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ABSTRACT

Linearization of RF power amplifiers is surveyed, reviewed and analyzed. Cartesian

feedback is specifically presented as an effective means of linearizing an efficient yet

non-linear power amplifier. This reduces amplifier distortion to acceptable levels and

enables the transmission of RF signals utilizing spectrally efficient linear modulation

schemes with a lower consumption of DC power. Results from constructing experimental

hardware shows an intermodulation distortion (IMD) reduction of 44dB (achieving a

level of −62dBc) combined with an efficiency of 42% when transmitting π/4 QPSK. The

careful amplifier characterization measurement method presented predicts performance to

within 2dB (IMD) and 4% (efficiency) of practical measurements when used in

simulations.

A comprehensive stability analysis is developed using piecewise amplifier models within

a multiple-input, multiple-output block diagram representation of the cartesian feedback

loop. The analysis shows how RF amplifier non-linearity, the RF phase adjuster setting,

loop gain, bandwidth and delay affect stability. A graphical interpretation of the analysis

is given that indicates how stable a given RF amplifier will be when setting up a practical

cartesian feedback loop. Instability is shown to result when the amount of RF phase

rotation introduced by AM/PM distortion, and by setting error in the RF phase adjuster

within the loop, equals the open-loop phase margin. For one of the amplifiers

investigated, the analysis predicts that instability results just after the transistor turn-on
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region when the phase adjuster is adjusted above optimum, and instability also results at

transistor saturation when adjusted lower than optimum. This is also demonstrated with

experimental hardware.

From the analysis, the perturbated behaviour of the non-linear piecewise amplifier model

is shown to display two forms of operation when placed in a feedback loop, namely:

spiral mode and stationary mode. Spiralling tends to cause the noise floor of the output

spectrum to rise on one side depending on the direction of the spiral. The direction is in

turn dependent on the setting of the RF phase adjuster within the loop. When the phase

adjuster is in the forward path, phase adjustments lower than optimum, will cause the

noise to rise on the right side of the output spectrum (anti-clockwise spiralling) and vice-

versa. With the phase adjuster in the feedback path the reverse is true.

Loops with low stability margins are demonstrated to exhibit closed-loop peaking which

can affect the out of band noise performance of a cartesian feedback transmitter. In order

to achieve a non-peaking condition for a first order loop with delay, the phase margin of

the loop needs to be around 60°. It is also possible to approximately predict the degree of

peaking from the gain and phase margins. Further investigation of noise performance

suggests the loop compensation should be placed as far up the forward chain as possible

(i.e. close to the power amplifier) in order to minimize the out-of-band noise floor. This

too is demonstrated experimentally.

The concept of dynamic bias is also presented as a method to improve cartesian feedback

efficiency. The method works by setting up optimum bias conditions for the power

amplifier (derived from amplifier characterizations) and then having the cartesian

feedback loop make fine adjustments to the RF drive to achieve the exact required output.

This way the bias conditions do not have to be applied perfectly, implying simple (i.e low

switching frequency) switched mode power supplies can be used to apply the desired

collector voltage for example. The simple step-down switch mode power supply

constructed achieved an efficiency of 95% at high output levels. Applying it to a cartesian
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feedback loop markedly improved efficiency. At an output power of 20dBm average, the

linearized amplifier efficiency lifted from 45% to 67%, an improvement of over 20% and

a reduction in current consumption by 33%.
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PREFACE

In this thesis I present my work in Linearization of RF Power Amplifiers. The work

primarily examines cartesian feedback as the means by which efficient yet non-linear RF

(radio frequency) power amplifiers can be linearized over a narrow bandwidth.

Linearization, or the reduction of distortion in electronic systems, has been a goal for

electronic engineers for as long as electronics has existed. Feedback has had widespread

and successful application to achieve this end. In recent times, the need for linear RF

power amplifiers has been spurred on by the demands of cellular and wireless

communications to carry more traffic over a given spectrum. As I present in chapter 1,

this has led to the increased use of spectrally efficient modulation schemes. These

schemes have modulation on the envelope and hence require linear RF power amplifiers

in the transmitter. Other applications for linear RF power amplifiers are also discussed in

this introductory chapter.

In chapter 2, I collated background material which surveys the field of RF power

amplifier linearization as it applies to modern transmitter architectures. The non-linear

aspects of the RF power amplifier are presented and the consequences of such non-

linearities and distortions are shown. A number of linearization methods can reduce these

distortions with varying degrees of success and these are reviewed with my comments.
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The rest of the thesis represents a summary of the work I performed in the area of

cartesian feedback. In chapter 3, I detail the methods used to carefully characterize two

RF power amplifiers. These characterizations led to simulation results which were in

close agreement with the constructed cartesian feedback loops. Very early in the research

it was apparent that instability was an important issue. Stability analysis as it applies to

cartesian feedback is my major contribution to the field. The analysis is presented in its

most complete and mature form in chapter 4 and can predict potential instability with any

(memoryless) non-linear RF power amplifier. The development of the analysis was the

most personally rewarding aspect of this work, and the results obtained yielded some

surprising facts regarding the nature of non-linear amplifiers and cartesian feedback

stability. The extension of the analysis into noise performance provided the most practical

benefit and showed how the placement of the loop filter could reduce out of band noise.

Some aspects of the analysis were also presented in the following publications:

I M. A. Briffa and M. Faulkner, “Stability Analysis of Cartesian Feedback

Linearisation for Amplifiers with Weak Non-Linearities”, IEE Proc.

Communications, Vol. 143, No. 4, Aug. 1996.

II M. A. Briffa and M. Faulkner, “Gain and Phase Margins of Cartesian Feedback RF

Amplifier Linearisation”, Journal of Electrical and Electronics Engineering,

Australia, Dec. 1994, Vol. 14, No.4, pp 283-289.

III M. A. Briffa and M. Faulkner, “Stability Considerations for Dynamically Biased

Cartesian Feedback Linearization”, in Proceedings of the 44th IEEE Vehicular

Technology Conference, Stockholm, Sweden, VTC-94, June 1994, pp. 1321-1325

.

IV M. A. Briffa, M. Faulkner and J. MacLeod, “RF Amplifier Linearisation using

Cartesian Feedback”, in Proceedings of the 1st International Workshop on Mobile

and Personal Communications, University of South Australia, Adelaide, Australia,

November 1992, pp. 343-348.
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In chapter 5, I look at ways of improving the efficiency of cartesian feedback loops. This

work is of particular significance in handheld portable wireless equipment. The work

presented on dynamically biased cartesian feedback involved many challenges such as

simulating the power amplifier and the dynamic effects of the switch mode power supply.

Designing and constructing a discrete switch mode power supply was another significant

challenge (every electronics engineer should build at least one switchmode power supply

in his/her career!). This work is partly described in the following paper:

V M. A. Briffa and M. Faulkner, “Dynamically Biased Cartesian Feedback

Linearization”, in Proceedings of the 43rd IEEE Vehicular Technology

Conference, Secaucus, USA, VTC-93, May1993, pp. 672-675,

and after much learning about the patenting system, in:

VI M. Faulkner and M. A. Briffa, “Linearized Power Amplifier”, U.S Patent No. 5

420 536, May 30, 1995.

During the course of the research I have collaborated with others in the field and the

following papers may be of interest:

VII M. Faulkner and M. A. Briffa, “Amplifier Linearisation using RF Feedback and

Feedforward Techniques”, in Proceedings of the 44th IEEE Vehicular Technology

Conference, Chicago, USA, VTC-95, June 1995, pp. 525-529.

VIII M. Johansson, M. A. Briffa and L. Sundström, “Dynamic Range Optimization of

the Cartesian Feedback Transmitter”, IEEE Transactions on Vehicular

Technology, accepted for publication.
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1

1 INTRODUCTION

Rudimentary communications systems such as telephones and radio have existed for

much of the twentieth century. Advances in microelectronics and circuit miniaturization

have dramatically transformed these innovations to a point whereby mobile telephony is

now commonplace. Rapid developments in mobile and wireless communications will

continue to have striking impacts in many areas including commerce, industry,

Information Technology (IT), personal communications, and so on.

Extensive and growing use of mobile radio services has however, increased pressures on

frequency spectrum allocation. Adopting the cellular architecture has to some extent

released the pressure of limited spectrum. In theory, reducing cell sizes could increase

capacity to any desired level. In practice however, various factors restrict the minimum

cell size. The most prominent of these factors is the high cost of basestation infrastructure. 

The push of IT requirements for mobile services to also carry data coupled with the

demand for communications systems to interface with the digital system infrastructure,

has driven the adoption of new digital modulation techniques in preference to existing

analog technologies.

In portable wireless applications, the final Radio Frequency (RF) Power Amplifier (PA)

is a high consumer of the battery power budget. Power consumption is of prime
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importance since users now expect a compact and lightweight unit which can operate for

several hours/days between recharges. The so called “talk-time” of a mobile terminal is

often used to attract a larger market share in a highly competitive market. Another

significant marketing feature is the improved security aspects of digital communication.

Many recently adopted modulation schemes reflect the constraint that most power

efficient forms of RF power amplification are generally non-linear. Techniques based on

Continuous Phase Modulation (CPM) which convey information only on the phase of an

RF carrier, are generally seen as a good compromise between spectral efficiency and

retaining a constant envelope - a necessity with non-linear yet efficient power

amplification.

Introducing amplitude variations to the carrier can improve the spectral efficiency

allowing higher information throughputs for a given channel. The transmission of these

signals however, requires the use of a linear amplifier. This is a serious concern. A linear

Class A amplifier operated at the appropriate level of back-off for example, has poor

efficiency and would have an excessive deleterious effect on battery life. A non-linear

amplifier cannot be used because the distortion of the signal envelope and phase produces

intermodulation components in the adjacent channel that cannot be filtered out.

Linearizing a non-linear yet efficient RF power amplifier satisfies both requirements of

linearity and low power consumption. The aim of this research is to study possible

linearization strategies that allow efficient RF power amplifiers (e.g class AB-C) to be

used with modern modulation schemes that have a varying envelope.

Efficient linearized amplifiers can be applied in several areas. In mobile communications,

applications for linearized power amplifiers can be found in both cellular systems and

emerging PMR (Private Land Mobile Radio) systems. In the U.S, the cellular system

AMPS (Advanced Mobile Phone Service) has been augmented with DAMPS (Digital

AMPS). DAMPS makes use of linear modulation and hence requires linear amplifiers.

The move to DAMPS has increased spectral efficiency by three times. Another linearly

Introduction
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modulated cellular system application currently in use in Japan is PDC (Pacific Digital

Cellular). 

Linear modulation has also been proposed for PMR. Systems such as APCO25

(Ambulance Police Communications Officers) and TETRA (Trans European Trunked

Radio) were designed with the availability of linearized power amplifiers in mind. These

systems have very tight linearity specifications. Capacity increases and benefits similar to

those of digital cellular are expected for these PMR schemes.

Other applications for linearized power amplifiers include NTT Digital Cordless and

satellite communication systems such as the Australian OPTUS digital satellite mobile

network. It is also possible to apply such amplifiers in traditional systems such as Single

Sideband (SSB) High Frequency (HF) radio, and even broadcast Amplitude Modulation

(AM) transmitters.

A desirable by-product of linear amplification is the constant gain relationship between

input and output of the amplifier. This obviates the needs for output levelling control

circuits for transmitters with power control requirements. Power control allows close-by

mobiles to transmit at lower powers to those further away (hence reducing the near-far

dominated interference at the basestation). This is a major requirement in systems using

Code Division Multiple Access (CDMA) such as Qualcomm’s CDMA digital cellular

system.

A linear power amplifier is also capable of amplifying signals with any combination of

amplitude and phase modulation. This broadens the selection of modulation schemes and

increases the versatility of the amplifier considerably. In situations where different modes

co-exist on the same band the linearized amplifier is capable of fulfilling the requirements

of both modes. The efficient linearized amplifier therefore delivers “a one size fits all”

option to manufacturers of mobile equipment. It obviates the need to re-design for new

modulation methods when the need arises. Selecting the modulation scheme is simpler

Introduction
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through software control without regard to the RF amplifier. Changing modulation

schemes dynamically could have important military applications. 

Developments in multicarrier basestations indicate that it is possible to neatly combine

individual channels to be transmitted at baseband rather than at high power RF. The

traditional RF combination of signals requires the use of several RF power amplifiers,

isolators and cavity filters. When the channels are combined at low power, the entire RF

band is amplified and fed to a single antenna. The advantages of this technique include

reduction in power losses inherent in combiners, isolators and cavity filters, lower overall

cost and size, and improved flexibility in terms of channel allocation. The amplifier

required for such a design needs to be wideband, highly linear and is consequently a

candidate for the application of a linearized RF power amplifier.

The linearization solutions were developed here by investigating feedback methods which

are inherently narrowband. One method - Cartesian Feedback, is a technique of power

amplifier linearization using negative feedback of the modulation components. The term

cartesian refers to the manner by which the baseband modulation is expressed in its in-

phase and quadrature components rather than the polar form of amplitude and phase. This

linearization technique compares the input modulation signals to those demodulated at the

transmitter output and drives the amplifier with the necessary pre-distorted signal such

that the output closely matches the input and hence distortion is minimized.

This work extensively covers cartesian feedback and provides a detailed stability and

noise analysis. The power efficiency of cartesian feedback was improved by varying the

bias conditions of the RF amplifier. This was achieved by careful characterization of the

RF amplifier to enable the selection of the best bias conditions for operation at peak

efficiency.

Chapter 2 introduces the field of RF amplifier linearization. Much of the early work

presented in this thesis concentrated on system characterization. This is dealt with in

Introduction
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chapter 3 where the system was characterized using instruments controlled by GPIB

(General Purpose Instrument Bus). The resulting models from the measurements were

utilized throughout most of this work. Simulations based on these models are presented in

chapter 3 which also discusses the essential details of cartesian feedback linearization and

gives results from a constructed system.

Chapter 4 presents an in-depth analysis of cartesian feedback linearization. Both a linear

and non-linear piecewise stability analysis are presented along with an out-of-band noise

analysis and is the major theoretical contribution to the work.

Chapter 5 describes Dynamically Biased Cartesian Feedback as a means of providing

efficiency improvements to conventional cartesian feedback. Simulations are given along

with hardware measurements. 

The final chapter summarizes the major conclusions of the work presented in this thesis,

and the possibility for future work is also discussed.

Introduction
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2 BACKGROUND

When communications systems are devised many factors contribute to the overall

configuration of the system. One prominent factor is the choice of the modulation

scheme. In determining what modulation method will be chosen for digital mobile

communications, the system designers generally attempt to meet some specification

based on the allowable Bit Error Rate (BER) for given spectrum restrictions. Research

into this area has resulted in several techniques being proposed.

Constant envelope modulation schemes are usually adopted if transmitter power

efficiency or channel non-linearity is of concern. This was a consideration when Gaussian

Minimum Shift Keying (GMSK) was selected for the European and Australian digital

cellular system GSM (Global System for Mobile communications). In the digital cordless

area, the Digital European Cordless Telephone System (DECT), CT2 (Cordless

Telephones), CT3 and the Personal Communications Network (PCN)/Personal

Communications Systems (PCS) have adopted (or likely to adopt) constant envelope

modulation.

Because of the increasing pressures for extra capacity, the advantages of retaining a

constant envelope have given way to linear modulation. This form of modulation results
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when Nyquist filtering is introduced to digital quadrature modulation. By filtering, the

spectrum requirements are reduced at the expense of introducing envelope variations.

Linear modulation is overviewed in section 2.1. It will be shown in section 2.2 and 2.3

that such signals when passed through non-linear amplifiers undergo distortion which

results in a spreading of the spectrum and a degradation of BER.

Spectral spreading causes interference to other users in the adjacent channels. For this

reason authorities specify a maximum adjacent channel interference (ACI) limit;

examples are given in section 2.4. To solve the problem of ACI various linearization

techniques have been proposed and these are reviewed in section 2.5. One of the more

promising techniques is Cartesian Feedback and this is discussed in section 2.6.

2.1 LINEAR TRANSMITTER ARCHITECTURE

Emerging linear modulation schemes are typically transmitted using the direct conversion

digital transmitter structure shown in figure 2.1. The Digital Signal Processor (DSP)

converts the digital data stream to be transmitted into two baseband analog signals (Iin(t)

and Qin(t)). The upconversion process quadrature modulates these baseband signals

directly to an RF (Radio Frequency) carrier frequency (ωc). Subsequent linear

amplification brings the modulated RF signal (S(t)) up to a power level suitable for radio

transmission.

Figure 2.1: Direct conversion digital linear transmitter.
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2.1.1 DSP Functions

The DSP circuit first maps the input data stream into two data streams In and Qn where n

denotes the nth signalling period or symbol period. The mapping employed will govern

what possible discrete values In and Qn adopt and how changes in these values will take

place in the next symbol period. If M is used to denote the number of possible states there

are generally three types of modulation formats possible: M-ASK (M-level Amplitude

Shift Keying), M-PSK (M-level Phase Shift Keying) and M-QAM (M-level Quadrature

Amplitude modulation). 

Figure 2.2(a) gives and example of 2-ASK otherwise known as on-off keying (OOK).

This modulation is generated if all Qn’s are set to zero and the In’s can take a value of

either zero or one.

If In = cosΦn and Qn = sinΦn, (where each Φn is taken from M evenly spaced values

between ±π)  M-PSK results with each state uniformly distributed on the unit circle.

Figure 2.2(b) shows 4-PSK or QPSK (Quadri-Phase Shift Keying), and figure 2.2(c)

shows the case for M = 8.

Letting In and Qn take the following possibilities ±1, ±3,..., , generates M-

QAM. Figure 2.2(d) demonstrates 16-QAM with the states lying on a square lattice of 16

points. M-QAM can be thought of as a combination of both amplitude modulation (M-

ASK) and phase modulation (M-PSK).

Figure 2.2: Scatter diagrams for (a) OOK, (b) QPSK, (c) 8-PSK (or π/4 shift QPSK), (d) 16QAM.
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The scatter diagrams of figure 2.2 give no indication of the nature of movement between

different states. Transition between states is governed by the spectral shaping filter and

any constraints which the mapping imposes. Figure 2.3 shows the transitions which exist

for filtered QPSK and a common mobile modulation scheme π/4 shifted QPSK. For

QPSK some of these transitions travel through zero. This ultimately causes the amplitude

of the modulated output signal (S(t)) to also cross zero. A zero crossing implies infinite

dynamic range and forces operation in typically non-linear turn-on regions of RF PA’s

(Power Amplifiers). π/4 shift QPSK was proposed by Akaiwa[1] as a means of avoiding

the zero crossing area for linearly modulated digital mobile communications systems1.

The “π/4 shift” originates from the fact that the modulation scheme can be generated by

rotating (or “shifting”) a QPSK constellation by π/4 radians every alternate symbol. With

each symbol (2 bits) a movement is made which is either ±π/4 radians or ±3π/4 radians

giving a signal constellation which never passes through zero. The North American

DAMPS (Digital-Advanced Mobile Phone Service) system has adopted a differentially

encoded version of this modulation, π/4 DQPSK (Differential Encoded π/4 shift QPSK).

Nyquist filtering enables the transmitting of digital information in the smallest possible

bandwidth without introducing ISI (Inter-Symbol Interference)[2]. The filtering is an

important DSP function and is normally performed in the time domain. One particular

form of filter which is currently used extensively and in the DAMPS system is derived

from the raised cosine family. By separating the filtering function into two - one at the

1. Under power control however, the turn-on region can still present problems.

Figure 2.3: Space diagrams for (a) QPSK, (b) π/4 shift QPSK.
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transmitter and one at the receiver, the filter utilized at each end is a square root raised

cosine filter. The frequency response of such a filter is given by [3]

(2.1)

where

f is the frequency,

α is the excess bandwidth,

T is the symbol period.

The nature of the filter shows three distinct parts - a flat pass band which continues up to

a value determined by the excess bandwidth, a transition band which occupies twice the

excess bandwidth, and a stopband which exists outside the excess bandwidth. The excess

bandwidth refers to the percentage bandwidth the filter exceeds that of the minimum

nyquist filter. The term raised cosine is derived from the transfer function produced when

the excess bandwidth is 100% (α = 1) giving a raised cosine function.

The equivalent time domain response is

(2.2)

The impulse and frequency responses described above are shown in figure 2.4 for

DAMPS. This figure was generated with the filter design software DFDP2 and shows the

2. DFDP - Digital Filter Design Package, Atlanta Signal Processors Incorporated.
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windowed impulse response along with the logarithmic magnitude response. With the

DAMPS system α = 0.35 and because the filter impulse response is truncated to a length

of 8, a Kaiser window is applied to limit the effects of truncation on the spectral integrity

in adjacent channels. The Kaiser co-efficient is 2.4. An oversampling rate of 16 allows the

use of a 100kHz reconstruction filter with a data rate of 48.6kBits/s.

The remaining functions in the DSP are the DAC’s (Digital to Analog Convertors) and

subsequent reconstruction filters which convert the digitally generated signal to an analog

signal ready for modulation.

2.1.2 Quadrature Modulation

The quadrature modulator block shown in figure 2.1 represents a well known technique of

directly upconverting baseband analog signals Iin(t) and Qin(t) to a carrier frequency (ωc). 

The frequency mixers multiply Iin(t) and Qin(t) with an in-phase and quadrature (+90°)

component of a Local Oscillator (LO) respectively. The outputs from the mixers are

combined to yield the modulated RF output signal S(t). Since Iin(t) and Qin(t) are

modulated orthogonally they effectively occupy two independent I (in-phase) and Q

(quadrature) channels.

The quadrature modulation process modulates both the amplitude and phase of a carrier in

Figure 2.4: Response of DAMPS filter.

Quadrature Modulation
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a manner governed by a cartesian to polar conversion, with Iin(t) and Qin(t) being the

cartesian representations i.e

(2.3)

It is convenient to consider S(t) as the real part of a complex signal

(2.4)

The complex envelope Sb(t) can therefore be used to describe the RF signal without

reference to the carrier signal. A(t) is the amplitude of the signal and Φ(t) is the phase of

the signal given by

(2.5)

And the complex envelope signal is given by

(2.6)

Complex baseband envelope representation was used in all of the simulations in this

work. This is advantageous since the sample rate does not have to be so high as to

accommodate the carrier frequency resulting in higher computational efficiency[4].

2.1.3 Linear RF Amplification

The modulated RF signal S(t) may contain amplitude variations. To amplify such a signal

linear RF amplification is needed. Linear Class A RF amplifiers are typically used in

driver stages of figure 2.1. This work looks at means by which non-linear (yet efficient)

RF power amplifiers can be used in the final stages. The next sections discuss how non-

S t( ) Iin t( ) ωc t( ) Qin t( ) ωc t( )sin+cos=

A t( ) ωc t( ) φ t( )+( )cos[ ]=

S t( ) Re A t( )e
 j ωc t( ) φ t( )+( )

[ ]=

Re A t( )e
 jφ t( )

e
 jωc t( )

[ ]=

Re Sb t( )e
 jωc t( )

[ ]=

A t( ) Iin t( )
2

Qin t( )
2

+= φ t( )
Qin t( )

Iin t( )
---------------atan=

Sb t( ) Iin t( ) j Qin t( )+=

A t( )e
 jφ t( )

=

Linear RF Amplification



13Chapter 2

linear amplifiers distort linearly modulated signals and means by which these non-linear

amplifiers can be linearized.

2.2 RF POWER AMPLIFIER NON-LINEARITIES

It is common to distinguish large signal amplifiers with class operation set by bias

conditions. Most active devices have limited linear regions and bias conditions are

normally chosen to give a desired amplifier linearity at the expense of efficiency.

BJT (Bipolar Junction Transistor) amplifiers can be biased to operate under different

classes depending on the base-emitter bias voltage (figure 2.5)[5] and corresponding

collector currents. Negative voltages push the transistor into operation with lower

conduction angles and towards Class C operation. Although lowering the conduction

angle improves the collector efficiency3, drive levels must be increased to sustain

reasonable output powers. Consequently, power added efficiency4 falls. Finding the

optimum bias conditions for maximizing power added efficiency is covered in more detail

in chapters 3 and 5.

3. Collector efficiency is defined as Pout /PDC.

4. Power added efficiency is defined as (Pout − Pin)/PDC .
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Figure 2.5: Effect of bias and drive level on class of amplifier operation.

RF Power Amplifier Non-linearities
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Higher (positive) bias voltages allow the device to operate over more of its linear region

thus improving the amplifier linearity. Class A operation occurs when the transistor is

biased to conduct for 360° i.e the transistor conducts all the time. This increase in

conduction angle however results in lower collector efficiencies.

Increasing the RF drive level leads to a family of amplifiers operating under saturation

(e.g saturated Class A, AB, B, C). The transistor begins to behave more like a switch

(rather than a current source) giving some gains in power output and efficiency.   Indeed,

a whole range of switching type RF amplifiers exist (Classes D to F), some with

efficiencies approaching 100%[6].

The non-linearities described above are termed AM/AM distortion (Amplitude

Modulation to Amplitude Modulation). The deviation from a straight line input-output

transfer function in the cut-off region and in the saturation region results in envelope

amplitude distortion induced by the amplitude changes on the input. Largely because of

voltage dependent collector capacitance (caused by a varying depletion layer width)

another form of distortion is introduced, namely - AM/PM (Amplitude Modulation to

Phase Modulation). The most disturbing aspect of the AM/PM distortion of the BJT

amplifier is the distinct kink when the amplifier leaves cut-off and enters the linear

region.

AM/AM and AM/PM distortion is present in most power amplifiers irrespective of the

amplifying device. Although much of this research was developed around two BJT RF

power amplifiers, TWT (Travelling Wave Tube) amplifiers are commonly used for digital

radio and serve as an interesting comparison (figure 2.6). The TWT non-linearity is the

analytical model found in SPW5. TWT’s generally have longer delays than BJT’s in

addition to the differing characteristics.

This research is mainly concerned with linearization over a relatively narrow frequency

5. SPW Signal Processing Worksystem - The DSP Framework, COMDISCO Systems, Inc.

RF Power Amplifier Non-linearities
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band. It is common to therefore assume for modelling purposes that the amplifier is

wideband compared to the modulation and hence frequency induced variations of the RF

amplifier parameters are neglected[7]. Some frequency restriction does however exist in

the RF amplifier and this is modelled as an extra delay and discussed in chapter 3. Other

frequency dependencies and memory effects can manifest themselves as hysteresis in the

time domain. The hysteresis can cause the intermodulation products of a two-tone test to

be asymmetrical in the time domain.

2.2.1 Environmental Factors affecting RF power Amplifiers

The characteristics of an amplifier do not remain static. The operating conditions, both

internal and external to the amplifying device, will affect the amplifier characteristics. A

linearization system must therefore be robust enough to cope with these changes. With

feedback systems the control loop robustness is crucial in order to maintain stability.

Thermal time constants within the device and the ambient temperature alter the BJT

threshold voltage and peak saturated power capability. Significant memory effects can

also be introduced by bias circuitry[8] and power supply variations.

Figure 2.6: Comparison of twt and bjt RF amplifier characteristics. (a) Amplitude response showing AM/

AM distortion. (b) Phase response showing AM/PM distortion.
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Another external influence which is especially important with hand portable mobiles is

antenna load fluctuations. As the unit is moved towards and away from the head and other

objects in close proximity, the changes in standing waves result in a variation of phase

angle through the amplifier. Such phase changes will degrade loop stability in feedback

systems and can be misinterpreted by some linearization systems as modulation

information. Measures such as isolators or other supervisory circuitry are often necessary

to overcome these problems. Changes in carrier frequency also result in a phase changes

through the amplifier.

2.3 EFFECTS OF NON-LINEARITIES ON MODULATION

Amplifier non-linearities cause distortion of linear signals resulting in two detrimental

effects. First, as witnessed by the phase plane diagrams of figure 2.7, the signal

trajectories are distorted. Figure 2.7(a) shows the undistorted phase plane trajectory of π/4

shift DQPSK using a root raised cosine filter with a reduced impulse length of two (a

reduced impulse length reduces the number of trajectories and makes the figure clearer).

