
Mach Learn (2015) 99:287–325
DOI 10.1007/s10994-014-5469-5

Linearized alternating direction method with parallel
splitting and adaptive penalty for separable convex
programs in machine learning

Zhouchen Lin · Risheng Liu · Huan Li

Received: 14 January 2014 / Accepted: 3 October 2014 / Published online: 20 November 2014
© The Author(s) 2014

Abstract Many problems in machine learning and other fields can be (re)formulated as
linearly constrained separable convex programs. In most of the cases, there are multiple blocks
of variables. However, the traditional alternating direction method (ADM) and its linearized
version (LADM, obtained by linearizing the quadratic penalty term) are for the two-block case
and cannot be naively generalized to solve the multi-block case. So there is great demand on
extending the ADM based methods for the multi-block case. In this paper, we propose LADM
with parallel splitting and adaptive penalty (LADMPSAP) to solve multi-block separable
convex programs efficiently. When all the component objective functions have bounded
subgradients, we obtain convergence results that are stronger than those of ADM and LADM,
e.g., allowing the penalty parameter to be unbounded and proving the sufficient and necessary
conditions for global convergence. We further propose a simple optimality measure and reveal
the convergence rate of LADMPSAP in an ergodic sense. For programs with extra convex set
constraints, with refined parameter estimation we devise a practical version of LADMPSAP
for faster convergence. Finally, we generalize LADMPSAP to handle programs with more
difficult objective functions by linearizing part of the objective function as well. LADMPSAP
is particularly suitable for sparse representation and low-rank recovery problems because its
subproblems have closed form solutions and the sparsity and low-rankness of the iterates can
be preserved during the iteration. It is also highly parallelizable and hence fits for parallel or

Editors: Cheng Soon Ong, Tu Bao Ho, Wray Buntine, Bob Williamson, and Masashi Sugiyama.

Z. Lin
Key Laboratory of Machine Perception (MOE), School of EECS, Peking University, Beijing, China
e-mail: zlin@pku.edu.cn

R. Liu (B)
School of Software Technology, Dalian University of Technology, Dalian, China
e-mail: rsliu@dlut.edu.cn

H. Li
School of Software and Microelectronics, Peking University, Beijing, China
e-mail: lihuan_ss@pku.edu.cn

123

288 Mach Learn (2015) 99:287–325

distributed computing. Numerical experiments testify to the advantages of LADMPSAP in
speed and numerical accuracy.

Keywords Convex programs · Alternating direction method · Linearized alternating
direction method · Proximal alternating direction method · Parallel splitting · Adaptive
renalty

1 Introduction

In recent years, convex programs have become increasingly popular for solving a wide
range of problems in machine learning and other fields, ranging from theoretical model-
ing, e.g., latent variable graphical model selection (Chandrasekaran et al. 2012), low-rank
feature extraction [e.g., matrix decomposition (Candès et al. 2011) and matrix completion
(Candès and Recht 2009)], subspace clustering (Liu et al. 2012), and kernel discriminant
analysis (Ye et al. 2008), to real-world applications, e.g., face recognition (Wright et al.
2009), saliency detection (Shen and Wu 2012), and video denoising (Ji et al. 2010). Most of
the problems can be (re)formulated as the following linearly constrained separable convex
program1:

min
x1,...,xn

n∑

i=1

fi (xi), s.t.
n∑

i=1

Ai (xi) = b, (1)

where xi and b could be either vectors or matrices,2 fi is a closed proper convex function,
and Ai : R

di → R
m is a linear mapping. Without loss of generality, we may assume that

none of the Ai ’s is a zero mapping, the solution to
∑n

i=1 Ai (xi) = b is non-unique, and the
mapping A(x1, . . . , xn) ≡ ∑n

i=1 Ai (xi) is onto3.

1.1 Exemplar problems in machine learning

In this subsection, we present some examples of machine learning problems that can be
formulated as the model problem (1).

1.1.1 Latent low-rank representation

Low-rank representation (LRR) (Liu et al. 2010, 2012) is a recently proposed technique for
robust subspace clustering and has been applied to many machine learning and computer
vision problems. However, LRR works well only when the number of samples is more than
the dimension of the samples, which may not be satisfied when the data dimension is high.

1 If the objective function is not separable or there are extra convex set constraints, xi ∈ Xi , i = 1, . . . , n,
where Xi ’s are convex sets, the program can be transformed into (1) by introducing auxiliary variables, c.f.
(26)–(28).
2 In this paper we call each xi a “block” of variables because it may consist of multiple scalar variables. We
will use bold capital letters if a block is known to be a matrix.
3 The last two assumptions are equivalent to that the matrix A ≡ (A1 . . . An) is not full column rank but
full row rank, where Ai is the matrix representation of Ai .

123

Mach Learn (2015) 99:287–325 289

So Liu and Yan (2011) proposed latent LRR to overcome this difficulty. The mathematical
model of latent LRR is as follows:

min
Z,L,E

‖Z‖∗ + ‖L‖∗ + μ‖E‖1, s.t. X = XZ + LX + E, (2)

where X is the data matrix, each column being a sample vector, ‖·‖∗ is the nuclear norm (Fazel
2002), i.e., the sum of singular values, and ‖ · ‖1 is the �1 norm (Candès et al. 2011), i.e., the
sum of absolute values of all entries. Latent LRR is to decompose data into principal feature
XZ and salient feature LX, up to sparse noise E.

1.1.2 Nonnegative matrix completion

Nonnegative matrix completion (NMC) (Xu et al. 2011) is a novel technique for dimension-
ality reduction, text mining, collaborative filtering, and clustering, etc. It can be formulated
as:

min
X,e

‖X‖∗ + 1

2μ
‖e‖2, s.t. b = PΩ(X) + e, X ≥ 0, (3)

where b is the observed data in the matrix X contaminated by noise e,Ω is an index set,
PΩ is a linear mapping that selects those elements whose indices are in Ω , and ‖ · ‖ is the
Frobenius norm. NMC is to recover the nonnegative low-rank matrix X from the observed
noisy data b.

To see that the NMC problem can be reformulated as (1), we introduce an auxiliary variable
Y and rewrite (3) as

min
X,Y,e

‖X‖∗ + χ≥0(Y) + 1

2μ
‖e‖2, s.t.

(
PΩ(X)

X

)
−
(

0
Y

)
+
(

e
0

)
=
(

b
0

)
, (4)

where

χ≥0(Y) =
{

0, if Y ≥ 0,

+∞, otherwise,

is the characteristic function of the set of nonnegative matrices.

1.1.3 Group sparse logistic regression with overlap

Besides unsupervised learning models shown above, many supervised machine learning
problems can also be written in the form of (1). For example, using logistic function as the
loss function in the group LASSO with overlap (Jacob et al. 2009; Deng et al. 2011), one
obtains the following model:

min
w,b

1

s

s∑

i=1

log
(

1 + exp
(
−yi (wT xi + b)

))
+ μ

t∑

j=1

‖S j w‖, (5)

where xi and yi , i = 1, . . . , s, are the training data and labels, respectively, and w and b
parameterize the linear classifier. S j , j = 1, . . . , t , are the selection matrices, with only one
1 at each row and the rest entries are all zeros. The groups of entries, S j w, j = 1, . . . , t , may
overlap each other. This model can also be considered as an extension of the group sparse
logistic regression problem (Meier et al. 2008) to the case of overlapped groups.

123

290 Mach Learn (2015) 99:287–325

Introducing w̄ = (wT , b)T , x̄i = (xT
i , 1)T , z = (zT

1 , zT
2 , . . . , zT

t)T , and S̄ = (S, 0),
where S = (ST

1 , . . . , ST
t)T , (5) can be rewritten as

min
w̄,z

1

s

s∑

i=1

log
(

1 + exp
(
−yi (w̄T x̄i)

))
+ μ

t∑

j=1

‖z j‖, s.t. z = S̄w̄, (6)

which is a special case of (1).

1.2 Related work

Although general theories on convex programs are fairly complete nowadays, e.g., most of
them can be solved by the interior point method (Boyd and Vandenberghe 2004), when faced
with large scale problems, which are typical in machine learning, the general theory may
not lead to efficient algorithms. For example, when using CVX,4 an interior point based
toolbox, to solve nuclear norm minimization problems [i.e., one of the fi ’s is the nuclear
norm of a matrix, e.g., (2) and (3)], such as matrix completion (Candès and Recht 2009),
robust principal component analysis (Candès et al. 2011), and low-rank representation (Liu
et al. 2010, 2012), the complexity of each iteration is O(q6), where q × q is the matrix size.
Such a complexity is unbearable for large scale computing.

