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LINEARIZATION OF SECOND-ORDER
NONLINEAR OSCILLATION THEOREMS

BY

MAN KAM KWONG1 AND JAMES S. W. WONG

Abstract. The problem of oscillation of super- and sublinear Emden-Fowler
equations is studied. Established are a number of oscillation theorems involving
comparison with related linear equations. Recent results on linear oscillation can
thus be used to obtain interesting oscillation criteria for nonlinear equations.

1. We are concerned here with the oscillatory behaviour of continuable solutions
of the following second-order nonlinear differential equation on [0, oo);

(1) y"(t)+a(t)f(y(t)) = 0,       /e[0,oo),
where a{t) is piecewise continuous and/is a continuously differentiable function on
(-00, oo ) such that

(2) yf(y)>0   fory^O,   and   f'(y)>0.

The prototype of (1) is the so-called generalized Emden-Fowler equation

(3) y"(t) + a(t)\y(t)\ySgny(t) = 0,

where y > 0 is a positive constant. Equation (3) is called superlinear if y > 1 and
sublinear if 0 < y < 1. We call an equation oscillatory if all its continuable solutions
are oscillatory.

When y ¥= 1 and a(t) is nonnegative, Atkinson [1] and Belohorec [3] established
necessary and sufficient conditions for the oscillation of (3). When a{t) is allowed to
take negative values, the conditions of Atkinson and Belohorec are known to be
sufficient for oscillation, see Kiguradze [18] and Belohorec [4]. Recently, these results
have been further extended by Kwong and Wong [21]. Unfortunately, these results
are effective only in cases when a certain integral involving the coefficient a(t)
diverges and are not very effective in dealing with the prototype cases when
a(t) = tx sin t, tx cos t or more generally r\f>(0 where <í>(í) is periodic of mean value
zero. See recent results by Butler [5,6,8] and Kwong and Wong [21,22].

A different approach is to relate the oscillation problem of (3), or more generally
(1), to that of some linear second-order differential equation. There is a vast
literature on linear oscillation; see for example Hartman [15], Barrett [2], Rab [31],
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706 M. K. KWONG AND J. S. W. WONG

Coppel [11], Wong [38,39], Willen [36] and the many references therein. In spite of
such a voluminous collection of oscillation results, some new and fairly general
results have recently been developed in Kwong [20] and Kwong and Zettl [24,25].
The purpose of this paper is to relate these results to that of the second-order
nonlinear equation (3) or more generally (1) by way of comparison.

2. The first results relating nonlinear oscillation of (3) to that of the linear
equation

(4) x"(t) + a(t)x(t) = 0,       iE[0,oo),
could be found in Utz [33]. Equation (4) is called strongly oscillatory if the equation

x"(t) + ca(t)x(t) = 0,

is oscillatory for every positive constant c. Let us, for later use, call (4) weakly
oscillatory if the above equation is oscillatory for some positive constant c. Notice
that for the Emden-Fowler equation (3), y # 1, the concepts of strong oscillation,
oscillation and weak oscillation are equivalent, because solutions of

y"(t) + ca(t)\y(t)\'sgny(t) = 0

are simply multiples of those of (3).
Unfortunately, Utz's results on oscillation were rather fragmentary. More com-

plete results may be found in Erbe [13] and Wong [41].

Theorem A (Wong [41]). Suppose that f(y) satisfies (2) and there is a positive
constant c such that f'(y) > c > 0 for all y E (-00,00). //, for this fixed c, (4) is
oscillatory, then ( 1 ) is also oscillatory.

Theorem B (Erbe [12]). Suppose that the function f(y) satisfies

(5) f'(y)>f(y)/y>o fory^o,
(note that condition (5) implies (2)) and that a(t) satisfies

(6) liminf f'a(s)ds>0
i—00    •'T

for all large T. Then if the linear equation (4) is strongly oscillatory, so is (1).

We shall derive other theorems of the same sort in the next three sections. Let us
first see how Theorem A follows from the classical Picone-Sturm Comparison
Theorem for the linear equation. The same arguments prevail in many of the proofs
in the rest of the paper. Let y(t) be a nonoscillatory solution, then r(t) =
-y'(t)/f(y(t)) satisfies the Riccati differential equation

r'(t) = a(t)+f'(y(t))r2(t),       >e[/0,oo),

for some t0 5* 0. If we let/>(i) = l/f'(y(t)), then the Riccati equation

(7) r'(t)=a(t) + r2(t)/p(t),

has a solution on [t0, 00). It is well known that this is equivalent to the nonoscilla-
tion of the linear equation

(8) (p(t)z'(t))' + a(t)z(t) = 0,       t>0.
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SECOND-ORDER NONLINEAR OSCILLATION THEOREMS 707

By assumption, p(t) > \/c, and applying the Picone-Sturm Theorem to the follow-
ing equation

(x'(t)/c)' + a(t)x{t) = 0,

we conclude that it is nonoscillatory, contradicting the hypothesis.
Theorem B can be proved along similar lines. First, it follows from (5) that for

0<yx <y2,

•>,, f(y) y  L y '
or f\y¿) ** f(y\)/y\- The importance of condition (6) is its implication that any
eventually positive (negative) solution of (1) must be eventually nondecreasing
(nonincreasing) as proved by Erbe [12]. This also follows from results in our earlier
work [41, Lemma 2], see also Kwong and Wong [23], which follows a completely
different approach. Hence if (1) has a solution y( t ) which is positive on [t0, oo), then
/'(v-(O) >f(y(to))/y(to) - c> 0, for all t E [t0, oo). The arguments used in prov-
ing Theorem A can now be repeated to complete the proof.

