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LINEARIZATION OF BOUNDED HOLOMORPHIC
MAPPINGS ON BANACH SPACES

JORGE MUJICA

Abstract. The main result in this paper is the following linearization theorem.
For each open set U in a complex Banach space E , there is a complex Banach
space G°°(Í7) and a bounded holomorphic mapping gv: U —► G°°(U) with
the following universal property: For each complex Banach space F and each
bounded holomorphic mapping /: U —> F , there is a unique continuous linear
operator T,\ G°°(U) —» F such that T, o gv = f. The correspondence
/ —► Tr is an isometric isomorphism between the space H°°(U; F) of all
bounded holomorphic mappings from U into F , and the space L(G°°(U); F)
of all continuous linear operators from G°°(U) into F. These properties
characterize G°°(U) uniquely up to an isometric isomorphism. The rest of
the paper is devoted to the study of some aspects of the interplay between the
spaces H°°(U;F) and L(G°°(U) ; F).

This paper consists of five sections. In §1 we establish our notation and
terminology. In §2 we prove the aforementioned linearization theorem. In §3
we translate certain properties of a mapping / e H°°(U ; F) into properties of
the corresponding operator T, £ L(G°°(U) ; F). We show, for instance, that
/ has a relatively compact range if and only if 7\ is a compact operator.

In §4 we give a seminorm characterization of the unique locally convex topol-
ogy t on H°°(U; F) such that the correspondence / —> T, is a topological
isomorphism between the spaces (H°°(U; F), r ) and (L(G°°(U); F), xf,
where xc denotes the compact-open topology.

Finally, in §5 we use the preceding results to establish necessary and sufficient
conditions for the spaces G°°(U) and H°°(U) to have the approximation prop-
erty. These are holomorphic analogues of classical results of A. Grothendieck
[8], and complement results of R. Aron and M. Schottenloher [2]. We show,
in particular, that if U is a balanced, bounded, open set in a complex Banach
space E, then G°°(U) has the approximation property if and only if E has the
approximation property. We also show that if U is an arbitrary open set in a
complex Banach space E, then H°°(U) has the approximation property if and
only if, for each complex Banach space F, each mapping in H°°(U; F) with
a relatively compact range can be uniformly approximated on U by mappings
in 77°° (L7; F) with finite-dimensional range. Since it is still unknown whether
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the Space 77°° (A) has the approximation property, where A denotes the open
unit disc, this result may be of some use in this connection.

I wish to thank Raymundo Alencar, Mario C. Matos and Joäo B. Prolla for
some helpful discussions while this paper was being prepared.

1. Notation and terminology

Throughout this paper the symbols R and C represent the field of all real
numbers and the field of all complex numbers, respectively. The set of all
positive integers is denoted by N, whereas the set N U {0} is denoted by N0 .

The letters E and F always represent complex Banach spaces. The letter
U denotes a nonvoid open subset of E, whereas the symbol UE represents the
open unit ball of E .

L(E; F) denotes the vector space of all continuous linear operators from E
into F . Unless stated otherwise, L(E ; F) is endowed with its natural norm
topology. We write É instead of L(7i ; C) for the dual of E.

P(E; F) denotes the vector space of all continuous polynomials from E into
F . For each m £ N0, P(mE ; F) denotes the subspace of all w-homogeneous
members of P(E; F). Unless stated otherwise, P(mE; F) is endowed with its
natural norm topology. When F = C we write P(E) instead of P(E; C), and
P(mE) instead of P(mE;C).

H(U; F) denotes the vector space of all holomorphic mappings from U
into 7^, and H°°(U; F) denotes the subspace of all bounded members of
H(U ; F). Unless stated otherwise, 77°°(fJ ; F) is endowed with the sup norm
topology. When F = Cwe write H(U) instead of H(U;C), and 77°°(Í7)
instead of H°°(U;C).

For each fi £ H(U ; F), a£U and m £ N0 , Pmf(a) £ P(mE ; F) denotes
the wth term of the Taylor series of / at a .

If AT is a locally convex space, then X'b (resp. X'c ) denotes the dual x' of
X, endowed with the topology of uniform convergence on the bounded (resp.
compact) subsets of X.

If Z is a topological space, then C(X ; F) denotes the vector space of all
continuous mappings from X into F , and tc denotes the compact-open topol-
ogy on C(X ; F), or on any subset of C(X ; F).

We refer to the books of S. Dineen [6] or the author [ 13] for the properties of
polynomials and holomorphic mappings on infinite-dimensional spaces; to the
book of J. Lindenstrauss and L. Tzafriri [10] for the theory of Banach spaces;
and to the books of J. Horváth [9] or H. H. Schaefer [16] for the theory of
topological vector spaces.

2. Linearization of bounded holomorphic mappings

Let U be an open subset of a Banach space E. As pointed out in S. Dineen's
book [6, p. 417], a theorem of K. F. Ng [14] yields a Banach space G°°(U) whose
dual is isometrically isomorphic to 77°°(U). A refinement of this idea leads to
the linearization theorem announced in the abstract.
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2.1. Theorem. Let U be an open subset of a Banach space E. Then there
are a Banach space G°°(U) and a mapping gv £ H°°(U; G°°(U)) with the
following universal property: For each Banach space F and each mapping fi £
H°°(U; F), there is a unique operator Tf £ L(G°°(U) ; F) such that Tfogv =
f. The correspondence

fi £ 77°°(C/ ; F)^Tf£ L(G°°(U) ; F)
is an isometric isomorphism. These properties characterize G°°(U) uniquely up
to an isometric isomorphism.
Proof. Let Bv denote the closed unit ball of H°°(U). By the Ascoli theorem
Bu is a compact subset of H°°(U) for the compact-open topology xc. Let
G°°(U) denote the closed subspace of all linear functional u £ H°°(U)' such
that u\(Bv, xf) is continuous. Let