To address the scalability issue, first order methods are often preferred. The accelerated
proximal gradient (APG) algorithm (Beck and Teboulle 2009; Toh and Yun 2010) is popular
due to its guaranteed O(K −2) convergence rate, where K is the iteration number. How-
ever, APG is basically for unconstrained optimization. For constrained optimization, the
constraints have to be added to the objective function as penalties, resulting in approximated
solutions only. The alternating direction method (ADM)5 (Fortin and Glowinski 1983; Boyd
et al. 2011; Lin et al. 2009a) has regained a lot of attention recently and is also widely used. It
is especially suitable for separable convex programs like (1) because it fully utilizes the sep-
arable structure of the objective function. Unlike APG, ADM can solve (1) exactly. Another
first order method is the split Bregman method (Goldstein and Osher 2008; Zhang et al.
2011), which is closely related to ADM (Esser 2009) and is influential in image processing.

An important reason that first order methods are popular for solving large scale convex
programs in machine learning is that the convex functions fi ’s are often matrix or vector
norms or characteristic functions of convex sets, which enables the following subproblems
[called the proximal operation of fi (Rockafellar 1970)]

prox fi ,σ
(w) = argmin

xi

fi (xi) + σ

2
‖xi − w‖2 (7)

to have closed form solutions. For example, when fi is the �1 norm, prox fi ,σ
(w) = Tσ−1(w),

where Tε(x) = sgn(x) max(|x |−ε, 0) is the soft-thresholding operator (Goldstein and Osher
2008); when fi is the nuclear norm, the optimal solution is: prox fi ,σ

(W) = UTσ−1(�)VT ,
where U�VT is the singular value decomposition (SVD) of W (Cai et al. 2010); and when fi

is the characteristic function of the nonnegative cone, the optimal solution is prox fi ,σ
(w) =

max(w, 0). Since subproblems like (7) have to be solved in each iteration when using first
order methods to solve separable convex programs, that they have closed form solutions
greatly facilitates the optimization.

4 Available at http://stanford.edu/~boyd/cvx.
5 Also called the alternating direction method of multipliers (ADMM) in some literatures, e.g., (Boyd et al.
2011; Zhang et al. 2011; Deng and Yin 2012).

123

http://stanford.edu/~boyd/cvx

Mach Learn (2015) 99:287–325 291

However, when applying ADM to solve (1) with non-unitary linear mappings (i.e., A†
i Ai

is not the identity mapping, where A†
i is the adjoint operator of Ai), the resulting subprob-

lems may not have closed form solutions,6 hence need to be solved iteratively, making the
optimization process awkward. Some work (Yang and Yuan 2013; Lin et al. 2011) has con-
sidered this issue by linearizing the quadratic term ‖Ai (xi)−w‖2 in the subproblems, hence
such a variant of ADM is called the linearized ADM (LADM). Deng and Yin (2012) further
propose the generalized ADM that makes both ADM and LADM as its special cases and
prove its globally linear convergence by imposing strong convexity on the objective function
or full-rankness on some linear operators.

Nonetheless, most of the existing theories on ADM and LADM are for the two-block case,
i.e., n = 2 in (1) (Fortin and Glowinski 1983; Boyd et al. 2011; Lin et al. 2011; Deng and
Yin 2012). The number of blocks is restricted to two because the proofs of convergence for
the two-block case are not applicable for the multi-block case, i.e., n > 2 in (1). Actually, a
naive generalization of ADM or LADM to the multi-block case may diverge [see (15) and
Chen et al. 2013]. Unfortunately, in practice multi-block convex programs often occur, e.g.,
robust principal component analysis with dense noise (Candès et al. 2011), latent low-rank
representation (Liu and Yan 2011) [see (2)], and when there are extra convex set constraints
[see (3) and (26)–(27)]. So it is desirable to design practical algorithms for the multi-block
case.

Recently He and Yuan (2013) and Tao (2014) considered the multi-block LADM and
ADM, respectively. To safeguard convergence, He and Yuan (2013) proposed LADM with
Gaussian back substitution (LADMGB), which destroys the sparsity or low-rankness of the
iterates during iterations when dealing with sparse representation and low-rank recovery
problems, while Tao (2014) proposed ADM with parallel splitting, whose subproblems may
not be easily solvable. Moreover, they all developed their theories with the penalty parameter
being fixed, resulting in difficulty of tuning an optimal penalty parameter that fits for different
data and data sizes. This has been identified as an important issue (Deng and Yin 2012).

1.3 Contributions and differences from prior work

To propose an algorithm that is more suitable for convex programs in machine learning, in
this paper we aim at combining the advantages of He and Yuan (2013), Tao (2014), and Lin et
al. (2011), i.e., combining LADM, parallel splitting, and adaptive penalty. Hence we call our
method LADM with parallel splitting and adaptive penalty (LADMPSAP). With LADM, the
subproblems will have forms like (7) and hence can be easily solved. With parallel splitting,
the sparsity and low-rankness of iterates can be preserved during iterations when dealing
with sparse representation and low-rank recovery problems, saving both the storage and the
computation load. With adaptive penalty, the convergence can be faster and it is unnecessary
to tune an optimal penalty parameter. Parallel splitting also makes the algorithm highly
parallelizable, making LADMPSAP suitable for parallel or distributed computing, which
is important for large scale machine learning. When all the component objective functions
have bounded subgradients, we prove convergence results that are stronger than the existing
theories on ADM and LADM. For example, the penalty parameter can be unbounded and
the sufficient and necessary conditions of the global convergence of LADMPSAP can be
obtained as well. We also propose a simple optimality measure and prove the convergence
rate of LADMPSAP in an ergodic sense under this measure. Our proof is simpler than those
in He and Yuan (2012) and Tao (2014) which relied on a complex optimality measure. When

6 Because ‖xi − w‖2 in (7) becomes ‖Ai (xi) − w‖2, which cannot be reduced to ‖xi − w̃‖2.

123

292 Mach Learn (2015) 99:287–325

a convex program has extra convex set constraints, we further devise a practical version of
LADMPSAP that converges faster thanks to better parameter analysis. Finally, we generalize
LADMPSAP to cope with more difficult fi ’s, whose proximal operation (7) is not easily
solvable, by further linearizing the smooth components of fi ’s. Experiments testify to the
advantage of LADMPSAP in speed and numerical accuracy.

Note that Goldfarb and Ma (2012) also proposed a multiple splitting algorithm for convex
optimization. However, they only considered a special case of our model problem (1), i.e.,
all the linear mappings Ai ’s are identity mappings.7 With their simpler model problem,
linearization is unnecessary and a faster convergence rate, O(K −2), can be achieved. In
contrast, in this paper we aim at proposing a practical algorithm for efficiently solving more
general problems like (1).

We also note that Hong and Luo (2012) used the same linearization technique for the
smooth components of fi ’s as well, but they only considered a special class of fi ’s. Namely,
the non-smooth component of fi is a sum of �1 and �2 norms or its epigraph is polyhedral.
Moreover, for parallel splitting (Jacobi update) Hong and Luo (2012) has to incorporate a
postprocessing to guarantee convergence, by interpolating between an intermediate iterate
and the previous iterate. Third, Hong and Luo (2012) still focused on a fixed penalty parameter.
Again, our method can handle more general fi ’s, does not require postprocessing, and allows
for an adaptive penalty parameter.

A more general splitting/linearization technique can be founded in Zhang et al. (2011).
However, the authors only proved that any accumulation point of the iteration is a Kuhn–
Karush–Tucker (KKT) point and did not investigate the convergence rate. There was no
evidence that the iteration could converge to a unique point. Moreover, the authors only
studied the case of fixed penalty parameter.

Although dual ascent with dual decomposition (Boyd et al. 2011) can also solve (1) in a
parallel way, it may break down when some fi ’s are not strictly convex (Boyd et al. 2011),
which typically happens in sparse or low-rank recovery problems where �1 norm or nuclear
norm are used. Even if it works, since fi is not strictly convex, dual ascent becomes dual
subgradient ascent (Boyd et al. 2011), which is known to converge at a rate of O(K −1/2)—
slower than our O(K −1) rate. Moreover, dual ascent requires choosing a good step size for
each iteration, which is less convenient than ADM based methods.

1.4 Organization

The remainder of this paper is organized as follows. We first review LADM with adaptive
penalty (LADMAP) for the two-block case in Sect. 2. Then we present LADMPSAP for the
multi-block case in Sect. 3. Next, we propose a practical version of LADMPSAP for separable
convex programs with convex set constraints in Sect. 4. We further extend LADMPSAP to
proximal LADMPSAP for programs with more difficult objective functions in Sect. 5. We
compare the advantage of LADMPSAP in speed and numerical accuracy with other first
order methods in Sect. 6. Finally, we conclude the paper in Sect. 7.

This paper is an extension of our prior work Lin et al. (2011) and Liu et al. (2013).