After amplification by a non-linear RF PA, the signal trajectories become distorted

(figure 2.7(b)). Consequently the received signal will be harder to detect hence degrading

the BER[9].

The second effect is that the distortion causes the spectrum to spread into adjacent

channels (figure 2.9). Figure 2.8 gives a selection of three complex envelope signals in

the time domain with each signal presented in magnitude (amplitude) and phase format.

The unfiltered π/4 shift DQPSK modulation is given by figure 2.8(a). Without filtering

the envelope will be constant as shown by the upper magnitude trace of figure 2.8(a), and

the phase transitions will be instantaneous as shown by the lower trace.

Introducing the full length root raised cosine filter used in DAMPS introduces envelope

variations and smooths the phase transitions as shown in figure 2.8(b). After non-linear

Effects of Non-linearities on Modulation
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Figure 2.7: (a) Undistorted phase plane trajectory of π/4 shift DQPSK using a root raised cosine filter

with an impulse length of two. (b) Same signal after amplification by non-linear power amplifier.

(a) (b)

Figure 2.8: Time domain representation in magnitude and phase format. From top to bottom: (a)

Unfiltered π/4 Shift DQPSK; (b) Same signal after root raised cosine Nyquist filtering; and (c) Filtered

signal after undergoing amplifier distortion.

(a)

(b)

(c)

Figure 2.9: (a) Unfiltered π/4 Shift DQPSK. (b) Same signal after root raised cosine Nyquist filtering. (c)

Filtered signal after undergoing amplifier distortion.

(a) (b) (c)

Effects of Non-linearities on Modulation
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amplification the AM/AM distortion corrupts the envelope and the AM/PM distortion

corrupts the phase (figure 2.8(c)).

Figure 2.9 shows the spectrum of the same three signals. Figure 2.9(a) is the original

unfiltered π/4 shift DQPSK signal. After the application of the nyquist filter, the

bandwidth required to transmit the data is substantially reduced (figure 2.9(b)). Non-

linear amplification however degrades the spectrum, spreading it back into the adjacent

channels and hence destroying the benefits of the nyquist filtering.

2.3.1 Intermodulation Distortion Measurement

Intermodulation distortion is generated by amplifier non-linearities. Linearization aims to

remove these non-linearities and hence remove the intermodulation distortion artifacts

which interfere with adjacent channels. The two-tone test is a common method used to

quantify the degree of non-linearity in an amplifier (or other non-linear devices such as

mixers).

The test involves generating two tones at the carrier frequency as shown by the solid lines

of figure 2.10. This is easily achieved where quadrature inputs are available since

applying a single tone (with frequency fm) at either the In-phase or Quadrature input will

yield two tones at RF. With RF inputs, two RF signal generators can be combined. After

passing through the non-linearity the two tones intermodulate resulting in the undesired

products as shown by the dashed lines in figure 2.10 (fc ± 3fm, fc ± 5fm etc.). The amplitude

of the distortion products relative to the desired tones is a measure of the amplifier non-

linearity.

Distortion also occurs at a carrier rate which results in harmonics being generated at

multiples of the carrier frequency (i.e 2 fc, 3fc etc.). These are normally removed by a

harmonic filter in which case the harmonics can be neglected. A frequency product is also

generated at 2fm as a result of the presence of distortion around even order harmonics at

Intermodulation Distortion Measurement
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2 fc, 4fc etc. This product is also neglected due to the high-pass nature of the amplifier

output. Occasionally even order distortion is also visible in measured two-tone tests at fc

and even order intervals (fc ± 2fm, fc ± 4fm etc.). This distortion is caused by asymmetry,

DC or carrier leak.

A related method used to quantify non-linearity is the third order intercept point. The

intercept point graph (see figure 2.13a) is generated by performing a series of two-tone

tests at different power levels. Idealized slopes of the fundamental output power (1:1

slope on a dB scale) and of the third order products (3:1 slope on a dB scale) are taken

well before compression and extended right up to form an intercept point. The higher this

point with respect to the operating point the more linear is the system. The intercept point

approach is applicable for weak non-linearities, however some of this work deals with

strong non-linearities and hence the raw two-tone test is used to assess the performance of

linearization schemes.

2.4 ACI RESTRICTIONS

The usual cause of ACI is distortion in the amplification system but other causes exist,

such as leakage from the Nyquist filter in the modulation. The situation shown in figure

fc − fm

2fc + 2fm

fc + 3fmfc − 3fm

fc + 5fmfc − 5fm

Figure 2.10: Distortion products generated by two-tone test passing through a non-linearity; dashed box

indicates zone normally viewed on spectrum analyzer. Desired signals solid, undesired distortion products

dashed.
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2.11 demonstrates the near-far problem as it relates to ACI. The problem occurs when the

receiver attempts to receive a weak signal (i.e far) in the presence of a strong (i.e near)

adjacent channel transmission. If the ACI specification in the transmitter is too high the

weak signal will be swamped.

The level of ACI is a specification set in all mobile communication applications and some

examples are given in the next few sections.

2.4.1 Cellular Systems

The most immediate application for linearized power amplifiers is DAMPS. The level of

ACI in the adjacent channel is −26dB and in the next adjacent channel −45dB. In other

channels the ACI specification is given as −60dB. Cellular systems are able to modify

frequency allocations in order to eliminate most of the near-far conditions. Although the

specification seems lax, some of the ACI specification has been used up by the

modulation scheme adopted and so intermodulation requirements are still quite tight. 

2.4.2 Mobile Satellite

Unlike cellular systems the near-far effect does not exist with satellite systems since all

Figure 2.11: Near-far problem in a mobile communications scenario where ACI from a strong (near)

adjacent channel interferes with a weak (far) desired signal.
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the mobiles are operated at long distances. However some operators allow users to access

the satellite at different power levels which produces a pseudo near-far problem.

Consequently systems such as Australian Optus Mobilesat can set ACI at −35dB in the

adjacent channel and −50dB for all other channels. 

2.4.3 Private Land Mobile Radio (PMR)

Most PMR systems presently in use utilize analog FM as the modulation system. As with

mobile cellular there is a trend towards digital transmission which can relay data (for

despatch purposes etc.) and voice. A new digital modulation system would have to co-

exist with current analog users for quite some time. The scattered and uncontrolled nature

of PMR basestations causes severe near-far problems and hence the ACI specification is

quite tight e.g −70dB for APCO25 and −60dB for TETRA.

2.4.4 Future Systems

It is likely CDMA systems will feature prominently in future communications systems.

Qualcomm's proposed CDMA cellular and mobile satellite systems for example, will

require some linear amplification and wide dynamic range power control. Power control

is crucial in CDMA systems and hence any linearization strategy should consider this

additional requirement.

2.5 REVIEW OF AMPLIFIER LINEARIZATION TECHNIQUES

Varying degrees of distortion is always present in electronic systems. Early work in

amplifier linearization focused on cross-modulation distortion present in multichannel

systems and on intermodulation distortion of amplitude modulated signals. Although the

linearization techniques developed here were aimed at mobile radio, much of the

linearization work reviewed spans many applications including: fixed point-to-point

microwave radio links, CATV (Community Antenna Television), satellite

Review of Amplifier Linearization Techniques
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communications and multi-carrier basestations. In each case the objective is to improve

linearity without sacrificing efficiency.

Despite the broadness of the linearization area, the linearization techniques can be

roughly divided into a number of approaches - some of which draw from similar roots.

Figure 2.11 shows graphically how the various linearization techniques interrelate.

2.5.1 Back-off of Class A

Amplifier back-off is the conventional approach of improving RF power amplifier

linearity. The technique involves operating power amplifiers at a fraction of their

saturated output power potential. The further the device is “backed-off” the better the

improvement in intermodulation distortion. A 1dB back-off or reduction in output power

(i.e a 1dB reduction in the fundamental frequency output power) results in a 3dB

reduction in the 3rd order intermodulation distortion, a 5dB reduction in the 5th order

intermodulation product and so on. This results in a 2dB, 4dB etc. improvement

respectively (figure 2.12a). Since the DC power dissipation remains constant irrespective

of the output power for a class A amplifier, the efficiency of the amplifier diminishes as

linearity improves. Consequently to achieve the intermodulation performance desired for

LINEARIZATION

BACK-OFF
OF CLASS A

FEEDFORWARD PREDISTORTION FEEDBACKVECTOR-SUMMATION

RF BASEBAND BASEBAND RF IFLINC LIST
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Figure 2.12: Amplifier linearization techniques
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most mobile communication applications the amplifier will be unduly wasting significant

amounts of DC power (figure 2.12b). For many mobile applications the efficiency will be

below 1%. Such a condition is highly undesirable in portable wireless applications.

Further disadvantages are also incurred since the size of devices tend to be larger and thus

heavier, and usually are more costly.

2.5.2 Dynamically biased Class A

This technique was introduced by Saleh[10] as a means by which the power-added

efficiency of Class A Field Effect Transistor (FET) could be improved when operating

with linear modulated signals. Instead of fixing the gate bias of an FET to roughly

midway between the pinch off voltage (Vp) and zero volts (the condition for Class A

operation), the gate bias voltage (Vg) is varied dynamically in response to the envelope of

the input signal given by Ve(t), such that Vg = −Vp + Ve(t). This way the FET is nearly

turned off when Ve(t) approaches its minimum and the mean gate bias voltage is just

enough to ensure the FET has sufficient dynamic range for the input signal. The benefits

Figure 2.13: (a) Fundamental output power (solid) and third order intermodulation distortion (dash-dot)

versus input power for a two-tone test. Fundamental power rises on a one-to-one basis whereas third order

power rises on a three-to-one basis (dB scale). Interception of both gradients is shown with an asterisk. (b)

Power added efficiency (ηadd) versus input power under the same conditions as (a).
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of such a biasing scheme include higher power added efficiency at microwave

frequencies.

2.5.3 Feedforward Linearization

Feedforward was invented as means of distortion reduction in amplifiers by Black[11].

This technique is usually applied directly at RF and is shown in figure 2.13. 

The feedforward scheme consists of two sections. The first compares an attenuated

version of the power amplifier (PA) output with the PA input to get the distortion

generated in the PA. This distortion (given by “Error” in the diagram) is destructively

combined at the output of the PA by a linear auxiliary amplifier. The resultant output is

then ideally distortion free. The process has been demonstrated in the diagram for a two-

tone test input. The two time delays are necessary to match any delay and frequency

dependent phase shifts introduced by the respective amplifiers. Any deviation from exact

amplitude and phase matching will degrade the subtraction process and subsequent

distortion cancellation[12].

Amplitude and phase matching is a problem since amplifier characteristics tend to drift

with temperature and time, and also vary with manufacturing tolerances. Adaptive

τ2

Error

SubtractorTime delay Auxiliary

Amplifier

Combiner

Power

Amplifier Coupler Time delay

τ1

Input

Coupler

RFin RFout

Figure 2.14: Feedforward linearizer implemented at RF.
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techniques enable the performance of the system to be maintained despite these

effects[12-13]. 

Efficiency of the feedforward system is reduced by the power consumption of the

auxiliary amplifier which must be linear and have a high enough output power capability

to overcome the loss through the output coupler.

Feedforward linearization can however deliver reasonable linearization performance

(20dB-40dB improvement) over relatively wide bandwidths (3MHz-50MHz) and has the

advantage of inherent stabilty[14-15].

2.5.4 Vector Summation

Vector Summation[16] is a technique which exploits the fact that the combination of two

or more constant envelope signals can result in a signal with a varying envelope and

phase. This arbitrary amplitude and phase modulation can be obtained by selecting the

appropriate phase relationship of each of the constant envelope carriers. Amplification of

constant envelope signals need not be linear and hence the use of highly efficient

amplifiers is possible. The main disadvantage is the inherently lossy nature of the

combining process which reduces the overall efficiency.

2.5.4.1 LINC

Component

Separator

PA

PA

Σ
11

1.25

S(t)

S1(t) S2(t)
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S1(t)

S2(t)

S(t)

gS2(t)

gS2(t)

Figure 2.15: (a) Block diagram of LINC transmitter. (b) The combination of two constant envelope vectors

(S1(t) & S2(t) yields a replica (S(t)) of the desired output signal (gS(t)).
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LInear amplification with Non-linear Components (LINC)[17] is a special case of vector

summation. It uses two constant envelope signals to obtain the desired output signal

(figure 2.14). The component separator uses analog or DSP techniques to generate the

constant envelope signals (S1(t) and S2(t)) such that when amplified and then combined

these signals produce the desired output signal (gS(t))[17-20].

With conventional combining techniques an average combining loss of 3dB occurs

reducing the maximum possible efficiency of LINC to 50%. Overall efficiencies of 21%

are easily achievable[18].

The LINC technique is susceptible to amplitude and phase differences in each of the

paths. Differences in these paths can severely degrade system performance [18-19] and

some form of feedback is usually necessary in order to compensate for variations in the

amplifiers [18, 21].

2.5.4.2 CALLUM

The Combined Analogue Locked Loop Universal Modulator (CALLUM) proposed by

Bateman[21] cleverly overcomes the complexity of DSP circuits whilst simultaneously

coping with amplitude and phase differences in the two paths. The technique (figure 2.15)

uses two feedback loops and VCO’s (Voltage Controlled Oscillators) to generate the

correct constant envelope signals. Under stable operation, the VCO’s automatically take

VCO
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PA
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gS(t)

S1(t)
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Figure 2.16: The Combined Analogue Locked Loop Universal Modulator (CALLUM) transmitter.
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up the frequency of the Local Oscillator (LO) and therefore preform frequency

translation. Furthermore the VCO's are driven to generate the necessary constant

envelope LINC signals (S1(t) & S2(t)) and if these oscillators are power types, they could

also provide the RF power given by the RF power amplifiers in conventional LINC

systems. 

Bateman demonstrated 55dB of intermodulation distortion suppression was possible for a

Nyquist filtered (α = 0.3) OQPSK (Offset QPSK) with a bandwidth of 30kHz. The

CALLUM system does however rely on feedback which implies the potential for

instability and errors introduced by the feedback gathering components (mainly in down

converting mixers). Stability and further aspects of CALLUM are discussed in [22].

2.5.4.3 LIST

LInear amplification by Sampling Techniques (LIST)[23] is demonstrated in figure 2.16.

The technique is similar to LINC in that it utilizes two constant envelope signals which

are combined at the output to derive the desired linearly amplified output. The main

difference to LINC is that the two signals can each only take two discrete phase values

and are in effect combined in quadrature. The quadrature arrangement of the two constant

envelope signals effectively gives four possible phase outputs. 

Iin(t)

Qin(t)

gS(t)

D Q

D Q
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Σ
90°

LOCLOCK

Delta Coder
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Figure 2.17: Linear amplification by Sampling Techniques (LIST) transmitter.
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The delta modulators shown in the dashed boxes enable any of the four possible phases to

be selected in rapid secession at a rate given by the clock frequency. Filtering at the

output reconstructs the signal to give the smoothed desired linearly amplified signal.

Cox[23] demonstrated that intermodulation products 40dB below the desired signals for a

two-tone test (100kHz between tones) was possible for an amplifier operating at 70MHz.

The advantage with the technique is the relative ease by which the two constant envelope

signals can be generated. Feedback was also proposed in [23] giving a similar improved

tolerance to amplifier differences as with CALLUM. Delay in the delta coders and

filtering components however reduces the amount of feedback that can practically be

applied

2.5.5 Predistortion

Predistortion is a technique which modifies the input to a power amplifier such that it is

complementary to the distortion characteristics of the amplifier (figure 2.17a). The

cascaded response of complementary predistortion and amplifier distortion should

therefore result in a linear response (figure 2.17b). The technique is generally applied at

RF, IF or baseband.

2.5.5.1 RF Predistortion

Synthesizing an exact complement of an RF power amplifier at radio frequencies can be

difficult. Usually an attempt is made to reduce the third order intermodulation products

only by use of a cubic type canceller[24-28]. A block diagram of a cuber predistorter is

Figure 2.18: (a) Combination of complementary predistortion and amplifier distortion yields (b) linear

transfer.

(b)(a)

Predistortion



29Chapter 2

shown in figure 2.18.

A cubic law device (x3 in the diagram) is used to generate third order distortion based on

the magnitude of the RF input. This (pre)distortion is then added to a delayed version of

the input and applied to the non-linear RF power amplifier. The amplitude and phase shift

of the third order distortion is manipulated such that the third order distortion generated

within the amplifier is cancelled. Making the adjustment adaptive can allow this

technique to track drifts in the amplifier characteristics[24-25].

The cubic law device can be realized in a number of ways. Usually diodes are used with

either a quadrature hybrid[25-26] or a circulator[27]. Alternatively a compressed

amplifier[28] can be used.

The scheme is only suitable for weakly non-linear amplifiers since only third order

distortion products are cancelled. Implementation at RF does however allow wide-band

operation. Nojima[25] for example reported more than 20dB improvement in

intermodulation distortion over a 25MHz bandwidth at 800MHz. Occasionally the

predistortion is applied at an Intermediate Frequency (IF) to enable easier implementation

for higher frequencies[29]. The potential disadvantage with IF techniques is the possible

degradation introduced by the up conversion process.

There are other RF predistortion techniques and some will only be mentioned here. These

x
3

Delay

Atten. Phase

PA

RFin RFout

Figure 2.19: Cubic canceller predistortion system.
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include: techniques aimed at suppressing AM/PM distortion using varactor diodes or

ferrimagnetic materials[30]; and techniques which attempt to synthesize RF predistortion

using circuits such as: RF driver stages whose distortion complements that of the main

power amplifier; or transistor circuits which have non-linear elements in various feedback

arrangements[31]. A more elaborate polynomial analog predistorter using mixers has also

been proposed[32].

2.5.5.2 Baseband Predistortion Using DSP

Digital Signal Processing (DSP) offers the possibility of synthesizing complex

predistortion characteristics. Because of speed limitations the predistortion must be

applied at baseband and subsequently up converted. The linearization bandwidth is hence

generally limited due to DSP processing. A generic DSP predistorter is shown in figure

2.19.

The forward path takes the digitized modulation signal and predistorts it in a

complimentary manner to the amplifier distortion. The digital output is then converted

into an analog signal for upconvertion and subsequent amplification by the non-linear RF

amplifier. The upconversion process is typically performed with a quadrature modulator,

however IF upconversion is possible. Optional adaptation feedback can be used to track

out drifts in the amplifier and to also find the predistortion needed to achieve linear

amplification. 

D/A

A/D

Predistort PA

Up-Convert

Down-Convert

Figure 2.20: Generic block diagram representation of an adaptive baseband DSP predistortion linearizer.

Digital

Input

RFout
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The actual predistortion can be accomplished using polynomial representation, or with

input output look up tables. Polynomial representation is the baseband equivalent[33] of

the cuber predistorter described above. Since DSP offers more computational capabilities,

higher order polynomials are possible resulting in a better representation of the desired

predistortion. The main disadvantage with polynomial representation is the relative

difficulty in having stable and effective adaptation algorithms.

The look up table predistorter is more popular for DSP implementation. The predistortion

tables can take different forms. The most straightforward is the polar complex gain form

shown in figure 2.20(a). This predistorter consists of two one dimensional tables. The

amplitude map predistorts for the amplifier’s AM/AM distortion and the phase map

predistorts for the AM/PM distortion. The address of both maps is driven by the

amplitude of the input signal. Faulkner[34] presented an adaptive polar predistorter using

this technique. Interpolation between points in the tables allowed the use of a relatively

small table size with only 64 entries. The computational effort necessary for the polar to

rectangular conversion was found to be a potential problem. The overall computational

load was quite high and with an ordinary DSP (TMS320C25) intermodulation distortion

was reduced by 30dB over a limited 2kHz bandwidth. Another polar mapping predistorter

proposed the use of cubic spline interpolation[35].

Cartesian complex gain tables avoid polar conversions and require a lower DSP

processing load (figure 2.20b). Cavers[39] proposed the use of cartesian tables addressed

by the signal power. Complex multiplication by the input signal is then used to apply the

Figure 2.21: Three examples of table based predistortion (a) Polar complex gain, (b) Cartesian complex

gain, and (c) Full cartesian mapping.
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predistortion. The predistorter achieved a fast convergence time (4ms) due to the low

memory requirements and a root finding secant adaptation algorithm. 

Systems using complex gain tables (either cartesian or polar) cannot overcome quadrature

modulation errors in the forward chain. To solve this problem Faulkner[36] proposed a

circuit termed CRISIS (CRoss-coupled Intra-Symbol Interference Suppression). This

circuit is capable of removing linear errors in both the up and down conversion process

but requires a series of test signals.

Sundström[40-41] also proposed a complex gain based predistorter with a simpler and

more robust adaptation algorithm, for which a chip was developed. The chip integrated

the most important sections of the predistorter's functions including a CRISIS circuit. The

application specific DSP significantly increased the modulation bandwidth (208kHz) and

reduced power consumption to around 10% (100mW) of a standard DSP predistorter. The

chip makes predistortion potentially viable for portable wireless applications.

Full cartesian mapping is another table based technique[37-38]. This technique requires a

large amount of memory (2Mwords) in order to map an input point on the complex plane

to an output point on the complex plane (figure 2.20(c)). Consequently adaptation is very

slow (10sec @ 16kBits/sec) since there is a large region to be accessed repetitively before

convergence occurs. Nagata’s system[37] was able to achieve −60dB ACI for 32kBit/sec,

π/4 Shift QPSK modulation. The system required an external phase adjuster to maintain

stability but there was no need to correct for quadrature upconversion errors and hence it

did not require a CRISIS circuit.

2.5.6 Feedback Linearization

Feedback was invented as a means of reducing distortion in amplifiers by Black[42].

Generic feedback is shown in figure 2.21. The input signal is amplified and filtered by the

forward path consisting of loop compensation, G(s) and amplifier gain g. Distortion

Feedback Linearization
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generated within the amplifier can be modelled as an unwanted signal shown by d. The

output is fed-back for comparison through H(s). The action of the loop is such that the

error is minimized forcing the output to track the input. This is best illustrated by

(2.7)

As the loop gain (gHG) is made large two useful properties are demonstrated in the

equation. The first is that the input begins to more accurately track the feedback signal

regardless of the forward gain. The overall gain of the system in fact begins to primarily

depend on 1/H. It is well known that making H dependent on passive stable components

such as resistors will stabilize the overall gain of circuits significantly. 

The second important property of feedback is demonstrated in the second term in the

equation. As gain rises this term tends to zero and hence distortion is minimized. The

amount of distortion reduction is given by 1 + gGH or the loop gain but if this is made too

large instability can occur (primarily due to the fundamental limitation of delay in the

systems described in this thesis).

2.5.6.1 RF Feedback

RF feedback[43-45] is the most direct application of feedback. For stability to be

maintained, the bandwidth of the loop compensation is usually a very small fraction of the

centre operating frequency. The loop compensation at radio frequencies therefore requires

very high Quality factor filters such as cavity filters.
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Figure 2.22: Generic block diagram representation of feedback linearization principle
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If suitable filters are available, the technique is capable of reasonable performance.

Rosen[43] reported a 13dB improvement in third order intermodulation distortion over a

1MHz bandwidth at 3GHz. Ezzeddine[44] was able to get 8dB improvement over 3MHz

bandwidth at 4GHz.

Both of the previous references cited used passive feedback networks. Ballesteros[45]

proposed an active feedback network incorporating an auxiliary amplifier whose gain

exhibited a peak at the compression point of the main amplifier. This enabled the loop

gain to be maintained right up into compression. Another benefit with the scheme was

that the forward gain of the amplifier was not reduced (as is the case with passive

feedback). The active feedback system described was able to increase the output power

for an ACI level of −40dB by 3.2dB in 130MHz band centred at 1GHz.

Another form of feedback linearization was presented by Hu[46]. Hu demonstrated that

for a two-tone test with frequencies f1 and f2, low frequency feedback centred at f2 − f1

could yield a reduction in third order intermodulation distortion. This would be equivalent

to placing feedback around the 2 fm component shown in figure 2.9. An improvement of

12dB was demonstrated at 10GHz using a tone separation of 10MHz. An analytical

explanation using Volterra Series was also given.

2.5.6.2 IF Feedback

IF (Intermediate Frequency) feedback[47] is similar to RF feedback except the loop

compensation is performed at a somewhat lower frequency. This relaxes the sharpness of

the filter required and enables the use of lower Quality factor filters. Higher loop gains are

hence possible with narrow bandwidths.

The technique presented by Voyce[47] is shown in figure 2.22. The potential problem

with IF feedback is the up and down conversion process. The system shown in the figure

has the up and down conversion process within the feedback loop therefore reducing

errors introduced by these components. The actual comparison is done at RF (not IF) and

IF Feedback
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so the system can be thought as an RF feedback system with IF compensation. Voyce’s

system was able to reduce intermodulation distortion by 12dB over a 1MHz bandwidth

centred at 450MHz. The IF frequency used was 20MHz.

2.5.6.3 EER and Baseband Polar Feedback

EER (Envelope Elimination and Restoration) was developed by Kahn[48-49] as a means

of efficiently transmitting Single-Side Band (SSB) modulation (a linear modulation).

The technique is shown in figure 2.23. The input is separated into two parts. A hard

limiter removes the amplitude modulation of the signal and provides the phase

modulation only. This constant envelope signal is then efficiently amplified by a non-

linear power amplifier. 

The amplitude modulation of the signal is obtained by envelope detection and applied at

the power supply of the power amplifier by high level modulation. This imparts the

amplitude modulation upon the phase modulated signal and reconstitutes the original

Figure 2.23: IF feedback linearization after Voyce[47].
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signal.

Kahn made improvements to the basic scheme such a the use of a phase equalizer in the

limiter path to equalize the time delay between the phase modulation and amplitude

modulation.

Kahn's system was improved by the introduction of feedback.   This feedback is termed

polar feedback since EER essentially utilizes an amplitude and phase representation of the

signal. Petrovic[50] introduced the polar loop transmitter shown in figure 2.24. The

operation of the transmitter is similar to EER except feedback has been applied to correct

for errors in the amplitude and phase modulation process, and so the spectral purity on the

output is improved. Another major difference is the use of a VCO to generate the

necessary phase modulated drive for the power amplifier. By the nature of stable phase

feedback, the frequency of this VCO must match that of the down converted output phase

much like a Phase-Locked-Loop (PLL).

Petrovic reported some impressive results such as a spurious free output below 50dB for a

two-tone test for amplifiers operating at 100MHz and 13W peak output with an efficiency

of 55%. It is likely that the efficiency quoted does not consider the power consumed in the

high level modulator.

Resolving the modulation in polar form does however have the problem of spectral

Figure 2.25: Polar feedback loop after Petrovic[50].
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expansion. This means the spectral components of the amplitude modulation and phase

modulation signals alone can be wider than the spectrum of the final output. Both the

amplitude loop and phase loop must then be able to accommodate a wider bandwidth[51].

The finite bandwidth of both feedback loops therefore places a limit on how well

intermodulation distortion is suppressed regardless of how much loop gain is employed.

Other limiting factors are discussed and analysed in [51] and include: leakage to the

output of the phase modulated carrier; timing error between the related amplitude and

phase modulation functions; nonlinearity of the high level amplitude modulator; and

nonlinearity of the polar resolver (i.e non-linearity in the amplitude detector and phase

detector)

Efficient application of the high level amplitude modulation is a problem with the polar

loop transmitter. Koch[52] suggested the use of a PWM (Pulse Width Modulated)

switched-mode power supply to drive the power supply. The problem is however, the

switching frequency must be made high in order to accurately track the amplitude

modulation which due to bandwidth expansion has wide bandwidth. With a switching

frequency of 400kHz and a measured efficiency of 90% for the switch mode, Koch

reported a total efficiency of 50% for a two-tone test operating at a carrier frequency of

835MHz and an average output power of 5W. The intermodulation distortion products

were 30dB down. Only the amplitude was fed back and so it is likely that further

improvements in the intermodulation performance could be achieved using phase

feedback also. 