Ju:f£H°°(U)-^fi£G00(U)'
denote the evaluation mapping, that is, f(u) = u(f) for every / e 77°°(C/) and
u £ G°°(U). By the Ng theorem [14], Jv is an isometric isomorphism. Let

gu:x£U^ôx£Gcc(U)

denote the evaluation mapping, that is, Sx(f) = fi(x) for every x £ U and
fi£Hco(U). Since

(2.1) iJufi)oguix) = fi(x),
for every x £ U and / £ H°°(U), we see that gv is weakly holomorphic,
and therefore holomorphic (see [13, p. 65, Theorem 8.12]). Since \\6X\\ = 1 for
every x £ U, we conclude that gv £ H°°(U ; G°°(U)).

Let indicate polars with respect to the dual system (G°°(U), G°°(U)'). We
claim that the closed unit ball JU(BU) of G°°(U) coincides with the closed,
convex, balanced hull Tgv(U) of gv(U). In particular, gv(U) generates a
dense subspace of G°°(U). Indeed, since Jv maps H°°(U) onto G°°(U)',
one can readily check that

Ju(Bu) = gu(U)°,
and therefore

Ju(Bu)° = gu(U)00 = Tgu(U),
by the bipolar theorem, as asserted.

We claim that the pair (G°°(U), gv) has the required universal property. If
/ £ H°°(U), then we define T{ — Jvf £ G°°iU)' and the desired conclusion
follows from (2.1). If f £ H°°(U; F), then we define Tf:G°°(U)^ F" by

(Tfu)(ip) = u(y/o f),

for every u £ G°°(l7) and ip £ F'. Clearly Tf £ L(G°°(U) ; F") and \\Tf\\ ='
11/11. Furthermore,

(TfSx)(ip) = y/o fi(x)
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for every x £ U and \p £ F', and therefore Trôx = fi(x) £ F for every
x £ U. Since the evaluations ôx , with x £ U, generate a dense subspace of
G°°(U), it follows that Tj- £ L(G°°(U); F). The uniqueness of Tf follows
also from the fact that gv(U) generates a dense subspace of G°°(U).

Finally, the uniqueness of G°°(U) up to an isometric isomorphism follows
from the universal property, together with the isometry \\Tf\\ = ||/||. This
completes the proof.

2.2. Remark. In the proof of Theorem 2.1 we have shown that the closed unit
ball of G°°(U) coincides with rgv(U). The same proof shows that the closed
unit ball of G°°(U) coincides with Tgv(D) for each dense subset D of U.
This shows in particular that G°°(l7) is separable whenever E is separable, a
result noticed already by J. M. Ansemil and S. Dineen [1].

2.3. Proposition. Let E be a Banach space.
(a) If U is a bounded open set in E, then E is topologically isomorphic to a

complemented subspace of G°°(U).
(b) If U is the open unit ball of E, then E is isometrically isomorphic to a

I-complemented subspace of G°°(U).
Proof, (a) By Theorem 2.1 there exists T £ L(G°°(U);E) such that To
gv(x) = x for every x £ U. Fix a £ U and let S = Pxgv(a) £L(E; G°°(U)).
Given t £ E, choose r > 0 such that a + Ct £ U for all CeC with |£ | < r.
By the Cauchy integral formula

2m Jm=r        tf
and therefore

ToS(t) = ^-[     a-±^dl = t.

(b) If U is the open unit ball of E, then it follows from Theorem 2.1 that
||r|| = 1. If we take a = 0 in (a) then it follows from the Cauchy integral
formula that ||5|| < 1 . Hence

||<|| = ||roS(/)||<||S(0ll<||/||,
for every t £ E, and thus S is an isometry.

By following the pattern of the proof of Theorem 2.1, we can also prove the
following result, which has been previously obtained by R. Ryan [15] by using
tensor product methods.

2.4. Theorem [15]. Let E be a Banach space and let m £ N. Then there
are a Banach space Q(mE) and a polynomial qm £ P(mE; Q(mE)) with the
following universal property: For each Banach space F and each polynomial P e
P(mE ; F), there is a unique operator Tp £ L(Q(mE) ; F) such that Tpoqm = P.
The correspondence

P £ P(mE ;F)^Tp£ L(Q(mE) ; F)
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is an isometric isomorphism. These properties characterize Q(mE) uniquely up
to an isometric isomorphism.
2.5. Remarks. Our proof of Theorem 2.4 yields also the following facts:

(a) If Bm denotes the closed unit ball of P(mE), then Q(mE) is the closed
subspace of all u £ P(mE)' such that u\(Bm, xf) is continuous.

(b) qm: x £ E -, âx £ Q(mE) is the evaluation mapping, that is, SX(P) =
P(x) for every x £ E and P £ P(mE).

(c) The closed unit ball of Q(mE) coincides with the closed, convex, balanced
hull Tqm(UE) of qm(UE). In particular, qm(UE) generates a dense subspace
of Q(mE).

We end this section with the following result, which shows the connection
between the spaces Q(mE) and G°°(U).

2.6. Proposition. Let E be a Banach space.
(a) If U is a bounded open set in E, then Q(mE) is topologically isomorphic

to a complemented subspace of G°°(U).
(b) If U is the open unit ball of E, then Q(mE) is isometrically isomorphic

to a I-complemented subspace of G°°(U).
Proof, (a) Fix a £ U. By Theorems 2.4 and 2.1 there are operators Sm £
L(Q(mE) ; G°°(U)) and Tm £ L(Gco(U) ; Q(mE)) such that the following dia-
grams are commutative:

U <-, E

'"[
Q(mE) -1—, G°°(U) G°°(U) —^- Q(mE)

Hence we have that
Tm o Sm o qm = Tm o [Pmgv(a)] = Pm(Tmo gu)(a) = PmqJa) = qm .