2 Review of LADMAP for the two-block case

We first review LADMAP (Lin et al. 2011) for the two-block case of (1). It consists of four
steps:

7 The multi-block problems introduced in Boyd et al. (2011) also fall within this category.

123

Mach Learn (2015) 99:287–325 293

1. Update x1:

xk+1
1 = argmin

x1

f1(x1) + σ
(k)
1

2

∥∥∥x1 − xk
1 + A†

1

(
λ̃

k
1

)
/σ

(k)
1

∥∥∥
2
, (8)

2. Update x2:

xk+1
2 = argmin

x2

f2(x2) + σ
(k)
2

2

∥∥∥x2 − xk
2 + A†

2

(
λ̃

k
2

)
/σ

(k)
2

∥∥∥
2
, (9)

3. Update λ:

λk+1 = λk + βk

(
2∑

i=1

Ai

(
xk+1

i

)
− b

)
, (10)

4. Update β:

βk+1 = min(βmax, ρβk), (11)

where λ is the Lagrange multiplier, βk is the penalty parameter, σ (k)
i = ηiβk with ηi > ‖Ai‖2

(‖Ai‖ is the operator norm of Ai),

λ̃
k
1 = λk + βk

(
A1

(
xk

1

)
+ A2

(
xk

2

)
− b

)
, (12)

λ̃
k
2 = λk + βk

(
A1

(
xk+1

1

)
+ A2

(
xk

2

)
− b

)
, (13)

and ρ is an adaptively updated parameter [see (20)]. Please refer to (Lin et al. 2011) for
details. Note that the latest xk+1

1 is immediately used to compute xk+1
2 [see (13)]. So x1 and

x2 have to be updated alternately, hence the name alternating direction method.

3 LADMPSAP for the multi-block case

In this section, we extend LADMAP for multi-block separable convex programs (1). We also
provide the sufficient and necessary conditions for global convergence when subgradients of
the objective functions are all bounded. We further prove the convergence rate in an ergodic
sense.

3.1 LADM with parallel splitting and adaptive penalty

Contrary to our intuition, the multi-block case is actually fundamentally different from the
two-block one. For the multi-block case, it is very natural to generalize LADMAP for the
two-block case in a straightforward way, with

λ̃
k
i = λk + βk

⎛

⎝
i−1∑

j=1

A j

(
xk+1

j

)
+

n∑

j=i

A j

(
xk

j

)
− b

⎞

⎠ , i = 1, . . . , n. (14)

Unfortunately, we were unable to prove the convergence of such a naive LADMAP using
the same proof for the two-block case. This is because their Fejér monotone inequalities (see
Remark 4) cannot be the same. That is why He et al. has to introduce an extra Gaussian
back substitution (He et al. 2012; He and Yuan 2013) for correcting the iterates. Actually,

123

294 Mach Learn (2015) 99:287–325

the above naive generalization of LADMAP may be divergent (which is even worse than
converging to a wrong solution), e.g., when applied to the following problem:

min
x1,...,xn

n∑

i=1

‖xi‖1, s.t.
n∑

i=1

Ai xi = b, (15)

where n ≥ 5 and Ai and b are Gaussian random matrix and vector, respectively, whose entries
fulfil the standard Gaussian distribution independently. Chen et al. (2013) also analyzed the
naively generalized ADM for the multi-block case and showed that even for three blocks the
iteration could still be divergent. They also provided sufficient conditions, which basically
require that the linear mappings Ai should be orthogonal to each other (A†

i A j = 0, i 	= j),
to ensure the convergence of naive ADM.

Fortunately, by modifying λ̃
k
i slightly we are able to prove the convergence of the corre-

sponding algorithm. More specifically, our algorithm for solving (1) consists of the following
steps:

1. Update xi ’s in parallel:

xk+1
i = argmin

xi

fi (xi) + σ
(k)
i

2

∥∥∥xi − xk
i + A†

i

(
λ̂

k
)

/σ
(k)
i

∥∥∥
2
, i = 1, . . . , n, (16)

2. Update λ:

λk+1 = λk + βk

(
n∑

i=1

Ai

(
xk+1

i

)
− b

)
, (17)

3. Update β:

βk+1 = min(βmax, ρβk), (18)

where σ
(k)
i = ηiβk ,

λ̂
k = λk + βk

(
n∑

i=1

Ai

(
xk

i

)
− b

)
, (19)

and

ρ =
{

ρ0, if βk max
({√

ηi

∥∥∥xk+1
i − xk

i

∥∥∥ , i = 1, . . . , n
})

/ ‖b‖ < ε2,

1, otherwise,
(20)

with ρ0 > 1 being a constant and 0 < ε2 � 1 being a threshold. Indeed, we replace λ̃
k
i with

λ̂
k

as (19), which is independent of i , and the rest procedures of the algorithm, including
the scheme (18) and (20) to update the penalty parameter, are all inherited from Lin et al.
(2011), except that ηi ’s have to be made larger (see Theorem 1). As now xi ’s are updated in
parallel and βk changes adaptively, we call the new algorithm LADM with parallel splitting
and adaptive penalty (LADMPSAP).

123

Mach Learn (2015) 99:287–325 295

Algorithm 1 LADMPSAP for Solving (1)

Initialize: Set ρ0 > 1, ε1 > 0, ε2 > 0, βmax � 1 � β0 > 0, λ0, ηi > n‖Ai ‖2, x0
i , i = 1, . . . , n.

while (21) or (22) is not satisfied do

Step 1: Compute λ̂
k

as (19).
Step 2: Update xi ’s in parallel by solving

xk+1
i = argmin

xi
fi (xi) + ηi βk

2

∥∥∥xi − xk
i + A†

i (λ̂
k
)/(ηi βk)

∥∥∥
2
, i = 1, . . . , n. (23)

Step 3: Update λ by (17) and β by (18) and (20).
end while

3.2 Stopping criteria

Some existing work (e.g., Liu et al. 2010; Favaro et al. 2011) proposed stopping criteria out
of intuition only, which may not guarantee that the correct solution is approached. Recently,
Lin et al. (2009a) and Boyd et al. (2011) suggested that the stopping criteria can be derived
from the KKT conditions of a problem. Here we also adopt such a strategy. Specifically, the
iteration terminates when the following two conditions are met:

∥∥∥∥∥

n∑

i=1

Ai

(
xk+1

i

)
− b

∥∥∥∥∥ /‖b‖ < ε1, (21)

βk max
({√

ηi

∥∥∥xk+1
i − xk

i

∥∥∥ , i = 1, . . . , n
})

/‖b‖ < ε2. (22)

The first condition measures the feasibility error. The second condition is derived by com-
paring the KKT conditions of problem (1) and the optimality condition of subproblem (23).
The rules (18) and (20) for updating β are actually hinted by the above stopping criteria such
that the two errors are well balanced.

For better reference, we summarize the proposed LADMPSAP algorithm in Algorithm 1.
For fast convergence, we suggest that β0 = αmε2 and α > 0 and ρ0 > 1 should be chosen
such that βk increases steadily along with iterations.

3.3 Global convergence

In the following, we always use (x∗
1, . . . , x∗

n,λ∗) to denote the KKT point of problem (1). For
the global convergence of LADMPSAP, we have the following theorem, where we denote
{xk

i } = {xk
1, . . . , xk

n} for simplicity.

Theorem 1 (Convergence of LADMPSAP)8 If {βk} is non-decreasing and upper bounded,
ηi > n‖Ai‖2, i = 1, . . . , n, then {({xk

i },λk)} generated by LADMPSAP converge to a KKT
point of problem (1).

3.4 Enhanced convergence results

Theorem 1 is a convergence result for general convex programs (1), where fi ’s are general
convex functions and hence {βk} needs to be bounded. Actually, almost all the existing
theories on ADM and LADM even assumed a fixed β. For adaptive βk , it will be more
convenient if a user needs not to specify an upper bound on {βk} because imposing a large

8 Please see “Appendix” for all the proofs of our theoretical results hereafter.

123

296 Mach Learn (2015) 99:287–325

upper bound essentially equals to allowing {βk} to be unbounded. Since many machine
learning problems choose fi ’s as matrix/vector norms, which result in bounded subgradients,
we find that the boundedness assumption can be removed. Moreover, we can further prove
the sufficient and necessary condition for global convergence.

Theorem 2 (Sufficient condition for global convergence) If {βk} is non-decreasing and∑+∞
k=1 β−1

k = +∞, ηi > n‖Ai‖2, ∂ fi (x) is bounded, i = 1, . . . , n, then the sequence
{xk

i } generated by LADMPSAP converges to an optimal solution to (1).

Remark 1 Theorem 2 does not claim that {λk} converges to a point λ∞. However, as we are
more interested in {xk

i }, such a weakening is harmless.

We also have the following result on the necessity of
∑+∞

k=1 β−1
k = +∞.