Chiba[53] presented an alternative amplitude only polar feedback scheme. The amplitude

feedback was applied at a low level via a voltage controlled amplifier (VCA). This is

advantageous since the switch mode power supply driver no longer has to handle the dual

task of efficient high level modulation and applying this amplitude modulation accurately

enough to provide a high degree of intermodulation distortion suppression. The switch

mode power supply modulator was driven open loop. Chiba reported a total efficiency of

40% with intermodulation distortion being 50dB down for a system operating at 1.5GHz.

EER & Baseband Polar Feedback
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2.6 CARTESIAN FEEDBACK LINEARIZATION SYSTEMS

Cartesian feedback linearization which uses negative feedback of in-phase and quadrature

baseband modulation, is another narrow band modulation feedback scheme. It has been

given prominence here since the majority of this thesis discusses various aspects of

cartesian feedback.

Petrovic[54] first proposed what is commonly referred to as cartesian feedback. The basic

principle of cartesian feedback is shown in figure 2.26. The baseband inputs to the system

in I and Q format, form the reference signals to the loop. The forward path of the system

consists of the main control loop gain and compensation filters, a synchronous I-Q

modulator, a non-linear but efficient RF power amplifier, and the antenna acting as an

output load.

The feedback path obtains a portion of the transmitter output via an RF coupler, the signal

from which is then synchronously demodulated. The resultant demodulated I-Q baseband
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Figure 2.26: Cartesian feedback transmitter.
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signals are used as the primary feedback signals and are subtracted from the input. The

resultant error signal becomes the necessary pre-distorted drive for the non-linear

amplifier. Since the output is driven to follow the input, linearization is achieved with the

loop being able to automatically compensate for drifts in amplifier non-linearities due to

temperature and power supply variations.

The loop control characteristics are established by the gain and the compensation filters.

The level of intermodulation distortion reduction is essentially governed by the loop gain,

and the compensation allows the stability and behaviour of the system to be controlled.

Synchronism between the modulator and demodulator is obtained by splitting a common

RF carrier. Due to RF path differences in the forward and feedback paths, a phase adjuster

(δr) is necessary to maintain the correct relationship between the input signals and

feedback signals. Incorrect setting of the adjuster results in cross-coupling between the I

and Q components, and at the extreme can invert the feedback. Common with other

closed feedback loops, this technique is only conditionally stable and the setting of the

adjuster with the aim of maintaining stability is one of the key problems. Amplifier non-

linearities also effect stability as does excessive baseband phase shift. The setting of the

adjuster and how the RF amplifier non-linearities influence this setting is discussed in

chapter 4. Practical results of phase adjusting strategies are given in the next section.

As with other feedback schemes the ultimate performance of the loop is limited by the

quality of feedback. Errors and distortion in the feedback gathering circuits, especially in

the demodulator will create errors and distortion on the output regardless of the amount of

loop gain employed. 

Still, using fairly simple circuitry cartesian feedback can deliver good results and hence

warrants the further investigation given in this thesis. Petrovic[54] for example was able

to achieve intermodulation products 70dB below the main signal for a two-tone test with

an amplifier operating at 2.5MHz for 1W PEP (Peak Envelope Power). In [55] Petrovic

Cartesian Feedback Linearization
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reports intermodulation products 70dB below 100W PEP for a two-tone test. These

results were obtained for a HF band (1.6-30MHz) transmitter. This transmitter

incorporated an IF stage to enable it to operate over the many octaves which constitute the

HF band. Petrovic[56] also achieved similar results for a VHF transmitter.

There are a number of other examples operating at higher frequencies. Johansson[57-58]

presented detailed measured results on two transmitters operating at 900MHz. For the

narrowband transmitter described, −60dB out-of-band emissions was achieved with 38%

power added efficiency for a two-tone test (20kHz between tones). For the wideband

transmitter Johansson reported a 20dB improvement in intermodulation distortion with

40% power added efficiency for a two-tone test (1 MHz between tones). This particular

result demonstrates the feasibility of cartesian feedback to handle new forms of

modulations like CDMA and wideband 16QAM.

The only limitation to the operation frequency of cartesian feedback is finding suitable

components. Wilkinson[59] reported the highest frequency (1.7GHz) of operation to date.

Out-of-band emission was 38dB below a PEP of 400mW for a two-tone test (4.2kHz

between tones).

2.6.1 Automatically Supervised Cartesian Feedback

A well designed cartesian feedback loop is a good performer provided it is stable.

Petrovic[55] first implied the use of an additional controller to set the phase adjuster in

order to maintain stability. Brown[60] presented this controller as a means of maintaining

stability in a HF SSB transmitter. Brown’s adjuster was able to operate with the cartesian

loop open or closed by measuring the phase between the feedback and the signals prior to

upconversion (i.e the predistorted drive). A SSB tone (2.5kHz) was used to adjust the

transmitter in open loop. After the phase error was sufficiently reduced (4°), the loop was

closed and continuous phase monitoring was enabled whilst transmitting SSB voice

modulation. If the phase error deviated by more than a prescribed level (25°) during

Automatically Supervised Cartesian Feedback
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transmission, the voice modulation was interrupted and the tone re-inserted for the

adjustment process to be re-preformed. Brown found that the phase setting did not deviate

significantly as a function of time and hence proposed the possibility of storing the phase

adjustments as a function of channel frequency in memory.

The phase detection was achieved with an XOR (Exclusive OR) gate connected between

one of the demodulated feedback signals and one upconversion signal (thus limiting the

phase controller to SSB signals). Two low-pass filters were used following the phase

detector. The filter with the lower cutoff (5Hz) was used to monitor the transmitter whilst

transmitting SSB voice modulation. The filter with the higher cutoff (1.9kHz) was used in

the setting operation with the transmitter in open loop. The use of a low cutoff filter for

monitoring and a higher cutoff filter for setting enabled the whole adjustment process to

be performed in 40ms.

Brown’s adjuster has the disadvantage that transmission is interrupted if the transmitter’s

phase error rises unacceptably. Periodic open loop phase adjustment, in a spare TDMA

(Time Domain Multiple Access) time slot for example, is one way this problem could be

overcome. Since one SSB tone is used in Brown’s adjustment process no intermodulation

distortion is generated during the adjusting procedure time slot.

Ohishi[61] and Kubo[62] presented another automatic phase adjuster. This adjuster was

operated during TDMA ramp ups. A measurement of the demodulated phase was made

during this time to provide an appropriate adjustment. Once the correct phase is set (just

before the end of the ramp up period), the loop is closed and the gain gradually increased.

This process of gradually increasing gain was termed soft-landing. Unlike Brown’s phase

adjuster, this adjuster used both demodulated lines for phase measurement allowing it to

operate with any modulation. The phase was measured using a technique known as direct

phase quantization.

The feedback gathering circuits pose other limitations on the ultimate performance of the

Automatically Supervised Cartesian Feedback
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cartesian feedback system. The demodulator used to get a replica of the transmitted

output, introduces DC offsets and other linear errors like gain and phase imbalance. The

demodulator mixers also introduce non-linear errors such as intermodulation distortion.

All of these undesirable errors appear at the transmitter output and should be minimized.

Bateman[63] proposed a circuit for the reduction of DC offsets using two analog sample

and holds (one for the I channel and one for the Q). DC offset reduction was achieved by

first switching off the RF power amplifier and then forcing the predistorted drive signals

to zero by adding opposing DC voltages to the demodulated signals. After settling to the

necessary opposing voltages, the sample and holds were switched to hold. This process

took 150µs to achieve carrier leakage levels 45dB below PEP. Recalibration was required

every few minutes. A successive approximation register and D/A could be substituted for

the analog sample and hold to enable a long drift free hold condition.

Demodulation errors pose a similar problem to the quadrature modulator errors in polar

and gain mapped adaptive predistortion systems. The use of a CRISIS like circuit could

therefore be used to minimize these demodulation errors. The optimum position for this

CRISIS circuit would be at the input of the cartesian feedback loop since placing a DSP

circuit within the loop would unduly introduce delay.

In summary then, the practical application of cartesian feedback requires supervisory

circuits. These supervisor circuits can overcome: the potential limitations of stability and

the setting of the phase adjuster; and the effects of linear errors and other distortions

introduced by the feedback gathering circuits. TETRA is one standard which specifically

acknowledges the time required by the supervisory circuits to adjust the transmitter and

hence has allocated a linearization adjustment time slot[64] in the frame structure.

2.6.2 Multi-loop Cartesian Feedback

Cartesian feedback is generally suitable for narrowband applications only. Johansson[65-

Multi-loop Cartesian Feedback
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66] presented a technique which attempted to extend the bandwidth capability of cartesian

feedback. The scheme involves using several cartesian feedback modules (CFBM)

operating with center frequencies across a band (figure 2.27). The intended application

was Multi-Carrier Power Amplifiers (MCPA) which enable transmission of many user

channels through one linear power amplifier. The loops were arranged such that the

bandwidth of each loop did not overlap and hence were acting independently. This is

necessary since as the loops are placed closer together in the frequency domain, the

overall behaviour begins to approximate that of one loop of wide bandwidth, which in-

turn then becomes restricted by the fundamental limitations of delay that limits all

cartesian feedback loops.

Johansson also suggested placing cartesian feedback loops even on empty transmitter

channels in order to suppress intermodulation distortion falling in these channels.

Johansson placed four loops (1 MHz apart) in an experimental systems operating at

880MHz and achieved up to 30dB suppression in intermodulation distortion. Each of the

loops was carrying a two-tone test with 20-26kHz separation between the tones.

2.6.3 Dynamically Biased Cartesian Feedback

RF power amplifier characteristics are strongly dependent on power and bias supplies.

Smithers[67] presented a scheme of modifying the power supply so that gain, phase shift

and input impedance were simultaneously linearized. This simultaneously linearized

Figure 2.27: MCPA linearization with multi-loop cartesian feedback after Johansson[65-66].
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point was found to be just before the onset of amplifier saturation (as a result of extensive

amplifier characterization). Amplitude only polar feedback (i.e envelope feedback) was

proposed as the means by which the optimum point was maintained. A further

improvement was made to the scheme by measuring the amount and sign of the input

reflection coefficient (with a directional coupler and a mixer) and using this information

to control the feedback (figure 2.28). Smithers demonstrated constant input impedance

could be maintained over the full power range with this technique. Smithers also achieved

−40dB spurious output for a two-tone test and was able to maintain excellent efficiency

(around 70%) for much of the power range.

The work presented in this thesis has some similarity to the work of Smithers.

Comprehensive amplifier data was taken as described in the next chapter. From this data

the optimum power and bias supply for best power added efficiency was determined and

used in a “Dynamically Biased Cartesian Feedback” loop (figure 2.29). The dynamic bias

circuits shown in the dashed box force the amplifier to operate in the most efficient way

for the desired output envelope. The cartesian feedback then finely adjusts the RF

amplifier input until the exact desired output is maintained. This is an important and

distinct difference to Smithers’ work since the linearization process is separate from the

dynamic bias process. The separation of the two functions enables the application of the

dynamic bias signals, particularly the power supply signal, to be relaxed. The switch-

mode power supply therefore need not be accurate and so the switching frequency does

Figure 2.28: Dynamically biased polar loop transmitter after Smithers [67].
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not have to be unduly high. Dynamically biased cartesian feedback is one of the major

contributions of this thesis is discussed in more detail in chapter 5.

2.7 CONCLUSION

The pressures of limited spectrum has driven the adoption of linear modulation schemes.

Efficient and linear power amplification is hence an important consideration for portable

wireless applications.

This need for efficient linearized amplifiers has prompted the re-investigation and interest

of various linearization schemes. Feedforward, vector summation, predistortion and

feedback are linearization strategies which begin with a non-linear yet efficient power

amplifier and linearize it to an acceptable level of ACI.

Of the linearization methods discussed in this chapter, CALLUM, adaptive predistortion

Figure 2.29: Dynamically biased cartesian feedback transmitter as proposed in this thesis (see chapter 5

for more details).
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using DSP and cartesian feedback are the most promising techniques suitable for

application in portable wireless applications. Of these, cartesian feedback was selected for

study here because it had the potential for excellent performance with relatively simple

circuitry suitable for both hand-held implementation and also for single channel linear

basestation applications. The problems of stability offered a challenge as did the scope for

improving its efficiency. These issues are discussed in more detail in chapters 3, 4 and 5.

The next chapter details cartesian feedback linearization.

Conclusion
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3 CARTESIAN FEEDBACK 

LINEARIZATION

The preceding chapter primarily examined contributions to the field of RF amplifier

linearization made by other researchers. The remainder of the thesis is essentially

concerned with contributions made by the author in cartesian feedback.

Since the basic premise of most linearization schemes is to start with an efficient yet non-

linear RF power amplifier and then linearize it, it is appropriate to first examine the

amplifier and the techniques used to characterize it. This is discussed in section 3.1. The

amplifier is also the most dominant component in the cartesian feedback loop. Two

amplifiers were used in this research, one intended for low power applications and the

other for basestation applications.

Many behavioural properties of feedback systems can be predicted from the open loop

frequency response. How the frequency response is modelled and how the open loop gain

improves linearity is discussed in section 3.2.

Simulations were performed to demonstrate how intermodulation distortion generated by

the amplifier is reduced by the application of feedback. It is shown in section 3.3 that the

frequency response essentially determines the degree of improvement and the bandwidth

over which it can be obtained.
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Section 3.4 presents measured results from the implemented hardware. The results

demonstrate the viability of cartesian feedback as a means of achieving linear

amplification coupled with good efficiency. DC offsets and instability caused by poor

adjustment of the RF phase adjuster are two prominent practical problems with the

experimental hardware (section 3.5).

3.1 MEASUREMENT OF RF POWER AMPLIFIERS

The most dominant component in a cartesian feedback system is the RF power amplifier

(PA). Measurement of this component is therefore important in deriving a suitable model

for further analysis and simulation.

The nonlinearites of an RF PA are amplitude dependent. It is necessary therefore to know

how the amplifier output and phase characteristics vary with input drive level.

The first attempt at RF PA characterization consisted of a vector network analyzer

(HP8753C) connected via GPIB to a computer (figure 3.1). The network analyzer was

used to generate a power swept input signal to the PA. The RF phase and gain of the PA

was then measured as a function of input power. The computer was used to store and

process the data.

It is straightforward to accurately calibrate the network analyzer for relative

measurements (i.e for measurement of RF phase and gain at a fixed power level).

However, the desired RF amplifier input output characteristics require absolute as well as

relative accuracy. The power sweep delivered by the network analyzer should therefore

be accurate and linear which is not the case. The manufacturer of the HP8753C

recommends the use of a power meter to measure the power at the measurement port and

set power correction values within the network analyzer. The measured nonlinearity in

Measurement of RF Power Amplifiers



49Chapter 3

the power sweep is shown in figure 3.2 which gives the measured output power as a

function of displayed desired output power at a carrier frequency of 900MHz (as

measured by a Rhode & Schwartz NRVD power meter and a Z2 linearized zero-bias-

Schottky diode measurement head at the output of the RF coupler).

At low powers (from −10dBm to −8dBm) the output power delivered by the 8753C

remains flat. Then at about −7dBm the power begins to ramp up reasonably linearly until

higher powers are reached. The power delivered between 22dBm and 25dBm is highly

non-linear. At 24.7dBm the network analyzer gives a power unlevelled indication which

PA

RF 
OUT A BR

HP8753C

GPIB

Figure 3.1: Early RF power amplifier test rig. RF connections via semirigid cable and SMA connectors.

Attenuator

PC
Network Analyzer

RF Coupler

−10 −5 0 5 10 15 20 25
−10

−5

0

5

10

15

20

25

Displayed desired HP8753C power (dBm)

P
o

w
e

r 
a

s
 m

e
a

s
u

re
d

 a
t 

S
M

A
 o

u
tp

u
t 

p
o

rt
 (

d
B

m
)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Effective displayed desired voltage (rms volts)

E
ff
e
c
ti
v
e
 v

o
lt
a
g
e
 a

s
 m

e
a
s
u
re

d
 a

t 
S

M
A

 o
u
tp

u
t 
p
o
rt

 (
rm

s
 v

o
lt
s
)

Figure 3.2: HP8753C Network Analyzer Power Sweep Non-linearity at a carrier frequency of 900MHz (a)

dB scale, (b) Effective rms voltage into 50 ohms.
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causes the output power to suddenly drop back to 24dBm. The high level power non-

linearities are more obvious when the power is plotted in terms of equivalent rms voltage

into 50Ω (figure 3.2(b)).

If left unchecked, such power level non-linearities will modify the measured

characteristics of the PA.

The power levelling scheme actually adopted is shown in figure 3.3. The network

analyzer is still used to provide the power sweep and measure the RF phase and gain. The

addition of a power meter enables improved measurement of the PA’s output power.

Since a calibrated network analyzer can rather accurately measure the gain of the PA, the

input power provided by the network analyzer can also be rather accurately determined

(i.e Pin(dBm) = Pout(dBm) − RF Gain(dB)). The absolute accuracy of the input and

output power is hence no longer determined by the non-linear power sweep of the

HP8753C. The components separating the output of the PA from the power meter must

also be calibrated.

The other additional components shown in figure 3.3 are a GPIB programmable ammeter

Figure 3.3: Improved RF power amplifier test rig. RF connections via semirigid cable and SMA

connectors.
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and a variable power supply. The ammeter is used to measure the current consumption

and hence power consumption and efficiency of the PA. The variable power supply,

which provides both collector bias and base bias is important for characterizing the

amplifier under different VCC and VBE conditions. Chapter 5 discusses how bias

optimization conditions can be used to improve the efficiency of a conventional cartesian

feedback system.

3.1.1 Low Power Amplifier

A typical bipolar transistor (Philips BLU98) RF amplifier was constructed as described in

the manufacturers data sheet (figure 3.4). The transfer characteristics using both test rigs

are shown in figure 3.5. The true responses are shown in solid lines. The dashed lines

indicate the erroneous responses obtained using the early test rig with the amplifier

characteristics dipping at saturation. Modelling such a response in a cartesian feedback

loop simulation program will change the sign of the gain and erroneously cause

oscillation.

As was mentioned in chapter 2, the transfer characteristic highlights two main concerns

with this type of amplifier, namely - amplitude response non-linearity and sudden phase

changes (figure 3.5(a) & 3.5(b)). These effects occur most prominently at transistor turn-

on (i.e. when vbe 0.7V). Further measurements with this amplifier were taken with

different bias conditions. These results are presented in chapter 5.

Figure 3.4: Low power BTJ RF power amplifier using BLU98.
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It is evident from figure 3.5(c) that very little collector current flows when the input is low

and the amplifier is thus off. With virtually no collector current flowing and the input

effectively leaking through to the output, the collector efficiency will be high (figure

3.5(d)). In contrast the power added efficiency acting like an attenuator.

When the input overcomes the vbe drop of the BJT, the transistor turns on and collector
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Figure 3.5: Low Power BJT RF Amplifier input-output transfer characteristics at 900MHz with vcc = 13V

and vbe = 0V. Solid traces indicate true responses and dashed traces indicate responses obtained with early

test rig. (a) amplitude response, (b) phase response, (c) current consumption and (d) collector and power

added efficiency. 
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current begins to flow. The transistor begins to provide gain giving more realistic values

of efficiency.

It should be noted that the measurement technique used here takes the static amplifier

characteristics. That is, the amplifier characteristics are measured one point at a time

using a CW (continuous wave) signal. Under operational conditions, the characteristics

would be traversed at a modulation rate. Any memory in the amplifier caused by thermal

effects and bias circuits [7] are therefore not measured by this characterization scheme.

And since the linearization bandwidths considered in this work are narrowband (less than

20kHz), it has been assumed that the RF amplifier is comparatively wideband and

therefore frequency induced variations in the amplifier characteristics have been

neglected[6] - although delay is used in other parts of this thesis to represent some of the

bandwidth restriction the amplifier does actually possess.

3.1.1.1 Tuning for Improved Efficiency

A dynamic efficiency meter was programmed using the test rig of figure 3.3. The

dynamic efficiency meter displayed both collector (ηcoll) and power added efficiency

(ηadd) on the screen of the computer in real time. The screen of the network analyzer was

set to display the input reflection coefficient on a smith chart. With such a set up it was

possible to optimally tune the collector circuit of the amplifier for best collector efficiency

and then adjust the base circuit for best input match and power added efficiency.

3.1.2 High Power Amplifier

A 50 Watt PA (Ericsson TXPA45) intended for TDMA basestation applications was also

used extensively in this research. The characteristics were obtained using essentially the

same test rig as shown in figure 3.3. The only modifications from the low power case was

the substitution of higher rated components, such as: an attenuator capable of dissipating

50W, and replacing the ammeter with a combination of low resistance shunt and

voltmeter.

High Power Amplifier
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The amplifier responses as presented in figure 3.6 show how some quiescent bias can

eliminate much of the turn-on region distortion at the expense of some loss in efficiency

for amplifiers using BJT’s. In general TDMA applications demand some degree of

linearity to avoid ramp-up distortion.
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Figure 3.6: High Power TXPA45 RF Amplifier input-output transfer characteristics at 950MHz with vcc =

24V. (a) amplitude response, (b) phase response, (c) amplifier current with 0.581A quiescent current for

entire amplifier, (d) collector and power added efficiency (which are effectively equivalent in this case since

the gain of the amplifier is high (40dB)).
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3.2 FREQUENCY RESPONSE

After the PA characteristics, the next most important cartesian feedback parameter is the

open loop frequency response of the system. The open loop frequency response governs

the degree and bandwidth of the distortion reduction [42]. The higher the loop gain the

greater the reduction. Traditional frequency response techniques can be applied to the

cartesian feedback loop and offer a useful simplified starting point for further analysis.

An equation to illustrate this for a cartesian feedback loop (as obtained from figure 3.7)

can be written with all variables being complex as,

(3.1)

where Y(t) represents the transmitter output and X(t) represents the input signal. The

open-loop gain GA, is comprised of all the forward gains in the cartesian feedback system

i.e (as shown in figure 3.7) the baseband amplifiers and filters (G(s)), the modulator,

driver, and RF power amplifier (ge jδ), and the transmission delay (e jωτ). dA(t) models

the distortion introduced by all of these forward gain components. The feedback transfer

function Hf which is comprised of the RF directional coupler and demodulator, also has

an associated distortion component df (t). The expression highlights how dA(t) which

includes the RF amplifier non-linearity, is approximately reduced by the amount of loop

Y t( )
GAX t( )

1 GAHf+
----------------------

dA t( )

1 GAHf+
----------------------

df t( )GAHf

1 GAHf+
-------------------------,–+=

GA

Hf

dA(t)

df (t)

X(t) Y(t)

Figure 3.7: Complex baseband representation of cartesian feedback loop modelling gains and distortion.

Bold lines signify complex quantities i.e. two lines. Forward gain, GA, is comprised of the gain in the

baseband amplifiers and filters G(s), the gain and RF phase rotation of the RF amplifier and upconvert

chain,  ge jδ , and a delay, e jωτ.

GA G(s) g e jδ e jωτ=

Frequency Response
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gain GAHf. A loop gain of 35dB, for example, will reduce output intermodulation

products by approximately 35dB. The loop still however remains sensitive to distortion

generated in the feedback path (df (t)) which is not changed by the amount of loop gain.

This highlights the need for the feedback gathering components to be highly linear and

also of low noise[57]. All of the distortion quantities except that produced by the

amplifier are generally small compared to the output signal and consist of terms which are

either constant (such as noise power level, DC offset or carrier leak) or are signal

dependent such as the amplifier intermodulation distortion. This section only considers

the effects of amplifier distortion which can be reduced by the action of the feedback loop

(i.e df (t) is assumed to be 0).

The modulation bandwidths discussed in this thesis are narrowband (10’s kHz) relative to

the RF component bandwidths in the loop (10’s MHz). It is therefore reasonable to

assume that for low frequencies the loop response will be dominated by the compensation

filter. The RF components do however have a finite bandwidth. The finite bandwidth is

caused by high frequency poles and zeros due to the filtering distributed across the RF

components. The simplest way to reproduce both the low frequency requirements and

high frequency characteristics is to model the loop compensation directly combined with

a time delay. In the early stage of this work the delay was approximated from data sheets

and RF component measurements. Later the delay was measured from the system

implemented in section 3.4.

Consider the calculated bode response shown in figure 3.8 of a system with a single pole

p at a pole location frequency given in radians per second, a DC gain term K and a time

delay τ given in seconds. The transfer function is given by

(3.2)

Assuming at this stage, the cartesian feedback components are wideband, linear and no

cross-coupling exists between the I and Q paths (i.e δ = 0 in e j δ of figure 3.7), then the

G s( )
Kp

s p+
----------- e

τs–
=

Frequency Response
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pole represents the dominant pole purposely introduced by the baseband filters. The DC

gain represents the loop gain which includes the gain of the baseband filters and the gain

of the RF stages, and the delay concisely models phase shift introduced by high frequency

poles and zeros in addition to actual transmissive delay. Using classical bode techniques it

is therefore possible to determine the gain and phase margins for different combinations

of gains and delay (table 3.1).

Figure 3.8: Bode Response of G(s) with a single pole at 20kHz, a DC gain of 85.2 (38.6dB), and a 50ns

delay. The phase margin as drawn is 60°, and the gain margin as drawn is 9.4dB.
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Table 3.1: Some example G(s) transfer functions

Pole 

Frequency,

(kHz)

Phase 

Margin,

(degrees)

Gain 

Margin,

(dB)

DC Gain

System 

Delay

(ns)

20 20 2.2 195.2 50

20 30 3.5 167.6 50

20 40 5.1 140.0 50

20 50 7.0 112.5 50

20 60 9.4 85.2 50

20 70 12.7 58.3 50

Frequency Response
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3.2.1 Gain Maximization

Since the forward loop gain reduces distortion produced in the PA, it is desirable to

maximize gain over as large a bandwidth as possible. This can be achieved by introducing

more elaborate compensation transfer functions consisting of many poles and zeros.

Figure 3.9 shows a possible alternative compensation filter response (solid lines)

compared to the single pole compensation described previously (dot-dashed lines). With

two poles and one zero, the loop gain (and hence distortion reduction) has been increased

by 10dB whilst the stability as measured by the gain and phase margins is essentially

unchanged. The main drawback is that the phase response indicates relatively less

stability over one decade.

Although increasing the compensation complexity has some benefits in terms of

increasing loop gain, single pole compensation was favoured in this research in order to

facilitate the comprehensive stability analysis given in the next chapter.

Figure 3.9: Bode response comparison of loop compensation filters G(s). The dot-dashed lines give the

bode response of the single pole (20kHz) and delay (50ns) previously described. The solid lines give the

bode response of a compensation filter with two poles at 20kHz, a zero at 65kHz, a 50ns delay and 10dB

more gain than the single pole filter. The phase margin as drawn is 59°, and the gain margin as drawn is

9 6dB
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3.3 TIME DOMAIN SIMULATIONS

With the two main parameters of the cartesian feedback system characterized it is now

possible to perform simulations to demonstrate the distortion reducing ability of cartesian

feedback. A block diagram of the simulation program is shown in figure 3.10. The

simulation was implemented using complex quantities and complex baseband

representation. 

Although the power sweep non-linearity in the measuring system was removed through

the use of a power meter (section 3.1), the resulting data is unevenly spaced (due to the

uneven output provided by the network analyzer at higher output levels). The data

obtained of the RF amplifier was therefore first spline fitted to give evenly spaced table

values. This reduced the simulation time without compromising accuracy. Linear

interpolation was used in the simulations to obtain values in between table entries.

The loop compensation filter was converted from the s-plane representation of equation

3.2 to the z-domain and then into a difference equation suitable for time domain

simulation. The 50ns delay in the system was achieved with one unit sample delay (z−1)

which gave a 20MHz sample rate.