Since qm(E) generates a dense subspace of Q(mE), it follows that TmoSm(u) =
u for every u £ Q(mE).

(b) If U is the open unit ball of E, then the norm of qm in H°°(U; Q(mE))
equals one, and hence ||rm|| = 1 . If we take a = 0 in (a) then it follows from
the Cauchy integral formula that the norm of Pmgu(0) in P(mE; G°°(U)) is
not greater than one, and hence \\Sm\\ < 1. Hence

M = \\TmoSm(u)\\<\\Sm(u)\\<\\u\\,
for every u £ Q(mE), and thus Sm is an isometry.

Observe that Q( E) is isometrically isomorphic to E, and hence Proposition
2.6 includes Proposition 2.3 as a special case.

3. Holomorphic mappings with a relatively compact range

In this section we translate certain properties of a mapping / 6 77°°({7 ; F)
into properties of the corresponding operator Tf £ L(G°°(U) ; F).
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If X is a set and 7 is a vector space, then a mapping /: X -, Y is said to
have finite rank if the subspace N of Y generated by f(X) is finite dimen-
sional. In that case we define the rank of / to be the dimension of N.

Observe that the subspace of all finite rank mappings / e H°°(U; F) can
be canonically identified with H°°(U) <8> F, and likewise for other spaces of
mappings.

Let Pf(mE; F)  denote the subspace of all P £ P(mE; F)  of the form
Fix) = £7=W*)rfy, with <t>j € E' and bj £ F. Let PfiE;F) denote
the algebraic direct sum of the spaces Pf(mE ; F), with m £ N0 . The mem-
bers of PAE ; F) are called continuous polynomials of finite type. Observe that
each P £ PAE; F) has finite rank.

As an immediate consequence of Theorems 2.1 and 2.4 we get the following
result.

3.1.    Proposition. Let E and F be Banach spaces, let U be an open set in E,
and let m £ N.

(a) A mapping fi £ H°°(U; F) has finite rank if and only if the corresponding
operator T, 6 L(Goc(U) ; F) has finite rank. In that case rank/ = rank T..

(b) A polynomial P £ P(mE ; F) has finite rank if and only if the correspond-
ing operator Tp £ L(Q(mE) ; F) has finite rank. In that case rank P = rank Tp .

By a result of K. Floret [7], the operators of rank < n in L(G°°(U); F)
form a closed subset of L(G°°(U) ; F). Whence it follows that the mappings
of rank < n in H°°(U ; F) form a closed subset of H°°(U ; F). These results
are true, not only for the norm topology, but for other suitable topologies as
well. A. Chiacchio et al. [3] have used these results to prove that if F is a
dual Banach space, then the mappings of rank < n in H°°(U; F) form a
proximinal subset of l°°(U ; F), the space of all bounded mappings from U
into F.

Following R. Aron and M. Schottenloher [2], and R. Ryan [15], respectively,
we say that a mapping fi £ H(U ; F) is compact (resp. weakly compact) if each
x £ U has a neighborhood Vx c U suchthat f(Vf) is relatively compact (resp.
relatively weakly compact) in F . After examining the proofs of [2, Proposition
3.4 and 15, Proposition 4.5], we see that if U is connected, then / £ H(U ; F)
is compact (resp. weakly compact) if and only if there is a nonvoid open set
V c U such that fi(V) is relatively compact (resp. relatively weakly compact)
in F . Let Hk(U ; F) (resp. Hwk(U ; F)) denote the subspace of all compact
(resp. weakly compact) members of H(U ; F). We also write

77~(l/; F) = H°°(U; F)nHk(U;F),

H~(U;F) = H°°(U;F)nHwk(U;F),
and likewise for other spaces of holomorphic mappings.

Finally let H^(U; F) (resp. H™K(U; F)) denote the subspace of all map-
pings / £ 77°° (If; F) which have a relatively compact range (resp. relatively
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weakly compact range). Then clearly we have the inclusions:

H~(U;F)c H™(U;F)

n n

H~KiU;F)cH~iU;F),
and the following examples show that these inclusions are in general strict.

3.2. Example. Let A denote the open unit disc in C, and let / £ 77°°(A; cf)
he defined by

oo

where em denotes the mth unit vector. Let 0 < r < 1. Since \C\ < rm for
every A, £ rA and m £ N, we see that the set fi(rA) is relatively compact
in c0 (see [5, p. 15, Exercise 6]), and thus / £ 77^°(A; c0). We claim that
/ £ 77^.(A; cf. Indeed, let (£.) be a sequence in A which converges to
one. If the set /(A) were relatively weakly compact, then the sequence (/(C,))
would have a weak cluster point in c0 . But this is impossible, for a glance at the
coordinates of the terms of the sequence (/(£•)) shows that the only candidate
for a position as cluster point would be the point (1,1,1,...), which does
not lie in c0. This example shows that in general H^(U; F) ^ H™(U ; F)
and !ÇKiU;F)ïlÇkiU;F).
3.3. Example. Let E be a reflexive, infinite-dimensional Banach space, let U
be a bounded, open subset of E, and let f(x) = x for every x £ U. Then it
is clear that / £ H^K(U ; E) and / $ H%°(U ; E). This example shows that
in general H™(U; F) jt H™K(U ; F) and H~(U; F) ¿ H™k(U ; F).