Theorem 3 (Necessary condition for global convergence) If {βk} is non-decreasing, ηi >

n‖Ai‖2, ∂ fi (x) is bounded, i = 1, . . . , n, then
∑+∞

k=1 β−1
k = +∞ is also a necessary condi-

tion for the global convergence of {xk
i } generated by LADMPSAP to an optimal solution to

(1).

With the above analysis, when all the subgradients of the component objective functions
are bounded we can remove βmax in Algorithm 1.

3.5 Convergence rate

The convergence rate of ADM and LADM in the traditional sense is an open problem (Gold-
farb and Ma 2012). Although Hong and Luo (2012) claimed that they proved the linear
convergence rate of ADM, their assumptions are actually quite strong. They assumed that
the non-smooth part of fi is a sum of �1 and �2 norms or its epigraph is polyhedral. Moreover,
the convex constraint sets should all be polyhedral and bounded. So although their results are
encouraging, for general convex programs the convergence rate is still a mystery. Recently,
He and Yuan (2012) and Tao (2014) proved an O(1/K) convergence rate of ADM and
ADM with parallel splitting in an ergodic sense, respectively. Namely 1

K

∑K
k=1 xi violates

an optimality measure in O(1/K). Their proof is lengthy and is for fixed penalty parameter
only.

In this subsection, based on a simple optimality measure we give a simple proof for
the convergence rate of LADMPSAP. For simplicity, we denote x = (xT

1 , . . . , xT
n)T , x∗ =

((x∗
1)

T , . . . , (x∗
2)

T)T , and f (x) = ∑n
i=1 fi (xi). We first have the following proposition.

Proposition 1 x̃ is an optimal solution to (1) if and only if there exists α > 0, such that

f (x̃) − f (x∗) +
n∑

i=1

〈
A†

i (λ
∗), x̃i − x∗

i

〉
+ α

∥∥∥∥∥

n∑

i=1

Ai (x̃i) − b

∥∥∥∥∥

2

= 0. (24)

Since the left hand side of (24) is always nonnegative and it becomes zero only when x̃
is an optimal solution, we may use its magnitude to measure how far a point x̃ is from an
optimal solution. Note that in the unconstrained case, as in APG (Beck and Teboulle 2009),
one may simply use f (x̃) − f (x∗) to measure the optimality. But here we have to deal with
the constraints. Our criterion is simpler than that in (He and Yuan 2012; Tao 2014), which
has to compare ({xk

i }, λk) with all (x1, . . . , xn,λ) ∈ R
d1 × . . . × R

dn × R
m .

Then we have the following convergence rate theorem for LADMPSAP in an ergodic
sense.

123

Mach Learn (2015) 99:287–325 297

Theorem 4 (Convergence rate of LADMPSAP) Define x̄K = ∑K
k=0 γkxk+1, where γk =

β−1
k /

∑K
j=0 β−1

j . Then the following inequality holds for x̄K :

f (x̄K) − f (x∗) +
n∑

i=1

〈
A†

i (λ
∗), x̄K

i − x∗
i

〉
+ αβ0

2

∥∥∥∥
n∑

i=1
Ai
(
x̄K

i

)− b

∥∥∥∥
2

≤ C0/

(
2

K∑
k=0

β−1
k

)
,

(25)

where

α−1 = (n + 1) max

(
1,

{ ‖Ai‖2

ηi − n‖Ai‖2 , i = 1, . . . , n

})

and

C0 =
n∑

i=1

ηi
∥∥x0

i − x∗
i

∥∥2 + β−2
0

∥∥λ0 − λ∗∥∥2
.

Theorem 4 means that x̄K is by O
(

1/
∑K

k=0 β−1
k

)
from being an optimal solution. This

theorem holds for both bounded and unbounded {βk}. In the bounded case, O
(

1/
∑K

k=0 β−1
k

)

is simply O(1/K). Theorem 4 also hints that
∑K

k=0 β−1
k should approach infinity to guarantee

the convergence of LADMPSAP, which is consistent with Theorem 3.

4 Practical LADMPSAP for convex programs with convex set constraints

In real applications, we are often faced with convex programs with convex set constraints:

min
x1,...,xn

n∑

i=1

fi (xi), s.t.
n∑

i=1

Ai (xi) = b, xi ∈ Xi , i = 1, . . . , n, (26)

where Xi ⊆ R
di is a closed convex set. In this section, we consider to extend LADMPSAP

to solve the more complex convex set constraint model (26). We assume that the projections
onto Xi ’s are all easily computable. For many convex sets used in machine learning, such an
assumption is valid, e.g., when Xi ’s are nonnegative cones or positive semi-definite cones.
In the following, we discuss how to solve (26) efficiently. For simplicity, we assume Xi 	=
R

di ,∀i . Finally, we assume that b is an interior point of
∑n

i=1 Ai (Xi).
We introduce auxiliary variables xn+i to convert xi ∈ Xi into xi = xn+i and xn+i ∈

Xi , i = 1, . . . , n. Then (26) can be reformulated as:

min
x1,...,x2n

2n∑

i=1

fi (xi), s.t.
2n∑

i=1

Âi (xi) = b̂, (27)

where

fn+i (x) ≡ χXi (x) =
{

0, if x ∈ Xi ,

+∞, otherwise,

123

298 Mach Learn (2015) 99:287–325

is the characteristic function of Xi ,

Âi (xi) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ai (xi)

0
...

xi
...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Ân+i (xn+i) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

−xn+i
...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and b̂ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

b
0
...

0
...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (28)

where i = 1, . . . , n.
The adjoint operator Â†

i is

Â†
i (y) = A†

i (y1) + yi+1, Â†
n+i (y) = −yi+1, i = 1, . . . , n, (29)

where yi is the i th sub-vector of y, partitioned according to the sizes of b and xi , i = 1, . . . , n.
Then LADMPSAP can be applied to solve problem (27). The Lagrange multiplier λ and

the auxiliary multiplier λ̂ are respectively updated as

λk+1
1 = λk

1 + βk

(
n∑

i=1

Ai

(
xk+1

i

)
− b

)
, λk+1

i+1 = λk
i+1 + βk

(
xk+1

i − xk+1
n+i

)
, (30)

λ̂
k
1 = λk

1 + βk

(
n∑

i=1

Ai

(
xk

i

)
− b

)
, λ̂

k
i+1 = λk

i+1 + βk

(
xk

i − xk
n+i

)
, (31)

and xi is updated as (see 16)

xk+1
i = argmin

x
fi (x) + ηiβk

2

∥∥∥x − xk
i +

[
A†

i

(
λ̂

k
1

)
+ λ̂

k
i+1

]
/(ηiβk)

∥∥∥
2
, (32)

xk+1
n+i = argmin

x∈Xi

ηn+iβk

2

∥∥∥x − xk
n+i − λ̂

k
i+1/(ηn+iβk)

∥∥∥
2

= πXi

(
xk

n+i + λ̂
k
i+1/(ηn+iβk)

)
, (33)

where πXi is the projection onto Xi and i = 1, . . . , n.
As for the choice of ηi ’s, although we can simply apply Theorem 1 to assign their values as

ηi > 2n(‖Ai‖2 + 1) and ηn+i > 2n, i = 1, . . . , n, such choices are too pessimistic. As ηi ’s
are related to the magnitudes of the differences in xk+1

i from xk
i , we had better provide tighter

estimate on ηi ’s in order to achieve faster convergence. Actually, we have the following better
result.

Theorem 5 For problem (27), if {βk} is non-decreasing and upper bounded and ηi ’s are
chosen as ηi > n‖Ai‖2 + 2 and ηn+i > 2, i = 1, . . . , n, then the sequence {({xk

i },λk)}
generated by LADMPSAP converge to a KKT point of problem (27).

Finally, we summarize LADMPSAP for problem (27) in Algorithm 2, which is a practical
algorithm for solving (26).

Remark 2 Analogs of Theorems 2 and 3 are also true for Algorithm 2 although ∂ fn+i ’s are
unbounded, thanks to our assumptions that all ∂ fi , i = 1, . . . , n, are bounded and b is an
interior point of

∑n
i=1 Ai (Xi), which result in an analog of Proposition 4. Consequently,

βmax can also be removed if all ∂ fi , i = 1, . . . , n, are bounded.

123

Mach Learn (2015) 99:287–325 299

Algorithm 2 LADMPSAP for (27), also a Practical Algorithm for (26).