Let us point out that an application of Theorem A gives the following new
oscillation criteria for (1).

Corollary 1. Let f(y) satisfy (2) and let there be a positive constant c > 0 such
that f'(y) > cfor ally E (-oo, oo). Suppose that a(t) satisfies

1 T

(9) limsup—/    / a(s) ds dt — +oo,

and that there exists a constant b > 0 such that

(10) f'a(s)ds>-el",       t > t0,

for some t0 > 0, then (1) is oscillatory.

This result generalizes a theorem of Onose [28, Theorem 3, p. 71], where condition
(10) is replaced by the stronger assumption

(11) liminf ('a(s)ds s* -L > -oo,
f —oo    •'o

and/(>>) satisfies an additional nonlinearity condition (which incidentally rules out
the linear case as well). To see how Corollary 1 follows from Theorem A, we need
only invoke a theorem of Putnam [30] which shows that (9) and (10) are sufficient
for (4) to be strongly oscillatory. Similarly, results of Kamenev [17] extending those
weighted average theorems of Willett [35] for linear oscillation follow readily from
Theorem A; also see Butler [8].

3. We note that the condition imposed on f(y) in Theorem A is very restrictive as
it excludes the important case of (3). Likewise, condition (6) on a(/) in Theorem B is
rather limited in its applications. Indeed, if (6) holds then lim7._oo/07a(/)<# exists
and in case it is finite, jt°°a(s)ds » 0 for all large t (see Coles [9, p. 127]). Thus,
a(t) = rxsin t, X E (-oo, oo), does not satisfy (6). Indeed the classification of the
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708 M. K. KWONG AND J. S. W. WONG

Emden-Fowler equation with respect to oscillation for a(t) — tx sin t is by no means
easy, see Butler [5,6,8], Wong [41], Kwong and Wong [21,22]. The purpose of this
paper is to present new linearization results of the type discussed above which are
effective in resolving these prototype cases, thereby offering alternative means of
classifying such equations with respect to oscillation. For the sake of simpler
exposition, we shall state and prove our results for (3). It would become obvious
from the proofs how some of these results in the sequel can be extended to the more
general equation (1) under suitable assumptions on the nonlinear function /(y). We
refer the reader to [41] for a collection of such conditions.

Our first result concerns superlinear equations with integrable coefficients, i.e.,
when

ds   exists and is finite.
o

(12) lim  fTa{s)
r-oo •'o

We define A(t) = /,°° a(s) ds and

(13) p(t) = max(l,-flA(s) ds
'0

Theorem 1. Suppose that the linear equation

(14) (p(t)z')' + a(t)z = 0

is strongly oscillatory, i.e. (p(t)z')' + ca(t)z = 0 is oscillatory for every c > 0; then
(3) is oscillatory with y > 1.

Proof. We make use of an analog of a theorem of Wintner established in our
earlier paper [23, Theorem 1]. If (3) has a nonoscillatory solution ^(i) which may be
assumed to be positive on [/0, oo), then y-(r) satisfies the integral equation

/(') - ^ . ..r y'2(s)
y\t)        v '      'J,   yy+\s)

By integrating the above, we find that

-l--?-> (y - 1) Í'a(s) ds,

from which it follows

(15) y'~\t)>

where

(y-l)(c0-f'A(s)ds]j P(0

yl~y{to) + f'°A(s)ds
u     y -1     -o

and 8 > 0 is any positive number less than [(y — l)(c0 + l)]"1. Now let r(t) =
-y'(t)/yy(t). Then r(t) satisfies the Riccati equation

r'(t) = a(t) + yyi-\t)r2(t),

and hence the corresponding linear equation

(16) (yi-y(t)u'(t))' + ya(t)u(t) = 0
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second-order nonlinear oscillation theorems 709

is nonoscillatory. By (15) and an application of the Picone-Sturm Comparison
Theorem to (16), we conclude that (p(t)z')' + y8a(t)z = 0 is nonoscillatory, con-
tradicting the given hypothesis.

Corollary 2. Suppose that (12) holds, A(t) = /,°° a(s) ds satisfies

(17) liminf f'A(s)ds> -oo
i-oo    •'0

and the linear equation (4) is strongly oscillatory, then (3) is oscillatory with y > 1.