3.4. Proposition. Let E and F be Banach spaces, let U be an open set in E,
and let m £ N.

(a) [15] A polynomial P £ P(mE; F) is compact (resp. weakly compact) if
and only if the corresponding operator Tp £ L(Q(mE) ; F)  is compact (resp.
weakly compact).

(b) A mapping fi £ H°°(U; F) has a relatively compact range (resp. rel-
atively weakly compact range) if and only if the corresponding operator Tf £
L(G°°(U) ; F) is compact (resp. weakly compact).
Proof. Since the closed unit ball of Q(mE) coincides with Tqm(UE), (a) follows
from the inclusions

P(UE) = Tp o qJUE) C Tp[TqJUE)] C TTp o qJUE) = TP(UE).

Similarly, since the closed unit ball of G°°(U) coincides with Tgv(U), (b)
follows from the inclusions

/(£/) = Tfogu(U) C Tf[Tgu(U)]cTTfo gu(U) =Tfi(U).
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



874 JORGE MUJICA

Proposition 3.4(a) is due to R. Ryan [15], but we have included it here ex-
plicitly for the convenience of the reader.

4. Other topologies on H°°(U; F)

Theorem 2.1 tells us that the mapping

/ £ H°°(U ; F) -, Tf £ L(G°°(U) ; F)
is an isometric isomorphism. In the next section we shall determine when the
space G°°(U) has the approximation property, and for that purpose it will be
useful to have a seminorm description of the unique locally convex topology x
on H°°(U;F) such that the mapping

fi£(H°°(U;F);xY) -> 7) € (L(G°°(U) ; F), xf
is a topological isomorphism.

The corresponding problem for the space P(mE; F) has already been solved
by R. Ryan [15]. His result is essentially the following.

4.1. Theorem [15]. Let E and F be Banach spaces, and let m £ N. Then the
mapping

P £ (P(mE ; F), xf) ̂ Tp£ (L(Q(mE) ; F), xf
is a topological isomorphism.

R. Ryan [15] obtained Theorem 4.1 by using tensor product methods. We
next give an alternative proof of Theorem 4.1, which will suggest how to tackle
the corresponding problem for H°°(U ; F). The key tool in our proof of Ryan's
theorem is the following result, established in [11], and which may be regarded
as a generalization of the classical Banach-Dieudonné theorem.

4.2. Theorem [11]. Let E be a Banach space and let m £ N. Then xc is the
finest topology on P(mE) which coincides with xc on each norm bounded subset
of P(mE).

With the aid of Theorem 4.2 we can prove the following results which is also
due to R. Ryan [15].

4.3. Proposition [15]. Let E be a Banach space, and let m £ N. Then:
(a) Q(mE) = (P(mE),xc)'b.
(b) The mapping

P£(P(mE),xc)^Tp£Q(mE)'c

is a topological isomorphism.
(c) For each compact set L c Q(mE), there is a compact set K c E such

that LcTqJK).
Proof, (a) If follows from Theorem 4.2 that Q(mE) = (P(mE), xf' alge-
braically. But since P(mE) and (P(mE), xf have the same bounded sets (see
[13, p. 13, Theorem 2.6]), we conclude that Q(mE) = (P(mE), xc)'b.
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(b) By Theorem 4.2 a set N c (P( E), xf) is open whenever N n jBm is
open in (jBm , xf) for every jsN. Hence an application of [12, Theorem 4.1]
shows that the evaluation mapping

(P(mE),xc)^((P(mE),xc)'b)'c

is a topological isomorphism. After combining this with (a), the desired con-
clusion follows.

(c) If L is a compact subset of Q(mE), then the polar L is a 0-neighbor-
hood in Q(mE)'c and then by (b), the set

{P£P(mE): Tp£L0}

is a O-neighborhood in (P(mE), xf . Hence there is a compact set K c E such
that

(p£P(mE): sup|P| < lj c ¡P£ P(mE): sup|Tp|< l| .

After writing P = Tp o qm we conclude that qm(K)° c L° and therefore

LcL™cqm(Kf = Tqm(K).
This completes the proof of Proposition 4.3.

Proof of Theorem 4.1. It follows from Proposition 4.3(c) that the mapping in
Theorem 4.1 is continuous. And since the inverse mapping is clearly continuous,
the proof of Theorem 4.1 is complete.

Motivated by Theorem 4.2 and by the definition of G°°(U) we introduce the
following auxiliary topology. Let xbc denote the finest locally convex topology
on H°°(U) which coincides with xc on Bv, or equivalently, on each scalar
multiple of Bv. Clearly xbc exists: the convex, balanced sets N c H°°(U)
such that N n XBV is a O-neighborhood in (XBV , xf for every X > 0, form a
O-neighborhood base for xbc. We shall refer to xbc as the topology of bounded
compact convergence. We shall prove the following theorem.

4.4 Theorem. Let U be an open subset of a Banach space E. Then xbc is
the finest topology on H°°(U) which coincides with xc on each norm bounded
subset of H°°(U).

The proof of Theorem 4.4 will also yield the following theorem.

4.5. Theorem. Let U be an open subset of a Banach space E. Then the
topology of (H°°(U), xbc) is generated by all the seminorms of the form

p(fi) = snpaj\f(xj)\,

where (xf varies over all sequences in U, and (af varies over all sequences of
positive numbers tending to zero.

The key to the proof of Theorems 4.4 and 4.5 is the following lemma.
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4.6. Lemma. Let U be an open subset of a Banach space E. Let N be a subset
of H°°(U) containing the origin and such that N n jBv is open in (jBv, xf)
for every / e N. Then there exist ô > 0 and a sequence ÍAAJLq of finite subsets
of U such that

oo

N(A0;S)np\N(Aj;j)cN,
;=i

where, for each A c U and r > 0, N(A ; r) denotes the set

N(A;r) = (fi£H°°(U): sup|/|<r| .

