:

I3,7 = −4RPDPi(k − k2)J0J3
1 [sin(φ1 − φ2 + φ3)− sin(φ1 + φ3) + sin(−φ2 + φ3)− sin(φ3)] ,

(43)

and for I3,8:

I3,8 = 4RPDPi(k − k2)J0J3
1 [sin(φ1 − φ2 + φ3) + sin(φ1 + φ3)− sin(−φ2 + φ3)− sin(φ3)] .

(44)

Assuming φ1 = −φ2, A = 1 and θ = 0, all crossed IMD3 terms are proportional to the
phase relation given in the following expression

I3,C ∝ sin(2φ1 + φ3)− sin(φ3), (45)

which is the Eq. (11) of the main text.

Calculation of I1 coefficients

The main BP that produces the fundamental coefficients is the mixing between ωc and
ωc + ω1,2(ωc − ω1,2). Calculations of this BP for I1,1 yield

I1,1 =− 4RPDPi(k − k2) sinω1,2t[2AJ
3
0J1 cos θ sinφ1

+AJ3
0J1 sin(φ1 − φ2 + φ3 − θ) +AJ3

0J1 sin(φ1 + φ3 − θ)
−AJ3

0J1 sin(−φ2 + φ3 − θ)−AJ3
0J1 sin(φ3 − θ)]

(46)

Given that φ1 = π/2, φ2 = −π/2, φ3 = θ = π, and A = 1/3 we obtain

I1,1 = −8AJ3
0J1 cos θ sinφ1 sinω1,2t, (47)

and under small signal condition we get

I1,1 = −4mA cos θ sinφ1 = −4

3
m. (48)
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Similarly, for I1,2 we get

I1,2 =− 4RPDPi(k − k2) sinω3,4t[2AJ
3
0J1 cos θ sinφ2

−AJ3
0J1 sin(φ1 − φ2 + φ3 + θ) +AJ3

0J1 sin(φ1 + φ3 + θ)

−AJ3
0J1 sin(−φ2 + φ3 + θ) +AJ3

0J1 sin(φ3 + θ)]

(49)

Substituting we obtain

I1,2 sinω3,4 = −8aJ3
0J1 cos θ sinφ2 sinω3,4t, (50)

under small signal condition we get

I1,2 = −4ma cos θ sinφ2 =
4

3
m. (51)

Equations (S30) and (S33) are Eq. (16) and (17) provided in the main text.
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Figure 4: Experimental measurements of the retrieved RF spectrum with 10 and 6 dBm of
optical and RF power, respectively. a) Reference state without linearization (DC voltages
at φ1 = π/2, φ2 = π/2, φ3 = 0) b) linearization of crossed IMD3 terms (φ1 = π/2,
φ2 = −π/2, φ3 = π) and c) linearization of direct IMD3 terms with OCB processing (θ = π
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Figure 5: Measured SFDR of the MPL before and after linearization (OCB processing of
θ = π and A = 1/3) for a) fundamental tones RF1 centered at 14.99 GHz and b) RF2
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