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Kate A. Remley, Member, IEEE, and Michael D. McKinley, Member, IEEE

Abstract—We describe a linearization of large-signal scattering
functions describing weakly nonlinear device behavior. The lin-
earization takes on a convenient form similar to scattering param-
eters that clearly illustrates the role of phase-conjugated mixing
products in the theory. We develop rules for the evolution of the
linearization with time. We illustrate the theory with transistor
measurements and apply the theory to the characterization of the
reflection coefficients of a microwave source in its large-signal op-
erating state.

Index Terms—Frequency translation, large signal, network anal-
ysis, nonlinear, scattering parameters, vector signal generator.

I. INTRODUCTION

REFERENCES [1] and [2] describe a linearization relating
the large-signal forward and backward wave coefficients

at the ports of a weakly nonlinear time-invariant device. By
weakly nonlinear, we mean that the output signals of the de-
vice are a stable, single-valued, and continuous function of the
input signals around the large-signal operating point and that
the output signals only contain spectral components having fre-
quencies which are linear combinations with integer coefficients
of the frequencies present in the input signals. The lineariza-
tion is used to describe nonlinear device behavior in terms of
a large-signal steady-state operating point and a set of approxi-
mate linear relations between the real and imaginary parts of the
small input and output signals superimposed on that operating
point. In this study, we rewrite the linear relations described in
[1] and [2] in a form similar to the conventional scattering-pa-
rameter matrices used to characterize the behavior of linear de-
vices. This intuitive form clarifies the differences between con-
ventional scattering parameters and the linearization we present
here.

Perhaps the most successful and widely used linearization
used to describe weakly nonlinear behavior in the microwave
regime was developed by Torrey et al. [3] in 1948 to explain
the electrical behavior of microwave mixers. Maas later sum-
marized and expanded upon this theory in [4]. The theories
of [3] and [4] explain the first-order behavior of microwave
mixers with “conversion matrices” relating small frequency-do-
main voltages and currents or forward and backward wave co-
efficients at a set of discrete frequencies.
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More recently, [5]–[9] introduced “Hot” scattering param-
eters to describe the electrical behavior of weakly nonlinear
devices and amplifiers operating under large-signal excitation.
However, as we shall see later, the standard implementations
of Hot scattering parameters fail to correctly describe the be-
havior of the phase-conjugated mixing products generated by
even weakly nonlinear devices and amplifiers.1

Here we present a complete development of the theory de-
scribed in [1] and [2] in terms of the Jacobian of a “large-signal
scattering function.” This Jacobian also finds use in harmonic-
balance simulators [11]. We then rewrite that linearization in a
form similar to the traditional scattering parameters used to de-
scribe linear circuits and devices, yielding an intuitive and useful
description of the first-order nonlinear behavior of weakly non-
linear devices and circuits.

We also lift the restrictions of harmonically related frequen-
cies and the special time reference employed in [1] and [2] and
present general transformations between different time refer-
ences, completing the theory.

Finally, we show that the theory encompasses the conver-
sion-matrix approach for describing mixer behavior developed
in [3] and [4] and includes the phase-conjugated mixing prod-
ucts missing from the Hot scattering-parameter description of
[5]–[9]. We illustrate the theory with the characterization of a
high electron-mobility transistor (HEMT) and the development
of a new technique for measuring the reflection coefficients of
a microwave source in its large-signal operating state. In both
cases, we show the importance of capturing the phase-conjuga-
tion behavior of nonlinear devices in the linearization.

II. LARGE-SIGNAL SCATTERING FUNCTIONS

Reference [1] begins with a large-signal scattering function
relating signals incident upon and reflected by a weakly non-

linear time-invariant device at a set of harmonic frequencies.
We define the nonlinear large-signal scattering function some-
what more generally than in [1] by

(1)

where and are vectors containing the wave coefficients
of the large-signal incident (exciting) and reflected (response)
waves at all of the ports of the device and at all of the frequen-
cies present in the system. The frequencies in and may or
may not be harmonically related, depending on the application.
We also do not restrict the reference impedance of these wave

1Reference [10] recently introduced “large-signal scattering parameters.” The
large-signal scattering parameters [S ] of [10] are defined via B = [S ]A,
where A and B are vectors containing large-signal wave coefficients and do
not correspond to any of the linearizations discussed here.