Proof. By hypothesis N n Bv is open in Bv for the compact-open topology,
and therefore for the norm topology. Whence there exists ô > 0 such that

(4.1) SBVCN.
We claim that there exists a finite set A0 c U such that

(4.2) Buf)N(A0;ô)cN.
Otherwise the sets (BV\N) n N(A ; ô) would be nonvoid for every finite set
A c U. These sets are closed in (BV\N, xf and have the finite intersection
property. Since the set BV\N is a closed, and therefore compact, subset of
(Bv, xf , we conclude that the intersection

f)(Bv\N)nN(A;S)
A

would be nonvoid. But if / belongs to this intersection, we see that / e
ôBv\N, contradicting (4.1), and thus proving (4.2). Proceeding by induction
we can show the existence of a sequence iAj)"Lx of finite subsets of U such
that

fe-i
(4.3) kBv n N(AQ ; <?) n p| N(Aj ; j) c N,

j-=i
for every k = 2,3, ... .  Since H°°(U) = \J^=l kBv, the desired conclusion
follows.
Proof of Theorem 4.4. To begin with we claim that if (^,)°°=1 is a sequence of
compact subsets of U, and (r,)0^ is a sequence of positive numbers tending
to infinity, then the set

CO

;=i

is a O-neighborhood in (H°°(U), xbc).  Indeed, given X > 0, choose k £ N
such that r • > X for every j > k. Then

oo k

p) NiKj ; rj) nXBu = (>\ N(Ks ; r,) n XBV,
7=1 7=1

and our claim has been proved.
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Now, let N be a subset of H°°(U) such that NnXBu is open in (XBV, xf)
for every X > 0. To prove the theorem it suffices to show that «V is a neigh-
borhood of / in (H°°(U),xbc) for each f £ N. If / = 0 then the desired
conclusion follows at once from Lemma 4.6 and the claim that we have just
proved. Finally, the case where / £ N is arbitrary can be reduced to the case
/ = 0 by proving that (N - f) n XBV is open in (XBV, xf) for every X > 0.
Now, given X > 0 choose p > X such that

XBV + f c pBv.
By hypothesis there exists an open set M in (H°°(U), xf) such that

N n pBv = M n pBv.
Hence

(N-f)nXBu = Nn(XBu + f)-f
= Mn(XBu + f)-fi=(M-fi)nXBu,

proving that ( yV - /) n XBV is open in (XBV, xf). This completes the proof of
the theorem.

Proof of Theorem 4.5. In the course of the proof of Theorem 4.4 we have shown
that the sets of the form

oo

N=[}N(Aj;rj),
7=1

where (A A) varies over all sequences of finite subsets of U, and (r.) varies over
all sequences of positive numbers tending to infinity, form a O-neighborhood
base in (H°°(U), xbc). Since the Minkowski functional of N is the seminorm

PNif) = sup Í r} ' sup l/l J ,

the desired conclusion follows at once.

We should remark that Theorem 4.4 follows also from the theory of Saks
spaces (see [4, p. 48, Corollary 4.2]), but the proof that we have given here has
the advantage of yielding, as a bonus, a proof of Theorem 4.5. In any case,
what lies behind each of the proofs is the idea of the proof of the classical
Banach-Dieudonné theorem.

4.7.   Proposition. Let U be an open subset of a Banach space E. Then:
(a) H°°(U) and (H°°(U), xbc) have the same bounded sets.
(b) G°°(i/) = (770O(c/),Tic);.
(c) The mapping

f£(H°°(U),xbc)^Tf£G00(U)'c

is a topological isomorphism.
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(d) For each compact set L c G°°(U), there are a sequence (xA c U and a
sequence (a.) £ c0 with a. > 0 such that

LcT{ajgu(xj):f£N}.
Proof, (a) It follows from the definitions of G°°(U) and xbc that G°°(U) =
(H°°(U), xbc)' algebraically. Hence a set (fif c (H°°(U), xbc) is bounded if
and only if it is o(H°°(U), (7°° (t/))-bounded. But since 77°°(f7) is isometri-
cally isomorphic to G°°(U)' and G°°(U) is a Banach space, this means that
(ff is norm bounded in 77°°(U).

(b) This follows at once from (a).
(c) By Theorem 4.4 a set «V c (H°°(U), xbc) is open whenever N n y'5^ is

open in jBu , for the induced topology, for every ; € N . Hence an application
of [12, Theorem 4.1] shows that the evaluation mapping

(/L~(L),t^->((77°°(L0,t6c););
is a topological isomorphism. After combining this with (b), we get the desired
conclusion. Incidentally, [12, Theorem 4.1] gives another proof of (a).

(d) If L is a compact subset of G°°(U), then the polar L is a 0-neighbor-
hood in G°°(Í7)^, and then, by (c), the set

{/e77°°(C/):r/eL0}
is a O-neighborhood in (H°°(U), xbc). Then by Theorem 4.5 there are a se-
quence (Xj) C U and a sequence (a.) £ c0 with a. > 0 such that

{f£H°°(U): supa;.|/(x;.)|<lJc|/G/r(t/): sup17>| < 1} -

After writing f =Tf° gv we conclude that

{ajgu(xj):J£N}°cL°,
and the desired conclusion follows from the bipolar theorem.

Now we can solve the problem posed at the beginning of this section.