Proof. Condition (17) implies that the function p(t) as defined by (13) is
bounded above. Thus, the estimate (15) can be replaced by yy~\t) > 8X > 0. The
same argument will then lead to the desired contradiction.

Corollary 3. Suppose that (17) holds as in Corollary 2 and assume that there exists
a positive nondecreasing function <f> E C'[0, oo) satisfying

/°° ó'2 [T
—— < oo    and     lim  /  $(s)a(s) ds = oo.

<P T^ oo •'0

Then (3) is oscillatory when y > 1.

That condition (18) implies the strong oscillation of (4) is first proved in Wong
[41]. Corollary 3 is a nonlinear extension of ZlamaPs Theorem for the linear case
y = 1 and <f>(i) = ta, 0 < a < 1. Compare this with Kiguradze's extension [18] of
Atkinson's result [1] for the superlinear equation when y > 1; and the recent result
of the authors [21] extending the sublinear counterpart by Belohorec. For further
discussions of Zlamal's Theorem in the hnear case we refer to Macki and Wong [26],
Kwong and Zettl [24].

Since for y = 1, condition (18) alone without (17) is sufficient for oscillation, we
speculate that the same is also true for y > 1.

Example 1. Consider a(t) = rAsint, X < 0, which clearly satisfies (17). By the
result on linear oscillation with integrable coefficients see [35,39,24 or 23], we know
that v" + (ix sin t)v = 0 is strongly oscillatory if X > -1 ; so does equation (3) in the
case when y > 1.

This result was also covered by a strong oscillation theorem due to Butler [5] who
proved that if A(t) satisfies (17)

(19) lim  fTÍA(t) + rA2+(s)ds)dt= oo
T- oo •'0   \ Jt I

implies that (3) is oscillatory with y > 1. Here A + (s) — max{A(s),0}. Condition
(19) shows that (3) with y > 1 and a(t) = txsin t is oscillatory if X > -1. In fact,
Butler [8] showed that X > -1 is a necessary and sufficient condition for oscillation
of (3) in this case. Proofs of Butler's results are rather lengthy and sophisticated. See
Kwong and Wong [23] for an alternative proof and further discussions of the first
result of Butler mentioned above. It can be shown by examples that Corollary 2 and
Butler's result are independent.

The following alternative formulation of Theorem 1 may be more convenient for
practical applications.
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710 M. K. KWONG AND J. S. W. WONG

Theorem V. If there exist a positive function P(t) on [0, oo) and positive constants
c,, c2 such that for all t large enough, j¿A(s) ds > -cxP(t), P(t) > c2> 0, then the
strong oscillation of ( PZ')' + aZ — 0 implies the oscillation of (3) with y > 1.

Our next result applies to both sublinear and superlinear equations and requires
only that j¿ a(s)ds is bounded below instead of the existence of lim7._0O/0rúí(r) dt.
However, in the sublinear case (0 < y < 1 ), condition (20) below can be greatly
relaxed. See Theorem 6.

Theorem 2. Suppose that

(20) liminf / a(s) ds > -oo.
r-oo   •'o

// the linear equation

(21) (tz'(t))' + ca(t)z(t) = 0,

is weakly oscillatory, i.e. there exists a positive constant c such that (21) is oscillatory,
then (3) is oscillatory for y > 0.

Proof. Suppose that (3) has a solutiony(t) which is positive on [tQ, oo). By our
earlier result [23, Corollary 4], condition (20) implies that

(22)

We claim that

(23)

Jf y'2(s)

yy+\s)
ds < oo.

1lim
/-oo tyy~x{t)

Let t>T^ t0. Define ß = (1 - y)/2; thus 1
Schwarz inequality

ß - (Y + l)/2. Note that by the

(24) At)-At)

(t-T) 1/2

By appealing to the simple inequality (a + b)2 < 2a2 4- 2b2, we obtain from (24)

(25)
y'-y(t)

2/32  1
" t !\)Tyy+l

+ 2;
y(T)

Note that the integral in the above expression can be made arbitrarily small by
choosing T sufficiently large according to (22) and after fixing T, we also note that
the last term tends to zero as t -» oo. Hence (23) follows from (25). Let c be the
positive constant so that (21) is oscillatory. By (23), we can choose tx > t0 such that
yy~\t)> c/yt for all t> tx. Then an application of the Picone-Sturm Theorem to
(16) yields the desired conclusion as before. This completes the proof.
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Many well-known linear oscillation criteria are stated only for the equation
v" + a(t)v — 0, i.e. (8) with p(t) = 1. In order to apply Theorem 2 we can
transform (2) by the familiar Liouville transformation, t — e5 and z(s) = z(t), to

(26) z"(s) + e'a(e')z(s) = 0,       s>0,

where prime denotes differentiation with respect to s. Clearly, the oscillatory
character of (21) and (26) remains the same. Theorem 2 can thus be restated as
follows. Under appropriate conditions on a(t), if (26) is weakly oscillatory, then
equation (3) is 'strongly' oscillatory.