0018-9480/$20.00 © 2005 IEEE
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coefficients. However, we note that interpreting the wave coeffi-
cients and quantities derived from them is much more straight-
forward when they are set real [12].

We linearize (1) around a stable single-valued and continuous
operating point of by writing and as and

, where is the large-signal steady-state response
to the large steady-state excitation , and is the response to
a small excitation signal superimposed on .

When describes a linear time-invariant device, is ana-
lytic, and and can be related by a linear scattering-param-
eter matrix via . It then follows that

and as well. Furthermore, the
elements of relating wave coefficients at different fre-
quencies vanish. This class of linear time-invariant electrical de-
vices is very large and includes most passive microwave circuit
elements. In addition, most active microwave transistors and
amplifiers are designed to operate in a linear regime, and their
electrical behavior can be described by a linear scattering-pa-
rameter matrix .

However, the scattering function describing the electrical
behavior of a weakly nonlinear device is generally not analytic,
so, even in the weakly nonlinear case, we cannot relate and ,
or even and , with linear scattering-parameter matrices. The
inability of scattering parameters to approximate the response
of weakly nonlinear circuits to even small excitation signals has
been long appreciated in the computer-aided-design community
[11].

Even so, when the elements of and are small, we can use
the Jacobian of of a weakly nonlinear device evaluated at

and to approximate the real and imaginary parts of the
small response to the real and imaginary parts of the small
input signal .

Thus, for weakly nonlinear circuits, we can approximate
from with

(2)

where and the symbol indicates that
this relation will hold approximately when all of the elements of

are small. Here, is a real Jacobian matrix formed from the
first partial derivatives of the real and imaginary parts of with
respect to the real and imaginary parts of evaluated at and

. Harmonic-balance simulators often use this Jacobian and
Newton’s method to iteratively solve nonlinear problems [11].

Defining and with

(3)

we can rewrite (2) as

(4)

The total response can then be approximated as

(5)

Equation (3) shows that there is a one-to-one correspondence
between the complex elements of and and the real ele-

ments of the Jacobian matrix of . Thus, we see that (4) is,
in fact, a rather straightforward linearization of containing, as
expected, the real numbers of the Jacobian , where is
the dimension of and . The essential difference between the
form of (2) and (4) is that (4) has been rearranged in terms of
complex input and output vectors and , rather than the real
column vectors of (2).

Finally, for completeness, we note that we can write the ma-
trices and defined in [1] by
as and .

It is perhaps best to think about the linearization as a pair of
pairs. The first element of the pair is , which describes
the large-signal operating point at which the linearization was
performed. and by themselves contain a wealth of in-
formation about the large-signal operating state of the weakly
nonlinear device. The second element of the pair is the lineariza-
tion described by . The matrices and describe
how the device responds to additional small input signals super-
imposed on and .

The matrix reduces to the small-signal scattering param-
eters of a device when the device is linear and time in-
variant, and it relates elements of directly to elements of . As
the phase of an element in increases, the corresponding phase
of the elements in will increase as well.

However, as a device enters its nonlinear regime of operation,
the elements of relating different frequencies to each other
will become nonzero. In addition, even weakly nonlinear de-
vices usually create mixing products at both sum and difference
frequencies of the input signals. Mixing products that include a
difference frequency are particularly problematic, as increasing
the phase or frequency of an input signal can result in a decrease
in the phase or frequency of an output signal. This behavior will
be described by the matrix in (4) and (5). This extra degree
of freedom is required to complete the linearization, and it al-
lows the linearization to apply to all first-order mixing products
generated by a weakly nonlinear device.