4.8. Theorem. Let E and F be Banach spaces, and let U be an open subset
of E. Let x denote the locally convex topology on H°°(U ; F) generated by
all the seminorms of the form

p(f) = supa]\\fi(x])\\,

where (xf varies over all sequences in U, and (a A) varies over all sequences of
positive numbers tending to zero. Then the mapping

f£(H°°(U;F),xy)^Tf£(L(G°°(U);F),xc)
is a topological isomorphism
Proof. If L is a compact subset of G°°(U), then by Proposition 4.7 there are
a sequence (Xj) c U and a sequence (a.) £ c0 with a¡ > 0 such that

LcT{ajgu(Xj):J£N}.
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Hence
sup \\Tfu\\ < sup ||7>(«otjgjjixM = supa .||/(x.)||,
u€L j j

for every / e 77°°(U ; F), and the mapping / —► Tf is x — rc-continuous.
Since the sequence (ajgu(xf) tends to zero in G°°(U), the inverse mapping
is continuous as well. This completes the proof.

The topologies x , xc and xbc are related as follows.

4.9. Proposition. Let E and F be Banach spaces, and let U be an open set
in E. Then:

(a) xy>xc on H°°(U;F).
(b) x   coincides with xc on each norm bounded subset of 77°°(U ; F).
(c) xy = xbc on H°°(U).
(d) If U is bounded, then x coincides with xc on P(mE;F), for each

m £ N.
Proof, (a) If K is a compact subset of U, then by Proposition 4.7 there are a
sequence (xf C U and a sequence (a f e c0 with a  > 0 such that

gu(K)cT{aJgu(xj):J£N}.
Hence it follows that

sup||/(x)||<supa||/(x.)||,
x€K j       J J

for every f£H°°(U;F).
(b) Let p(f) = sup;.a;||/(x;.)||, where (xA) C U and (ay) e c0, with ay >

0. Given X > 0 and e > 0 choose k £ N such that 2a A < e for every
j > k. Then for fi, g £ H°°(U; F) with ||/|| < X and ||;|| < X we have
that />(/ - ^) < e whenever a7-||/(x-) - g(Xy)|| < e for j = 1,...,/:. This
shows that the restriction of /> to each norm bounded subset of H°°(U ; F) is
Tc-continuous.

(c) This follows from Theorem 4.5 and the definition of x .
(d) Let p(f) = supj aj\\f(Xj)\\, where (Xj) C U and (a;) € c0, with q;. > 0.

Let ßj =   mfäA for every je N.   Then p(P) = supj \\P(ß.xA)\\  for every
P £ P(mE ; F), and thus p \ P(mE ; F) is rc-continuous.

From Theorem 4.8 and Proposition 4.9 we get at once the following corollary.
4.10. Corollary. Let E and F be Banach spaces, and let U be an open set in
E. Then:

(a) The mapping

T £ (L(G°°(U) ;F),xc)^Togu£(H00(U;F), xf)
is continuous.

(b) The restriction of the inverse mapping

fi£(H°°(U;F), xf) -, Tf £ (L(G°°(U);F),xc)
to each norm bounded subset of H°°(U ; F) is continuous.
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We should remark that assertion (a) in Corollary 4.10 is indeed obvious,
whereas assertion (b) is not obvious, but can be proved directly after Theorem
2.1, without recourse to the topologies xbc or x .

We end this section with an explicit description of the dual of the space
(H°°(U;F),xy).

4.11. Theorem. Let E and F be Banach spaces, and let U be an open set in
E. Then the dual of (H°°(U ; F), t ) consists of all linear functional of the
form

oo

"(/) = £ 00 °/(*;).
7=1

where (xA) varies over all sequences in U, and (y/f varies over all sequences
in F' with J2%i\\Vfj\\ <°°
Proof. We first assume that u has such a representation. Since JfJLi IIV/II <
oo, we can find a sequence (Xf of positive numbers tending to infinity such
that Yl%i A -|| \Pj\\ = c < co . Then

oo

\u(fi)\ < £ \W}\\ \\fixj)\\ < csupAjVtyJU,
7=1 ;

for every / £ H°°(U ; F), proving that u is x -continuous.
Conversely, assume that « is a continuous linear functional on the space

(H°°(U ; F), x ). Then there are a sequence (xf C U and a sequence (a A) £ c0
with a. > 0 such that

|M(/)|<supa.||/(xy)||

for every / £ H°°(U ; F). Now, it follows from the very definition of x that
the linear mapping

v: fi£(H°°(U;F),xy) -, (a/(x,))~, £ c0(F)

is continuous. Since |m(/)| < ||v(/)|| for every / £ H°°(U ; F), we may define
a continuous linear functional w on v(H°°(U; F)) by w(v(f)) = u(fi) for
every / e 77°°(t/; F). By the Hahn-Banach theorem w admits a continuous
linear extension to c0(F). Since c0(F)' = I (F1), there is a sequence (\pA) £
lx(F') suchthat

oo

u(f) = w(v(f)) = J^ajipj o fi(Xj),
7=1

for every / G H°°(U ; F). This completes the proof.

4.12. Corollary. Let U be an open subset of a Banach space E. Then G°°(U)
consists of all linear functionals u£H°°(U)' of the form

oc

-(/) = £>/(*;)'
7=1
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where (*.) varies over all sequences in U, and (a.) varies over all absolutely
summable sequences of complex numbers.

Proof. By Propositions 4.7 and 4.9, G°°(U) = (H°°(U), xf'. Thus it suffices
to apply Theorem 4.11.

5. The approximation property

In this section we give necessary and sufficient conditions for the spaces
G°°(U) and H°°(U) to have the approximation property. These are holomor-
phic analogues of classical results of A. Grothendieck [8, pp. 164-167, Propo-
sitions 35 and 36] (see also [10, pp. 32-33, Theorems l.e.4 and l.e.5]), which
will be used without further reference. Our results in this section complement
results of R. Aron and M. Schottenloher [2].