Initialize: Set ρ0 > 1, ε1 > 0, ε2 > 0, βmax � 1 � β0 > 0, λ0 = ((λ0
1)T , . . . , (λ0

n+1)T)T , ηi >

n‖Ai ‖2 + 2, ηn+i > 2, x0
i , x0

n+i = x0
i , i = 1, . . . , n.

while (21) or (22) is not satisfied do

Step 1: Compute λ̂
k

as (31).
Step 2: Update xi , i = 1, . . . , 2n, in parallel as (32)-(33).
Step 3: Update λ by (30) and β by (18) and (20).

end while
(Note that in (20), (21), and (22), n and Ai should be replaced by 2n and Âi , respectively.)

Remark 3 Since Algorithm 2 is an application of Algorithm 1 to problem (27), only
with refined parameter estimation, its convergence rate in an ergodic sense is also

O
(

1/
∑K

k=0 β−1
k

)
, where K is the number of iterations.

5 Proximal LADMPSAP for even more general convex programs

In LADMPSAP we have assumed that the subproblems (16) are easily solvable. In many
machine learning problems, the functions fi ’s are often matrix or vector norms or character-
istic functions of convex sets. So this assumption often holds. Nonetheless, this assumption
is not always true, e.g., when fi is the logistic loss function [see (6)]. So in this section we
aim at generalizing LADMPSAP to solve even more general convex programs (1).

We are interested in the case that fi can be decomposed into two components:

fi (xi) = gi (xi) + hi (xi), (34)

where both gi and hi are convex, gi is C1,1:

‖∇gi (x) − ∇gi (y)‖ ≤ Li ‖x − y‖ , ∀x, y ∈ R
di , (35)

and hi may not be differentiable but its proximal operation is easily solvable. For brevity, we
call Li the Lipschitz constant of ∇gi .

Recall that in each iteration of LADMPSAP, we have to solve subproblem (16). Since
now we do not assume that the proximal operation of fi (7) is easily solvable, we may have
difficulty in solving subproblem (16). By (34), we write down (16) as

xk+1
i = argmin

xi

hi (xi) + gi (xi) + σ
(k)
i

2

∥∥∥xi − xk
i + A†

i

(
λ̂

k
)

/σ
(k)
i

∥∥∥
2
, i = 1, . . . , n,

(36)

Since gi (xi) + σ
(k)
i
2

∥∥∥xi − xk
i + A†

i (λ̂
k
)/σ

(k)
i

∥∥∥
2

is C1,1, we may also linearize it at xk
i and

add a proximal term. Such an idea leads to the following updating scheme of xi :

xk+1
i = argmin

xi

hi (xi) + gi

(
xk

i

)
+ σ

(k)
i

2

∥∥∥A†
i

(
λ̂

k
)

/σ
(k)
i

∥∥∥
2

+
〈
∇gi

(
xk

i

)
+ A†

i

(
λ̂

k
)

, xi − xk
i

〉
+ τ

(k)
i

2

∥∥∥xi − xk
i

∥∥∥
2

= argmin
xi

hi (xi) + τ
(k)
i

2

∥∥∥∥∥xi − xk
i + 1

τ
(k)
i

[
A†

i

(
λ̂

k
)

+ ∇gi

(
xk

i

)]∥∥∥∥∥

2

, (37)

123

300 Mach Learn (2015) 99:287–325

Algorithm 3 Proximal LADMPSAP for Solving (1) with fi Satisfying (34).

Initialize: Set ρ0 > 1, β0 > 0, λ0, Ti ≥ Li , ηi > n‖Ai ‖2, x0
i , i = 1, . . . , n.

while (39) or (40) is not satisfied do

Step 1: Compute λ̂
k

as (19).
Step 2: Update xi ’s in parallel by solving

xk+1
i = argmin

xi
hi (xi) + τ

(k)
i
2

∥∥∥∥∥xi − xk
i + 1

τ
(k)
i

[
A†

i (λ̂
k
) + ∇gi

(
xk

i

)]∥∥∥∥∥

2

, i = 1, . . . , n, (41)

where τ
(k)
i = Ti + βkηi .

Step 3: Update λ by (17) and β by (18) with ρ defined in (38).
end while

where i = 1, . . . , n. The choice of τ
(k)
i is presented in Theorem 6, i.e. τ

(k)
i = Ti + βkηi ,

where Ti ≥ Li and ηi > n‖Ai‖2 are both positive constants.
By our assumption on hi , the above subproblems are easily solvable. The update of

Lagrange multiplier λ and β are still respectively goes as (17) and (18) but with

ρ =

⎧
⎪⎪⎨

⎪⎪⎩

ρ0, if max
({

‖Ai‖−1
∥∥∥∇gi

(
xk+1

i

)
− ∇gi

(
xk

i

)− τ
(k)
i

(
xk+1

i − xk
i

)∥∥∥ ,

i = 1, . . . , n
})

/‖b‖ < ε2,

1, otherwise.

(38)

The iteration terminates when the following two conditions are met:
∥∥∥∥∥

n∑

i=1

Ai (x
k+1
i) − b

∥∥∥∥∥ /‖b‖ < ε1, (39)

max
({

‖Ai‖−1
∥∥∥∇gi (x

k+1
i) − ∇gi (xk

i) − τ
(k)
i (xk+1

i − xk
i)

∥∥∥ ,

i = 1, . . . , n
})

/‖b‖ < ε2. (40)

These two conditions are also deduced from the KKT conditions.
We call the above algorithm as proximal LADMPSAP and summarize it in Algorithm 3.
As for the convergence of proximal LADMPSAP, we have the following theorem.

Theorem 6 (Convergence of proximal LADMPSAP) If βk is non-decreasing and upper
bounded, τ

(k)
i = Ti + βkηi , where Ti ≥ Li and ηi > n‖Ai‖2 are both positive constants,

i = 1, . . . , n, then {({xk
i },λk)} generated by proximal LADMPSAP converge to a KKT point

of problem (1).

We further have the following convergence rate theorem for proximal LADMPSAP in an
ergodic sense.

Theorem 7 (Convergence rate of proximal LADMPSAP) Define x̄K
i = ∑K

k=0 γkxk+1
i ,

where γk = β−1
k /

∑K
j=0 β−1

j . Then the following inequality holds for x̄K
i :

n∑

i=1

(
fi

(
x̄K

i

)
− fi

(
x∗

i

)+
〈
A†

i (λ
∗), x̄K

i − x∗
i

〉)
+ αβ0

2

∥∥∥∥∥

n∑

i=1

Ai

(
x̄K

i

)
− b

∥∥∥∥∥

2

≤ C0/

K∑

k=0

2β−1
k , (42)

123

Mach Learn (2015) 99:287–325 301

where

α−1 = (n + 1) max

(
1,

{
‖Ai‖2

ηi − n‖Ai‖2 , i = 1, . . . , n

})

and

C0 =
n∑

i=1

β−1
0 τ

(0)
i ‖x0

i − x∗
i ‖2 + β−2

0 ‖λ0 − λ∗‖2.

When there are extra convex set constraints, xi ∈ Xi , i = 1, . . . , n, we can also introduce
auxiliary variables as in Sect. 4 and have an analogy of Theorems 5 and 4.

Theorem 8 For problem (27), where fi is described at the beginning of Section 5, if βk

is non-decreasing and upper bounded and τ
(k)
i = Ti + ηiβk , where Ti ≥ Li , Tn+i =

0, ηi > n‖Ai‖2 + 2, and ηn+i > 2, i = 1, . . . , n, then {({xk
i },λk)} generated by proximal

LADMPSAP converge to a KKT point of problem (27). The convergence rate in an ergodic

sense is also O
(

1/
∑K

k=0 β−1
k

)
, where K is the number of iterations.

6 Numerical results

In this section, we test the performance of LADMPSAP on three specific examples of problem
(1), i.e., Latent low-rank representation [see (2)], nonnegative matrix completion [see (3)],
and group sparse logistic regression with overlap [see (6)].

6.1 Solving latent low-rank representation

We first solve the latent LRR problem (Liu and Yan 2011) (2). In order to test LADMPSAP
and related algorithms with data whose characteristics are controllable, we follow (Liu et al.
2010) to generate synthetic data, which are parameterized as (s, p, d, r̃), where s, p, d , and r̃
are the number of independent subspaces, points in each subspace, and ambient and intrinsic
dimensions, respectively. The number of scale variables and constraints is (sp) × d .