Note that the matrix , which relates elements of to the
conjugate of elements of , does not appear in the earlier efforts
of [5]–[9] to develop a linearization capable of describing the
electrical behavior of weakly nonlinear devices.

III. TRANSLATING THE TIME REFERENCE

Reference [1] determines and with a time reference
that sets to zero the phase of the component of corresponding
to the input signal at the fundamental frequency in the harmonic
spectrum incident on the device. This choice of time reference
simplifies the form of , allowing it to be more easily measured
with a large-signal network analyzer (LSNA).

However, this choice of time reference complicates the ap-
plication of the theory when contains several large signals
at different input frequencies that are not harmonically related.
For example, the steady-state large-signal operating point of a
device could be determined by a signal with a number of tones
at nearby frequencies that have no common fundamental fre-
quency. This commonly occurs in two-tone distortion measure-
ments.

Even when the signal that sets up the large-signal operating
point of the device has a well-defined fundamental frequency,
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choosing the time reference based on this fundamental fre-
quency can still be problematic. For example, it becomes
difficult to predict the effect of a small input signal at the
fundamental frequency that is in quadrature with and super-
imposed upon the large fundamental component of the input
signal. While the large signal at the fundamental often sets the
operating point and time reference, applying a small signal in
quadrature with the fundamental actually shifts that time ref-
erence. Furthermore, that time shift depends on the strength of
the quadrature signal superimposed on the fundamental. Thus,
the linearization as derived in [1] cannot predict the response
to this quadrature signal without additional computations that
take into account this shift of the time reference.

Here we choose a different approach. Rather than setting the
time reference to the phase of one particular component of ,
we allow any choice of time reference and relate ,
and at that time to those same quantities at any other time.
This formalism simplifies the application of and and
allows to reduce to the conventional scattering parameters
of linear time-invariant devices in a natural way.

We can relate the complex frequency-domain vectors of wave
coefficients , and ) at time to

, and at time with

(6)

where in (6) can be replaced by any of , or
, and is the diagonal matrix of angular frequencies of each

of the elements of .
Using (6) and (1), we obtain the relation

(7)

Relation (7) is a direct consequence of the time invariance of the
device and, therefore, of its large-signal scattering function .

Using (6) and (4), we obtain

(8)

and

(9)

The unexpected negative sign in the second exponent in (9)
arises from the temporal behavior associated with the conjugate
of in (4).

These formulas allow and to be determined at a new
time once they have been determined at some specific time
reference . In practice, they allow us to characterize the device
with one choice of time reference (typically, but not necessarily,
with the phase of a fundamental input frequency set to zero),
and then later use the characterization with any choice of time
reference.

IV. DETERMINING AND AT A

PARTICULAR OPERATING STATE

Clearly, and determined at a particular large-signal
state operating point and can be used to predict the per-
formance of a weakly nonlinear device only when

and . The first step to predicting the per-
formance of a weakly nonlinear device embedded in a circuit
is to measure and at some particular and that
we are able to create with our measurement instrumentation. In
our numerical implementation, we determine and at a
particular operating point and with linear least squares
regression from large-signal data taken by an LSNA near
and , as described in the Appendix. This procedure is robust
and easily programmed.

The actual large-signal operating state is often not known
precisely beforehand. Thus, during device characterization, we
must often measure and at a number of operating states
and interpolate and over a space of operating points.
The numerical implementation of the method described in [1]
and [2] used artificial neural networks to interpolate and
to the desired operating point from the set of operating points at
which the device was measured. This allows additional flexi-
bility in finding an and that best match the actual oper-
ating point of devices. For example, this procedure can be used
to determine and at an operating point corresponding to
an impedance-matched condition even though the measurement
instrumentation is not perfectly matched.

V. USE OF AND TO PREDICT DEVICE PERFORMANCE

The appearance of the matrix in (4) does not allow the
usual formulas familiar to the microwave community to be em-
ployed for predicting the performance of a weakly nonlinear
device when it is embedded in a larger circuit or system. In-
stead, a circuit simulator must be used to predict device perfor-
mance. However, it is possible to develop fairly straightforward
formulas for predicting the electrical behavior of a weakly non-
linear device embedded in a strictly linear time-invariant circuit
or system containing sources.