Figure 3.10: Block diagram of cartesian feedback digital simulation. X is the complex input, Y is the

complex output, and Vp is the complex predistorted drive voltage. The bold lines describe complex

quantities. The PA model is obtained from measured characteristics. The combination of G(z) and z−1

represent the sampled version of G(s). The RF phase adjuster is implemented with a complex rotation e jδ.

z−1

PA ModelG(z) e jδ

Represents G(s) RF Phase 
Adjuster

X Y
Vp

Time Domain Simulations
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The transformation from the s-plane to the z-plane implementation for digital time

domain simulation can be performed a number of ways. Figure 3.11 shows a comparison

of the single pole transfer function (G(s) without the delay) with two alternative digital

filter implementations. 

The dashed lines give the response of an equivalent digital filter implementation using the

impulse invariant approach. This technique gives an accurate filter matching for the

impulse response at the sampling instants. The magnitude response as shown in the figure

is also well matched, however the phase response deviates significantly. This deviation

would make stability aspects of the cartesian feedback loop difficult to predict through

simulation. The impulse invariant technique of digital filter implementation yields a

single pole in the z-domain equivalent to the single pole in the s-plane.

Another well known approach to digital filter implementation is the bilinear transform.

The magnitude and phase response are well matched across most of the band. The effects

of the frequency warping are only apparent near half the sample rate. Since the sample

rate in this thesis is relatively high (20MHz) in order to simulate the sorts of delay

encountered in a typical hardware implementation, the effects of this warping are
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Figure 3.11: Comparison between analog G(s) without delay (solid lines) with digital domain versions,

G(z) (without delay). Impulse invariant generated filter (dashed lines) has accurate amplitude matching but

the phase deviates significantly. Bilinear transform generated filter (dotted lines) has accurate gain and

phase matching. (a) wideband response up to fs/2, (b) same as (a) with only last decade shown.
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negligible in the modulation bands considered (the possibility of aliasing is also reduced

with such a high sample rate). The bilinear transform method of digital filter

implementation was therefore chosen for the time domain simulations discussed in this

thesis. The bilinear transform yields a digital filter with a single pole in the z-domain

equivalent to the single pole in the s-plane, and a zero at half the sample rate.

The results from the simulations are presented in both the frequency and time domain in

the next section. Since the simulations involve a non-linearity within a feedback loop, the

simulations must be performed in the time domain. Time domain waveforms visually

demonstrate system operation. Results in the frequency domain however are more useful

in assessing the level of intermodulation distortion reduction. 

An FFT (Fast Fourier Transform) was used to obtain the frequency domain plots from the

time domain signals at the end of the time domain simulation. The use of an FFT forces

the number of samples in the simulation to be 2n. The nature of the FFT effectively takes

these samples and cascades them endlessly in a repeated continuous stream. It is therefore

important to ensure the first sample and last sample do not give a discontinuity and cause

spurious spectral components to emerge. Windowing progressively tapers the input to the

FFT such that the first and last samples are zero. Although this stops discontinuity, the

windowing function disperses the previously discrete spectral components across several

frequencies. 

It is preferable to avoid the problems with the FFT process by carefully arranging the

input signal such that it repeats an integer multiple of times within the number of samples.

For a two-tone test this is easily achieved if the modulation frequency (Hz) of the

baseband tone is

(3.3)

where cycles is a number of integer sine waves which fit within 2n samples at a sample

frequency of fs (Hz). If the simulation variables are chosen such that equation 3.3 is

fm cycles
fs

2
n

-----×=

Time Domain Simulations



62Chapter 3

satisfied, there will be no discontinuity and hence windowing will not be required to

obtain an accurate spectrum.

Aspects of simulation discussed in this section are also treated in [4].

3.3.1 Intermodulation Distortion Reduction

The first series of simulations were performed to examine the distortion reducing abilities

of cartesian feedback. The results of a simulated two-tone test for the low power amplifier

are given in figure 3.12. A complex envelope two-tone test was generated by injecting a

sine wave into the In-Phase channel of the input i.e the real part of X. The frequency

chosen, 4.8828125kHz, satisfied equation 3.3, with a sample rate of 20MHz, 8 cycles and

215 samples. The loop filter (G(s)) used was as shown in figure 3.8 and the phase adjuster

was set to −105° (negative mean of the amplifier phase response of figure 3.5(b)).

The action of the closed loop feedback attempts to minimize the error between the output

and the input. For the output to be close to the input, the amplifier must be driven with a

predistortion voltage Vp, which is complementary to the amplifier distortion. This voltage

is shown in figure 3.12(a). The real part of Vp shows how the turn-on region demands a

rapid change when passing through zero due to the low PA output in this region. If the

system was driven harder the peaks of this waveform would have saturated. AM/PM

distortion causes the RF phase of the amplifier to vary with the amplifier drive. This

variation cannot be removed by a fixed phase adjuster and hence some components are

expected in the imaginary part of Vp. The spectrum of Vp (figure 3.12(c)) shows that Vp

contains sufficient high order intermodulation products which, when applied in the

correct phase, reduce intermodulation distortion generated in the PA.

The output of the cartesian feedback system is shown in the solid traces of figure 3.12(b).

The output is clearly a good replica of the input. How good this replica really is, is shown

by the spectrum (solid line) in figure 3.12(d). The worst case intermodulation product is −

Intermodulation Distortion Reduction
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46dB below the desired signal. The dotted traces on the output plots show the

unlinearized output before the application of feedback. The difference between the open

loop case and closed loop case is 36dB. This approximately corresponds with the loop

gain of the system described by figure 3.8 at 4.88kHz.

The insert in figure 3.12(d) gives additional data obtained from the simulation. It is

important to specify the output power in any linearization exercise since the level of

Figure 3.12: Simulated cartesian feedback with low power amplifier responses for a two-tone test. (a)

Predistorted drive voltage Vp and appropriate spectrum (c), (b) Open (dotted) and closed loop output

voltage with appropriate spectrums (d). The worst case intermodulation product is −46dB below the

desired signals. 
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intermodulation distortion is highly dependent on the output power. Since the collector

current of the PA was also characterized, it was possible to simulate the efficiency of the

system before and after the application of feedback. The limited 5% reduction in collector

efficiency highlights the advantages of linearizing a non-linear yet efficient amplifier.

Simulations were also performed with the high power amplifier model. These results are

shown in figure 3.13. This time the loop gain was increased to match the frequency

response of the 50° phase margin entry of table 3.1 and the phase adjuster was set to −

Figure 3.13: Simulated cartesian feedback with high power amplifier responses for a two-tone test. (a)

Predistorted drive voltage Vp and appropriate spectrum (c), (b) Open (dotted) and closed loop output

voltage with appropriate spectrums (d). The worst case intermodulation product is −67dB below the

desired signals. The reduced distortion (compared to fig 3.12) is due to the class AB biasing of the
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118°. This amplifier is biased in class AB which reduces the original level of distortion,

leading to a lower absolute distortion after the application of feedback. This is shown by

the lack of sharp discontinuities in Vp and by the before and after traces of figures 3.12(b)

and 3.12(d). The drawback is a reduction in efficiency. Still, a collector efficiency (which

in this case is also power added efficiency due to the high gain of the amplifier) of 31% is

quite good compared to the option of Class A amplification.

3.3.1.1 Effective Amplifier Gain

Simulations were performed with varying degrees of loop gain. It was verified that a

change in the loop gain resulted in an exact change in the ability of the cartesian feedback

loop to suppress intermodulation distortion provided the output power remained constant.

The loop gain itself is comprised of the linear filter gain and the gain of the amplifier. To

predict the degree of intermodulation distortion suppression, the gain of the amplifier

must be known. For substantially non-linear amplifiers, like the low power amplifier, the

amplifier gain is difficult to assess.

A series of simulations were performed to find the contribution of amplifier’s gain in

reducing distortion. Figure 3.14 shows the results of these simulations. The solid line
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Figure 3.14: Amplifier gain versus output power (two-tone signal). Effective Amplifier Gain as measured by

the amount of distortion reduction (solid line). Dashed line is the gain as measured by harmonic

linearization i.e the fundamental output power divided by the fundamental input power.
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shows the proportion of loop gain attributed to the amplifier. This gain was determined

from

(3.4)

where EAG (Effective Amplifier Gain) is the linear gain component the amplifier

effectively contributes to the distortion reducing process, IMimp is the amount of open to

closed loop improvement in the third order intermodulation distortion product (dB)

(measured with a low frequency two-tone test well within the filter bandwidth), and K is

the gain in G(s) (equation 3.2). The solid trace shows there is approximately a 3dB

variation in the effective gain of the amplifier for the power output range shown. This

3dB variation will change the ability of the cartesian feedback loop to reduce distortion

depending of the output power level.

The dashed lines are an attempt to somehow measure the effective amplifier gain without

actually doing open and closed loop cartesian feedback simulations. The trace was

generated by measuring the gain from input to output for the fundamental component of a

two-tone test. This method of characterizing the gain of non-linear systems is referred to

as harmonic linearization[68]. The term linearization in this context refers to the process

of modelling non-linear systems as equivalent linear systems.

The harmonic linearization approach does not accurately predict the amplifier’s

contribution to cartesian loop gain. This could be due to the fact that harmonic

linearization assumes that the distortion products generated by the non-linearity are

filtered out by the loop filter. This is not the case in cartesian feedback where the

distortion is purposely designed to pass through the filter in order to try to eliminate it

from the output by the action of feedback.

EAG

10

IMimp

20
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3.3.2 Instability

Like all feedback systems cartesian feedback has the potential to become unstable.

Instability occurs whenever the feedback from the output becomes positive for whatever

reason. In the cartesian feedback loop, the loop filtering and delay can cause the feedback

to be positive at some frequency. If the gain is positive at this time (i.e negative gain

margin) instability will result.

Another potential threat to stability is the setting of the phase adjuster. Figure 3.15 shows

wideband spectra of two unstable situations for the low power amplifier with the

simulation parameters the same as those presented in figure 3.12, except for the setting of

the phase adjuster. Figure 3.15(a) has the phase adjuster set to +60° above −105° and

figure 3.15(b) has the phase adjuster offset by −70° from −105°. The spectra show how

instability causes spurious products to rise up at the least stable frequencies in the system.

For this system the region of potential instability is around 1.8MHz and approximately

corresponds to the 0dB crossing frequency of figure 3.8.

The instability results because the misadjustment of the phase adjuster provokes cross-

coupling between the In-phase and Quadrature channels. The misadjustment can also
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Figure 3.15: Wideband spectrums of simulated cartesian feedback with a two-tone test. The simulation

conditions are the same as those use to generate figure 3.12 except (a) phase adjuster set to +60° above −

105° and (b) phase adjuster offset by −70° from −105°.
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cause the I and Q channels to be interchanged or at worst both channels can be inverted. It

is logical to assume then that at intermediate stages of cross-coupling the stability will be

degraded. Additionally as the phase adjuster error increases, the noise floor will tend to

rise around the least stable frequencies before continuous oscillation occurs.

The unstable wideband spectra highlight the potential for interference to other channels

using the same band. The spectra also show that for more positive phase adjustments (e.g

+60° from −105°) the instability will cause spurious oscillation to rise on the left side of

the spectrum. For more negative phase adjustments the spurious components tend to rise

on the right side.

The previous discussion on effective amplifier gain eluded to the difficulty in assessing

non-linear components. The effective gain is only suitable for approximating the level of

intermodulation distortion reduction a loop is capable of. A more rigorous amplifier gain

model is needed to accurately determine the stability of a system. Also, how the amplifier

interacts with the phase adjuster in the cartesian feedback loop has a bearing on stability.

These issues are comprehensively examined in the next chapter.

3.4 IMPLEMENTATION

The physical realization of the cartesian feedback system described in section 2.6 is

discussed in this section. The measurements presented here are comparable to those

simulated in the previous section.

A block diagram of the experimental hardware as applied to the low power amplifier is

shown in figure 3.16. The baseband processing components consist of six operational

amplifiers (three per channel). These op-amps were responsible for amplifying the signals

from the demodulator and subtracting them from the input signals. The total voltage gain

of the three op-amps was 58dB. Since the op-amps have a finite gain bandwidth product

Implementation
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(1.4GHz in this case), phase shift will be introduced by the closed loop transfer function.

With 58dB of gain the measured phase shift through these op-amp circuits was −45° at

3.3MHz. This phase was modelled as a delay of 38ns (1/[360/45 × 3.3MHz]). The rest of

the hardware in the loop was RF and had an effective delay of around 12ns. The total

system delay was then modelled as 38ns + 12ns = 50ns. 

The upconverting quadrature modulator was constructed with passive mixers, splitters

and combiners in a stripline structure. The driver stage was a class A unit with 35dB of

gain and a 1dB compression point of around 28dBm. This was more than capable of

driving the PA stage which is described in section 3.1.1. The output from this amplifier is

applied to two output devices via an attenuator, a directional coupler, a splitter and more

attentuators. The spectrum analyzer was used to monitor the intermodulation performance

of the cartesian feedback system. The power meter was used to accurately determine the

average output power. When combined with the power supply voltage and current

consumption, this enabled the calculation of efficiency.

Accurate measurement of power at RF involves many considerations. First the power

Figure 3.16: Block diagram of experimental hardware. RF component part numbers are “Mini-Circuits”

unless otherwise indicated.
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measurement head must be accurate at the frequency and ambient temperature of

operation. This is within the control of the manufacturers. The measurement head chosen

must also be suitable for the application. A thermal sensing head was used for these

measurements since the modulation was not CW. The insertion loss between the PA

output and the measurement interface of the power sensing head was also carefully

measured and allowed for.

The output coupler was used to sense a portion of the RF output for feedback. The RF

feedback was filtered to remove any reminents of carrier harmonics (1.8GHz and

beyond). The demodulator consisting of a splitter, two high performance mixers and a

quadrature hybrid, is sensitive to the input level applied. The attenuator proceeding the

demodulator is therefore used to set the appropriate level for demodulation. If this level is

too high, then the mixers will introduce distortion which will corrupt the feedback signals,

and generate undesired distortion at the output of the transmitter which cannot be reduced

by the action of feedback. If the RF feedback signal is too low, then the demodulated

signals will be corrupted by noise and become susceptible to DC offsets. This is a classic

noise distortion trade-off. There exists an optimum level at which the demodulation

mixers can be driven. Johansson[69, 75] has examined this problem and found the

optimum level to give 75dB dynamic range for similar hardware to that described here. 

The other RF components in the experimental system provide the local oscillator signals

for both the modulator and demodulator. A line stretcher was used to adjust the relative

RF phase difference, δ, between the modulator and demodulator.

3.4.1 Measured Performance

The results from the hardware using a two-tone test are given in figure 3.17. The

conditions for these measurements are similar to those of the simulation results given in

figure 3.12. The measurements agree closely with those predicted by the simulation as is

highlighted by table 3.2. The simulations are close to the measurements (2dB & 4%) as

Measured Performance
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result of the accurate characterization process and ensuring the operation of both the

simulations and measurements at the same output power and hence over the same region

in the amplifier.

The measurements confirm that the distortion is minimized by the action the feedback

without destroying the inherent efficiency of the unlinearized PA.

The effects of applying some DC bias on the base of the transistor is shown in figures

3.18 and 3.20. The turn-on gap is avoided and hence the intermodulation performance is

Table 3.2: Two-tone test results summary for low power

amplifier

Simulation

VBE = 0V

Measured

VBE = 0V

Measured

VBE =0.7V

IMworst Open Loop −10dBc −12dBc −32dBc

IMworst Closed Loop −46dBc −48dBc −66dBc

IM improvement 36dB 36dB 34dB

ηcoll Open Loop 50.6% 54.2% 36.2%

-47.83 dB
-10.0 kHz

MKR

SPAN 100.0kHzCENTER 900.0000MHz

RL 0dBm
ATTEN 10dB VAVG 10

10dB/
MKR -47.83dB

-10.0kHz

D

X

DATA:

Pout (av.) 20dBm

Improvement 36dB

ηcoll open 54.2%

ηcoll closed 49.5%

VCC 13V

VBE 0V

Figure 3.17:  Measured two-tone test for the low power amplifier with no base bias. (a) Measured output

spectrum; Open-loop performance (dotted) and closed-loop performance (solid). The worst case

intermodulation component is approximately 48dB down from desired signals. (b) Measured time domain

waveforms in real and imaginary format. Predistorted drive (top two traces) and desired output (bottom

two traces).

(a) (b)

*RBW 300Hz VBW 300Hz SWP 3.0sec
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improved at the expense of a reduction in efficiency. The achieved efficiency of 36% is

still quite good whilst the worst case intermodulation product of −66dBc is suitable for

many linearly modulated mobile communications applications.

Figure 3.19 shows an output spectrum using the low power amplifier without base bias

and filtered π/4 QPSK modulation. Because this type of modulation avoids the

-65.83 dB
-5.0 kHz

MKR

*RBW 300Hz VBW 300Hz SWP 3.0sec

SPAN 100.0kHzCENTER 900.0000MHz

RL 0dBm
ATTEN 10dB VAVG 10

10dB/
MKR -65.83dB

-5.0kHz

D

X

DATA:

Pout (av.) 20dBm

Improvement 34dB

ηcoll open 36.2%

ηcoll closed 35.8%

VCC 13V

VBE 0.7V

Figure 3.18:  Measured two-tone test for the low power amplifier with base bias. (a) Measured output

spectrum; Open-loop performance (dotted) and closed-loop performance (solid). The worst case

intermodulation component is approximately 66dB down from desired signals. (b) Measured time domain

waveforms in real and imaginary format. Predistorted drive (top two traces) and desired output (bottom

two traces).

(a) (b)

-61.83 dB
-6.25 kHz

MKR

*RBW 100Hz VBW 100Hz SWP 11sec
SPAN 50.00kHzCENTER 900.00000MHz

RL 0dBm
ATTEN 10dB VAVG 50

10dB/
MKR -61.83dB

-6.25kHz

D

X

DATA:

Pout (av.) 20dBm

Improvement 44dB

ηcoll open 49.6%

ηcoll closed 42.3%

VCC 13V

VBE 0V

Figure 3.19:  Measured output spectrum with filtered π/4 QPSK modulation for low power amplifier

without base bias. Open-loop performance (dotted) and linearized closed-loop performance (solid). The

intermodulation distortion is approximately 62dB down from desired signals.
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troublesome zero crossing area of the BJT, distortion generated by operating through this

region is avoided. Consequently excellent intermodulation distortion performance is

possible without resorting to efficiency reducing bias. The resulting efficiency is quite

high combined with good intermodulation distortion performance.

The hardware used to obtain the measurement for the high-power amplifier was similar to

that used to obtain results with the low-power amplifier. The primary difference was the

introduction of a 30dB 50W attenuator and the use of the built-in internal coupler on the

amplifier for providing the feedback signal. The higher overall gain and power output

(50W PEP) caused stray RF signals to be more of a problem. To minimize the effects of

these stray signals metal boxes were used around all sub-blocks and semi-rigid cable was

used for interconnections. Some stray effects were still noticeable however probably due

to conducted RF along the shields of the semi-rigid cables which were physically

positioned across a relatively large bench space.

The better AM/PM distortion allowed the use of a higher loop gain and this is reflected in

the output spectrum (figure 3.20). Again, with −66dBc the linearized performance is

suitable for many mobile communications applications.

-66.00 dB
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Figure 3.20:  Measured output spectrum with a two-tone test for high power amplifier (with base bias).

Open-loop (dotted) and linearized closed-loop performance (solid). The worst case intermodulation

component approximately 66dB down from desired signals.
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The loop compensation filter has a pole frequency of 20kHz. The loop gain therefore

reduces as the frequency increase beyond this point. This diminishes the intermodulation

improvement. This effect was measured and compared with the prediction provided by

the simulation model using two-tone test signals. Figure 3.21 shows the reduction in third

order intermodulation distortion products (IM3) against baseband input frequency (the

frequency between one of the main tones and the carrier). In this figure the corner

frequency for IM3 reduction is expected to be 20kHz/3 = 6.7kHz which highlights the

need for the gain bandwidth product of the cartesian feedback loop to be sufficient for the

application. Agreement between the simulation prediction and measurements was within

1dB.

3.4.2 Asymmetrical IMD

Careful examination of figure 3.20 shows that the third order intermodulation products

either side of the center tones are asymmetrical for the high power TXPA45 amplifier.

The exact cause of this was not investigated here since exact circuit details of the

TXPA45 were not known. 

Some properties and possible causes of this effect can however be discussed. First,
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Figure 3.21:  Measured (solid) and simulated (dot-dashed) improvement in third order distortion. Corner
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asymmetrical IMD in the frequency domain could be caused by the low pass filter effects

of the interstage matching circuits and the active devices themselves. This is unlikely to

be the cause here since the 2-tone test frequency is rather low compared to the bandwidth

of the amplifier itself.

Second, asymmetrical IMD in the frequency domain is effectively hysteresis in the time

domain (i.e. a memory effect). This hysteresis could be caused by self heating in the

transistors (that in turn changes the gain characteristics of the devices) but the 2-tone test

frequency here is probably too high to have an impact when typical thermal time

constants are considered.

So the most probable cause for the asymmetry lies in another remaining possibility - the

biasing circuits. These could have time constants comparable to the 2-tone test frequency

and thus cause asymmetrical IMD for certain ranges of 2-tone test frequencies.

3.5 PRACTICAL CONSIDERATIONS

The results of the previous section make no reference to some of the practical problems

encountered. The most prominent is the maintenance of stability followed by the removal

of DC offsets. The DC offsets were removed in the hardware by fixed DC voltages to

cancel the DC generated in the demodulator.

If the design of the loop is sound (i.e reasonable gain and phase margins) then stability

depends primarily on the setting of the phase adjuster. Instability can have a disastrous

result causing interference in many adjacent channels (figure 3.15). Both these problems

have been treated with appropriate hardware in the literature [60-63]. 

An interesting observation made through the course of the measurements was the

relationship between the current consumption of the PA as a function of the phase

Practical Considerations
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adjuster setting. Figure 3.22 which shows the relationship, demonstrates the possibility of

optimizing the phase adjuster setting on the basis of minimum collector current.

The possible reason for this current minimum could be due to the fact that oscillations in

the loop take power and this in turn requires current. It will be shown in chapter 4 that

prior to continuous oscillation the noise floor tends to rise at frequencies of least stability.

This increase in noise also requires current. It is visible in this amplifier due to its class of

operation. Minimizing the current hence minimizes the noise and ultimately maximizes

stability and efficiency. Although the collector current could be used as the sole basis for

setting the phase adjuster the current could be used as additional information for control

loops described in [60-62].

Although automatic phase adjustment circuits can maintain stability, the exact onset of

instability has not yet been previously examined in the literature. In the next chapter a

stability analysis is undertaken and is one of the major contributions of this work.

3.6 CONCLUSION

An improved means of characterizing the dominant components of a cartesian feedback
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Figure 3.22:  Collector current of low power amplifier in closed-loop cartesian feedback as a function of

phase adjuster setting.
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system was demonstrated and used. Specifically, a procedure which removed network

analyzer power sweep uncertainty was shown to yield improved power amplifier

characteristics. When placed in a simulation, the model enabled simulations to be

performed which highlighted the distortion reducing ability of cartesian feedback. These

simulations also enabled the performance of cartesian feedback to be accurately

predicted. When compared to experimental results, the predicted simulated performance

was within 2dB (IMD) and 4% (for efficiency predictions).

Care was also taken with modelling the frequency dependent components in the cartesian

feedback loop. Since most of the loop components were wideband compared to the

modulation bandwidth, the system was modelled with a single pole filter and a delay. The

delay was designed to model the effects of high frequency poles and zeros along with

actual transmissive delay. Since stability is an important issue in all feedback systems, the

digital domain simulation of the frequency dependence was performed by bilinear

transformation. This enabled bode responses to be accurately simulated and could hence

be used as a platform for bode stability analysis. 

The ability for feedback systems to reduce distortion is essentially governed by how much

loop gain is present. It is advantageous then, that as high a loop gain is maintained for as

broad a bandwidth as possible whilst under the constraints of stability. Adding an

additional pole and zero to the simple one pole compensation filter showed that a 10dB

improvement in distortion reducing loop gain was feasible.

The simulations were backed up with experimental hardware and demonstrated cartesian

feedback as a means of obtaining linear amplification with good efficiency. The best

results showed that with π/4 QPSK and the low power amplifier (VBE=0V). It was also

shown that −62dBc is achievable with a collector efficiency of 42% since π/4 QPSK

modulation avoids the zero crossing region of the amplifier characteristics (unlike the

two-tone test), cartesian feedback is able to greater reduce intermodulation distortion -

going from 36dB improvement with a two-tone test to 44dB improvement with π/4 QPSK

Conclusion
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modulation.

The effect of changing base bias was also examined in the measurements. It was shown

that with a two-tone test, adding base bias could reduce closed loop intermodulation

distortion by 18dB, however efficiency was reduced by 14% as a result. A more in-depth

examination of the effects of different bias conditions is developed in chapter 5.

Through the course of the measurements a potentially useful effect was observed which

could assist in the automatic adjustment of the phase adjuster by minimizing the collector

current of the PA. This has not been previously reported in the literature.

The main practical problems encountered were DC offsets and instability. Instability in

cartesian feedback is a critical problem worthy of further investigation. The next chapter

examines the causes of instability by first using a linear approximation to the PA and then

extending the analysis into a non-linear PA model. The reasons for the increase in out-of-

band noise are also developed.

Conclusion
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4 STABILITY AND NOISE 

ANALYSIS

Experience gained from simulations and measurements undertaken in the previous

chapter highlighted the need for further investigation of cartesian feedback stability.

If the cartesian feedback loop is to be stable, it must be stable at all input signal levels.

Because the amplifier characteristics change with input level, so does the degree of

stability. The cartesian feedback system can be stable at one input level, but unstable at

another. Bursts of oscillation can occur when the envelope of a modulated signal passes

through these unstable amplitude bands.

The change in the stability margin is caused by the dynamics of the amplifier

characteristics. Intuitively it can be seen that any increase in amplifier gain produces a

corresponding reduction in loop gain margin. Additionally, any change in phase rotation

through the amplifier produces cross coupling between the I and Q channels. It will be

shown later that this also affects stability in a similar way as does reducing the phase

margin.

The stability analysis is further complicated by the amplifier gain which can be expressed

in two ways: the absolute gain  and the differential gain . In a

completely linear amplifier these two terms are the same; however in a non-linear

Vo Vi⁄ ∆ Vo ∆ Vi⁄
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amplifier significant differences exist. Figure 4.6(c) illustrates this point. At the highest

power shown the differential gain has fallen to −10dB whereas the absolute gain is still

high at 5dB. On the other hand when the transistor turns on, the differential gain is

considerably larger than the absolute gain. Both gain terms are required for an accurate

study of cartesian feedback behaviour. In addition to this, it will be demonstrated that the

rate of change of amplifier phase rotation with applied input level and hence output level

can also effect stability.

The aim of this chapter is to analyze cartesian feedback stability at all amplifier power

levels and produce a methodology for designing these systems in a robust manner. A two

stage process is used to develop the stability analysis of cartesian feedback. First a

suitable amplifier model is found, and then this model is placed in the cartesian feedback

loop to give the stability behaviour.

Two amplifier models were used. Both are piecewise representations of a series of

operating points on the amplifier characteristics. These characteristics were obtained and

presented in the previous chapter. It has also been assumed in this analysis that the

amplifier is wide-band compared to the loop filtering and modulation and so frequency

dependence of the RF amplifier parameters has been neglected. Although the amplifier is

relatively wideband its bandwidth is however finite. The finite bandwidth introduces

additional phase shift which has been modelled as extra delay. The modulator and

demodulator were assumed to be ideal.

The first of the amplifier models is suitable for amplifiers with weak non-linearities. This

model uses as series of complex gains (i.e. a gain magnitude and a phase) in a piecewise

representation of the amplifier (section 4.1.1). The high power amplifier (TXPA45) was

modelled in this part of the analysis, since it was the more linear of the two amplifiers.