Some recent linear oscillation results, especially those in Kwong and Zettl [24,25],
apply directly to (21).

Example 2. Consider a(t) = txsin t, when X = 0. This classic example for the
linear equation, i.e. (3) with y = 1, was first resolved to be oscillatory by Yelchin [43]
using explicit Fourier series expansion. The well-known extension of the Fite-Wintner
Oscillation Theorem [37] by Hartman [14] also covers this case, so do results of
Markus and Moore [27], Willett [35] and Komkov [19]. For the Emden-Fowler
equation, this was settled by a recent paper of Butler [6]. We refer to Kwong and
Zettl [25] where it was shown that the linear equation

(iz'(0)' + *(t)z(t) = 0,        re [0,oo),

is strongly oscillatory where <¡>(t) is a periodic function of period T which has zero
mean value, i.e. jj^>(t)dt — 0. This result coupled with Theorem 2 gives an alterna-
tive solution to the question of oscillation of the Emden-Fowler equation with
periodic coefficient. A closer look at Butler's Theorem reveals that it can be shown
to follow from Theorem 2. The verification is rather complicated and we choose to
omit such details. However, we note that as a simple consequence of Sturm's
Comparison Theorem, every linear equation (tz')' + a(t)z = 0 is strongly oscillatory
if a(t) > </>(')> a nonzero periodic function of mean value zero. Hence by Theorem 2,
equation (3) is oscillatory for such coefficients a(t). This does not follow from
Butler's result, one hypothesis of which requires a(t) to be bounded.

Remark 1. In another paper, Kwong and Zettl [24, Theorem 2] shows that (21) is
weakly oscillatory if the function A(t) = ¡¿a{s) ds satisfies the following condition:

There exists an increasing sequence of numbers {X„},Xn->oo,«->oo such that

(*) liminfXn/" — >0,

where S„ is the set {(£[0, oo): A{t) > X„}. Thus, under the same condition on A(t)
and condition (20), equation (3) is oscillatory. In particular, if for every X > 0,
fSx dt/t = oo, where Sx= [t E [0, oo): A(t) > X), then (1) is oscillatory. If, how-
ever, for some X > 0, /Sj dt/t < oo the above condition (*) is still satisfied when
there exists some a E (0,1) such that

H°(0 jf —— Í* = oo,Js   t
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712 M. K. KWONG AND J. S. W. WONG

see [24, Corollary 3]. Examples of a(t) that satisfy the above criterion are
(i)a(t) = 1 + sin? + icos t with A(t) = r(l + sini)-

(ii) Let {/„} be an increasing sequence with tn+x — tn > 2m for all « = 1,2,3,_
Define

a^=\'nMt-'„),    t E [r„, tn + »],
[arbitrary, otherwise

and require that condition (20) be satisfied.
Remark 2. In [25], it was shown that (21) is strongly oscillatory if there exist two

numbers X, < X2 such that

(**)       r\[Ä{t) - x2f+ dt=r\[Ä{t) - xxf dt=oo,
where [g(/)]+ = max{g(0>0} and [g(t)].= max{-g(i),0} for any function g(t).
Thus, under the same conditions on A(t) plus condition (20), equation (3) is
oscillatory. In fact much more general results have been established in [25]. We refer
the readers to the original paper for these, as well as examples of a(t) satisfying
these conditions.

Remark 3. Theorem 2 also allows immediate translation of certain known linear
oscillation criteria to the Emden-Fowler equation (3). We list just one of such
applications as an example.

Corollary 4. Let ta(t) be either bounded above or below and satisfy
[T rT

(27) +oo>limsup/  a(t)dt >liminf /  a(t) dt > -oo.
7-^00    J0 T^cc   Jo

Then (3) is oscillatory.

This result follows from an application to (26) of a linear result by Olech, Opial
and Wazewski (see [36, Corollary 5.2]). A weaker version of the Olech, Opial and
Wazewski result was given earlier by Petropavlovskaya [29]. For a recent generaliza-
tion of this linear oscillation criterion see Kwong and Zettl [24]. It is also a
consequence of the results in [25].

Remark 4. Recently Svatoslav [32] showed that if v" + X<f>(t)v = 0 where <i>(r) is
periodic with period T and is oscillatory for all X ¥= 0, then <p(t) must have mean
value zero, i.e. j0Ta(t) dt = 0. For the nonlinear equation (3), the analogous problem
has been studied by Butler, see [6].

4. In this section, we consider conditions on a(t) applicable to so-called wildly
oscillatory coefficients, an example being a(t) — rxsin t with X > 0. Here condition
(20) fails to hold. The study of linear oscillation for such classes of a(t) was the
motivation for summabihty results using weighted averages by Coles and Willett
[10], Willett [35,36]; see also Coppel [11] and recent results by Kwong and Zettl [25].
For the Emden-Fowler equation, the question of oscillation was only very recently
settled by Butler [8] with a rather special method, based on Willett's idea of weighted
averages. Unfortunately, as the author admits himself, his result does not allow
ready extension to the more general equation (1). For the sublinear equation (3),
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second-order nonlinear oscillation theorems 713

0 < y < 1, the result of Kamenev [16] would cover all cases of ixsin t, X > 0. For
more recent results applicable to sublinear equations see [21,22]. We shall therefore
confine our discussion in this section primarily to the superlinear equation when
y>l.