Defining as the diagonal matrix of reflection coefficients
presented to the device by the linear external circuit in which it
is embedded and as the source amplitudes generated by the
external circuit and incident on the device, then , and

must satisfy

(10)

This linear relation simply expresses the constraints imposed on
and by the reflections and sources of the external

circuit.
Substituting

(11)

which is a direct consequence of (4) into (10), we obtain

(12)

where is the identity matrix. We can solve (12) directly by
rewriting it in terms of its real and imaginary parts. This yields
the linear matrix equation

(13)
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We can now estimate directly by solving (13) and thus predict
the first-order behavior of the device when it is embedded in the
external linear circuit.

VI. ROLE OF IN MIXER CHARACTERIZATION

We alluded previously to the crucial role that the matrix
plays in representing the phase-conjugating behavior of mixing
products generated by the vast majority of weakly nonlinear de-
vices. In the following section, we will present some examples
illustrating the role of in the theory. These examples show
convincingly that both and are required to describe the
response of weakly nonlinear devices to small excitations.

Mixers: Torrey et al. [3] introduced the notion of conver-
sion matrices to describe the electrical behavior of diode mixers.
Maas summarized the approach of Torrey et al. in [4] and de-
fined an “S matrix,” which we will call , from

, where is the diode’s conversion
(admittance) matrix.

Maas identifies port 0 with the mixer’s IF port and port 1
with the mixer’s RF port. In [4, eq. (4.87) ], Maas describes the
behavior of an RF mixer with

(14)

In our notation, we can express (14) as

(15)

where .2

While increasing the phase of the signal at the IF port of
an RF mixer increases the phase of the signal at the RF port
of the mixer, it decreases the phase of the signal at the image
(IM) frequency. Maas identified port 1 with the mixer’s image
port. Maas’ equation [4, eq. (4.88)] describes the response of an
image mixer to small input signals as

(16)

In our notation, this is expressed as

(17)

where we have defined and with
and , and where the superscript indicates
the transpose. Here, is required to describe the decrease
of the phase of the image signal due to an increasing phase of
input at the IF port. Similar relations have been developed by the
computer-aided-design community relating the Jacobian to
the conversion matrices of [3] and [4].

These relationships demonstrate the ability of the lineariza-
tion discussed here to describe the basic electrical behavior of

2The zeros in the last column of [S] reflect the fact that the effect of changing
either the amplitude or phase of a has only a second-order effect on the sig-
nals at the IF and RF ports. While the effect of changing a on the IF and RF
signals is not available in this first-order linearization, we can use (8) to predict
how [S] will change as we change to a new time reference, which is equivalent
to changing the phase of the local oscillator (LO).

Fig. 1. Microwave phase conjugator. The frequencies at both ports of the phase
conjugator must be the same. The frequency of the input signal at port 1 is
doubled before being fed into the LO port of the mixer. The circulator routes
the wave incident on port 2 to the IF port of the mixer, where it mixes with the
doubled LO and generates an image signal at the same frequency. The image
signal is then routed by the circulator back to port 2, where it appears as a
reflected wave. Increasing the phase of the wave incident on port 2 decreases
the phase of the reflected wave on port 2.

microwave mixers. In fact, the electrical behavior of any device
that can be described by the conversion matrices of [3] and [4]
can be equally well described by and .

Phase Conjugator: Phase conjugators find use in optical
telecommunication systems and as elements in reflective
self-focusing antenna arrays [13]. Fig. 1 depicts a microwave
phase conjugator. Port 2 of the microwave phase conjugator
reflects a wave whose phase decreases as the phase of the signal
incident on that port increases.

We can express the response of the ideal microwave phase
conjugator of Fig. 1 to small input signals with

(18)

Here again, is required to describe the decrease of the phase
of the signal reflected by the phase conjugator when the phase
of the incident wave increases.