The second model is more elaborate, which in addition to complex gain, also has a

parameter giving a measure of non-linearity at each operating point (section 4.1.2). The

more non-linear low power amplifier (BLU98) was modelled for this part of the analysis.

Stability and Noise Analysis
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A Multiple Input Multiple Output (MIMO) model is first developed for amplifiers with

weak non-linearities (section 4.2). This model was then used to give a graphical stability

analysis suitable for these amplifiers (section 4.3). It will be shown that results from this

part of the analysis give a worst case stability bound when applied to amplifiers with

larger non-linearities.

In section 4.4, the MIMO model is extended for use with the more non-linear amplifier

model. First a series of perturbation simulations is presented to demonstrate the complex

gain varies as a function of applied perturbation and is hence inadequate as the only

means to model complex non-linear behaviour. Then in section 4.4.2 the non-linear

model is reduced to its canonical form using linear algebra. Once in this reduced form it is

then applied to a MIMO representation similar to that presented for the linear case.

Section 4.6 presents a graphical stability analysis that gives an exact solution for

amplifiers with both weak and strong non-linearities.

A series of time domain simulations is given in section 4.7 to the perturbation behaviour

of non-linear RF power amplifiers when placed in the cartesian feedback loop, and further

demonstrates why the setting of the phase adjuster tends to alter the distribution of out-of-

band emissions of cartesian feedback transmitters.

Finally, section 4.8 deals with noise and presents a simple technique for minimizing the

out-of-band noise components.

4.0.1 Summary of stability analysis approach

The full treatment of stability in cartesian feedback is presented in this chapter and some

mathematics is involved. This section will summarize the chapter in a non-mathematical

sense.

Summary of Stability Analysis Approach
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Systems with feedback become unstable when differential perturbations, usually caused

by noise (small amplitude and random phase), are propagated around the loop with ever

increasing amplitudes. The differential behaviour of the loop therefore dictates the onset

of instability. In the case of cartesian feedback systems, the effect of the non-linear

amplifier on small perturbation signals is therefore important with the system being

required to be stable for all input phases of the perturbation signal.

Stability will be assessed by considering the amplifier’s response to a small perturbation

signal ∆Vi, about an operating point set by the input vector Vi (bold representing complex

quantities). The model is first simplified by moving the bulk RF phase rotation which

exists between the forward and feedback paths, into a separate block as shown in figure

4.1. This allows the input and output vectors to be shown in phase with each other (figures

4.2(a)-4.2(d)). Using the input vector Vi as the reference for the coordinate system defines

(4.1)

where ∆a is in-phase with Vi, and ∆b is orthogonal to Vi (figure 4.2(a)).

The effect of ∆b is to produce a phase change in the input vector (no amplitude change),

∆Vi ∆a j∆b+=

Figure 4.1: RF amplifier representation with bulk RF rotation separated.
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∆Vi
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∆Vo

Vo

Figure 4.2: Signals and perturbations as they pass through RF amplifier. (a) Input signal and

corresponding applied input perturbation. (b) Output signal with perturbation caused by phase change on

input vector. (c) Output signal with perturbations caused by amplitude change on input vector. (d) Output

signal with total output perturbation.
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and a corresponding phase change in the output vector only, hence, the resulting output

perturbation, ∆vb (figure 4.2(b)) is

(4.2)

where gq is defined as the absolute gain. 

The foremost effect of ∆a is to increase the amplitude of Vo by the differential gain, gi

(4.3)

The change in the input and hence output amplitude also causes a change in the phase

(AM to PM effect) and hence an orthogonal component, ∆va, is also generated (figure

4.2(c))

(4.4)

where gd is the slope of the phase curve. The resulting output perturbation is then defined

as (figure 4.2(d))

(4.5)

This full model for the perturbation gain of the amplifier is summarized in figure 4.3 and

is proven mathematically in section 4.1.

Simplifications to the model can be justified for certain types of amplifiers. The cross

coupling term �Vo�gd can be neglected if this is appreciably lower than the gi and gq

gains. Also if the difference between gi and gq is small they can be replaced by a single

gain term g. These conditions apply to amplifiers with low turn-on distortion (Class A and

AB) and operating below compression but excludes amplifiers with significant turn-on

distortion such as class C amplifiers. The linearization of amplifiers with weak non-

linearities is necessary in systems where the intermodulation distortion performance is

strict (e.g PMR −70dB in adjacent channel). This is because the cost effective

∆vb

Vo

Vi

---------∆b gq∆b= =

∆u
∆ Vo

∆ Vi

-------------∆a gi∆a= =

∆va

Vo ∆ Vo∠
∆ Vi

------------------------∆a Vo g
d
∆a= =

∆Vo ∆u j ∆va ∆vb+( )+ ∆u j∆v+= =
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improvement that linearization techniques can provide is generally limited, which implies

that the raw unlinearized amplifier must be reasonably linear to start with.

Figure 4.4(a) shows gi, gq and �Vo�gd plotted against Vi for the high power amplifier

(figure 3.6(a) and figure 3.6(b)). The above conditions hold for input levels up to just

below the 1dB compression point (solid lines). Finally figure 4.4(b) combines the plots of

figure 3.6(b) and figure 4.4(a) to show the amplifier phase rotation as a function of

amplifier gain. This plot will be used later in this chapter.

Section 4.3 uses a simplified version of the above model for cartesian feedback stability

Figure 4.3: Full perturbation model of RF amplifier with bulk RF rotation separated
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analysis. It gives perfect results for linear amplifiers, good results for amplifiers with

weak non-linearities and can be used as a worst case bound for amplifiers with strong

non-linearities. The simplification neglects the cross-coupling term and sets the gains in

both arms to the worst case (largest of gi and gq). The amplifier is summarized by two

parameters, gain (g) and phase rotation (δ).

The MIMO cartesian feedback analysis suitable for amplifiers with weak non-linearities,

process involves deriving the stability region in terms of RF phase rotation δ, and loop

gain g for a cartesian feedback loop containing an ideal linear amplifier. The shape of this

region when plotted on a graph (δ versus g) is dependent on the loop bandwidth

requirement (pole position, p) and delay, τ.

The amplifier has a unique phase rotation and gain for each input level. These values can

be superimposed on the stability graph (δ versus g) for different input levels. In this way it

is easy to see if the amplifier characteristics cross or get too close to the stability

boundary.

Subsequent sections of the chapter repeat the analysis using the complete (non-simplified)

amplifier model. The performance can be predicted exactly for both weak and strong non-

linearities, however the analysis is complex and less suitable as a design tool. Three

parameters are required to describe the amplifier and this causes the stability boundary to

become a stability surface. The three dimensional nature of the problem makes the

graphical design approach more difficult.

4.1 A PIECEWISE AMPLIFIER MODEL

This section mathematically proves the amplifier model introduced in the previous

section. The RF amplifier characteristics of the high power amplifier (TXPA45) have

been reproduced in figure 4.5. Although the amplitude and phase responses of figure

A Piecewise Amplifier Model
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4.4(a) and 4.4(b) were measured at a carrier frequency of 950MHz, they are in a form

suitable for complex baseband representation. The curves are further tailored for analysis

by the representation of RF powers as equivalent rms voltages into a 50 Ω resistor.

Most of the non-linearity in the high power amplifier exists in the saturation region. Most

of this region has been truncated in figure 4.5 since this section of the stability analysis

will only deal with amplifiers with weak non-linearities.

To cope with the weak non-linearities which do exist in the amplifier, the characteristics

can be broken up into a series of points yielding a piecewise representation. One of these

points has been superimposed on the characteristics of figure 4.5. Drawing a tangent (dot-

dashed line) at the point shown on the amplitude response gives the following expression

(4.6)

where gi is the gradient of the tangent and c is some constant. A similar tangent applied to

the phase response gives

(4.7)

where gd is the gradient of the tangent, δd is a constant RF phase rotation at that point and

δr is the setting of the phase adjuster shown in figure 2.25.
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Figure 4.5: Truncated high Power BJT RF Amplifier input-output transfer characteristics at 950MHz with

vcc = 24V. (a) amplitude response, (b) phase response.
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Equations 4.6 and 4.7 accurately describe the amplifier behaviour for small changes in Vi.

Some simplifications will be made at this stage appropriate for amplifiers with weak non-

linearities. These simplifications will then be progressively removed in sections 4.1.1 and

4.1.2 to yield the full non-linear model. This way the contribution of each of the non-

linearities can be demonstrated.

If the amplifier in question was perfectly linear, c in equation 4.6 and gd in equation 4.7

would both be zero. Under these assumptions combining equations 4.6 and 4.7 gives

(4.8)

which further reduces to

(4.9)

Where for convenience . The complex gain is the complex derivative of

equation 4.9 which is

(4.10)

This is an expected result and shows the magnitude of the complex gain is equal to gi

which has been termed the differential gain, and the phase of the complex gain is the RF

phase rotation through the amplifier δ. Using a series of these complex gains in a

piecewise approach is an approximation which is suitable for linear amplifiers only.

4.1.1 Amplifier model with amplitude non-linearities only

The results of the preceding analysis can be extended slightly to encompass a degree of

amplitude non-linearity in the amplifier characteristics. This can be achieved by allowing

the c variable back into the amplitude characteristics and then combining equation 4.6 and

4.7 (with gd = 0)

Vo Vi gie
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(4.11)

Introducing  and  into equation 4.11 gives

(4.12)

which reduces to

(4.13)

Unlike in equation 4.9, the complex derivative of equation 4.13 can not be obtained

directly since applying the Cauchy-Riemman test to equation 4.13 indicates the derivative

can not be determined irrespective of the path taken. The derivative to equation 4.13 must

hence be obtained by partial differentiation in each of the complex dimensions. Partial

differentiation for the in-phase dimension gives

(4.14)

and for the quadrature dimension

(4.15)

The amplifier non-linearities both depend on the input magnitude only (Vi). Assigning 

Vi = a by setting b = 0 will simplify both equations 4.14 and 4.15 considerably. It will

be shown in section 4.4.2 that although setting b = 0 effects the solution, the range of

solutions traversed by all possible input perturbation angles (  used

in the partial differentiation process) are the same. This is valid because the amplifier

models used here are ultimately to be used in a stability analysis. And for the cartesian

feedback loop to be stable it must be stable for all possible combinations of input

perturbation angles.

With b = 0 then, equation 4.14 reduces to
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(4.16)

and equation 4.15 reduces to

(4.17)

The magnitude of equation 4.17 is equivalent to the absolute gain of the amplifier and is

given by

(4.18)

The absolute gain is commonly obtained with an RF network analyzer that measures gain

by dividing the output power by the input power.

The interesting results given by equations 4.16 and 4.17 demonstrate that amplitude non-

linearity causes the gain in the in-phase channel to be different to that of the quadrature

channel. Figure 4.4(a) is a plot of both the differential gain and absolute for the

characteristics of figure 4.5. When both the differential gain and absolute gain are

equivalent the amplifier is amplitude linear. This is evident by comparing equation 4.18

with c = 0 and the magnitude of equation 4.10. The graph shown in figure 4.4(a) has both

gains similar at low levels where the amplifier is quite linear. At higher levels amplitude

non-linearity reduces the differential gain since the rate of change of the amplitude

characteristics reduces. This area of non-linearity is hence characterized by a significant

difference between the two gains and is shown dotted.

The amplifier analysis so far undertaken is used in section 4.2 within a cartesian feedback

model. This model uses only one gain (g) and it is assumed that the worst of either gain

(gi or gq) is used for this parameter. For this reason both gains have been plotted against
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the phase characteristic in figure 4.4(b).

4.1.2 Amplifier model with amplitude and phase non-linearities

In this section, the amplifier model introduced in section 4.1 will be extended and applied

to the low power amplifier. The extension is achieved by allowing gd (rate of change of

phase) into the equations. As in section 4.1 the BLU98 low power amplifier

characteristics first introduced in the previous chapter have been redrawn in figure 4.6

with a similar tangent drawn at some point. The gain graph as given in figure 4.6(c) shows
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Figure 4.6:  Low power BJT RF Amplifier input-output transfer characteristics at 900MHz with vcc = 13V,

vbe = 0V. (a) amplitude response, (b) phase response, (c) Gains of non-linear amplifier
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that gdVo, the term caused by the rate of change of phase, is comparable to the other

gains and hence can no-longer be neglected. So allowing all of the non-linear terms (c and

gd) into equations 4.6 and 4.7 gives

(4.19)

In the linear analysis of section 4.1 the partial derivatives of Vo were found and then b

was set to zero. By making b approach zero first and then performing the partial

differentiation, the process is made easier. With b → 0 equation 4.19 then becomes

(4.20)

Noting first that as b → 0, Vi → 0, the partial derivatives are then

(4.21)

(4.22)

Indentifying from equation 4.18   and letting

 reduces equations 4.21 and 4.22 to

(4.23)

(4.24)
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Figure 4.7 shows how the partial derivatives obtained can be used to form a MIMO

representation of the non-linear amplifier. By letting , equations 4.23 and

4.24 can be split into the individual MIMO gains

(4.25)

(4.26)

(4.27)

(4.28)

Equations 4.25-4.28 can further be minimized by extracting the embedded phase rotation,

e jδa and hence forming the model shown in figure 4.3.

The model shown in figure 4.3 is similar to the model described by equations 4.16 and

4.17 in which amplitude non-linearities only were considered. Since the effect of the rate

of change of phase (gd) is considered in this section, an additional term , appears.

The conclusion which can be drawn is that phase non-linearity introduces an asymmetric
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K22
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∆v

∆Vi ∆Vo

Figure 4.7: Model of non-linear amplifier obtained by partial differentiation.
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cross-coupling which is dependent on the output setpoint (and from section 4.1.1,

amplitude non-linearity introduces asymmetric gains).

4.2 MIMO MODEL OF CARTESIAN FEEDBACK FOR

AMPLIFIERS WITH WEAK NON-LINEARITIES

To investigate the behaviour of the amplifier model derived in section 4.1.1 inside a

cartesian feedback loop, a MIMO model was employed (figure 4.8).

The RF amplifier is represented as a general block with a gain (g) and RF phase rotation

(δ). The model represents one point on the amplifier characteristics. The stability analysis

is obtained by considering all combinations of instantaneous gains and RF phase rotations

on the amplifier characteristics (i.e a piecewise approach).

As has been stated, the model assumes that the amplifier is wideband compared to the

loop filtering and modulation, and so frequency dependence of the RF amplifier

characteristics has been neglected. G(s) represents all of the forward chain components

including the loop filtering and delay.

4.2.1 Effects of Amplifier Phase Variations on Stability

In matrix form the open loop transfer function described by the MIMO model (figure 4.8)

G(s)

G(s)

cosδ

 cos δ

−sin δ

sin δ

g

g

∆a

∆b

∆u

∆v

RF AMPLIFIER

Figure 4.8: MIMO Representation of Cartesian Feedback Loop.

∆Vi ∆Vo
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is given by

(4.29)

Instability results whenever the following condition (the characteristic equation of the

closed loop system) is satisfied

(4.30)

where the absolute signs symbolize the determinant of a matrix, and I is the identity

matrix.

If instability occurs in the system, it will occur at some frequency which obviously

implies the frequency dependent function of G(s) will be equivalent to some complex

number at that frequency. Combining G(s) and g and setting this product to some

complex number G then reduces equation 4.30 to

(4.31)

The solution to equation 4.31 for G is given by

(4.32)

This solution is complex since the expression within the square root is negative or zero. G

is therefore given by

(4.33)

δcos δsin–

δsin δcos

g 0

0 g

G s( ) 0

0 G s( )

gG s( ) δcos gG s( ) δsin–

gG s( ) δsin gG s( ) δcos
=

 I 
gG s( ) δcos gG s( ) δsin–

gG s( ) δsin gG s( ) δcos
+ 0=

G
2

2G δ 1+cos+ 0=

G
2 δ 4 δ2

4–cos±cos–

2
-------------------------------------------------------=

G
2 δcos–

2
------------------ j

4 4 δ2
cos–

2
------------------------------±=

δ j δsin±cos–=

Effects of Amplifier Phase Variations on Stability



95Chapter 4

Since the magnitude of gG(s) is one at the frequency where the phase margin is measured

it follows then that the angle of equation 4.33 is related to the phase margin of gG(s) by

(4.34)

The amount of RF phase rotation (δ) which can be tolerated before instability results will

be termed δmG and is

(4.35)

Stability is insured provided δmG remains positive. Instability occurs (δmG ≤ 0) whenever

the amount of RF phase rotation completely consumes the phase margin of gG(s). This

does not indicate that RF phase rotation and baseband phase shift are equivalent. 

4.2.2 The Difference between RF Phase Rotation and Baseband Phase Shift

RF phase rotation causes cross-coupling (as shown in figure 4.8) whereas baseband phase

shift results is a phase shift in a time sense. The difference is best demonstrated in figure

4.9 The solid line represents the phase shift as a function of positive and negative

frequency for the first order transfer function given in Chapter 3 (equation 3.2). The

graphs were obtained by taking the double-sided FFT (Fast Fourier Transform) of the

impulse response of the transfer function.

Adding more delay in the transfer function effectively increases the slope of the linear

phase component and hence symmetrically pushes both sides of the phase response closer

to ±180° respectively (dashed line). Delay or baseband phase shift hence directly reduces

the stability of the system by subtracting away from the original phase margin of the

system (pmG).

RF phase rotation also reduces stability and in the manner shown by the dot-dashed

traces. Only one side of the phase response suffers a degradation in stability (closer to

gG s( )( ) δ j δsin±cos–( )∠=∠
Phase Margin of gG s( )[ ] π–( )±� δ π–( )±=

Phase Margin of gG s( )[ ] pmG δ= =∴

δmG pmG δ–=
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+180° in this case). While the other side becomes more stable (further away from −180°).

The stability degradation is equivalent to the amount of RF phase rotation imposed.

Therefore when the amount of RF phase rotation equals the original phase margin, pmG,

one side of the response will have a zero phase margin and instability will result (on this

side of the spectrum).

The figure can also explain how only a complex tone (SSB tone) experiences the same

phase shift whether it experiences an RF phase rotation or a baseband phase shift.

It is possible to have two systems with the same δmG each having a different combination

of pmG and . Both will be able tolerate the same amount of RF phase variation since

both have the same δmG but the closed loop responses of the two systems will not be

exactly the same despite the fact both have the same stability margin.

4.2.3 Effects of Amplifier Gain Variations on Stability

In addition to amplifier phase variations discussed previously, the RF amplifier

introduces gain variations. This directly modifies the loop gain parameter g of the MIMO

Figure 4.9: Demonstration of the difference between baseband phase shift and RF phase rotation. Original

phase response (solid) and modified phase responses as a result of baseband phase shift (dashed) and as a

result of RF phase rotation (dash-dot). Complex envelope representation - 0Hz on the graph represents the

carrier frequency.
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model. To account for this gain change the phase margin of gG(s) must be able to be

calculated as a function of g. This can be accomplished by equating G(s) to some numeric

transfer function such as that given in Chapter 3 (equation 3.2).

The phase margin of gG(s) (with G(s) of the type given by equation 3.2) is given by

(4.36)

where:

(4.37)

ω0dB is the gain crossover frequency for controller transfer functions of the type given by

equation 3.2. The gain margin can also be found by finding how much loop gain (gK ) in

equation 4.37 will force pmG in equation 4.36 to 0.

It is evident from the preceding therefore, that cross-coupling, as is introduced by the

AM/PM distortion of the RF amplifier and error in the adjustment of δr (see figure 2.25)

will degrade the system stability. Increases in gain as introduced by amplifier AM/AM

distortion will also degrade system stability since equations 4.36 and 4.37 show that

increases in gain reduce the phase margin and hence stability.

4.3 A GRAPHICAL STABILITY ANALYSIS SUITABLE FOR

AMPLIFIERS WITH WEAK NON-LINEARITIES

A graphical interpretation of equation 4.35 and its two supporting equations equation 4.36

and 4.29 was used to form the conditions for stability as shown in figure 4.10. The

stability boundary was generated by combining equation 4.35 and 4.36 to give

(4.38)

with ω0dB given by equation 4.37. The delay was set to 50ns and the pole frequency was

pmG π
ω0dB

p–
------------atan ω0dBτ (radians)–+=

ω0dB p K
2
g

2
1– (radians/sec)=

δ π
ω0dB

p–
------------atan ω0dBτ (radians)–+=
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set to 126krad/sec (20kHz) in equation 4.36 and 4.37 respectively. These are typical

values from experimental hardware described in chapter 3. Within the stability boundary

shown the cartesian feedback loop is stable.

To demonstrate the use and significance of the graph the amplifier gain and phase

responses of the high power amplifier (figure 4.4(b)) can be directly superimposed upon

the curve of figure 4.10.

Setting the RF phase adjuster of figure 2.25 and equation 4.7, δr to −135°, and the DC

gain (K) to 3.4dB places the amplifier traces in the position shown in figure 4.11 (a

blown-up version of figure 4.10). An asterisk placed on approximately the worst stability

point highlights how specific stability factors can be determined. The gain margin can be

found by measuring the horizontal distance from the asterisk to the stability boundary. In

other words this distance gives the amount of additional gain the system can tolerate

before instability occurs and is 2.9dB in this example. The vertical distance to the stability

boundary gives the amount of RF phase rotation which can be accommodated before

instability results. This distance, is the δ margin or δmG, and indicates +22° of RF phase

rotation can be accommodated before the system becomes unstable.
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Figure 4.10: Graphical conditions for linear amplifier stability. Stability is ensured provided amplifier

operation is within the stability boundary. Conditions: τ=50ns, p=20kHz.
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The technique is quite versatile and allows the placement of amplifier characteristics

operating under different system conditions - so as δr is varied, the characteristics are

moved in a vertical direction, and as K is varied, the characteristics are moved in a

horizontal direction.

Figure 4.12 gives two examples of instability caused with by different adjustment of the

phase rotator. Figure 4.12(a) shows that positive adjustments from the optimum value
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Figure 4.11: Close-up view of the graphical conditions for linear amplifier stability with amplifier

characteristics superimposed. Gain and δ margins are indicated by numbered arrows.
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Figure 4.12: (a) Phase rotator set +25° from optimum causes instability at high out put powers. (b) Phase

rotator set −25° from optimum causes instability at low output levels.
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will cause instability at higher output levels, whereas shown in 4.10(b), negative

adjustments from optimum cause instability at low output levels. These general

predictions about BJT based power amplifiers have been verified experimentally with the

BLU98 low power amplifier and shown in figure 4.19.

4.3.1 A Universally Applicable Graphical Technique

Equation 4.35, plotted in its essential form with the amplifier characteristics

superimposed is shown in figure 4.13. The graph is universally applicable because the

phase margin of any transfer function (pmG) can be applied irrespective of the nature of

this transfer function (i.e whether it contains various combinations of multiple poles and

zeros, different delay and gain).

The secondary axis shown below the main graph of figure 4.13 demonstrates a simple

technique by which the universal graph can be utilized. If the gain is sufficiently large for

the single pole example given, then equation 4.37 can be expressed by
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Figure 4.13: Universally applicable graphical conditions for linear amplifier stability. Additional axis

allows selection of gain, pole frequency and delay for first order loops. The delay term is interchangeable

with gKp and is an undesirable stability reducing quantity.
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(4.39)

Also if ω0dB is much greater than p then the pole will contribute −π/2 at ω0dB. Equation

4.36 can thus be reduced to

(4.40)

It is this expression which allows the additional axis to be drawn. Note gK in the

expression and shown on the axis is not in dB.

4.3.2 Summary of Amplifier and other Effects on Stability

Equation 4.40 and the secondary axis drawn below the graph of figure 4.13 shows clearly

that for a desired or given phase margin, gK, p, and τ are interchangeable. Both gain (gK)

and bandwidth (p) are desirable quantities to make large, but since τ is interchangeable

with the other quantities, it consumes the phase margin directly. This is undesirable

because it places a limit on how large the gain bandwidth combination can be made whilst

maintaining a given phase margin. Delay is therefore the limiting factor in cartesian

feedback linearization systems.

The delay modelled here was defined as comprising both a true transmissive type delay in

addition to pole-zero induced delay i.e. filtering and finite bandwidth induced delay. Of

these two delay types, the filtering induced delay dominated, with the transmissive delay

representing only 1-2ns of the 50ns delay obtained from the experimental hardware

presented. To increase the amount of gain bandwidth then, it is desirable to reduce the

filtering induced delay. This can be achieved by widening the bandwidth of the

components which comprise the cartesian feedback loop. The main bandwidth reducing

components within the loop are the baseband (op-amp) circuits and RF power amplifier.

The baseband circuit delays can be reduced by using even wider bandwidth circuits but

this usually implies an increase in power consumption. Broadening the RF amplifier

bandwidth has the potential to shave tens of nanoseconds off the loop delay and this

should be an essential requirement in the design of the RF power amplifier. In contrast,

ω0dB p g K≈

pmG
π
2
--- p gK τ–≈

Summary of Amplifier and other Effects on Stability
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reducing the transmissive delay by reducing size (e.g. circuit integration) would yield

only a minor improvement.

The amplifier characteristics also have an impact on stability. It was also shown in section

4.2.2 and in the stability boundary figures (figures 4.11-4.13) that RF phase rotation

reduces stability. Adjusting the RF phase rotator is therefore important in placing the

amplifier characteristics in a position which has the maximum distance from any stability

boundary. But the distortion of the amplifier itself sets the amount of movement of the

and phase. Reducing the amount of AM/AM and AM/PM distortion reduces the

movement (with an ideal linear amplifier being represented as a point on the

characteristics i.e. no movement at all), and yields an obvious conclusion that it is easier

to linearize a more linear amplifier. This indicates that highly non-linear amplifiers, such

as the BLU98 low power amplifier operated with no or little base bias, are not really

suitable for practical cartesian feedback systems.

4.4 MIMO MODEL OF CARTESIAN FEEDBACK FOR NON-

LINEAR AMPLIFIERS

This section applies the MIMO analysis to the non-linear amplifier model mathematically

derived in section 4.2.2. In section 4.4.1 swept phase perturbations are applied at some

point on the low power amplifier characteristic. The complex gain is shown to vary as a

function of perturbation angle. This result demonstrates how the complex gain varies with

applied perturbation and is used in section 4.7. Before being applied to the cartesian

feedback MIMO model (section 4.4.3) the non-linear amplifier model is first reduced to

its essential canonical form.

4.4.1 Complex Gain and Perturbations

It was found in section 4.1 that non-linearity caused the complex gain to be non-unique

MIMO Model for Non-linear Amplifiers
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and dependent on the perturbation direction. The point on the amplifier characteristics

marked with an asterisk in figure 4.6, will be chosen to demonstrate how the complex

gain is affected by a complex perturbation. The complex gain at a particular setpoint Vi

is defined as

(4.41)

with  (the perturbation) small.
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Figure 4.14: Variation in complex gain as a result of a complex rotating perturbation. (a) Magnitude of

complex gain, (b) phase of complex gain, (c) complex plot of (a) and (b), (d) polar plot of (a) and (b). Two

cases are shown: complex gain when input signal phase is ∠Vi = 30°(solid) and input phase ∠Vi = 0°

(dashed).
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Sweeping the phase of the perturbation ( ) at the point marked with the asterisk

(with  arbitrarily set to −30°) resulted in the solid line plots of figure 4.14. The

complex gain versus angle ( ) is shown in magnitude and phase format in figure

4.14(a) and 4.14(b) respectively. Figure 4.14(c) shows the complex gain in cartesian

coordinates and figure 4.13(d) shows the complex gain in magnitude (dB) and phase

(degrees) format. Since the complex gain changes with the phase of the perturbation, a

single unique complex derivative does not exist at this point. In other words the complex

derivative depends on the path taken as  approaches zero.