We shall show that condition (20) plus either condition (*) or (**) mentioned in
the last section remain sufficient for the oscillation of (3) with y > 1 if the function
A(t) — J¿a(s) ds is replaced by a more general function &(t) = j¿a(s)/4>(s) ds,
where <i> satisfies

(28) <t>'2(t)><t>(t)<t>"(t)   for all larger.

Note that condition (28) is equivalent to the requirement that <j>'/<f> is nonincreasing
for all large /. Examples of <i> satisfying (28) are /", e°", tV, (In t)a, exp(/e), a > 0,
u > 0, and 0 < e < 1. Also, if <i> satisfies (28), so does <pa for any a > 0. Thus, this
proves that (3) is oscillatory when the coefficient a(t) = tx sin t, e°"sint, and
e'sine', the so-called wildly oscillatory cases. Our main result is the following.

Theorem 3. Suppose that there exists a C2-nondecreasing positive function $
satisfying (28) and a(t) satisfies

(29) &(t) = ('^\ds>-L>-oo.V    ' h Hs)

If éE(í) satisfies either condition (*) or (**), given in Remarks 1 and 2 of the last
section, then (3) is oscillatory with y > 1.

We begin with a lemma establishing a stronger assertion than (23) that will be
needed in the proof of Theorem 3.

Lemma 1. Let <p be a C2 positive and nondecreasing function satisfying

(30) 4"2{t)>^4>(t)4>"(t).

If in addition condition (29) is satisfied, then for every nonoscillatory solution y(t) of (3)
with y > 1, we have

(31) lïm[t<t>(t)yy-\t)Yl = 0.
t— oo

Proof. Introduce the change of dependent variable y(t) = a(t)/<t>a(t) where
a = (y — 1)"' > 0. Without loss of generality, we may assume y(t) > 0 for all t.
Equation (3) then transforms into the following:

(32) w"/wy - 2a<i>'w7^wY + g + a/<¡> = 0

where
_ a[(a + 1)»' - W]

8 «Í.V"'
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714 M. K. KWONG AND J. S. W. WONG

Integrating (32) from 0 to t, we obtain

(yx\    _"'(') = ."'(O)       r'2a<t>'w'      na       rt        rt yu'2
vy(t)~     u>y(0)     h   <í>"y       k*     V     W+

2«V(Q
*(0«Y_1(0

^4 (,i =    "'(0) + /■'£ _    2aV(0)
lV '        u*(0)     •/<>*     0(O)«t-'(O)

By (30), we have

i

1W      áUW-Ht)     W-'lU/j     V     W+.,T+I

where

— i-£l   + * 0.

so we may drop the second, third and fourth terms on the right-hand side of (33)
and obtain the following inequality:

(34) .^AM + yf'jggL*.uy(t) Jo uy+l(s)

Condition (29) ensures that Ax(t) is bounded below. If J0xu'2/uy+> = oo, then for
sufficiently large t, (34) becomes for some t() > 0,

/,,-x w'(0 n u'2(s)(35) -—V4 >m + y    -y—Lds,' ay(t) W+l(*)

where m > 0. Now we can apply our earlier result on integral inequality, see
[23, Lemma 2], to (35) and obtain u'(t) < -muy(t0) < 0, contradicting the fact that
y(t) is nonoscillatory. On the other hand, if /0°°«'2/wY+1 < oo, then we can repeat
the same argument in Theorem 2 to conclude that lim,^00(iwy~'(/))"' — 0, which is
the desired result (31).

Proof of Theorem 3. Notice that (28) implies (30); thus the lemma applies. Let j'
be a nonoscillatory solution of (3) and proceed in the same manner as in the proof of
the lemma above. Since <j>' > 0 and (<!>'/$)' < 0, we may deduce from (33) the
following inequality:

W'(fJ •'O •'0  ÍOy

By (29), Ax(t) is bounded below and so }¿g and f¿ o)'2/wy+] must both converge.
Otherwise, we can repeat the argument on (36) commencing from (35) and conclude
that w'(0 < -muy(t0) < 0 for some appropriate positive constants m and t0 > 0,
contradicting the fact that y< is nonoscillatory. From /0°° g < oo, we obtain

p     _   roo g[^2 - g»]  + ay2 ^   .oo    g2^2

Jo  8    Jo «Í.V-1 "h   «/»V"1'
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An application of Schwarz inequality yields