VII. TRANSISTOR CHARACTERIZATION

Transistors and amplifiers typically generate harmonics and
mixing products at their output when operated near saturation.
Both and are required to characterize their performance
in this regime.

To illustrate this, we tested an HEMT biased for maximum
gain with a Hewlett-Packard LSNA set up in the conventional
way and calibrated with the procedures outlined in [14]. We in-
jected a 4-GHz sine wave into port 1 (the input) of the tran-
sistor and drove the transistor at power levels ranging from its
small-signal regime far into saturation. We used this signal to
derive our time reference for the measurements.

We simultaneously applied a small 24-dBm signal at the
same frequency at the output of the transistor. The phases of
this incident signal were uniformly distributed between 0 and
360 . We used this small signal incident on port 2 to determine

and with the procedure described in the Appendix. With
a more complicated setup, we could have measured the other
elements of and .
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Fig. 2. Vector plots of the measured output wave coefficient b as a function
of the phase of the small-signal wave coefficient a incident on an HEMT.
The phase of a is swept through 360 for a number of input drive levels. The
markers indicate measured data. The arrows indicate the direction with which
the phase of b changes in response to an increase in the phase of a . The solid
lines indicate the trajectories derived from the fit ofS andS to the measured
data. If S was zero, all of the trajectories would lie on circles and rotate in the
counter-clockwise direction.

The symbols in Fig. 2 correspond to the complex outgoing
wave coefficients we measured with the LSNA at the output
of the transistor in response to the small 24-dBm incoming
waves. These are plotted as a function of the drive power cor-
responding to the first element of on port 1 at the input of
the transistor. The solid lines in Fig. 2 show the fits we used to
determine and from the measured data. Sticking with
convention, we set the reference impedance for the measure-
ments to 50 .

The arrows in the figure indicate the direction in which the
phase of the outgoing wave coefficient changes as the phase
of the wave coefficient incident on the output port of the tran-
sistor increases. At the lowest transistor drive levels, increasing
the phase of increases the phase of .

However, as the input drive power on port 1 is increased, the
rate of increase in the phase of eventually stops and then
reverses, as indicated by the arrows in the figure. This phase
reversal is analogous to that of the phase conjugator of Fig. 1
and is due to the mixing of the second harmonic of the 4-GHz
drive signal incident on port 1 generated by the transistor with
the small signal incident on port 2 of the transistor. At high
drive powers, this mixing generates a phase-conjugated mixing
product at 4 GHz whose phase decreases when the phase of the
incident signal is increased.

Note that, if was equal to zero, the trajectories in Fig. 2
would all lie on circles and rotate in the counterclockwise direc-
tion. Clearly, this would not explain the measured results cor-
rectly.

Fig. 3 compares the transistor’s gain to the magnitude of
and as a function of the drive power at the transistor’s input.
Fig. 3 shows that the magnitude of decreases monotonically
as the drive power on the transistor’s input decreases. This figure
also shows that the magnitude of increases as the amplifier
enters saturation and eventually becomes larger than the magni-
tude of as the drive power at the transistor’s input exceeds

Fig. 3. Comparison of transistor gain, S , and S . S approaches 0
when the transistor operates in its small-signal regime, but becomes large and
eventually exceeds S as the amplifier goes into saturation.

Fig. 4. RMS error in the predictions of the linearization as a function of the
power of the small signal incident on port 2 of the transistor. Measurement
noise raises the rms error at very low incident powers. As the power rises, the
approximations begin to slowly degrade.

6 dBm. At this point, the progression of the phases of in
Fig. 2 reverses, as expected from (4).