4.4.2 Reduction of Non-linear Amplifier Model

When excited by a constant magnitude perturbation with sweeping phase (i.e. the input is

a circle), the non-linear model produces an elliptical output. An ellipse is generated

whenever the gains in the real and imaginary channels are dissimilar, and/or when the

phase shift in the quadrature de/modulator is not 90°[70-71]. It will be shown then that it

is feasible to model all elliptical behaviour by appropriate selection of a set of dissimilar

real and imaginary gains and a phase rotation only.

In matrix form figure 4.3 is

(4.42)

To simplify equation 4.42 the gain matrix given by

(4.43)

must be reorganized such that it can be written in two parts, one part containing another

phase rotation to be added to δa, and another part consisting of two dissimilar gains in the

in-phase and quadrature channels. In matrix terminology the aim then, is to diagonalize

the transformation matrix of equation 4.43.

∆Vi∠

Vi∠

∆Vi∠

∆Vi

∆u

∆v

δacos δasin–

δasin δacos

gi 0

gd Vo gq

∆a

∆b
=

gi 0

gd Vo gq
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From linear algebra it is well known that a symmetrical transformation matrix is easily

diagonalized by use of the Principle Axes Theorem[72]:

(4.44)

where A is some n × n symmetric matrix, P is an orthogonal matrix and D is a diagonal

matrix ( t represents the transpose of a matrix). If the columns of P are composed of the

eigenvectors of A, then D will be composed of the corresponding eigenvalues of A. To

make use of this, the transformation matrix of equation 4.43 must first be made

symmetrical. This is readily achieved by introducing a phase rotation to equation 4.43

until symmetry is achieved.

(4.45)

Separating equation 4.45 gives

(4.46)

For A to be symmetrical then

(4.47)

giving

(4.48)

From equation 4.48 then

A PDP
1–

PDP
t

= =

βcos βsin–

βsin βcos

βcos βsin

βsin– βcos

gi 0

gd Vo gq

gi 0

gd Vo gq

=

BA
gi 0

gd Vo gq

=

B
βcos βsin–

βsin βcos
= A

βcos βsin

βsin– βcos

gi 0

gd Vo gq

=

βcos βsin

βsin– βcos

gi 0

gd Vo gq

w x

x y
A= =

w gi βcos gd Vo βsin+=

x gq βsin=

gi β gd Vo βcos+sin–=

y gq βcos=
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(4.49)

A solution for β in matrix B hence provides the first step (i.e the phase rotation), in the

reorganisation of equation 4.43. The second step is achieved by finding the eigenvalues of

the symmetricized matrix i.e

(4.50)

which implies,

(4.51)

Rearranging equation 4.48

(4.52)

and substituting into equation 4.51 gives

(4.53)

The diagonal matrix is then

(4.54)

Equation 4.54 is actually a representation of matrix A in canonical form. The Pt and P−1

β
gd Vo

gi gq+
----------------
� �
� �atan=

w λ– x

x w λ–
0=

λ w y+( ) w y–( )2 4x
2

+±
2

---------------------------------------------------------------=

w
gi

2
gigq gd Vo( )2+ +

gi gq+( )2 gd Vo( )2+

--------------------------------------------------------=

x
gqgd Vo

gi gq+( )2 gd Vo( )2+

--------------------------------------------------------=

y
gigq gq

2
+

gi gq+( )2 gd Vo( )2+

--------------------------------------------------------=

λ1

gi gq+( )2 gd Vo( )2+ gi gq–( )2 gd Vo( )2++

2
-----------------------------------------------------------------------------------------------------------------------=

λ2

gi gq+( )2 gd Vo( )2+ gi gq–( )2
gd Vo( )2+–

2
-----------------------------------------------------------------------------------------------------------------------=

D
λ1 0

0 λ2

=
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matrix basically represent a rotation in the co-ordinate axes and back again respectively,

and in this context simply means a relative shift on the perturbation phases. Therefore

dropping Pt and P−1 at this stage strips off unnecessary information regarding the position

of the amplifier characteristics relative to the perturbation angle. In fact, since the

diagonalization process provides the canonical form of matrix A, the perturbation

amplifier characteristics are shifted such that the maximum gain occurs at a perturbation

phase of zero. This is demonstrated in figure 4.14. This model of amplifier gain (figure

4.3) was numerically verified for the point given in figure 4.6. This comparison in figure

4.14 shows that although the model does not exactly match the amplifier response, it does

traverse the same vector given in figures 4.14(c) and 4.14(d). The only difference

between the models is a relative shift in the input perturbation phase. This difference

results from the reduction made by letting b = 0 in equation 4.23 which forces 

(compared to  for the solid trace in figure 4.14). Setting b = 0 effectively

removes any information about the phase of . Since the model is ultimately to be used

in a stability analysis, the model is valid because the cartesian loop must be stable for all

possible input perturbation phases, , and hence a relative shift in the input

perturbation phase is irrelevant. What is important is the fact that the model traverses the

same complex gain vectors as those generated by equation 4.41 as shown in figures

4.14(c) and 4.14(d).

The model is then

(4.55)

Although the models given by equations 4.42 and 4.55 are not equal in terms of a point-

to-point mapping, both trace out the same ellipse when excited by a sweeping

perturbation. Since the elliptic vectors are invariant then the areas encircled by these

vectors must also be the same. The geometrical interpretation of the determinant of a

transformation matrix is the ratio or gain in area as a result of the transformation. Since

Vi∠ 0°=

Vi∠ 30°=

Vi

∆Vi∠

∆u

∆v

δa β+( )cos δa β+( )sin–

δa β+( )sin δa β+( )cos

λ1 0

0 λ2

∆a

∆b
=
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the change in area is the same for both models then it follows that the determinants of

both models are also equivalent.

(4.56)

The result of equation 4.56 can be used to yield another reduction by setting

(4.57)

and letting

(4.58)

giving

(4.59)

The diagonal matrix of equation 4.54 can thus be expressed in terms of gn and the

reciprocal of gn. And to finally summarize the model then

(4.60)

where:

(4.61)

(4.62)
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This end result was numerically verified and superimposed on the traces of figure 4.14.

For the example point (figure 4.6) the values above are gn = 2.84, g = 3.28 and δ = 2.50

radians.

4.4.3 MIMO Model of Cartesian Feedback with non-linear amplifiers

Placing the final non-linear amplifier model developed in the previous section in a

cartesian feedback loop allows the system to be represented by the MIMO model shown

in figure 4.15. This figure shows the amplifier model given by equations 4.60-4.62 within

a cartesian feedback loop composed of compensation filters given by G(s). 

Again, instability results whenever the characteristic equation of the closed loop system is

satisfied

(4.63)

where the absolute symbolises the determinant of a matrix, and I is the identity matrix.

As in section 4.2.1, if instability occurs in the system, it will occur at some frequency

which implies the frequency dependent function of G(s) will be equivalent to some

complex number. Combining G(s) and g and setting this product to some complex

number G then reduces equation 4.63 to

gG(s)

gG(s)

cosδ

 cos δ

−sin δ

sin δ

gn

1/gn

Figure 4.15: MIMO representation of cartesian feedback loop with non-linear amplifier final model.
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(4.64)

There are numerous possible combinations of G, gn and δ which will satisfy equation 4.64

and result in instability. Looking first at the solution for G gives

(4.65)

There are two possible types of solution to equation 4.65 depending on the value of the

expression within the square root. The solution to equation 4.65 will be real provided

(4.66)

or alternatively complex if

(4.67)

The boundary condition for these solutions is defined as

(4.68)

When equation 4.66 is satisfied and hence the expression within the square root is

positive, the two possible solutions for G will always be negative. This implies the phase

of G will be ±π with two possible magnitudes and G is hence given directly by 4.65.

It should be noted that G has a phase of ±π at the frequency where the gain margin of

gG(s) is calculated. This enables the solution to be related back to gG(s) and so the

instability condition given by equation 4.65 is thus reduced to

(4.69)
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where gmG is the gain margin of gG(s) and is not in dB. 

The result of equation 4.69 can now be applied to equation 4.65 to give the stability

conditions in terms of gmG and gn. Instability therefore results when δ is equal to

(4.70)

When equation 4.67 is satisfied and hence the expression within the square root is

negative, the two possible solutions for G will always be complex. The complex solution

to the quadratic given by equation 4.64 is

(4.71)

It is easy to show that provided  the magnitude of G in equation 4.71 will always

be one. Again it should be noted that G has a magnitude of one at the frequency where the

phase margin of gG(s) is calculated. This enables the solution to be related back to gG(s)

and so the instability condition given by equation 4.71 is thus reduced to

(4.72)

where pmG is the phase margin of gG(s) in radians. 

The result of equation 4.72 can now be applied to equation 4.64 to give the stability

conditions in terms of pmG and gn. Instability therefore results when δ is equal to:

(4.73)
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The preceding results (equations 4.70 and 4.73) can now be combined to give the amount

of RF phase rotation which can be tolerated before instability results. This quantity,

termed δmG, is hence given by

(4.74)

(4.75)

Stability is insured provided δmG remains positive. Instability occurs (δmG ≤ 0) whenever

the amount of RF phase rotation completely consumes the gain and phase margins of

gG(s) in accordance with either equation 4.74 or equation 4.75. The form of gG(s) is

hence immaterial, and so all that really matters are the gain and phase margins.

4.6 A GRAPHICAL STABILITY ANALYSIS SUITABLE FOR NON-

LINEAR AMPLIFIERS

The results of the previous section provide the basis for developing a graphical stability

analysis for the non-linear amplifier model. This can be again demonstrated by equating

gG(s) to the numeric transfer function given in equation 3.2.

From section 4.2.3 the phase margin of gG(s) with G(s) of the type given by equation 3.2,

is given by equations 4.38 and 4.39. And the gain margin of gG(s) is given by 

(4.76)

where ωπ is the phase crossover frequency in radians/sec (and gmG is not in dB). Since

the phase crossover frequency is generally much greater than the pole frequency, it can be

assumed that the pole contributes −π/2 at the phase crossover frequency and hence the

remainder (also π/2) is contributed by the time delay giving
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(4.77)

The component variables of equations 4.70 and 4.73 are now defined and hence enable

the stability boundary given by these equations to be plotted. Introducing 4.77 and 4.76

into 4.70 gives

(4.78)

Introducing 4.38 and 4.39 into 4.73 gives

(4.79)

This stability boundary is however multi-dimensional as are the amplifier characteristics.

The three amplifier parameters g, δ and gn are plotted in figure 4.16 as a function of

amplifier output voltage. It is possible to plot these amplifier characteristics as functions

of each other in three dimensions. This however would make the resulting figure difficult

to utilize. An alternative two dimensional method adopted here is shown in figure 4.17.

The numbered contours represent the stability boundaries given by equations 4.70 and

4.73 for the values of gn shown (i.e 1,1.5, 2, 2.5 & 2.8). Within these boundaries the

system is stable, and outside it is unstable. The pole frequency, p was set to 20kHz and the

delay, τ was set to 50ns in the gain and phase margin equations (4.38-4.39 and 4.76-4.77).

The amplifier characteristic which is superimposed, was obtained by plotting the δ
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characteristic of figure 4.17 against the g characteristic multiplied by the gn characteristic

and K on a dB scale (i.e δ versus gKgn). The markings on the amplifier characteristics

give the third dimension and identify which gn value applies at a given point.

Setting the RF phase adjuster of figure 2.25, δr to −105° and the DC gain (K) to 14

(22.9dB) places the amplifier traces in the position shown in figure 4.17. An asterisk

placed on the point mentioned previously (gn = 2.84, g = 3.28 and δ = 2.50 radians)

highlights how specific stability factors can be determined. The gain margin can be found

Figure 4.16: RF amplifier model parameters as a function of desired output for BLU98 low power

amplifier.
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by measuring the horizontal distance from the asterisk to the stability boundary for gn =

2.84 (marked with “2.8”). In other words this distance gives the amount of additional gain

the system can tolerate before instability occurs and is 8.3dB in this example. The vertical

distance to the same stability boundary gives the amount of RF phase which can be

accommodated before instability results. This distance, is the δ margin or δmG, and

indicates 42° of RF phase rotation can be accommodated before the system becomes

unstable.

The technique is similarly versatile to the linear approach and allows the placement of

amplifier characteristics operating under different system conditions - so again, as δr is

varied, the characteristics are moved in a vertical direction, and as K is varied, the

characteristics are moved in a horizontal direction. The inner-most stability boundary (gn

= 1) represents the stability boundary derived in section 4.3. This boundary actually

represents the worst case stability boundary and can be used in a simplified conservative

stability analysis. This worst case boundary is also the same as that derived for amplifiers

with weak non-linearities in section 4.3.

The graphical technique can also account for the burst like instability experienced just

past zero-crossing in practical cartesian feedback systems. The point considered

represents the situation just after the transistor switches on. From figure 4.17 it is clear

that this point and the region around it has the greatest potential for instability with the δr

setting used (δr = −105°). This can also be demonstrated using the approach shown in

figure 4.18 which is obtained by applying equations 4.74 and 4.75. The three traces

indicate the amount of δ the system can tolerate before instability results for the three

settings of δr shown in the figure.

The case with δr = −105° is in fact the optimum setting for the phase adjuster and is

equivalent to the placement of the amplifier presented in 4.17. When the phase adjuster is

adjusted by +45° above optimum the system will burst into instability at a point just after

the transistor turns on (instability is indicated by negative δmG). Alternatively when

Stability Analysis for Non-Linear Amplifiers
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adjusted by −45° below optimum the instability now occurs near the saturation region of

the transistor amplifier. Instability near the saturation region can also be predicted by

equation 4.18 since the amplifier characteristics are shown to approach the stability

boundary at saturation. This was checked experimentally and shown in figure 4.19. The

top two traces are the baseband in-phase and quadrature components of the cartesian

Figure 4.18: δmG (RF phase margin) as a function of desired output for three different settings of phase

adjuster. Regions below 0° indicate instability.
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loop's demodulated feedback and hence represent the RF amplifier's output. These two

traces demonstrate the first case when the RF adjuster is adjusted positive of the optimum

and clearly show the burst-like instability which results as predicted in both figures 4.17

and 4.18. The bottom two traces were obtained with the phase adjuster set negative of

optimum. In this instance the output is shown to saturate in an unstable manner - again as

predicted in figures 4.17and 4.18.

4.7 TIME DOMAIN SIMULATIONS OF CARTESIAN FEEDBACK

WITH NON-LINEAR AMPLIFIERS

The analysis performed in the previous section utilized a piecewise perturbation

technique based around a series of setpoints. In this section a series of time domain

simulations are presented to examine how the applied perturbations behave under

different amplifier setpoint conditions.

The cartesian feedback simulation model is shown in figure 4.20. The bold lines indicate

complex in-phase and quadrature signals. To examine the consequences of applying a

perturbation, first a setpoint is applied to the input of the amplifier via Vsi. This setpoint

generates a corresponding output which is removed by Vso. Removing the setpoint “bias”

at the output enables the effects of an applied perturbation to be easily observed.

Furthermore, the input voltage Vi was set to zero so that the complex loop compensation

given by G(s) would not have to charge to some value, and hence this allowed quick

Figure 4.20: Block diagram of simulation model used in time-domain perturbation simulations (thick lines

and bold font indicates complex quantities).
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establishment of the desired setpoint.

A small complex perturbation on the amplitude was applied and added to the input

amplitude via Vp. The function gA(v) represents the RF power amplifier and is essentially

an implementation of equations 4.8 and 4.9 The low power BLU amplifier was used for

the simulation model in this section. The phase adjuster (δr) models complex phase

rotations needed to adjust out RF phase rotations of the amplifier. Since, from figure

4.15(b), the average phase of the amplifier at the marked setpoint is 143° (2.50 radians),

the central value of δr was set to −143° to compensate. Other conditions at the setpoint are

Vsi = 0.83∠−30°, Vso = 0.95∠113° (same conditions to generate the curves of figure

4.14), and Vp, the perturbation signal was very small.

The non-linear amplifier characteristics result in two modes of operation occurring in

cartesian feedback loops. The modes will be termed here as being spiral mode and

stationary mode.

4.7.1 Spiral Mode

When the phase adjuster in figure 4.20 δr is made equal to 79° greater than the central

value (i.e δr > 79°−143°) the perturbation decays in a spiral manner given by figure

4.21(a). This figure shows the real and imaginary component of the signal v given in

figure 4.20 just after the system is hit with a small perturbation (Vp). The perturbation is

visible by the dotted line emanating from the centre of the figure at 20°. Following the

perturbation the loop provides an initial adjustment (the jump from the top of perturbation

to this initial adjustment is not shown in the figure for clarity) which then decays spirally

in a clockwise direction as given by the arrow. The reason for this spiral decay can be

gathered from the perturbation angle dependent nature of the phase of the amplifier

complex gain given in figure 4.14(b) and repeated here for convenience in figure 4.22.

The perturbation will be followed around the loop. Starting at a perturbation angle of 20°
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gives the resultant phase rotation through the RF amplifier from the solid trace of figure

4.22 as 103°. Subsequent to the perturbation then, the RF phase of the output of the

amplifier, gA(v) in figure 4.20 is given as 20° + 103° = 123°. Following the amplifier the

signal undergoes a subtraction of Vso which completely cancels the amplified result of the

bias signal Vsi, Vso will not effect the phase (or the amplitude) of the perturbation at the

amplifier output. Since Vi is 0, going around the loop of figure 4.20 simply inverts the

signal as it arrives at the input of the compensation circuit G(s). G(s) is time dependent

and does not introduce cross coupling between the real and imaginary axes. Although this

−8 −6 −4 −2 0 2 4 6 8

x 10
−11

−8

−6

−4

−2

0

2

4

6

8
x 10

−11

−1 −0.5 0 0.5 1

x 10
7

−30

−25

−20

−15

−10

−5

0

Frequency (Hz)

d
B

real (v)

im
a

g
 (v

)

(a) (n)

Figure 4.21: Spiral mode perturbation decay. (a) v in the time domain and (b) in the frequency domain.
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time dependence will slow down the phase changes through the loop, for this exercise the

effect of G(s) will be initially neglected (and so the figures quoted below do not directly

relate to figure 4.21(a)). The RF phase (a complex rotation) of the signal is then assumed

to be unmodified by the transfer function.  δr is a complex phase rotation and so the RF

phase at the correctly biased input of the amplifier is 123° − 180° − 143° + 79° = −121°.

Now with an input perturbation angle of −121° (239°) the RF phase rotation through the

amplifier from figure 4.22 is 135°. The RF phase at the output of the amplifier is then −

121° + 135° = 14°. Note, both the phase of the input of the amplifier (20° → −121°) and

the phase of the output of the amplifier (123° → 14°) have followed phases which are

changing clockwise i.e moving from positive phases to less positive phases. The output

phase can again be followed around the loop in the same way and will yield yet another

input perturbation which in turn will yield another RF output phase and so on. It is evident

then that the complex phase of the loop will continuously slip along the response of figure

4.22.

With the introduction of the time dependence of G(s), this slipping will be slowed,

smoothed and made continuous (as shown in figure 4.21(a)). Ultimately the magnitude of

the disturbing perturbation will dissipate by the action of stable closed loop feedback. In

the process of the amplitude being corrected for, the phase will be continuously changing

and so a spiralling decay results. Through a similar procedure it is possible to show that

with the phase adjusted to be less than the central value i.e <143°−79° the spiral will

rotate in an anticlockwise direction.

Figure 4.21(b) is an FFT of the output and demonstrates the way in which a clockwise

decaying spiral results in higher frequency components on the left hand side of the

spectrum. Noise present in practical cartesian feedback systems causes an infinite number

of random perturbations. It would be expected then that if the loop exhibits spiralling

behaviour at most points on the amplifier characteristic then the adjustment of the phase

adjuster δr will determine if and on what side of the output spectrum noise will tend to

rise. The discussion above indicates that higher δr adjustments will result in clockwise
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spiralling and hence increase the noise on the left side of the spectrum. Alternatively,

lower δr adjustments will yield an increase in noise on the right side of the spectrum.

The authors of [61] have measured the effect of the phase adjuster setting on the output

spectrum. They found that higher phase adjustments yielded increases in noise on the

right side of the spectrum and vice-versa. This is opposite to what is expected from the

discussion above. The difference is a result of definitions. In this work the phase adjuster

(δr) is modelled in the forward path whereas in [61] the phase adjuster was placed in the

feedback path.

In section 4.2.2, the difference between an RF phase rotation and a baseband phase shift

was presented. Figure 4.9 given in that section, also agrees with the conclusions of the

spiral mode simulations i.e that higher δr adjustments will increase the noise on the left

side of the spectrum since the left side become less stable (and vice versa).

4.7.2 Stationary Mode

When the phase adjuster δr in figure 4.20 is made equal to 40° greater than the central

phase the perturbation decays in a manner shown in figure 4.23(a). The perturbation is

again visible by the line emanating from the centre of the figure at 20°. 
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The reason for this one dimensional decay can again be gathered from the perturbation

angle dependent nature of the RF phase of the amplifier complex gain is again reproduced

in figure 4.24. Starting at a perturbation angle of 20° gives the same resultant RF output

phase as in section 4.7.1, i.e 20° + 103° = 123°. Following this phase around in the same

way as in section 4.7.1 gives the RF phase at the correctly biased input of the amplifier as

123°− 180° −143° + 40° = −160°. Now with an input perturbation angle of −160° (200°)

the RF phase through the amplifier (from figure 4.24) is 103° resulting in the RF phase at

the output to be −57°. This phase can be followed around the loop in the same way giving

−57°− 180°−143°+ 40° = −340° at the input of the amplifier. A perturbation phase of −

340° which is equivalent to 20° will continue the cycle and hence the system ends up

toggling between two points on the characteristics of figure 4.24. These points

( ) both have the same RF phase through the amplifier which from

figure 4.24 is 103°. This phase is the opposite phase to that of the phase adjuster (i.e −(−

143° + 40°)) so that the RF phase through the entire forward path is 0°. The amplifier is

driven by the action of the loop in such a manner as to keep the RF phase through the

amplifier fixed and opposite to that of the phase adjuster. It is clear from figure 4.24 that

the same RF phase through the amplifier repeats at input perturbation phase intervals of

180°. Since this is the phase inversion which the RF output phase experiences as it passes

around the feedback loop the systems decays in one fixed dimension.
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Figure 4.24: Phase of non-linear amplifier complex gain at one operating point for a sweeping

perturbation (from figure 4.14(b)) used to demonstrate stationary decay of perturbation.
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G(s) will slow down the establishment of the necessary conditions to provide the opposite

phase described. The settings used in this section were chosen to enable quick

establishment of this phase so that the phases quoted above could be easily presented.

This mode of operation has been termed stationary mode because the amplifier behaves as

if it has one fixed RF phase rotation and also one fixed gain. It is possible then to model

the amplifier under these conditions as one fixed or stationary complex gain which is

dependent on the setting the phase adjuster. This however would not be practical and

would not cover the spiral mode of operation.

The stationary mode of operation occurs whenever the adjustment of the phase adjuster is

within the range of possible output phases. From figure 4.24 this range is ± 51° from the

central phase. When the phase adjuster is set within this “capture” range the loop

behaviour will be stationary with the amplifier being driven so that it complements the

setting of the RF phase adjuster. Outside this range the loop behaviour will be spiral.

Figure 4.23(b) is an FFT of the output and demonstrates the way in which a one

dimensional decay results in the frequency components to be essentially the same on

either side of the spectrum.

4.7.3 Spiral and Stationary Modes on Graphical Stability Boundaries

In sections 4.7.1 and 4.7.2 the spiral and stationary modes of cartesian feedback operation

were demonstrated. These modes can be clearly distinguished in figure 4.17. The stability

boundaries where gn does not equal one all have “horns”. With  (in between the

horns) the system will behave in stationary mode and when  the system will

operate in spiral mode. This has been illustrated in figure 4.17 for gn = 2.84.

The δ value at which the horns occur are the various δb angles for the gn's shown. These

δb values can be calculated by equation 4.68. The example presented in section 4.7.1 and

δ δb<

δ δb>

Spiral and Stationary Modes on Stability Boundaries
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4.7.2 has a gn value of 2.84 (as indicated by the asterisk of figure 4.17). With such a gn, δb

is equal to 51°. This δb angle is in fact the capture angle discussed in section 4.7.2.

When gn = 1, δb = 0, which implies the inner stability boundary has both horns at 0. It is

possible to show that the operation of the loop when gn = 1 is in spiral mode but these

spirals are infinitely small and hence the system behaves as if the amplifier were in fact

operating in stationary mode.

4.8 NOISE CONSIDERATIONS

Although stability is an important consideration, it has been found experimentally that

systems with low stability margins exhibit increased levels of out-of-band noise.

The block diagram of 4.25(a) represents a complex noise model of a cartesian feedback

system. The loop gain has been split into three components with appropriate noise

sources. K0 normalizes the closed loop gain to unity. K1 represents gain prior to the loop

compensation G(s) and the RF amplifier gain is represented by K2. L3 models the

n1

Figure 4.25: (a) Complex noise model of cartesian feedback loop showing distribution of loop gain and

appropriate noise sources. (b) Rearranged complex noise model with noise referred to the input.
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attenuation required to reduce RF feedback signals to levels appropriate for demodulation

with the subsequent gain necessary represented by K3.

This block diagram can be rearranged so that the noise can be referred back to the input

(figure 4.25(b)). At some stage, all noise sources pass through the closed loop transfer

function of the cartesian feedback loop. Setting the RF phase δ to zero, g = 1 and G(s)

with pmG = 30° (DC gain, K = 167.7 (44.5dB), pole frequency = 126krad/sec (20kHz), &

delay, τ = 50ns) gives the magnitude response and phase response of figure 4.26. This

response clearly demonstrates a peaking effect in the closed loop response for systems

with low stability margins (e.g. pmG = 30°)

Figure 4.27 shows two measured spectra of the experimental cartesian feedback system

using the high power amplifier (TXPA45). The increase in out-of-band noise is visible as

peaks in the noise floor (these peaks appear broader than the solid closed loop magnitude

response of figure 4.26 because a linear frequency scale is used in figure 4.27). Cartesian

feedback systems then, should be designed to be more than just stable. There must be

sufficient stability margin to limit the peaking in the out-of-band noise spectrum to a

reasonable level.

It is difficult to analyse how the peaking is affected exactly by changes in δ and g but it is
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Figure 4.26: Open loop (dashed) and closed loop response of single pole system with delay. Amplitude

peaking is evident in closed loop response.
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possible to determine how the peaking is affected by the selection of G(s), with δ = 0° and

g = 1. Under these conditions the closed loop transfer function is given by

(4.80)

Now the peak of equation 4.80 occurs when the magnitude of the denominator

approaches its minimum. Substituting s = jω in the denominator gives

(4.81)

To find the condition for no peaking the derivative with frequency of equation 4.81 must

be found and made greater than or equal to zero. Note, a rising closed loop response

corresponds to a falling denominator.

(4.82)

Rearranging the terms (by taking ω out and multiplying the last term by τ/τ) gives

(4.83)

By inspection the part of the equation in square brackets has its minimum at ω = 0. The

T s( ) δ 0°=

g 1=

G s( )
1 G s( )+
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Figure 4.27: Measured wideband spectrum of a cartesian feedback transmitter. Lighter trace indicates

filtering placed close to the subtraction point. Darker trace shows improved out-of-band noise performance

with the loop filter further up the amplifier chain. Some peaking is also evident.

den.( ) 2
d

ωd
------------------------ 2 ω ωτKp ωτ( ) τKp

2
Kp+( )– ωτ( )sincos–( )=

den.( ) 2
d

ωd
------------------------ 2ω 1 τKp ωτ( ) τ2

Kp
2 τKp+( )–

ωτ( )sin

ωτ
-------------------cos–=

Noise Considerations



127Chapter 4

derivative is positive for all values of ω if it is positive as ω tends to 0 i.e:

(4.84)

When peaking occurs in the closed loop magnitude response (i.e |T(s)|) for a single pole

system with delay, the response will always rise as the frequency is increased from zero

i.e there will never be a dip between DC and the crest of the peak. 