,/2       \'/2/ ,2    \ I/2
< 00.(™\ ( \ + a \-.\ r *    \   if —

^    ' Jo   \<t>ay\\Jo   <|>V-'/      Wo   o>y+
We claim that (37) implies (a condition similar to (23) for «(f) instead of y(t))

(39) i™    , f'(0„ , = 0.V r-oo <f,(f)«Y-'(f)

First, suppose that /0°° <j>'(s)/<f>(s) ds < oo, which upon integration by parts yields

-f'sl^\ds=r*Ylds<rv
Jo  \ 4>(s) I Jo <¡>U)        ^o   <í>

< 00♦(0
and by (28), we obtain that t<¡>'/<j> is bounded above; hence (39) follows from (31).
Next, we assume that /0°° tf>'(s)/<j>(s) ds — oo (hence lim,_00<i)(f) = oo, which is the
more interesting case).

Integrating by parts, we obtain the following equation:

K'   ^(f)«y-'(f)   ^o^-'K)  AA */«T-' ■'*.*"T
The last integral in the above equation converges on account of (38); and since the
first integral is nonpositive, the integral either converges or diverges to infinity. In
case it diverges, (40) shows that

lim       »'('>,      = -oo
r-oo <¡>(t)uy~\t)

which    contradicts    <j>' > 0,    4>, « > 0.    Otherwise,    (40)    yields    that
lim(_oocf>'(í)/(<í>(í)«y~l(0) exists and if the limit is not zero it must be positive.
Suppose for large t, we have $'(t)/<f>(t)uy~\t) > ß > 0, for some ß, which upon
being substituted in (37) yields f°° <¡>'/tf> < oo, a desired contradiction.

The importance of (39) is that the function

(41) A*(t) = &(t) -    2aV(0)     +     2aV<'>

again satisfies conditions (*) or (**), which hold by the hypothesis on &(t). Define

with which we can simplify (33) to

uy(t)       «y(0) ^o Jo uy+l(s)

Once again, we return to the proof of Theorem 2 and deduce that the existence of a
solution to the integral equation (42) implies the nonoscillation of the linear
equation

(43) (tz'(t))'+ (a*(t) + h(t))z(t) = 0
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where a*(t) = [A*(t)]'. Since h > 0, by the Sturm Comparison Theorem, we know
that the linear equation (tv')' + a*v = 0 is nonoscillatory. This contradicts the
assertion that A*(t) satisfies condition (*) or (**) for oscillation. The proof is now
complete.

Remark 5. Suppose that (3) satisfies the hypotheses of Theorem 3 and

(44) y"(t) + ax(t)\y(t)\ysgny(t) = 0,       y>l,

is another superlinear equation with the same constant y, and if ax(t) > a(t) for all
large t. Then (44) will correspond to a linear equation of the form (43) with a*
replaced by some function a*(t) > a*(t) for all large t. The Picone-Sturm Compari-
son Theorem then implies the oscillation of this linear equation. Thus (44) is also
oscillatory. This widens the applicability of Theorem 3 because although a(t) may
satisfy (**), ax(t) need not do so.

Remark 6. The following is an alternative formulation of the improved version
(see Remark 5) of Theorem 3.

Theorem 3'. Suppose that <j> E C2[0, oo) satisfies (28) and there is a function
ä(t) < ä(t), and Ä(t) = f¿ ä(s) ds satisfies (29) and either condition (*) or (**). Then
the equation

y"(t)+<l>(t)â(t)\y(t)\ysgny = 0,       y>\,
is oscillatory on [0, oo).

Example 3. Consider ä(t) > ä(t) = \p(t), when \¡>(t) is a periodic function of
period T satisfying f0T \¡/(t)dt = 0. Then the equation

/'(/) + <¡>x(t)5(t) \y(t)\ysgn y = 0,       y > 1,

is oscillatory for all X > 0, and <j>(t) is any one of the following functions: t, e\ fe*"
(H > 0), (In /)"> exp(fe) (0 < e < 1).

Example 4. Consider a(t) = ex'cose', X > 1 in (3) with y > 1. Here we let
<p(i) = e(A_1" and ä(t) = a(t) = e'cose'. Thus, A(t) = sine' which is clearly
bounded below and also satisfies condition (**). Hence, (3) is oscillatory, by
Theorem 3'.

Remark 7. In view of Lemma 1 it is obvious that the following result of the form
of Theorem 2 holds:

Suppose there exists a C2 positive and nondecreasing function satisfying (30) such
that (29) also holds. If the linear equation
(45) (t4>(t)z'(t))'+ a(t)z(t) = 0,       iE[0,oo),
is weakly oscillatory, then (3) with y > 1 is strongly oscillatory.

The proof of Theorem 3 contains a kind of perturbation result for linear
oscillation. Consider the linear equation (tz')' + q(t)z = 0 or more generally
(46) (p(t)z')' + q(t)z = 0

which is oscillatory (strongly oscillatory). The essential part of the proof is that the
following perturbed equation
(47) (p(t)z')' + (q(t)+V(t))z = 0
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is also oscillatory (strongly oscillatory), where -q(t) is continuous such that
liml_o0f¿ t}(í) ds exists and is finite. This is the case when/>(i) = t and the function
6(0 = /o q(s)ds satisfies condition (*) or (**).