We also briefly investigated the limits within which our lin-
earization is valid for this particular device. We first measured

and with a small incident signal at the transistor’s
output. Then we plotted the rms differences of the actual we
measured and the we predicted from and in Fig. 4.
The figure shows that our linearization is capable of predicting
the transistor’s response within a few percent when the incident
signal on port 2 is much smaller than the drive signal on
port 1, but begins to degrade when the incident power on port
2 approaches the drive power on port 1. This illustrates an im-
portant limitation of the linearization. While the linearization
is useful for predicting the first-order behavior of weakly non-
linear devices in large-signal operation, it clearly cannot predict
second-order effects that could be predicted by physical or other
more complex circuit models.
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Fig. 5. Measurement configuration we used to measure the reflection
coefficients � and � of a microwave source with our LSNA. We turned the
vector modulator in the source off for these experiments. The calibration
reference planes are indicated by vertical dashed lines.

VIII. SOURCE CHARACTERIZATION

The reflection coefficients of microwave sources often vary
with the power being generated by the source. Furthermore, it
is difficult and often impossible to measure the reflection co-
efficient of microwave sources while they are operating with a
conventional network analyzer.

Here, we show how our linearization can be used to char-
acterize the small-signal reflection coefficients of microwave
sources in their large-signal operating state. To illustrate, we cal-
ibrated an Agilent LSNA3 to a 50- reference impedance in the
conventional way [14] at the two coaxial reference planes indi-
cated by the vertical dashed lines in Fig. 5. We then used the
LSNA to characterize a microwave source (in our case, a vector
signal generator) at 2 GHz.

After calibrating the LSNA, we rearranged the measurement
configuration as illustrated in Fig. 5. To establish an independent
time reference for the measurements, we fed the signal from
the unmodulated output port of the microwave source under test
into the point at the rear of the couplers on port 1 of the LSNA
where the LSNA’s synthesizer is typically connected and ter-
minated the measurement port 1 in a 50- load. We used this
signal to establish a common time reference for the measure-
ments by setting to 0 the phase of measured by the LSNA at
the reference plane on port 1 at 2 GHz. Note that we could not
have used the output of the microwave source to establish a time
reference for the measurements, as the phase of the source’s
output signal changes in response to small signals injected into
its output during the characterization procedure.

We then connected the output of the microwave source under
test to the second measurement port of the LSNA. We used the
second vector signal generator to superimpose 40 small input
signals on the large output signal generated by the microwave

3The two LSNAs used in these experiments were prototypes, and were not
assigned model numbers. We specified the manufacturer only to better define
the experimental conditions. This does not constitute an endorsement by the
National Institute of Standards and Technology. Other products may work as
well or better.

Fig. 6. Magnitudes of the reflection coefficients � and � of our microwave
source both with the ALC turned on and off.

source under test. Each of these 40 small input signals had
an amplitude about 10 dB below the large signal generated
by the microwave source, had phases uniformly distributed be-
tween 0 –360 , and was at the same frequency as the signal
generated by the source. We also could have used a fixed source
slightly offset in frequency from the microwave source under
test to generate these small input signals.

Finally, we used the LSNA measurements of and and
the procedure described in the Appendix to determine the small-
signal reflection coefficients and (the and we mea-
sure with the LSNA) of the microwave source under test with
respect to the time reference we derived from the source’s un-
modulated output.

We measured and with the microwave source’s auto-
matic level control (ALC) both turned on and turned off. The
ALC monitors the signal level at the output of the microwave
source and compensates dynamically for the detected variations.

Fig. 6 compares the magnitudes of and . The figure shows
that, with the ALC turned off, the source’s conventional reflec-
tion coefficient dominates. In this situation, one could use
standard mismatch corrections to estimate the power delivered
by the source to a load.

However, Fig. 6 also shows that, when the ALC is turned on,
is significant and can even exceed at higher output power

levels. In essence, with the ALC on, the signal generator at-
tempts to maintain a uniform output power even when illumi-
nated by the small excitation signal from the second gener-
ator. This classic nonlinear limiting behavior gives rise to .

In fact, if the generator’s ALC was able to exactly compen-
sate for the reflected wave and maintain a perfectly constant
output magnitude , the trajectory of would be forced to lie
on a short arc defined by a constant . In this case, the mag-
nitudes of and would be equal. However, since the ALC
cannot differentiate between the forward and backward waves
incident on its sensor, it does an imperfect job of maintaining
a constant output level. This gives rise to the difference in the
magnitudes of the and we measure when the ALC is on.