As first order methods are popular for solving convex programs in machine learning (Boyd
et al. 2011), here we compare LADMPSAP with several conceivable first order algorithms,
including APG (Beck and Teboulle 2009), naive ADM, naive LADM, LADMGB, and
LADMPS. Naive ADM and naive LADM are generalizations of ADM and LADM, respec-
tively, which are straightforwardly generalized from two variables to multiple variables, as
discussed in Sect. 3.1. Naive ADM is applied to solve (2) after rewriting the constraint of (2)
as X = XP + QX + E, P = Z, Q = L. For LADMPS, βk is fixed in order to show the effec-
tiveness of adaptive penalty. The parameters of APG and ADM are the same as those in (Lin
et al. 2009b) and (Liu and Yan 2011), respectively. For LADM, we follow the suggestions in
(Yang and Yuan 2013) to fix its penalty parameter β at 2.5/ min(d, sp), where d × sp is the
size of X. For LADMGB, as there is no suggestion in He and Yuan (2013) on how to choose
a fixed β, we simply set it the same as that in LADM. The rest of the parameters are the same
as those suggested in He et al. (2012). We fix β = σmax(X) min(d, sp)ε2 in LADMPS and
set β0 = σmax(X) min(d, sp)ε2 and ρ0 = 10 in LADMPSAP. For LADMPSAP, we also set
ηZ = ηL = 1.02 × 3σ 2

max(X), where ηZ and ηL are the parameters ηi ’s in Algorithm 1 for
Z and L, respectively. For the stopping criteria, ‖XZk + LkX + Ek − X‖/‖X‖ ≤ ε1 and
max(‖Zk − Zk−1‖, ‖Lk − Lk−1‖, ‖Ek − Ek−1‖)/‖X‖ ≤ ε2, with ε1 = 10−3 and ε2 = 10−4

123

302 Mach Learn (2015) 99:287–325

Table 1 Comparisons of APG, naive ADM (nADM), naive LADM (nLADM), LADMGB, LADMPS, and
LADMPSAP on the latent LRR problem (2)

(s, p, d, r̃) Method Time No. of iteration ‖Ẑ−Z∗‖
‖Z∗‖

‖L̂−L∗‖
‖L∗‖

‖Ê−E∗‖
‖E∗‖ Acc.

(5, 50, 250, 5) APG 18.20 236 0.3389 0.3167 0.4500 95.6

nADM 16.32 172 0.3993 0.3928 0.5592 95.6

nLADM 21.34 288 0.4553 0.4408 0.5607 95.6

LADMGB 24.10 290 0.4520 0.4355 0.5610 95.6

LADMPS 17.15 232 0.0163 0.0139 0.0446 95.6

LADMPSAP 8.04 109 0.0089 0.0083 0.0464 95.6

(10, 50, 500, 5) APG 85.03 234 0.1020 0.0844 0.7161 95.8

nADM 78.27 170 0.0928 0.1026 0.6636 95.8

nLADM 181.42 550 0.2077 0.2056 0.6623 95.8

LADMGB 214.94 550 0.1877 0.1848 0.6621 95.8

LADMPS 64.65 200 0.0167 0.0089 0.1059 95.8

LADMPSAP 37.85 117 0.0122 0.0055 0.0780 95.8

(20, 50, 1000, 5) APG 544.13 233 0.0319 0.0152 0.2126 95.2

nADM 466.78 166 0.0501 0.0433 0.2676 95.2

nLADM 1,888.44 897 0.1783 0.1746 0.2433 95.2

LADMGB 2,201.37 897 0.1774 0.1736 0.2434 95.2

LADMPS 367.68 177 0.0151 0.0105 0.0872 95.2

LADMPSAP 260.22 125 0.0106 0.0041 0.0671 95.2

The quantities include computing time (in seconds), number of iterations, relative errors, and clustering
accuracy (in percentage). They are averaged over 10 runs
Best results are shown in bold

are used for all the algorithms. For the parameter μ in (2), we empirically set it as μ = 0.01.
To measure the relative errors in the solutions we run LADMPSAP 2,000 iterations with
ρ0 = 1.01 to obtain the estimated ground truth solution (Z∗, L∗, E∗). The experiments are
run and timed on a notebook computer with an Intel Core i7 2.00 GHz CPU and 6 GB memory,
running Windows 7 and Matlab 7.13.

Table 1 shows the results of related algorithms. We can see that LADMPS and LADMP-
SAP are faster and more numerically accurate than LADMGB, and LADMPSAP is even faster
than LADMPS thanks to the adaptive penalty. Moreover, naive ADM and naive LADM have
relatively poorer numerical accuracy, possibly due to converging to wrong solutions. The
numerical accuracy of APG is also worse than those of LADMPS and LADMPSAP because
it only solves an approximate problem by adding the constraint to the objective function as
penalty. Note that although we do not require {βk} to be bounded, this does not imply that
βk will grow infinitely. As a matter of fact, when LADMPSAP terminates the final values of
βk are 21.1567, 42.2655, and 81.4227 for the three data settings, respectively.

We then test the performance of the above six algorithms on the Hopkins155 database
(Tron and Vidal 2007), which consists of 156 sequences, each having 39–550 data vectors
drawn from two or three motions. For computational efficiency, we preprocess the data by
projecting them to be 5-dimensional using PCA. We test all algorithms with μ = 2.4, which
is the best parameter for LRR on this database (Liu et al. 2010). Table 2 shows the results on
the Hopkins155 database. We can also see that LADMPSAP is faster than other methods in
comparison. In particular, LADMPSAP is faster than LADMPS, which uses a fixed β. This
testify to the advantage of using an adaptive penalty.

123

Mach Learn (2015) 99:287–325 303

Table 2 Comparisons of APG, naive ADM (nADM), naive LADM (nLADM), LADMGB, LADMPS, and
LADMPSAP on the Hopkins155 database

Method Time (s) No. of iteration Error (%)

APG 10.37 67 8.33

nADM 24.76 144 8.33

nLADM 15.50 112 8.33

LADMGB 16.05 113 8.36

LADMPS 15.58 113 8.33

LADMPSAP 3.80 26 8.33

The quantities include average computing time, average number of iterations, and average classification errors
on all 156 sequences
Best results are shown in bold

Table 3 Comparisons on the NMC problem (3) with synthetic data, averaged on 10 runs

X LADM LADMPSAP

n q (%) t/dr No. of
iteration

Time (s) RelErr FA No. of
iteration

Time (s) RelErr FA

1,000 20 10.05 375 177.92 1.35E−5 6.21E−4 58 24.94 9.67E−6 0

10 5.03 1,000 459.70 4.60E−5 6.50E−4 109 42.68 1.72E−5 0

5,000 20 50.05 229 1,613.68 1.08E−5 1.93E−4 49 369.96 9.05E−6 0

10 25.03 539 2,028.14 1.20E−5 7.70E−5 89 365.26 9.76E−6 0

10,000 10 50.03 463 6,679.59 1.11E−5 4.18E−5 89 1584.39 1.03E−5 0

q, t , and dr denote, respectively, the sample ratio, the number of measurements t = q(mn), and the “degree
of freedom” defined by dr = r(m + n − r) for an m × n matrix with rank r and q. Here we set m = n and
fix r = 10 in all the tests
Best results are shown in bold

6.2 Solving nonnegative matrix completion

This subsection evaluates the performance of the practical LADMPSAP proposed in Sect. 4
for solving nonnegative matrix completion (Xu et al. 2011) (3).

We first evaluate the numerical performance on synthetic data to demonstrate the superi-
ority of practical LADMPSAP over the conventional LADM9 (Yang and Yuan 2013). The
nonnegative low-rank matrix X0 is generated by truncating the singular values of a randomly
generated matrix. As LADM cannot handle the nonnegativity constraint, it actually solve
the standard matrix completion problem, i.e., (3) without the nonnegativity constraint. For
LADMPSAP, we follow the conditions in Theorem 5 to set ηi ’s and set the rest of the para-
meters the same as those in Sect. 6.1. The stopping tolerances are set as ε1 = ε2 = 10−5.
The numerical comparison is shown in Table 3, where the relative nonnegative feasibility
(FA) is defined as (Xu et al. 2011):

FA: = ‖ min(X̂, 0)‖/‖X0‖,
in which X0 is the ground truth and X̂ is the computed solution. It can be seen that the
numerical performance of LADMPSAP is much better than that of LADM, thus again verifies

9 Code available at http://math.nju.edu.cn/~jfyang/IADM_NNLS/index.html.

123

http://math.nju.edu.cn/~jfyang/IADM_NNLS/index.html

304 Mach Learn (2015) 99:287–325

(a) Original (b) Corrupted (c) FPCA (d) LADM (e) LADMPSAP

Fig. 1 Image inpainting by FPCA, LADM and LADMPSAP

Table 4 Comparisons on the image inpainting problem. “PSNR” stands for “Peak Signal to Noise Ratio”
measured in decibel (dB)

Method No. of iteration Time (s) PSNR (dB) FA

FPCA 179 228.99 27.77 9.41E−4

LADM 228 207.95 26.98 2.92E−3

LADMPSAP 143 134.89 31.39 0

Best results are shown in bold

the efficiency of our proposed parallel splitting and adaptive penalty scheme for enhancing
ADM/LADM type algorithms.