Let us call (46) (strongly) stably oscillatory of the first kind or simply (strongly)
SI-oscillatory when the above is true.

We also define a second and stronger kind of stable oscillation by requiring that
(47) remain oscillatory (strongly oscillatory) if f¿-q(s)ds is merely assumed to be
bounded. In this case let us call (46) (strongly) S2-oscillatory. When p(t) — t and
q(t) satisfies (*) then (46) is strongly S2-oscillatory. This is also true if p(t) = t and
(**) is satisfied for some X, but for all X2 > X,, for instance when q(t) = h(t) sin t,
where h(t) is a continuous nondecreasing function such that \iml^00h(t) = oo.

Theorem 3 can now be reformulated in the more abstract form.

Theorem 3". Suppose that <f> E C2[0, oo) satisfies (28) and A(t) = /„' a(s)ds
satisfies (29) and the linear equation (tz')' + a(t)z = 0 is strongly S\-oscillatory, then

y"{t) + <t>{t)â(t)\y{t)\ysgny = 0,       y > 1,    /e[0,oo),
is oscillatory on [0, oo).

The usefulness of the concepts of stable oscillations defined above will be further
expounded in the next section when sublinear equations are studied. It is thus a
pertinent problem to seek sufficient conditions for the two kinds of stable oscilla-
tions of (46) not contained in those of (*) and (**).

5. In this section we consider only sublinear equations, (3) with 0 < y < 1. As in
[21,22] we make use of weight functions <p in C2[ 0, oo) such that

(48) <t>'(t)>0,   $"(/)< 0,       f>0.
In [21], it is shown that if

(49) limsup—/    / <t>y(s)a(s) ds dt — oo
7--oo      I J0  J0

then (3) with 0 < y < 1 is oscillatory. In [22] a sufficient criterion is given in case
CT ft

(50) lim — /   j 4>y(s)a(s) ds dt   exists and is finite.
7"->oo   I •'0   •'0

Upon applying the two results to the particular example

(51) y"(t) + tx sin/1/(0 |rsgn.y = 0,

0<y<l, f E [0, oo ) and X E (-oo, oo), we were able to show oscillation when
X > -y. A further result in [22] gives nonoscillation when X < -y. The case X = -y
was then unsettled. We shall prove below that we have oscillation in this limiting
case.

Here we give a linearization theorem for those coefficients a(t) satisfying

(52) liminf-f  f<t>y(s)a(s) ds dt > -oo.
T-.00     I Jq  J0

This covers a much wider class of coefficient than that considered in [22].
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Lemma 2. Suppose that there exists a C2 function <J> satisfying (48) and (52), and (3)
has a solution y > 0 on some half ray [ b, oo), b > 0. Lei

(53) u{t)=[y{t)Mt)V,       t>b,
and

(54) 0=l/y>l.
Then

(55) limsup4>(0^'(0<oo
r^oo

and

(56) /"°°<Í)(í)m/í~3(í)«'2(í)A< oo.
•'ft

If furthermore (50) «o/cfo, i«e«

(57) lim -    exists and is finite.
;->oo '

Proof. The following identity can be easily verified

(58)        - r>'-')" = ^j1^ + (ß- i)^-3«'2 + p"uß~\

Integrate this twice and then divide by T to obtain

(59)

+ ^1 fT f%(s)u^3(S)u'2(s) dsdt + ^= iTf'[-^"(s)] uP-\s) ds dt
I      J0 Jq pi •'o •'0

where A and B are integration constants. Suppose (56) does not hold. It follows that
the second integral on the right-hand side of (59) tends to infinity as T -» oo. Since
the last term in (59) is nonnegative and (52) holds, the right-hand side of (59) tends
to infinity as T -» oo. This is impossible due to the form of the left-hand side. Thus
(56) must hold. It follows that

lim ^A (   í%{s)uP-\s)u'\s) ds dt
r^oo       I       J0  J0

y.00

= (ß-\)f   <j>(s)uß~3(s)u'2(s) ds < oo.
Jf\

Similar arguments when applied to the last integral of (59) lead to

1    fT r<r   ...,   M   «-,/   x   «-./   x   ,    .        1   f°°<hrn^f  ['[-4"(s)]u',-l(s)ul>-l(s)dsdt = ±(   [-4>"(s)]uß^(s)ds < oo.
T^oo pi Jo J0 P J0

Taking the limits of the two sides of (59) now yields (55) as well as (57) under the
additional assumption (50).
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Remark 8. From the proof, it is easy to see that in order to deduce (56) we need
only assume instead of (52) the weaker condition

(52)' limsup — (   f (¡>y(s)a(s) ds dt > -oo,
7--.00      I  J0  J0

which however is not sufficient to yield (55).