By setting equation 4.82 to be greater than or equal to zero for small ω, the no peaking

condition will be satisfied

(4.85)

Now since τp is usually much less than 2 then the no-peaking condition can be satisfied

by:

(4.86)

For a system with a pole location of 126krad/sec (20kHz) and a delay of 50ns, the non-

peaking condition would exist if the loop gain is kept below 80 (38dB) giving an open

loop phase margin pmG of 61.9° and a gain margin of 9.92dB. This is clearly a limitation

on the maximum possible distortion reduction of a cartesian feedback system. A small

degree of peaking can however, be tolerated in which case the frequency at which the

peak occurs can be found by setting the derivative of the denominator, as given by

equation 4.82, to zero. The approximation ω ≈ 0 is no longer valid so the Newton-

Raphson numerical method for equation solving is applied giving:

(4.87)

To find the position of the peak the initial selection of ωn must be in the vicinity of the

peak. This is easily achieved since it is known that the peak will be somewhere between

the frequency at which the phase margin of G(s) is calculated and the frequency at which

the gain margin of G(s) is calculated (as shown in figure 4.26). The frequency at which
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the phase margin of G(s) is calculated, ω0dB, is given in equation 4.39 and is

approximately equal to Kp (with g = 1). Substituting Kp for ωn in equation 4.87 gives a

good first approximation and following a few iterations the frequency at which the peak

occurs, ωpk is obtained.

Back substitution into equation 4.80 will give the magnitude of the closed loop response

at the peaking frequency. The peaking with respect to the closed loop DC gain is given by

(4.88)

For the system illustrated by figure 4.26, the peak frequency occurs at ωpk = 26.95Mrad/s

(4.29MHz), giving a relative peaking of Mpk = 2.65 (8.46dB).

It is possible to avoid the above computational effort if a rough estimate of the degree of

peaking is acceptable. By definition the phase margin, pmG, is obtained when the

magnitude of the open loop response is equal to one. From equation 4.80 the amount of

peaking at the phase margin frequency when the loop is closed is then

(4.89)

At the gain margin frequency the phase of the open loop transfer function is −π. The

amount of relative peaking at the gain margin frequency is then

(4.90)

where gmG (the gain margin) is not in dB but in linear form.

The peaking can thus be approximately determined for the system plotted in figure 4.26
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(pmG = 30°) giving, Mpm = 1.93 (5.72dB) and Mgm = 2.02 (6.09dB). The peaking will be

greater than these factors (in this case 2-3dB), but the method still provides a reasonable

qualitative estimate. Since the margins are naturally small when peaking occurs, the

degree of peaking can also be qualitatively assessed by how close the amplifier

characteristics are operating to the stability boundaries given in figures 4.11 and 4.17.

It is interesting to note that if distortion is present at the peaking frequency then it too will

be increased along with the noise.

From a stability point of view the positioning of the filtering function G(s) is irrelevant.

From the noise point of view however, the position of the filter can have a significant

effect. When the noise sources are referred to the input as in figure 4.25(b) it is easy to

compare the relative contribution of each noise source. At low frequencies, noise from the

demodulator chain n3 dominates since 1/G(s) ≈1. At higher frequencies1/G(s) rises and

consequently n2 becomes the dominant noise source. For low in-band noise K3 must be

kept small (and hence L3 is small), and for low out-of band noise K1 must be large (i.e the

compensation must be applied as far up the amplifier chain as possible making K2 small).

There are practical limitations which govern how small K3 and K2 can be made. K2

represents the gain of the RF sections of the cartesian feedback loop. There must be some

gain in these circuits to enable RF power amplification. As K2 is lowered the drive signal

into the Up-converting quadrature modulator is increased leading to the increased

generation of intermodulation distortion. K2 is therefore constrained by distortion

considerations. Similar constraints exist on K3. If the demodulated signals are too large,

the down-converting quadrature demodulator will generate unacceptable levels of

intermodulation distortion. Therefore K3 and hence L3 are also constrained by distortion

considerations.

The darker trace (bottom trace) of figure 4.27 shows the improvement which can be

achieved by moving the filtering away from the summation point whilst under the

practical constraints described above. The lighter trace of figure 4.27 was a measurement

Noise Considerations
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taken with the filtering placed right after the summation point (the worst point for out of

band noise). These experimental results demonstrate the advantage of placing the filter as

far away as possible from the summation point. The darker trace of figure 4.28 is a

zoomed-in plot of the darker trace of figure 4.27 showing the narrowband closed-loop

performance of the linearized transmitter.

4.9 CONCLUSION

The piecewise MIMO analysis presented demonstrates how RF amplifier non-linearity,

the RF phase adjuster setting, and loop gain effect the stability of the cartesian feedback

loop. It was shown that when the amount of RF phase introduced by AM/PM distortion

and by RF phase adjuster error equalled the original phase margin, instability resulted.

The graphical technique developed from this fact, demonstrates the important

mechanisms which influence stability and can be utilized at the design stage, or in the

practical assessment of an experimental cartesian loop.

Non-linear amplifiers have complex gains which vary and hence cannot be represented by

a series of fixed complex gains in a piecewise stability analysis. Instead an additional
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Figure 4.28: Measured narrowband spectrum of a cartesian feedback transmitter. Lighter trace indicates

unlinearized open-loop two-tone test. Darker trace shows linearized closed-loop response with worst case
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parameter to the complex gain is needed to represent the effects of amplitude and phase

non-linearities.

Placing the non-linear amplifier model developed into a MIMO model of a cartesian

feedback loop, enabled a stability analysis to be made. The results from the analysis were

presented in graphical form. The stability boundaries shown in this analysis gives an

indication as to how stable a given RF amplifier will be when placed in a cartesian

feedback loop. The curves derived from the simplified amplifier model (weak non-

linearities) are shown to give a worst case stability boundary for the full comprehensive

amplifier model. The simple graphical approach of section 4.3 is therefore a good design

tool for cartesian feedback systems. The only amplifier parameters required by the model

are the worst case gain (largest of the differential and absolute gain) and the amplifier

phase rotation. 

For the BLU98 low power amplifier used in the analysis suitable for non-linear

amplifiers, it was found that: if the RF phase adjuster was adjusted above optimum,

instability resulted just after the transistor turn-on region. When adjusted lower than

optimum, the instability resulted at transistor saturation.

When placed in a feedback loop the perturbed behaviour of non-linear RF amplifiers

display two forms of operation - Spiral mode and Stationary mode. When spiralling is in

effect, the noise within the cartesian feedback loop will tend to cause the noise floor of the

output spectrum to rise on one side depending on the direction of the spiralling. The

direction of this spiralling is in turn dependent on the setting of the RF phase adjuster of

the cartesian feedback loop. When the phase adjuster is in the forward path, phase

adjustments lower than optimum, will cause the noise to rise on the right side of the

output spectrum (anti-clockwise spiralling) and vice-versa. With the phase adjuster in the

feedback path the reverse is true.

Loops with low stability margins were demonstrated to exhibit closed-loop peaking

Conclusion
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which can effect the out of band noise performance of a cartesian feedback transmitter.

The condition of no-peaking was derived (with δ = 0) along with the degree of peaking

resulting from a closed loop system with a single pole and a delay. In order to achieve a

non-peaking condition the phase margin of the loop needs to be around 60°. This is a

rather high margin since a first order system already forces the phase margin to be less

90°. This leaves less than 30° of phase shift, which can be easily consumed by RF

amplifier AM/PM distortion and misadjustment of the RF phase adjuster. This highlights

again that the RF amplifier needs to be rather linear for well behaved practical cartesian

feedback loops. And such loops should have a means of adjusting the RF phase adjuster

accurately and automatically. Alternatively a filtering at the output of the loop could be

used but this would be impractical since it would need to have a tunable center frequency

that could follow the carrier frequency. 

It was also shown how the degree of peaking could be approximately obtained from the

gain and phase margins. And finally it was also concluded and demonstrated that the loop

compensation should be placed as far up the forward chain as possible in order to

minimize the out-of-band noise floor.

Conclusion
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5 DYNAMICALLY BIASED 

CARTESIAN FEEDBACK

The previous chapters have largely examined conventional cartesian feedback. In the last

chapter two important system requirements for any linearization scheme were examined.

These were stability and noise performance.

Another important issue concerning linearization system is power efficiency. In this

chapter novel methods of improving the efficiency of cartesian feedback are presented

and investigated.

First, linearization schemes are grouped into classes based on efficiency. Section 5.1

discusses linearization schemes which modify the power supply of the RF power

amplifier being linearized and hence typically have high efficiency. Section 5.2 discusses

linearization schemes which modify the drive to the RF power amplifier being linearized

and which typically have good linearization performance. Cartesian feedback belongs to

this class of linearization schemes.

Section 5.3 shows how using the techniques discussed in section 5.1, the efficiency of

cartesian feedback can be improved whilst still maintaining good linearization

performance. A new linearization scheme is presented which utilizes an RF power

amplifier whose bias is varied to obtain good efficiency within a cartesian feedback loop.
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This scheme is called Dynamically Biased Cartesian Feedback.

In order to modify the bias in line with higher efficiency, the RF amplifier must be

extensively characterized. This too is given in section 5.3. These measurements were used

first to determine the correct bias for a given output and also as a basis for a

multidimensional amplifier model used in the simulations of section 5.4. The simulations

provide both the ideal and more realistic assessments of the performance of dynamically

biased cartesian feedback.

To efficiently alter the operating bias of a power amplifier, a switchmode power supply

(SMPS) is required. The implementation of this supply is given in section 5.5. And once

implemented, the dynamic bias concept was applied to the cartesian feedback loop

described in the previous chapters. The results from this system are given in section 5.6

5.1 HIGH LEVEL MODULATION LINEARIZATION TECHNIQUES

The use of high level collector, drain or anode power supply modulation is widely used in

AM transmitters. When combined with reasonably efficient high level power supply

modulators, this technique can achieve good linearity and efficiency.

Kahn [48-49] extended high level modulation to linear modulation schemes by utilizing

envelope elimination and restoration with SSB transmitters. Splitting the linear

modulation into the polar components of amplitude and phase enables the phase

component to be conventionally amplified by a high efficiency non-linear amplifier. The

amplitude component is then applied to the power supply of this amplifier which high

level modulates the RF output signal. The resultant linear amplifier retains the efficiency

and linearity attributes associated with high-level modulation.

Feedback can be incorporated into the polar concept to provide an improvement in

High Level Modulation Linearization
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linearity. The feedback can be applied to the amplitude only [50-53] or to both amplitude

and phase. Amplitude only feedback is applicable to systems where the AM/PM

distortion is low and generally is not suitable for amplifiers using BJT's. Full polar

feedback can control AM/PM distortion and often uses a PLL (Phase-Locked-Loop) to

facilitate phase feedback.

Although the polar loop has the potential for high efficiency, the amplitude and phase

components of many linear modulations (in contrast with AM-only systems) have wide

bandwidths as a result of the non-linear relationship between these components and the

actual modulation (in I,Q form). This is demonstrated for a two-tone test in figure 5.1,

where the amplitude and phase components are shown in both the time and frequency

domains. 

The polar loop components processing these polar signals must consequently be capable

of accommodating the larger bandwidths. Failing to do so minimizes the linearization

efficacy. The weakest link in regards to bandwidth is the high level power supply

modulator. If it is to accommodate high bandwidth signals effectively and utilize

Figure 5.1: Demonstration of polar components for a two-tone test in (a) time domain and (b) frequency

domain. RF signal given by top traces, amplitude component given by middle traces, and phase component

given by bottom traces.
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switched-mode techniques, the switching frequency must be made high. A high switching

frequency however, results in greater switching losses and this in-turn imposes a limit on

the bandwidth of the modulating signal. As will be shown, the dynamically biased

linearization technique discussed here relaxes the need for the high level modulator to

track the envelope exactly hence reducing switching frequency requirements.

5.2 RF DRIVE MODULATION LINEARIZATION TECHNIQUES

The source of excess power consumption in cartesian feedback[55-62] stems from the

manner by which the desired RF envelope output level is achieved. This class of

linearization scheme can only control the RF input of the power amplifier, it follows then

that the desired RF output envelope is achieved by a change in the amplifier RF input

drive level. Since in general, RF amplifiers operate more efficiently in saturation mode,

any reduction in amplifier RF input drive level results in the amplifier not operating at its

peak efficiency. This is especially true at low output levels in a given power control

range. It is therefore advantageous to maintain the amplifier RF input drive at a level

which achieves the highest power added or collector efficiency. With this constraint

however, the necessary envelope level modulation must be obtained by other means. The

means adopted here is by high level collector bias modulation used in addition to a

cartesian linearization system. This combination gives the excellent spectral control and

intermodulation distortion reduction of the cartesian linearization scheme coupled with

the high efficiency of the high level collector bias modulation.

5.3 DYNAMICALLY BIASED LINEARIZATION

Dynamic bias defined in the context of this thesis, is a term used to indicate a dynamic

variation in the RF amplifier bias operating point other than that caused by a change in the

RF input drive. High level collector bias modulation is one way this bias operating point

RF Drive Modulation Linearization
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can be varied dynamically (as in section 5.1). The bias operating point can also be

dynamically modulated by varying the DC base bias. This is not to be confused with

changing the RF input drive level discussed in section 5.2. Intuitively, one expects that a

certain combination of collector and base bias will give higher efficiency if chosen

correctly, for a desired output level.

Figure 5.2 (reproduced from figure 2.28) is a drawing of the dynamic bias concept applied

with cartesian feedback linearization. The circuits below the dashed box represents a

standard cartesian feedback loop as described in the previous chapters.

The dashed box shows the dynamic bias components which select the desired high

efficiency operating point. First the quadrature input signals are applied to an envelope

determining circuit. This circuit essentially determines the envelope R from the I and Q

inputs (i.e. ). The way by which R can be obtained may range from a DSP

circuit where R is determined via calculation or look-up table, to an analog computing

circuit or even detection of the RF envelope.

Figure 5.2:  Dynamically biased cartesian feedback transmitter.
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Once the R signal is obtained it is modified by the two functions shown as MAP C (for

collector) and MAP B (for base) in figure 5.2. These functions select the optimum RF

amplifier power supply voltage and DC base bias voltage for the desired RF envelope

output level.

These mapping functions were obtained by the following means: The RF power amplifier

was connected to the measurement apparatus which measured RF input level, RF output

(amplitude and phase) and power supply current consumption as shown in figure 3.3.

Since the power supply voltage was known, in addition to the RF parameters, power

added and collector efficiency could be determined. To obtain comprehensive

characteristics of the RF amplifier for use in the simulations of section 5.4, the following

parameters were swept: RF input drive level, DC power supply voltage (Vcc) and DC bias

voltage (Vbe).

The results of one sweep with Vbe = 0V is shown in figure 5.3 Note the results taken

actually consist of a number of these curves with different Vbe voltages. The mesh giving

the amplitude characteristics (figure 5.3(a)) shows how high level modulation on the

collector, with a fixed drive, can alter the desired output. This relationship is essentially

linear provided the drive level is sufficient (e.g Vin = 2.5Vrms). Figure 5.3(a) also shows

how RF drive modulation can effect the output whilst the collector bias is fixed but

requires some means of precorrected drive to achieve a linear output (such as those given

by the predistorted drive voltages shown in chapter 3). This is the characteristic

conventional cartesian feedback attempts to linearize. Figure 5.3(b) is the corresponding

phase characteristic of the amplifier. Some phase distortion is still present, whenever high

level collector bias modulation is applied.

A computer program was utilized to process the data such that optimum collector and

base voltages (for maximum efficiency) were generated as a function of the desired

output. The use of the desired output is necessary since the cartesian feedback loop alters

the RF amplifier drive input to keep the amplifier output equivalent to the system input.

Dynamically Biased Linearization
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Making the assumption that the system input is approximately equal to the amplifier

output, allows the maps to be driven from the magnitude of the system input (R) even

though they were determined from the output

The result of the data processing is shown in figures 5.4-5.5. Figure 5.4 shows the

optimum (for the best collector efficiency, ηcoll) collector bias voltage of the BLU98 low

power RF amplifier with the base voltage fixed to zero volts. Figure 5.5 gives the

optimum collector (figure 5.5(a)) and base bias voltages (figure 5.5(b)) when both are

dynamically varied. The straight-line approximation given by these graphs form the basis

Figure 5.3: Amplifier characteristics with vbe = 0 volts. (a) amplitude response, (b) phase response.
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of the maps C and B. The actual straight line approximation equation is given in each of

the figures.These equations will be used in subsequent sections to compare performance

when collector or power added efficiency is maximized. The circular dots are the actual

measurement data showing the measurement uncertainty and “bin” nature of the data/

function reversing process. Similar additional functions could be generated for maximum

power added efficiency (ηadd)[73] (figures 5.6-5.7). This would be applicable if the driver

stage to the amplifier being linearized was not operated in class A.

Some interesting amplifier features are demonstrated from the mapping functions. Figure

5.4 clearly shows that optimum collector efficiency is obtained when the collector voltage

is proportional to the desired output voltage. This is a somewhat expected result since the

RF output load impedance is constant. The combination of dynamically biasing the

collector voltage with Vbe = 0 was also implemented and measured, and is presented in

section 5.6.

Figure 5.5(a) also shows the same relationship for the collector voltage as described

above. Figure 5.5(b) shows that Vbe should be reduced as the desired output is reduced.

Figure 5.5: (a) Optimum collector and (b) base (i.e Vbe = variable) voltages for maximum collector

efficiency.
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This is because low desired RF outputs can be obtained with very little transistor gain

when the RF drive power is sufficient (as provided by a fixed power consuming class A

driver for example). And since collector efficiency does not consider the RF input power,

the data reversing functions naturally ignore RF input power and allow this low gain -

high drive operation. At higher desired RF output levels however, the drive power is not

sufficient and some gain is required to achieve the output objective. The extra gain is

provided by extra base bias.

Figure 5.6 also shows the increasing collector voltage for increasing outputs to some

extent. Except at low RF outputs the relationship is weak as indicated by the spread in the

points. This is caused by leakage through the RF transistor at low RF levels and is almost

independent of the collector voltage as the transistor is not biased on (Vbe = 0).

Figure 5.7(a) again also shows the increasing collector voltage for increasing output.

Compared to figure 5.6, the relationship is stronger at low level due to appropriate

application of base bias voltages (figure 5.7(b)). As the desired RF output is increased,

less base bias is introduced. This has the effect of effectively gradually swapping the DC

power injected into the transistor for RF power injected into the amplifier input. In

combination with increasing collector voltage, this swapping tends to linearize the

transistor transfer function and stabilize its gain over the desired RF output range (see

Figure 5.6: Optimum collector voltage for maximum power added efficiency (Vbe=0V).
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figure 5.10(b)). 

In section 5.4, simulations will be presented based on the function provided by figure 5.4.

This is performed to compare with an experimental system utilizing the same function

(presented in section 5.6), and to determine the efficiency improvement possible using 2-

tone test signals. The functions provided by figure 5.7 will also be presented in simulation

to further examine the linearization and efficiency improvements driving the base can

provide.

Referring back to figure 5.2, the resultant signals from the MAP B and MAP C functions

are applied to the RF power amplifier by power supply drivers. The driver discussed in

this thesis which was used for the high level collector bias modulation utilized a switched

mode power supply in a “buck” configuration (see figure 5.11 & appendix B). Other

power supply techniques such as resonant, semi-resonant, or multi-resonant supply

converters, or Class D modulators could also have been suitable.

It will be shown in the next sections that improvements in efficiency are achieved as a

result of the novel combination of high level collector bias modulation and cartesian

feedback. Additional improvements to linearization efficacy will also be shown when the

Figure 5.7: (a) Optimum collector and (b) base (i.e Vbe = variable) voltages for maximum power added

efficiency.
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base bias is also dynamically varied resulting in a system which has high efficiency and

high linearity.

The improvements in efficiency obtained with this system result from the dynamic bias

circuitry selecting the best operating bias for a given output signal and the cartesian

feedback adjusting the RF drive predistortion to the amplifier to achieve exact

linearization. This is in contrast to conventional polar feedback techniques which utilize

high level amplitude modulation in an effort to achieve both high efficiency and some

degree of linearization performance. To achieve reasonable linearization performance, the

SMPS in polar feedback must switch at a high frequency to enable it to accurately track

the desired high level collector bias modulation function.

With dynamically biased cartesian feedback however, the SMPS does not have to be

perfectly accurate and hence some error is allowed on the high level collector bias

modulation. This implies the SMPS can be allowed to switch at lower frequencies hence

reducing switching losses. The inband switching artifacts are removed by the action of

cartesian feedback, provided the collector voltage is higher than the minimum collector

voltage required for a given output level. The cartesian feedback loop can hence pull back

the RF drive level slightly to achieve the exact desired output.

5.3.1 Transistor Amplifier Gain Variations with Dynamic Bias 

The main disadvantage with changing the bias of a BJT based power amplifier is the gain

reduction when the collector and base voltages are lowered. Figure 5.8 shows a block

diagram used to calculate the differential and absolute gain of the RF power amplifier

whilst it is operated within a dynamically biased cartesian feedback loop. The absolute

and differential gain of the low power amplifier is given in figure 5.9 when the bias

generating functions for maximum efficiency are used (from figures 5.4-5.5). Amplifier

gain is important to assess. At low levels for example, the cartesian feedback loop is

Transistor Amplifier Gain Variations
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shown to operate with a smaller gain and hence will not be able to linearize as effectively.

While at high levels instability may result. One mitigating factor however is that

generally speaking IM distortion reduces at lower output levels. The dynamically biased

cartesian feedback loop should therefore be designed for stability at high levels.

If the power added efficiency is maximized when generating the bias driving functions,

the gain of the amplifier is more constant as shown in figure 5.10. The flattening of the

two gains as a function of output level hence indicates an improvement in linearity.

Collector
Bias

Function
(MAP C)

Figure 5.8:  Model used to determine RF amplifier gain within a dynamically biased cartesian feedback

loop.
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Figure 5.9: Differential and absolute gain as output is varied with (a) vbe=0 (b) vbe=variable, for

maximum collector efficiency.
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5.3.2 Stability and Dynamic Bias

The stability analysis presented in the previous chapter considered only fixed Vbe and Vcc

bias. Under these conditions only one amplifier curve is generated for the graphical

stability analysis.

Under dynamic bias conditions however a number of amplifier curves are generated. This

is due to the fact that the RF input drive into the amplifier (provided by the cartesian

feedback loop) is independent of the dynamically applied bias voltages (provided as a

function of the input signal). Furthermore the application of the dynamic bias is not

instantaneous but time dependent. To analyze stability therefore requires that the curves

(which have to be determined) be all placed on the graphically stability analysis approach.

If one assumes however that the dynamic bias is applied instantaneously and accurately,

then the input drive to the amplifier can be predicted and will also be unique. This would

therefore yield one amplifier curve and hence the stability analysis can be performed as

presented in the previous chapter.

g
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 (

d
B

)

Figure 5.10: Differential and absolute gain as output is varied with (a) vbe=0 (b) vbe=variable, for

maximum power added efficiency.
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5.4 SIMULATION RESULTS

Simulation of the dynamically biased cartesian feedback loop (figure 5.2) required the

addition of a SMPS to the earlier cartesian feedback loop simulations. This was

performed in a brute force time domain fashion using appropriate difference equations for

a given SMPS state. A linear driver was used to drive the base voltage of the BJT

amplifier and was assumed to be lossless.

The simulation of the switched-mode driver was performed in accordance with the

diagram shown in figure 5.11. This circuit is commonly referred to as a “buck” converter

and enables step-down conversion. Regulation is achieved by controlling the switch with

a Pulse Width Modulated (PWM) waveform. This simulation utilizes a conventional free-

wheeling diode to maintain inductor current flow when the active switch is off. The diode

voltage drop and various resistive losses are also shown in the diagram. The values used

for the SMPS simulation are given below:

Switch: RSWon 0.5Ω RSWoff 400kΩ Ton/Toff 60ns

Diode: RDon 0.2Ω RDoff 100kΩ VDon 0.5V

Ind.: RL 0.046Ω L 100µH

Cap.: RC 0.003Ω C 220nF

Figure 5.11: Buck convertor circuit used in simulations.
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The simulation model of the switched-mode driver is designed to model the dynamic

nature of the circuit as it tracks a desired output voltage. Most of the losses associated

with the SMPS are included except for the quiescent DC power of the drive and feedback

circuits. The results therefore provide an indication of real performance especially since a

well characterized power amplifier is used as the SMPS load.

The control of the switch was by way of free-running feedback and hysteresis. The

dynamic components were simulated by difference equations. The difference equations

used to model the reactive components of the buck circuit were arranged to be functions

of demanded output current (see Appendix A). With the components shown the highest

switching frequency was 150kHz.

Using the functions developed from figures 5.4-5.7 it is possible to generate numerous

simulations each examining different dynamic bias functions. The number of simulations

is further increased if the ideal situation of applying dynamic bias is compared with the

real application of the high level collector bias modulation by a SMPS. Some of the

simulated advantages of dynamically biased cartesian linearization are demonstrated in

figures 5.13 and 5.14 for a two-tone test with an average output power in dBm. The

intention with all of these curves is to compare the performance of two different dynamic

bias systems with conventional cartesian feedback under static power supply conditions.

Note the term “static” refers to the fact that the supply is fixed for a certain output power

(as is often used in conventional power control). With dynamic bias some attempt to track

the RF envelope dynamically is made. As expected this generally results in an

improvement in efficiency. 

Figure 5.12 defines schematically the various simulations performed and presented in

figures 5.13 and 5.14. The solid line of figure 5.13(a) shows the collector efficiency of

conventional cartesian feedback with a fixed collector supply (figure 5.12(a)) and is

useful as a control trace for the comparison. Since the supply voltage is fixed at 13V,

efficiency falls as the output power is reduced (backed-off). Efficiency falls at the top end

Simulation Results
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when saturation is reached and the loop tries to maintain an unsaturated output.

The dot dashed trace of figure 5.13(a) gives the collector efficiency with Vbe = 0 when

the best static collector bias is applied to the amplifier ideally without SMPS dynamics

(filtering and switching effects) or losses (figure 5.12(b)). This is the ideal version of the

conventional power control technique described earlier. Since this curve does not include

any power supply losses it represents the best possible performance static collector bias

can achieve. As shown, collector efficiency improves as the power is reduced since the

power amplifier no-longer has to drop the entire supply voltage at these low power levels.

Vcc = 2.682 max(�Vo�) + 0.9247

Figure 5.12: Simulation conditions for: (a) Conventional cartesian feedback, (b) Ideal best static bias, (c)

Real best static bias, and (d) Real dynamic bias. v is the RF drive, Vo is the amplifier output, �Vo� is the

signal envelope, and max(�Vo�) gives the peak signal envelope.

PA

Vcc = 13VVbe = 0V

SMPS
with

losses

PA

+16V

Vcc = 2.82 max(�Vo�) + 0.0572Vbe = 0V 
SMPS

with/out
losses

PA

+16V

Vcc = 2.682�Vo� + 0.9247Vbe = −0.1392 �Vo� + 0.7319

v Vo

(a) Conventional fixed supply cartesian feedback. (b) Ideal best static bias as used in conventional

power control optimized for maximum collector

efficiency (upper equations from figure 5.4), and

maximum power added efficiency (lower

equations from figure 5.7).

Vov

(c) Real best static bias which includes the

dynamics (filtering and switching effects) and

losses of the SMPS. Equation for maximum

collector efficiency given. 

(d) Ideal dynamic bias with dynamics of SMPS

modeled, and real dynamic bias with losses of the

SMPS also modeled. Dynamic bias functions

optimized for maximum collector efficiency (upper

equations from figure 5.4), and maximum power

added efficiency (lower equations from figure

PA

Vbe = −0.1392 max(�Vo�) + 0.7319

v Vo

Vcc = 2.82 max(�Vo�) + 0.0572Vbe = 0V

Vcc = 2.82 max(�Vo�) + 0.0572Vbe = 0V
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Adding the simulated SMPS dynamics and losses gives the dotted trace of figure 5.13(a),

i.e. real best static bias (figure 5.12(c)). Here the simulation gives an expected

degradation in collector efficiency at higher power levels (compared with conventional

fixed supply) but improves as the output power is reduced. This is expected since at low

outputs the gains in collector efficiency are higher and hence offset the SMPS losses to a

greater extent.