We then consider the image inpainting problem, which is to fill in the missing pixel values
of a corrupted image. As the pixel values are nonnegative, the image inpainting problem
can be formulated as the NMC problem. To prepare a low-rank image, we also truncate the
singular values of a 1,024 × 1,024 grayscale image “man”10 to obtain an image of rank 40,
shown in Fig. 1a, b. The corrupted image is generated from the original image (all pixels have
been normalized in the range of [0, 1]) by sampling 20 % of the pixels uniformly at random
and adding Gaussian noise with mean zero and standard deviation 0.1.

Besides LADM, here we also consider another recently proposed fixed point continuation
with approximate SVD [FPCA (Ma et al. 2011)] on this problem. Similar to LADM, the code
of FPCA11 can only solve the standard matrix completion problem without the nonnegativity
constraint. This time we set ε1 = 10−3 and ε2 = 10−1 as the thresholds for stopping criteria.
The recovered images are shown in Fig. 1c–e and the quantitative results are in Table 4. One
can see that on our test image both the qualitative and the quantitative results of LADMPSAP
are better than those of FPCA and LADM. Note that LADMPSAP is faster than FPCA and
LADM even though they do not handle the nonnegativity constraint.

6.3 Solving group sparse logistic regression with overlap

In this subsection, we apply proximal LADMPSAP to solve the problem of group sparse
logistic regression with overlap (5).

The Lipschitz constant of the gradient of logistic function with respect to w̄ can be proven
to be Lw̄ ≤ 1

4s ‖X̄‖2
2, where X̄ = (x̄1, x̄2, . . . , x̄s). Thus (5) can be directly solved by

Algorithm 3.

10 Available at http://sipi.usc.edu/database/.
11 Code available at http://www1.se.cuhk.edu.hk/~sqma/softwares.html.

123

http://sipi.usc.edu/database/
http://www1.se.cuhk.edu.hk/~sqma/softwares.html

Mach Learn (2015) 99:287–325 305

6.3.1 Synthetic data

To assess the performance of proximal LADMPSAP, we simulate data with p = 9t + 1
variables, covered by t groups of ten variables with overlap of one variable between two
successive groups: {1, . . . , 10}, {10, . . . , 19}, . . . , {p − 9, . . . , p}. We randomly choose q
groups to be the support of w. If the chosen groups have overlapping variables with the
unchosen groups, the overlapping variables are removed from the support of w. So the
support of w may be less than 10q . y = (y1, . . . , ys)

T is chosen as (1,−1, 1,−1, . . .)T .
X ∈ R

p×s is generated as follows. For Xi, j , if i is in the support of w and y j = 1, then Xi, j

is generated uniformly on [0.5, 1.5]; if i is in the support of w and y j = −1, then Xi, j is
generated uniformly on [−1.5,−0.5]; if i is not in the support of w, then Xi, j is generated
uniformly on [−0.5, 0.5]. Then the rows whose indices are in the support of w are statistically
different from the remaining rows in X, hence can be considered as informative rows. We use
model (6) to select the informative rows for classification, where μ = 0.1. If the ground truth
support of w is recovered, then the two groups of data are linearly separable by considering
only the coordinates in the support of w.

We compare proximal LADMPSAP with a series of ADM based methods, including
ADM, LADM, LADMPS, and LADMPSAP, where the subproblems for w and b have to
be solved iteratively, e.g., by APG (Beck and Teboulle 2009). We terminate the inner loop
by APG when the norm of gradient of the objective function of the subproblem is less than
10−6. As for the outer loop, we choose ε1 = 2 × 10−4 and ε2 = 2 × 10−3 as the thresholds
to terminate the iterations.

For ADM, LADM, and LADMPS, which use a fixed penalty β, as we do not find any
suggestion on its choice in the literature (the choice suggested in Yang and Yuan (2013) is
for nuclear norm regularized least square problem only) we try multiple choices of β and
choose the one that results in the fastest convergence. For LADMPSAP, we set β0 = 0.2
and ρ0 = 5. For proximal LADMPSAP we set T1 = 1

4s ‖X̄‖2
2, η1 = 2.01‖S̄‖2

2, T2 = 0, η2 =
2.01, β0 = 1, and ρ0 = 5. To measure the relative errors in the solutions we iterate proximal
LADMPSAP for 2,000 times and regard its output as the ground truth solution (w̄∗, z∗).

Table 5 shows the comparison among related algorithms. The ground truth support of w
is recovered by all the compared algorithms. We can see that ADM, LADM, LADMPS, and
LADMPSAP are much slower than proximal LADMPSAP because of the time-consuming
subproblem computation, although they have much smaller number of outer iterations. Their
numerical accuracies are also inferior to that of proximal LADMPSAP. We can also see that
LADMPSAP is faster and more numerically accurate than ADM, LADM, and LADMPS.
This again testifies to the effectiveness of using adaptive penalty.

6.3.2 Pathway analysis on breast cancer data

Then we consider the pathway analysis problem using the breast cancer gene expression
data set (Vijver and He 2002), which consists of 8,141 genes in 295 breast cancer tumors
(78 metastatic and 217 non-metastatic). We follow Jacob et al. (2009) and use the canonical
pathways from MSigDB (Subramanian et al. 2005) to generate the overlapping gene sets,
which contains 639 groups of genes, 637 of which involve genes from our study. The statistics
of the 637 gene groups are summarized as follows: the average number of genes in each group
is 23.7, the largest gene group has 213 genes, and 3,510 genes appear in these 637 groups
with an average appearance frequency of about four. We follow Jacob et al. (2009) to restrict
the analysis to the 3,510 genes and balance the data set by using three replicates of each

123

306 Mach Learn (2015) 99:287–325

Table 5 Comparisons among ADM, LADM, LADMPS, LADMPSAP, and proximal LADMPSAP
(pLADMPSAP) on the group sparse logistic regression with overlap problem. The quantities include the
computing time (in seconds), number of outer iterations, and relative errors

(s, p, t, q) Method Time No. of iteration ‖ ˆ̄w−w̄∗‖
‖w̄∗‖

‖ẑ−z∗‖
‖z∗‖

(300, 901, 100, 10) ADM 294.15 43 0.4800 0.4790

LADM 229.03 43 0.5331 0.5320

LADMPS 105.50 47 0.2088 0.2094

LADMPSAP 57.46 39 0.0371 0.0368

pLADMPSAP 1.97 141 0.0112 0.0112

(450, 1351, 150, 15) ADM 450.96 33 0.4337 0.4343

LADM 437.12 36 0.5126 0.5133

LADMPS 201.30 39 0.1938 0.1937

LADMPSAP 136.64 37 0.0321 0.0306

pLADMPSAP 4.16 150 0.0131 0.0131

(600, 1801, 200, 20) ADM 1,617.09 62 1.4299 1.4365

LADM 1,486.23 63 1.5200 1.5279

LADMPS 494.52 46 0.4915 0.4936

LADMPSAP 216.45 32 0.0787 0.0783

pLADMPSAP 5.77 127 0.0276 0.0277

Best results are shown in bold

metastasis patient in the training set. We use model (6) to select genes, where μ = 0.08. We
want to predict whether a tumor is metastatic (yi = 1) or non-metastatic (yi = −1).

We compare proximal LADMPSAP with the active set method, which was adopted
in (Jacob et al. 2009),12 LADM, and LADMPSAP. In LADMPSAP and proximal LADMP-
SAP, we both set β0 = 0.8 and ρ0 = 1.1. For LADM, we try multiple choices of β and choose
the one that results in the fastest convergence. In LADM and LADMPSAP, we terminate the
inner loop by APG when the norm of gradient of the objective function of the subproblem
is less than 10−6. The thresholds for terminating the outer loop are all chosen as ε1 = 10−3

and ε2 = 6 × 10−3. For the three LADM based methods, we first solve (6) to select genes.
Then we use the selected genes to re-train a traditional logistic regression model and use the
model to predict the test samples. As in Jacob et al. (2009) we partition the whole data set
into three subsets to do the experiment three times. Each time we select one subset as the test
set and the other two as the training set (i.e., there are (78 + 217) × 2/3 = 197 samples for
training). It is worth mentioning that Jacob et al. (2009) only kept the 300 genes that are the
most correlated with the output in the pre-processing step. In contrast, we use all the 3,510
genes in the training phase.

Table 6 shows that proximal LADMPSAP is more than ten times faster than the active set
method used in Jacob et al. (2009), although it computes with a more than ten times larger
training set. Proximal LADMPSAP is also much faster than LADM and LADMPSAP due
to the lack of inner loop to solve subproblems. The prediction error and the sparseness at the
pathway level by proximal LADMPSAP is also competitive with those of other methods in
comparison.