We note that, when is significant, we cannot describe its
electrical behavior in terms of a Thévenin equivalent circuit, and
we will not be able to use conventional mismatch corrections to
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determine the power that the source delivers to a load. Rather,
we will have to use (13) for this purpose.

We also note that, once we have characterized the signal gen-
erator in this way, we can use (8) and (9) to translate the time
reference for and to some other convenient value. For ex-
ample, we might choose a time for which the phase of the large
output signal emanating from the generator is equal to 0.

IX. “HOT” SCATTERING PARAMETERS

The “Hot” scattering parameters of [5]–[9] are also a lin-
earization of the large-signal behavior of weakly nonlinear de-
vices. However, the scattering parameters of [5]–[9] were not
developed to handle the dependence of on both and , lim-
iting their usefulness. For example, the scattering parameters
of [5]–[9] cannot model outgoing waves from a device whose
phases decrease when the phase of the coefficient of the in-
coming wave increases. Thus, they cannot model the electrical
behavior of an image mixer, phase-conjugating circuits, transis-
tors or amplifiers near saturation, or the electrical sources we
characterized in this paper. Nevertheless, the scattering param-
eters of [5]–[9] can be considered to correspond to a submatrix
of the scattering parameter matrix we describe here and rep-
resent a limited linearization of weakly nonlinear behavior.

X. CONCLUSION

We have presented a linearization of large-signal scattering
functions that takes a form similar to that of the conventional
scattering parameters used to describe linear circuits and de-
vices. The representation we develop describes the response of
weakly nonlinear devices to small excitations in a compact way.
Furthermore, commercial LSNAs provide a convenient way of
measuring the parameters describing the linearization.

In developing the theory, we avoided restrictions to harmonic
signals and used a fixed, rather than an input-dependent, time
reference for the linearization. We also showed that the lin-
earization encompasses the conversion matrix approach com-
monly used to describe electrical mixers.

Finally, we illustrated the theory with several examples and
with measurements of transistors and sources. All of these ex-
amples demonstrated the importance of the terms in the lin-
earization describing the phase-conjugating behavior of non-
linear devices. While more study is certainly warranted, we also
explored in a brief way some of the limitations of the lineariza-
tion.

APPENDIX

LEAST SQUARES FIT OF AND FROM

MEASUREMENT DATA

In this study, we solved for individual elements of and
one at a time with a classic linear least squares fit. The goal was
to find and that best satisfy (5). An examination of (11)
shows that, to find an approximation for and , we must
estimate the , and that best fit the

(19)

where and are the th elements of and , respec-
tively. Since (19) is linear in and , we can solve for

, and with a linear least squares fit.
To do this, we performed a set of measurements of the

large-signal responses of the device to different small-signal
inputs . Here, the index corresponds to measurement
number, and each measurement is performed with different
small-signal input .

To estimate and from the data, we first arranged the
small-signal input wave coefficients and large-signal re-
sponses into two vectors and . We then constructed a
matrix whose first column was filled with ones, whose second
column was equal to , and whose third column was equal to ,
the conjugate of . Finally, we calculated the vector

(20)

where is the Hermitian conjugate (the conjugate transpose)
of . The three elements of are the least squares estimators of

, and , respectively.
While it is known that this approach does not yield the best

possible estimates in the presence of noise, it is extremely robust
and easy to program. We also found that it offered very good
estimates of , and for the highly over-determined
data sets we used.

In our experiments, we held the magnitude of each con-
stant while we varied the phase of each with so that
the small-signal inputs traced out a small circle in the complex
plane. However, the approach is quite general. Not only can the
method incorporate other data sets with no change in the pro-
cedure, but it is straightforward to simultaneously fit all of the
elements of and when the measurement setup makes it
difficult to control the small-signal excitation separately at each
port and frequency.
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