Theorem 4. Suppose there exists a function </> E C2[0, oo) satisfying (48) such that
the coefficient a(t) satisfies (52). If the linear equation

(60) (tz'(t))'+ <t>y(t)a{t)z(t) = 0,       iE[0,oo),

is strongly S2-oscillatory, then (3) with 0 < y < 1 is oscillatory.

Proof. After integrating (58) once, we carry out the differentiation on the
left-hand side to obtain

(61) - (ß - l)4>{t)Mß-2(t)u'(t) = A+ ♦'(0«'-,(0

+ ^- f'<t>y{s)a(s) ds + (ß- 1) f'<j>(s)uß-\s)u'2{s) ds

1+ jf\^>"(s)W-\s)ds.

Since $ is a positive concave function, t<f>'(t)/4>(t) < 1. Hence by (55),
<j>'(t)uß~\t) < <f>(t)uß~\t)/t < M for some positive constant M and for all t 3= b.
LetTj(0 = (*'(0«*"'(0)'-Then

(62) limsup\ ir¡(s) ds < oo.
i-oo     \Jb

Equation (61) becomes

-r(0 = B+/ft'((^-)^ + r, + -i[^>"]^-')

p        As)
Jh(ß-\)4>(s)uß'\s)

with r-(ß- \)$uß~2u'. Thus the linear equation

(4>(t)uß-\t)Z'(t))'

+ J^((^)<t>y(t)a(t) + v(0 + ̂ 'V)ußAt)])z(t) = 0

is nonoscillatory. Since <j>(t)uß~\t) < Mt and -[4>üß~l] is positive, the Picone-Sturm
Comparison Theorem yields the nonoscillation of the hnear equation

M(tz'(t))' + j^i[i[^^y(t)a(t) + rl(t)]jz{t) = 0.

This contradicts the hypothesis that (60) is strongly S2-oscillatory.
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Theorem 5. Suppose there exists a function <¡> E C [ 0, oo) satisfying (48) and

(63) lim —-r—    exists and is finite
t^oo    <¡>{t)

such that the coefficient a(t) satisfies (50). // (50) is strongly Sl-oscillatory, then (3)
with 0 < y < 1 is oscillatory.

Suppose instead of (63), <¡> satisfies the stronger condition

(64) hm ^ = 0

and the coefficient s(t) satisfies (52). If (60) is strongly Sl-oscillatory, then (3) with
0 < y < 1 is oscillatory.

Proof. We proceed as in the proof of Theorem 4. Notice that (63) and (57), or
(64) and (55) imply that

,• „   *    B-U   X        /,•        W{t)\{  ,.        <i»(0^"'(0\hm <p'(t)uß~\t) =     lim -^44-      hm YV '   ——      exists.
r-oo \f-oo   <HO   / \ '">0° '

Thus limr_00/6'ij(í) ds exists and is finite. The rest of the proof remains unchanged.
Examples of <J> for which (48) and (63) are satisfied are <¡>(t) — t*, 0 < u < 1; In*11,

0<u< 1.
Example 5. The coefficient a(t) = txsin t satisfies (50) when -y < X < 1 — y and

4>(0 = t. As already noted, the linear equation (60) is strongly Sl-oscillatory. Hence
by Theorem 5, (3) is oscillatory. The classification of (51) is thus finally completed.
As an illustration of how Theorem 4 applies, consider the case X = 1 — y and
4>(t) = t. Then (52) holds instead of (50). Equation (60) in this case is strongly
S2-oscillatory and so (51) is oscillatory. When X > 1 — y, then (49) holds with
(p(f) = t, so (51) is oscillatory by our earlier result [21].

The particular choice of weight function § = 1 deserves special mention. By the
remark after Lemma 2 we see that

(65) limsup—/    I a(s) ds dt
7--oo      l J0  J0

is sufficient to yield

uß-\s)u'2(s) ds < oo.
0

Returning to the variable v instead of u, we see that (66) is equivalent to (22). As
in the proof of Theorem 2, (22) implies (23), and the rest of the proof of Theorem 2
carries over. We thus have the following stronger version of Theorem 2 for the
sublinear equation.

Theorem 6. Suppose that (65) holds. If the linear equation (tz'(t))' + a(t)z(t) = 0
is weakly oscillatory, then (3) is oscillatory for 0 < y < 1.

That no stable oscillation is required of the hnear comparison equation as a
contrast to Theorems 4 and 5 can be explained by the fact that with the choice
<¡> = 1, the term <f>'uß~] in (61) is missing.

> -oo
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Theorem 6 includes a result of Butler in [8], which states that

(67)        -oo^liminf—/   / a(s) ds dt < limsup -= /   / a(s) ds dt < oo
r-oo   I Jo Jo r-oo    ' Jo Jo

implies that (3) is oscillatory with 0 < y < 1.
In fact (67) implies condition (**) which implies oscillation of the linear compari-

son equation as pointed out in [25] and so Theorem 6 applies.
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