Adding the dynamic collector bias function optimized for maximum collector efficiency

with Vbe = 0V (figure 5.12(d)) gives the dashed trace of figure 5.13(a) (i.e real dynamic

bias). Since tracking the envelope gives a greater improvement in the collector efficiency

than conventional power control, the SMPS losses experienced by conventional power

control are offset at all power levels. The simulations predict an improvement in collector

efficiency at the power levels shown when high level dynamic collector bias modulation

is applied to cartesian feedback.

Figure 5.13(b) gives the similar results for power added efficiency except Vbe is now

variable as obtained from figure 5.7. As in figure 5.13(a) the standard cartesian feedback

Figure 5.13: Improvement in efficiency with dynamic bias for (a) maximum collector efficiency with Vbe=0

and (b) maximum power added efficiency. Simulation conditions are defined in figure 5.12.
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loop (figure 5.12(a)) results are given by the solid trace as a comparison reference.

The dot-dash trace of figure 5.13(b), ideal best static bias (figure 5.12(b)), gives the

results of ideally applying (i.e no SMPS) the optimum fixed bias voltage for a particular

output power. This approach shows again a potential for a marked improvement in

efficiency especially at low output levels for this type of power control. With SMPS

losses however this improvement is expected to degrade at higher output powers.

The dotted trace of figure 5.13(b), ideal dynamic bias (figure 5.12(d), without SMPS

losses), gives the results of tracking the envelope of the desired output and applying the

appropriate bias dynamically under the restriction of the buck convertor filtering function.

This result shows again dynamic bias has the potential to improve the power added

efficiency above that given by static bias control.

The dashed trace of figure 5.13(b), real dynamic bias (figure 5.12(d) with SMPS losses),

shows the result of introducing the SMPS losses into the simulation. With the losses

simulated, an improvement in efficiency is predicted across all power levels. The SMPS

losses reduces efficiency by 12%-20% and indicates there is a potential for even higher

efficiencies with better SMPS techniques.

Figure 5.14 gives the linearization effectiveness of dynamic bias by plotting worst-case

intermodulation distortion product (IMW) versus two-tone output power. The

linearization effectiveness with different bias conditions are compared with the

unlinearized open loop performance of the power amplifier (dotted trace). The open loop

intermodulation performance actually improves relative to the carrier level as the output

power is raised. If the amplifier was driven even harder, then saturation would have

eventually occurred resulting in an increase in distortion. This intermodulation distortion

behaviour is characteristic of bipolar transistor power amplifiers not operating in class A.

Simulation Results
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The other curves give the performance of cartesian feedback with different biasing

schemes presented in figure 5.13. The solid trace again provides a reference back to

conventional one supply cartesian feedback (figure 5.12(a)).

In figure 5.4(a) the best static power supply selection for maximum collector efficiency

with Vbe=0 with the simulated SMPS supply is shown by the dot-dashed line (conditions

as per figure 5.12(b)), and dynamic bias is shown by the dashed line (conditions as per

figure 5.12(d)). The curves of figure 5.14(b) are the same except the functions chosen for

best static bias selection (conditions as per figure 5.12(b)) and dynamic bias (conditions

as per figure 5.12(d)) are those which maximize power added efficiency as opposed to

maximizing collector efficiency.

From figure 5.14(a) it is evident that when favouring collector efficiency the linearization

effectiveness does not change significantly, in fact a slight degradation results when

dynamic bias (dashed trace) is introduced. This is because the SMPS introduces switching

remnants into the output spectrum.

Figure 5.14: Linearization effectiveness of dynamic bias for (a) Dynamic and static supply chosen for

maximum collector efficiency, (b) dynamic and static bias chosen for maximum power added efficiency.
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Favouring power added efficiency does however yield improvements in linearization

performance, this improvement indicates that dynamic bias and best power supply

selection have a linearization effect by themselves. In fact, the relative flatness of the gain

curves presented in figure 5.10(b) tends to support the expected linearization

improvement given by dynamic bias. Also in the case of dynamic bias the improvement

in linearization is sufficient to overcome the switching remnants.

As an added benefit, the improvement in intermodulation performance delivered by the

base and collector modulation can be exchanged for extra bandwidth or stability in the

cartesian feedback loop. The useable power control range is also improved.

Since the power supply modulation is not used entirely for linearization purposes as in

polar feedback linearization systems, the modulation circuits do not have to be exact. This

is because the cartesian linearization scheme is able to modify the input drive signals

slightly to achieve the exact desired output. The feedback sees the switching ripple as an

undesired disturbance and attempts to control it out. The dynamically biased cartesian

feedback system can therefore tolerate ripple in a switch-mode driver which can also have

in-band frequency components. This allows the use of a simple free-running switched

mode supply which only occasionally switches at high rates.

5.5 IMPLEMENTATION OF SWITCH MODE POWER SUPPLY

A relatively simple switched mode buck convertor was constructed to experimentally

verify the improvement in efficiency and linearization performance. Dynamically biased

cartesian feedback was tested with the low power amplifier. Because the output power

was low, great care was taken in shaving off as many microamps as possible in the SMPS

control circuits. A schematic of the SMPS is given in appendix B.

The experimental buck type SMPS was similar to that presented in the previous section.

Implementation of SMPS
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A pnp transistor was used as the main switching element and a differential comparator

made up of discrete transistors was used to control it, using free running feedback from

the output.

Figure 5.15 shows the measured performance of the SMPS when operated from a 16 volt

power supply with the low power amplifier as the load. The efficiencies obtained were

deemed reasonable for use with the dynamically biased cartesian feedback loop. As is

common for this type of convertor the efficiency drops at low output powers because of

the relative increase in overhead current consumption of the control circuits and greater

relative losses in the flywheel diode when the output voltages are reduced.

5.6 MEASURED PERFORMANCE

A dynamically biased cartesian feedback loop was assembled using the low power

amplifier and the SMPS described in the previous section. An arbitrary waveform

generator was used to provide one baseband input into the cartesian feedback loop (Iin)

and a full-wave rectified reference voltage for the SMPS to apply to the collector of the

BJT RF power amplifier. There was no dynamic control of the base bias voltage Vbe. It

was set to 0V.

12 14 16 18 20 22 24 26
40

50

60

70

80

90

100

Two−Tone, Pout (dBm)

E
ff

ic
ie

n
c
y
 (

%
)

Figure 5.15: Measured efficiency of SMPS operating in static conditions with the amplifier as the load.
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A series of two-tone tests was performed. Figure 5.16 shows the results of one such test.

Figure 5.16(a) shows time domain voltages similar to those of chapter 3 except an

additional waveform is shown at the top. This waveform is the collector voltage presented

to the RF power amplifier by the SMPS.

With a tone separation frequency of 10kHz and an average output power of 20dBm, the

worst case IM product is −44dBc. This compares with −46dBc for the conventional

cartesian feedback loop (a degradation of 2dB, see figure 5.17(b)). The collector

efficiencies for the dynamically biased case is however 67% compared to 47% (using the

same power meter/dc power measurement apparatus in both cases). This represents an

improvement of 20% inclusive of all of the SMPS losses.

When the separation frequency is low the free running SMPS will tend to switch at a high

rate on the upward swing of the collector voltage envelope. This means some switching

remnants will fall outside the cartesian loop bandwidth. Figure 5.16 shows these remnants

roughly centred around 140kHz. The worst of these components is −44dBc which is

comparable to the worst case close in-band product.

Figure 5.16: Measured time domain and frequency domain results while under dynamic bias. Traces in (a)

from top to bottom: collector voltage (Vcc), I &Q predistorted drive signals (Vi & Vq), and I & Q output

signals (Vio & Vqo). Input to system was a single sinewave in the I channel.
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A series of two-tone tests were preformed to yield the graphs of figure 5.17. The figure

concisely shows the performance of dynamic bias of the collector with different operating

conditions whilst under power control and is similar to some of the results presented in

section 5.4. 

The solid traces are again used as the comparison reference. Adjusting the power supply

staticly as a function of output power yields a significant improvement in collector

efficiency (dotted lines). This improvement is degraded once the SMPS losses are

included in the measurement (dot-dashed trace). No improvement is achieved at high

output levels. With dynamic bias however (dashed traces), the collector efficiency is

improved over the power control range measured. The improvement is good enough to

justify the added SMPS circuitry for systems that are expected to require output power

control. If however the amplifier is to be operated at maximum efficiency only (no power

control), then the 2% improved efficiency does not justify the extra circuitry involved. 

Figure 5.17(b) shows the equivalent linearization performance. The dotted trace

represents the unlinearized open loop worst case intermodulation distortion products

relative to the desired carrier tones. Applying cartesian feedback results in a significant

Figure 5.17: Measured performance of dynamic and static supply chosen for maximum collector efficiency,

(a) Efficiency performance and (b) linearization performance.
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improvement (around 35dB) as shown by the solid trace. 

With the SMPS providing the power supply voltage to the RF power amplifier, the worst

case intermodulation distortion products are slightly improved at lower powers and

slightly degraded for most of the rest of the output levels. This degradation was predicted

in the simulations when collector only dynamic bias was applied (see figure 5.4(a)).

Closer inspection of figure 5.16(b) shows that the third order IM product on the right side

of the spectrum is slightly higher than that of the left (see figure 5.18(a) for greater detail).

The cause of this is the result of applying collector modulation via the dynamic bias

circuits which is delayed relative to the main drive modulation.

Figure 5.18(a) shows a zoomed-in version of the output spectrum given in figure 5.16(b).

In figure 5.18(b), the baseband input has been delayed by 4 degrees to equalize the IM3

products either side of the centre frequency. This delay marginally improved the

efficiency by 0.3% to 67.3% whilst the worst case IM product improved by 0.8dB to −

44.8dBc.

The conclusion is then that some minor improvements can be obtained by equalizing the

delays through the high level path and low-level path.
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Figure 5.18: Equalization of Switched-mode delay.(a) No delay equalization, (b) with delay equalization.
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5.7 CONCLUSION

It has been shown that dynamic bias applied to an RF amplifier's bias and supply lines can

enhance the efficiency of the cartesian feedback linearization process. The efficiency

improvement is higher at lower output powers. The improvement is reduced when a

switched-mode driver is included in the dynamic bias circuitry. The reduction is caused

by dynamic tracking errors and by losses inherent in switched-mode power supplies. In

cases where the amplifier is operated at maximum output power this degradation will be

unacceptable and conventional cartesian feedback will be more cost effective. However

when power control is necessary and operation at reduced outputs permitted, dynamic

bias can lead to more than a halving of the DC power required for a given output power.

Since the cartesian feedback automatically adopts the necessary state to maintain exact

linearization, the problem of having to generate wideband and accurate high level

modulation found in polar feedback techniques is avoided. This enables the use of

relatively simple SMPS drivers with lower switching frequencies and greater output

ripple. In-band switching residues caused by ripple are reduced by loop gain. The largest

switching residue spectral component was of the same magnitude of the third order

intermodulation product.

Substantially characterizing the BLU98 low power amplifier enabled base bias and

collector bias functions to be determined that enhance the performance of conventional

cartesian feedback. This was shown by comparing the differential and absolute gains

whilst base and collector bias voltages were varied in accordance with these functions.

The benefits of dynamic bias were also directly simulated. Some of these simulations

included a simulated SMPS and gave good agreement with measured results for the

intermodulation performance of the various schemes (figures 5.14(a) and 5.17(b)). The

curves were within about 2dB of each other over most of the power output range. The

large deviation at the end was due to the simulated amplifier reaching saturation

approximately 1dB before the measured amplifier. The efficiency curves (fig. 5.13(a) and

5.17(a)) were also in good agreement, being within about 5% of each other. A notable

Conclusion
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exception was the dynamic bias curve which had much better efficiency at low power

levels than predicted from the simulations. The most probable reason for this is that

dynamic behaviour of the SMPS was difficult to reproduce, particularly when it was

tracking a changing signal, since the control circuit was heavily modified to reduce the

quiescent overhead current taken by this part of the circuit. Some of the modifications

affected the switching operation (threshold and hysteresis levels) and so changed the

dynamic behaviour. Apart from this, the agreement was surprisingly good, considering

the combined difficulties of RF measurements and SMPS design.

Design of the SMPS was not easy. At the time (and even now) an acceptable IC did not

exist - most having too high a quiescent current for the control circuits. This overhead

current killed any potential for efficiency improvements of dynamic bias. A discrete

solution was adopted since this allowed small quiescent currents, and other power saving

ideas such as returning control currents to internal voltage lines other than to ground (see

collector of Q3, appendix B) as would be done in conventional designs. The SMPS would

not perform as well in mass production since the transistors were individually selected

from a small batch for high gain! Future work should include a more robust SMPS design,

hopefully with even higher efficiency as well as being capable of accommodating a wider

tolerance spread in components. 

Still, the SMPS was constructed and achieved an efficiency of 95% at high output levels.

When applied to a cartesian feedback loop efficiency was markedly improved and at an

output power of 20dBm average, the efficiency improved by 20%, leading to a reduction

in power amplifier current consumption of 33%. The worst case intermodulation

distortion product degraded however by 2dB as a result of switching remnants.

The efficiency improvement was greater at lower output powers and less at higher output

powers (2% at 24dBm). The use of power control in radio systems is now common

practice and as the density of basestations increases the need for high transmitter powers

reduces, which makes dynamic bias schemes such as this more effective.

Conclusion
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Delay in the dynamic bias circuitry was also examined. It was found that equalizing this

delay marginally improved both efficiency and the worst case intermodulation product.

All performance measurements were based on a two-tone test. More practical signals

have less dynamic range (i.e π/4 shift QPSK) and this should improve the tracking of the

SMPS, leading to an expected improved performance, both in terms of efficiency and

spectrum output.

Conclusion
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6 CONCLUSION

The motivation for the research presented in this thesis is derived from the move towards

spectrally efficient modulation schemes with varying envelopes. These signals require

linear processing in modern transceiver architectures and this includes the RF power

amplifier in the transmitter. In addition to linearity, the RF power amplifier must also be

power efficient, small and of low cost. The first three requirements are met by taking an

efficient yet non-linear amplifier and applying a linearization means to reduce distortion.

Whilst the cost requirement is met by selecting relatively simple hardware, such as that

used in a typical cartesian feedback loop.

The background material of chapter 2 presented the effects of amplifier distortion on

communications systems particularly on adjacent channels. Feedforward, vector

summation, predistortion and feedback were examined and compared, each as possible

means by which efficient non-linear powers amplifiers can be linearized.

Various aspects of cartesian feedback were investigated in chapters 3, 4, and 5. In chapter

3, two RF power amplifiers were carefully measured and characterized. The

characterization process presented eliminated the erroneous effects of network analyzer

power levelling uncertainty by the addition of an external power meter. Amplifier current

consumption was also characterized giving accurate amplifier models that could also

predict efficiency performance. Care was also taken with modelling the frequency
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dependent components in the cartesian feedback loop. Since most of the loop components

were wideband compared to the modulation bandwidth, the system was modelled with a

single pole filter and a delay. The delay was designed to model the effects of high

frequency poles and zeros along with through transmissive delay. Since stability is an

important issue in all feedback systems, the digital domain simulation of the frequency

dependence was performed by bilinear transformation. This enabled bode responses to be

accurately simulated and could hence be used as a platform for bode stability analysis.

These models enabled simulations to be performed which predicted performance to

within 2dB (IMD) and 4% (for efficiency calculations) of the practical measurements.

The simulations were backed up with experimental hardware that demonstrated cartesian

feedback as a means of obtaining linear amplification with good efficiency. The best

results showed that the low power amplifier (Vbe = 0V) is capable of achieving −62dBc

with a collector efficiency of 42% when transmitting π/4 QPSK. Cartesian feedback

improves the intermodulation distortion by 36dB for a two-tone test and 44dB for π/4

QPSK modulation, no doubt because π/4 QPSK modulation avoids the zero crossing

region of the amplifier characteristics (unlike the two-tone test). The effect of changing

base bias was also examined in chapter 3. It was shown that with a two-tone test, adding

base bias could reduce closed loop intermodulation distortion by 18dB, however

efficiency was reduced by 14% as a result. 

Chapter 4 presented the piecewise MIMO analysis which demonstrated how RF amplifier

non-linearity, the RF phase adjuster setting, loop gain, bandwidth and delay affect the

stability of the cartesian feedback loop. It was shown that instability resulted when the

amount of RF phase introduced by AM/PM distortion and by RF phase adjuster error

equalled the original phase margin. The graphical technique developed from this fact,

demonstrates the important mechanisms which influence stability and can be utilized at

the design stage, or in the practical assessment of an experimental cartesian loop.

Non-linear amplifiers cannot be represented by a series of fixed complex gains in a

Conclusion
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piecewise stability analysis. Instead an additional parameter to the complex gain is

needed to represent the effects of amplitude and phase non-linearities. This is because the

complex gain changes with the phase of the input perturbation.

Placing the developed non-linear amplifier model into a MIMO model of a cartesian

feedback loop, enabled a stability analysis to be made. The results from the analysis was

presented in graphical form. The stability boundaries shown in this analysis gives an

indication as to how stable a given RF amplifier will be when placed in a cartesian

feedback loop. For the very non-linear BLU98 low power amplifier used in the analysis, it

was found that instability resulted just after the transistor turn-on region when the RF

phase adjuster was adjusted above optimum, and instability resulted at transistor

saturation when adjusted lower than optimum. This was also shown with experimental

hardware.

The perturbed behaviour of non-linear RF amplifiers display two forms of operation when

placed in a feedback loop - Spiral mode and Stationary mode. Spiralling will tend to cause

the noise floor of the output spectrum to rise on one side depending on the direction of the

spiral. The direction is in turn dependent on the setting of the RF phase adjuster of the

cartesian feedback loop. When the phase adjuster is in the forward path, phase

adjustments lower than optimum, will cause the noise to rise on the right side of the

output spectrum (anti-clockwise spiralling) and vice-versa. With the phase adjuster in the

feedback path the reverse is true.

The amplifier model (and hence the analysis) can be simplified if the amplifier only has

weak non-linearities (class A or AB). Here, there is only one stability boundary

corresponding to the worst case of all the stability boundaries of the general case. The

important amplifier parameters are the worst case gain (differential or absolute) and the

amplifier phase rotation. This analysis is much simpler and could be used as a practical

engineering design tool.

Conclusion
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Loops with low stability margins were demonstrated to exhibit closed-loop peaking

which can effect the out of band noise performance of a cartesian feedback transmitter.

The condition of no-peaking was derived (with δ = 0) along with the degree of peaking

resulting from a closed loop system with a single pole and a delay. In order to achieve a

non-peaking condition the phase margin of the loop needs to be around 60° for the first

order case described. It was also shown how the degree of peaking could be

approximately obtained from the gain and phase margins. Finally it was concluded and

demonstrated that the loop compensation should be placed as far up the forward chain as

possible in order to minimize the out-of-band noise floor.

In chapter 5 the concept of dynamic bias modulation was introduced. The method shown

works by setting up optimum bias conditions for the power amplifier and then having the

cartesian feedback loop make fine adjustments to the RF drive to achieve the required

output. This way the bias conditions do not have to be applied perfectly implying simple

(i.e low switching frequency) SMPS can be used.

Substantially characterizing the BLU98 low power amplifier enabled base bias and

collector bias functions to be determined that enhance the performance of conventional

cartesian feedback. This was shown by comparing the differential and absolute gains

(which tended to equalize) whilst base and collector bias voltages were varied in

accordance these functions. The benefits of dynamic bias were also directly simulated.

Some of these simulations included a simulated SMPS.

A simple buck SMPS was constructed. It achieved an efficiency of 95% at high output

levels. When applied to a cartesian feedback loop efficiency was markedly improved and

at an output power of 20dBm average the amplifier’s efficiency was lifted from 45% to

67%, an improvement of over 20%. This would reduce current consumption by 33%. The

worst case intermodulation distortion product degraded however by 2dB as a result of

switching remnants.

Conclusion
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Delay in the dynamic bias circuitry was also examined. It was found that equalizing this

delay marginally improved both efficiency and the worst case intermodulation product. 

6.1 CRITIQUE AND FUTURE WORK

It was shown in chapter 4 that delay, gain and bandwidth are essentially interchangeable.

Delay hence consumes distortion reducing gain and valuable bandwidth. The only

seeming exception (section 2.6.2) does broaden the bandwidth for a given delay but

involves placing independent loops resulting in a discontinuous linearization spectrum.

Nature does not yield so easily however, and delay is delay. When feedback is involved

delay has detrimental consequences and ultimately places the fundamental limitation as to

what continuous spectrum gain bandwidth can be achieved.

The so called delay in the constructed cartesian loop is mainly comprised of pole/zero

induced phase shifts and some true transmissive delay. Reducing the physical size of the

loop (say by chip integration) would yield some transmissive delay reduction but the

largest reductions in so called delay can be achieved by careful wideband design. This has

implications for all of the circuits which comprise the loop. The RF power amplifier must

be made as wideband as possible whilst still ensuring carrier harmonics are not radiated at

the output or applied to the feedback quadrature demodulator. The baseband processing

circuits must also be wideband indicating the use of high FT transistors/op-amps. The

essential loop itself should also be as simple as possible and involve as few filtering

inducing components as possible whilst maintaining the large FT.

The delay not only influences the amount of loop gain that can be applied but also has a

big impact on the closed loop transfer function (i.e high frequency peaking) and hence the

out of band noise performance. Whilst moving the loop filter as far up the driving chain

mitigates this problem, it may not be sufficient for all applications. And hence it all comes

back to reducing loop delay by applying the techniques described above.

Critique and Future Work
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The stability analysis presented in this thesis assumed that the amplifier was relatively

wideband and hence memoryless. The effects of memory on stability is therefore an area

worthy of investigation especially when evidence of asymmetrical IMD is present.

Further work on the stability analysis could also include examination of the influences of

dynamic bias.

Automatic setting of the phase adjuster is another area worthy of further investigation

although some solutions have been presented in the literature. In chapter 3 the

relationship of current consumption with optimum phase adjuster setting was presented.

This relationship could be used in an alternative automatic phase adjuster approach.

Automatic phase adjustment may also be a way of adjusting out phase changes caused by

RF amplifier load variations.

Although efficiency and linearity issues under power control were examined in Chapter 5,

the noise and DC offset performance was not examined. The problems of DC offset could

be accommodated through the use of CRISIS like circuits applied to the input of the

cartesian feedback loop and could also have the additional benefit of providing

corrections for all quadrature demodulator errors. Noise performance under power control

is another matter and would require careful examination of signal levels around the loop

and perhaps the introduction of variable gain devices to maintain optimum signal levels.

Critique and Future Work
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APPENDIX A

SMPS DIFFERENCE EQUATIONS

The simulations presented in chapter 5 utilized a difference equation representation of the

SMPS circuit given in figure 5.11. This enabled the SMPS to be simulated in the digital

time domain along with the cartesian feedback loop and other components.

The output circuit in the SMPS which is modelled as a series lossy L with a shunt lossy C

can be considered as a two-port network with the node voltages and currents as shown in

figure A.1.

Since the amplifier models used throughout this thesis provide the demanded current

consumption for a given amplifier input power and voltage bias conditions, the SMPS

Figure A.1: Two-port representation of output section of SMPS convertor.
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model needs to be described as a function of demanded SMPS output current (Io) for a

given input voltage (Vi) i.e

(A.1)

For network of figure A.1 this gives

(A.2)

(A.3)

For the L and C output circuit of the SMPS, assigning Z1 = RL + sL and Z2 = RC + 1/sC

gives (respectively)

(A.4)

(A.5)

In differential form equations A.4 and A.5 are

(A.6)

(A.7)

Backward difference differentiation over time T (where T is one over the sample rate),

transforms equations A.6 and A.7 to corresponding difference equations

Vo f Io Vi,( )=

Ii f Io Vi,( )=

Vo Io

Z1Z2

Z1 Z2+
------------------– Vi

Z2

Z1 Z2+
------------------+=

Ii Vi

1

Z1 Z2+
------------------ Io

Z2

Z1 Z2+
------------------+=

Vo VosC RL RC+( )– Vos
2
CL– VisCRC Vi Ios CRLR

c
L+( )–+ +=

IoRL– Ios
2
CLRC–

Ii IisC RL RC+( )– Iis
2
LC– VisC IosCRC Io+ + +=

Vo td

dVo
C RL RC+( )–

t
2

2

d

d Vo
CL–

td

dVi
CRC Vi td

dIo
CRLR

c
L+( )–+ +=

IoRL–
t
2

2

d

d Io
CLRC–

Ii td

dIi
C RL RC+( )–

t
2

2

d

d Ii
LC–

td

dVi
C

td

dIo
CRC Io+ + +=
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(A.8)

(A.9)

Introducing the z-d operator which signifies performing a delay operation of d times T and

rearranging finally gives

(A.10)

(A.11)

Equations A.10 and A.11 can be directly used in a digital time domain simulation to

model the L and C part of the SMPS. The switching parts can be modelled by considering

the rest of the SMPS circuit as given in figure A.2.

The equations have to again be arranged as in equation A.1 to accommodate the use of the

Vo
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amplifier models

(A.12)

There are four states this circuit can exist in depending on whether if the switch is open or

closed in combination with whether the diode is conducting or not.

With the switch closed and the diode open

(A.13)

(A.14)

With the switch closed and the diode conducting

(A.15)

(A.16)

With the switch open and the diode open

(A.17)

(A.18)

And finally with the switch open and the diode conducting

Figure A.2: Switching part of SMPS.

RI

RH

RD

VD

VSW

Ii

Vi

VS

Io

Vo

(Diode)ID

Diode sensing
variables

Vo f Io Vi VSW,,( )=

Ii f Io Vi VSW,,( )=

Vo Vi IoRI–=

Ii Io=

Vo

ViRD VDRI– IoRIRD–

RI RD+
-------------------------------------------------------=

Ii

Vi VD IoRD+ +

RI RD+
-------------------------------------=

Vo Vi IoRH–=

Ii Io=

SMPS Difference EquationsAppendix A



177

(A.19)

(A.20)

Since the diode is modelled as being either conducting or not (much like a resistive switch

with a dropping offset voltage), a sensing method is required to determine what state the

diode is in. The state of the diode must again be determined as a function of Io, Vi and the

state of the switch (equation A.12) but it is also dependent on the previous state of the

diode itself with the sensing method described below.

If the diode is previously not conducting then the voltage across the open diode can be

sensed (Vs) to determine what the next diode state should. With the switch closed then

(A.21)

And with the switch is open

(A.22)

The next diode state is hence given by

(A.23)

If the diode is previously conducting then the current through the closed diode can be

sensed (ID) to determine what the next diode state should. With the switch closed then

(A.24)

And with the switch is open

(A.25)

The next diode state is hence given by

(A.26)

Vo

VIRD VDRH– IoRHRD–

RH RD+
-----------------------------------------------------------=

Ii

Vi VD IoRD+ +

RH RD+
-------------------------------------=

VS VI VD– IoRI–=

VS VI VD– IoRH–=

IF VS 0 THEN CLOSE DIODE<

ELSE KEEP DIODE OPEN

ID

Vi VD IoRH–+

RH RD+
------------------------------------=

ID

Vi VD IoRH–+

RH RD+
------------------------------------=

IF ID 0 THEN OPEN DIODE>

ELSE KEEP DIODE CLOSED
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The models of both the reactive components and switching components as described

above were cascaded to form the complete model of the SMPS in the simulations

presented in chapter 5.

SMPS Difference EquationsAppendix A
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APPENDIX B

SMPS SCHEMATIC
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