We begin with some auxiliary results.

5.1.    Lemma. Let F be a Banach space and let f(Q = J2m=o £m<:m ̂ e an F-
valued holomorphic function on an open disc D centered at the origin. For each
meN0 let

sjiQ - E hk
«c=0

and
m

m + i - k rk
H-

x m m «       ,

k=0 k=0

Then for each Ç £ D we have that

SmfiQ=l-f_Jie"QDm(t)dt

amfi(Q = yy(eitOKm(t)dt,

where Dm(t) and Km(t) denote the classical Dirichlet kernel and Fejér kernel,
respectively.

Proof. Since fi(re") = Y2=0rme'mtcm , we see that

and

¿/>V*V«
rkck   for k = 0, 1, 2,.
0        for k = -1,-2,
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Hence for k = 1, 2, ...  we get that
ike    rn -ike    rnk ike

r e    ck

Thus

e /■/     >t\   -ikt   ,.  ,   e In     "\   ikt j,= ̂ )J{re)e   dt + ̂ rLf{re)e dt

= ±-ff(re't)(eik{6-t) + e'k{'-e))dt

= - [   f(reil) cos k(t-6)dt
n J-n

= 1 i" fi(rei{t+e)) cosktdt.
n J-n

SJire») =l-jjireKt+6)) [\ + ±cos kt) dt.

After recalling that
i       m i       m

Dmit) = - + Y^coskt   and   K¿t) =—j^D^t),
k=l k=0

the desired conclusion follows.

5.2.    Proposition. Let E and F be Banach spaces, and let U be a balanced
open set in E. Let f £ H(U ; F) and let

m

Smfix) = ¿2 Pkf iO)ix)
¡fc=0

and
i m m _l_ 1       h-'*'<*> = ̂ TT 5Z VW = E ^^Fkfi(0)(x).

k=0 «fc=0
Then:

(a) SJ -, fi and oj -, f in (H(U; F), xf).
(b) For each x £ U we have that

and

SJ(x)=X-in fi(eitx)Dm(t)dt
71 J-n

amfi(x)=l-fnf(eitx)Km(t)dt.
"■ J—n

(c) If ||/(x)|| < c for every x £ U, then \\omf(x)\\ < c for every x £ U and
m£N,and oj-* f in (H°°(U; F), xy).
Proof, (a) is clear. To show (b) fix x £ U and apply the preceding lemma to
the function

oo

m=0
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The first assertion in (c) follows from (b) and the facts that Km(t) > 0 for every
t and £ f*nKm(t)dt = 1 (see [17, p. 45]). Finally, the second assertion in (c)
follows from (a) and Proposition 4.9.

The following lemma is well known, and is easy to prove anyway.

5.3. Lemma. If E is a Banach space with the approximation property, then
PAmE; F) is xc-densein P(mE; F) for each Banach space F and each meN.

5.4. Theorem. Let E be a Banach space and let U be a balanced, bounded,
open set in E. Then the following conditions are equivalent:

(a) E has the approximation property.
(b) For each Banach space F, PAE ; F) is xy-dense in H°°(U; F).
(c) For each Banach space F, H°°(U) ® F is xy-dense in H°°(U; F).
(d) gv lies in the x -closure of H°°(U) <8> G°°(U).
(e) G°°(U) has the approximation property.
(f) For each Banach space F and each open set V c F, H°°(V) <g> E is

xy-densein H°°(V;E).
(g) For each Banach space F and each open set V c F, 77°°(V) <g> E is

norm-dense in H^(V; E).
(h) The identity mapping on U lies in the xy-closure of H°°(U) <g> E.

Proof, (a) =>■ (b) : Let / £ H°°(U ; F) and let p be a continuous seminorm
on (H°°(U; F), xy). By Proposition 5.2 we can find P £ P(E; F) such that
p(P - f) < j . Since, by Proposition 4.9, x coincides with xc on P(mE;F)
for each m eN, repeated applications of Lemma 5.3 yield a polynomial Q e
Pf(E ; F) such that p(Q - P) < ' . Thus p(Q - /) < 1 and (b) has been
proved.

(b) => (c) and (c) => (d) : Obvious.
(d) => (e) : It follows from (d), Proposition 3.1 and Theorem 4.8 that the

identity operator on G°°(U) lies in the rc-closure of G°°(U)' ® G°°(U). Hence
G°°(U) has the approximation property.

(e) => (a) : This follows from Proposition 2.3.
(a) => (f): Since E has the approximation property, G°°(V)' ® E is ré-

dense in L(G°°(V) ; E). By applying Proposition 3.1 and Theorem 4.8 we get
(f).

(f) => (a): It follows from (f), Proposition 3.1 and Theorem 4.8 that
G°°(UF)'®E is xc-dense in L(G°°(UF); E) for each Banach space F. To
show that E has the approximation property it suffices to prove that F' <g> E
is Tc-dense in L(F ; E) for each Banach space F. Let A £ L(F ; E) be
given. By Proposition 2.3 there are operators S £ L(F; G°°(UF)) and T £
L(G°°(UF);F) such that T o S (y) = y for every y £ F. Then AoT £
L(G°°(UF) ; E) and therefore there is a net (Ba) C G°°(UF)' ® E which con-
verges to A o T for xc. Whence it follows that the net (Ba o S) lies in F' <S> E
and converges to A o T o S = A for t .
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(a) => (g) : Since E has the approximation property, G°°(V)' ® E is norm-
dense in Lk(G°°(V) ; E). By applying Propositions 3.1 and 3.4, and Theorem
2.1, we get (g).

(g) =>■ (a) : It follows from (g), Propositions 3.1 and 3.4, and Theorem 2.1,
that G°°(UF)' ® E is norm-dense in Lk(G°°(UF) ; E) for each Banach space
/. Then, by imitating the proof that (f) =► (a), we can show that F' ® E is
norm-dense in Lk(F ; E) for each Banach space F . This shows (a).

(c) =s> (h) : Obvious.
(h) =>■ (c) : Let / £ H°°(U ; F) and let p be a continuous seminorm on

(77°°(Î7 ; F), xy). We wish to find g £ H°°(U) ® 7^ such that p(g - fi) < I .
We may assume that

pih) = s\ipaj\\hixj)\\,

for every h £ H°°(U; F), where (xA) c U and (a.) £ c0 with a} > 0. By
Proposition 5.2 there exists P £ P(E ; F) such that

(5.1) p(P-fi)<\.
Write P = P0 + • • • + Pm , with Pk £ P(kE ; F). Certainly P0 £ H°°(U) ® F .
For each k = I, ... , m we shall find uk £ H°°(U) ® E such that

_1_
2m '

It will then follow that

(5.2) p(Pkouk-Pk)<

P0 + J£Pk°uk£Hc°(U)®F,
k=\

and
(m \ m

Po + J2pk^k-f)<Ep(pk°uk-pk)+piP-f)<^
«C=I / fc=l

thus proving (c). Now, fix k with 1 < k < m, let ßj = jJäf for every jeff
and let K = [ß.xy. j £ N} U {0}. Since K is compact, we can find ô > 0 such
that

\\Pkiy) - PkM\\ < ^,

whenever x £ K and \\y - x\\ < ô . By (h) we can find uk £ H°°(U) ® 7J such
that

sup^.||wt(jc7.)-x;.|| <ô.

Hence

Pipk ° M«t - pk) = s*?<*j\\Pk ° "*(*>) - ^(^OH

= sup||Pfc(^(^))-Pjt(^;.)||<^
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and uk satisfies (5.2). Thus (h) =► (c) and the proof of the theorem is complete.
5.5. Corollary. A Banach space E has the approximation property if and only
if QimE) has the approximation property for each meN.

5.6. Proposition. Let U be an open subset of a Banach space E. Then H°°(U)
has the approximation property if and only if, for each Banach space F, 77°° ( U) 0
F is norm-dense in H^(U; F).
Proof. G°° ( U)' has the approximation property if and only if, for each Banach
space F, G°°(U)' ® F is norm-dense in Lk(G°°(U); F). Thus the desired
conclusion follows from Propositions 3.1 and 3.4, and Theorem 2.1.

Since it is still unknown whether 77°° (A) has the approximation property,
Proposition 5.6 may be of some use in this connection.

We next state two results on the metric approximation property, which are
parallel to Theorem 5.4 and Corollary 5.5.
5.7. Proposition. Let E be a Banach space, and let U be the open unit ball of
E. Then the following conditions are equivalent:

(a) E has the metric approximation property.
(b) For each Banach space F, the polynomials in PAE ; F) which are bound-

ed by one on U in norm, are xc-dense in the closed unit ball of H°°(U ; F).
(c) For each Banach space F, the mappings of norm < 1 in H°°(U)®F are

xc-dense in the closed unit ball of H°°(U ; F).
(d) gv lies in the xc-closure of the mappings of norm < 1 in H°°(U) ®

G°°(U).
(e) G°°(U) has the metric approximation property.
(f) For each Banach space F and each open set V c F, the mappings of norm

< 1 in 77°°(F) ® E are xc-dense in the closed unit ball ofi H°°(V;E).
(g) The identity mapping on U lies in the xc-closure of the mappings of norm

< 1 in 77°°(l/)®7í.

5.8. Corollary. A Banach space E has the metric approximation property if
and only if Q(mE) has the metric approximation property for each meN.

We should remark that the proof of Proposition 5.7 requires much less ma-
chinery than the proof of Theorem 5.4. Indeed, the proof of Theorem 5.4
relies heavily on Theorem 4.8, which was the ultimate goal of §4, whereas the
proof of Proposition 5.7 relies only on Corollary 4.10, which, as we have re-
marked already, can be proved directly after Theorem 2.1, without recourse to
the topologies xbc or x .

One can show that if a Banach space E has the A-bounded approximation
property for some X > 1, then Q(mE) has the ¿^-bounded approximation
property for each meN. However, I have been unable to solve the following
problem.

5.9. Problem. If E is a Banach space with the bounded approximation prop-
erty, does G°°(UE) have the bounded approximation property?
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If Ti is a Banach space with the bounded approximation property, J. Lin-
denstrauss and L. Tzafriri [10, p. 42, Problem l.e.21] have asked whether there
exists an equivalent norm ||| • |||..on E such that (E, ||| • |||) has the metric
approximation property. In view of Proposition 5.7, this problem is equivalent
to the following.

5.10. Problem. If E is a Banach space with the bounded approximation prop-
erty, does there exist a convex, balanced, bounded, open set U c E such that
G°°(U) has the metric approximation property?

Added in proof. A. Pelczynski has observed that Proposition 2.3 is closely con-
nected with a result of H. Milne [Banach space properties of uniform algebras,
Bull. London Math. Soc. 4 (1972), 323-326], namely that every complex
Banach space E is isometrically isomorphic to a complemented subspace of a
suitable uniform algebra. Indeed, by applying Proposition 2.3 to the dual of E ,
taking dual mappings, and restricting to E, one immediately recovers Milne's
result.
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