12 Code available at http://cbio.ensmp.fr/~ljacob/documents/overlasso-package.tgz.

123

http://cbio.ensmp.fr/~ljacob/documents/overlasso-package.tgz

Mach Learn (2015) 99:287–325 307

Table 6 Comparisons among the Active Set method (Jacob et al. 2009), LADM, LADMPSAP, and proximal
LADMPSAP (pLADMPSAP) on the pathway analysis

Method Time Error No. of pathway

Active set 2,179 0.36±0.03 6, 5, 78

LADM 2,433 0.315±0.049 7, 9, 10

LADMPSAP 1,593 0.329±0.011 7, 9, 9

pLADMPSAP 179 0.312±0.026 4, 6, 6

We present the CPU time (in seconds), classification error rate, and number of pathways. Results are estimated
by three-fold cross validation. No. of Pathway gives the number of pathways that the selected genes belong
to in each of the cross validation
Best results are shown in bold

7 Conclusions

In this paper, we propose linearized alternating direction method with parallel splitting and
adaptive penalty (LADMPSAP) for efficiently solving linearly constrained multi-block sep-
arable convex programs, which are abundant in machine learning. LADMPSAP fully utilizes
the properties that the proximal operations of the component objective functions and the pro-
jections onto convex sets are easily solvable, which are usually satisfied by machine learning
problems, making each of its iterations cheap. It is also highly parallel, making it appealing
for parallel or distributed computing. Numerical experiments testify to the advantages of
LADMPSAP over other possible first order methods.

Although LADMPSAP is inherently parallel, when solving the proximal operations of
component objective functions we will still face basic numerical algebraic computations.
So for particular large scale machine learning problems, it will be interesting to integrate
the existing distributed computing techniques [e.g., parallel incomplete Cholesky factoriza-
tion (Chang et al. 2007; Chang 2011) and caching factorization techniques (Boyd et al. 2011)]
with our LADMPSAP in order to effectively address the scalability issues.

Acknowledgments Z. Lin is supported by 973 Program of China (No. 2015CB3525), NSFC (Nos. 61272341
and 61231002), and Microsoft Research Asia Collaborative Research Program. R. Liu is supported by NSFC
(No. 61300086), the China Postdoctoral Science Foundation (Nos. 2013M530917 and 2014T70249), the
Fundamental Research Funds for the Central Universities (No. DUT12RC(3)67) and the Open Project Program
of the State Key Lab of CAD&CG (No. A1404), Zhejiang University. Z. Lin also thanks Xiaoming Yuan,
Wotao Yin, and Edward Chang for valuable discussions and HTC for financial support.

Appendix 1: Proof of Theorem 1

To prove this theorem, we first have the following lemmas and propositions.

Lemma 1 (KKT Condition) The Kuhn–Karush–Tucker (KKT) condition of problem (1) is
that there exists (x∗

1, . . . , x∗
n,λ∗), such that

n∑

i=1

Ai
(
x∗

i

) = b, (43)

−A†
i (λ

∗) ∈ ∂ fi
(
x∗

i

)
, i = 1, . . . , n, (44)

where ∂ fi is the subgradient of fi .

123

308 Mach Learn (2015) 99:287–325

The first is the feasibility condition and the second is the duality condition. Such
(x∗

1, . . . , x∗
n,λ∗) is called a KKT point of problem (1).

Lemma 2 For {(xk
1, . . . , xk

n, λk)} generated by Algorithm 1, we have that

− σ
(k)
i

(
xk+1

i − uk
i

)
∈ ∂ fi

(
xk+1

i

)
, i = 1, . . . , n, (45)

where uk
i = xk

i − A†
i (λ̂

k
)/σ

(k)
i .

This can be easily proved by checking the optimality conditions of (16).

Lemma 3 For {(xk
1, . . . , xk

n, λk)} generated by Algorithm 1 and a KKT point (x∗
1, . . . , x∗

n,λ∗)
of problem (1), the following inequality holds:

〈
−σ

(k)
i

(
xk+1

i − uk
i

)
+ A†

i (λ
∗), xk+1

i − x∗
i

〉
≥ 0, i = 1, . . . , n. (46)

This can be deduced by the monotonicity of subgradient mapping (Rockafellar 1970).

Lemma 4 For {(xk
1, . . . , xk

n, λk)} generated by Algorithm 1 and a KKT point (x∗
1, . . . , x∗

n,λ∗)
of problem (1), we have that

βk

n∑

i=1

σ
(k)
i

∥∥∥xk+1
i − x∗

i

∥∥∥
2 +

∥∥∥λk+1 − λ∗
∥∥∥

2
(47)

= βk

n∑

i=1

σ
(k)
i

∥∥∥xk
i − x∗

i

∥∥∥
2 +

∥∥∥λk − λ∗
∥∥∥

2
(48)

−2βk

n∑

i=1

〈
xk+1

i − x∗
i ,−σ

(k)
i

(
xk+1

i − uk
i

)
+ A†

i (λ
∗)
〉

(49)

−βk

n∑

i=1

σ
(k)
i

∥∥∥xk+1
i − xk

i

∥∥∥
2 −

∥∥∥λk+1 − λk
∥∥∥

2
(50)

− 2βk

n∑

i=1

σ
(k)
i

〈
xk+1

i − x∗
i , xk

i − uk
i

〉
(51)

+ 2
〈
λk+1 − λk,λk+1

〉
. (52)

Proof This can be easily checked. First, we add (49) and (51) to have

−2βk

n∑

i=1

〈
xk+1

i − x∗
i ,−σ

(k)
i

(
xk+1

i − uk
i

)
+ A†

i (λ
∗)
〉

(53)

− 2βk

n∑

i=1

σ
(k)
i

〈
xk+1

i − x∗
i , xk

i − uk
i

〉
(54)

= −2βk

n∑

i=1

〈
xk+1

i − x∗
i , A†

i (λ
∗)
〉
+ 2βk

n∑

i=1

σ
(k)
i

〈
xk+1

i − x∗
i , xk+1

i − xk
i

〉
(55)

= − 2βk

n∑

i=1

〈
Ai

(
xk+1

i − x∗
i

)
,λ∗〉+ 2βk

n∑

i=1

σ
(k)
i

〈
xk+1

i − x∗
i , xk+1

i − xk
i

〉
(56)

123

Mach Learn (2015) 99:287–325 309

= −2

〈
βk

n∑

i=1

Ai

(
xk+1

i − x∗
i

)
,λ∗

〉
+ 2βk

n∑

i=1

σ
(k)
i

〈
xk+1

i − x∗
i , xk+1

i − xk
i

〉
(57)

= −2

〈
βk

(
n∑

i=1

Ai

(
xk+1

i

)
− b

)
,λ∗

〉
(58)

+ 2βk

n∑

i=1

σ
(k)
i

〈
xk+1

i − x∗
i , xk+1

i − xk
i

〉
(59)

= −2
〈
λk+1 − λk,λ∗〉+ 2βk

n∑

i=1

σ
(k)
i

〈
xk+1

i − x∗
i , xk+1

i − xk
i

〉
, (60)

where we have used (43) in (57). Then we apply the identity

2
〈
ak+1 − a∗, ak+1 − ak

〉 = ‖ak+1 − a∗‖2 − ‖ak − a∗‖2 + ‖ak+1 − ak‖2 (61)

to see that (47)–(52) holds. ��
Proposition 2 For {(xk

1, . . . , xk
n, λk)}generated by Algorithm 1 and a KKT point (x∗

1, . . . , x∗
n,

λ∗) of problem (1), the following inequality holds:

βk

n∑

i=1

σ
(k)
i

∥∥∥xk+1
i − x∗

i

∥∥∥
2 +

∥∥∥λk+1 − λ∗
∥∥∥

2
(62)

≤ βk

n∑

i=1

σ
(k)
i

∥∥∥xk
i − x∗

i

∥∥∥
2 +

∥∥∥λk − λ∗
∥∥∥

2
(63)

− 2βk

n∑

i=1

〈
xk+1

i − x∗
i ,−σ

(k)
i

(
xk+1

i − uk
i

)
+ A†

i (λ
∗)
〉

(64)

−βk

n∑

i=1

(
σ

(k)
i − nβk‖Ai‖2

) ∥∥∥xk+1
i − xk

i

∥∥∥
2 −

∥∥∥λk − λ̂
k
∥∥∥

2
. (65)

Proof We continue from (51)–(52). As σ
(k)
i (xk

i − uk
i) = A†

i (λ̂
k
), we have

−2βk

n∑

i=1

σ
(k)
i

〈
xk+1

i − x∗
i , xk

i − uk
i

〉
+ 2

〈
λk+1 − λk,λk+1

〉
(66)

= −2βk

n∑

i=1

〈
Ai

(
xk+1

i − x∗
i

)
, λ̂

k
〉
+ 2

〈
λk+1 − λk,λk+1

〉
(67)

= −2βk

〈
n∑

i=1

Ai

(
xk+1

i

)
−

n∑

i=1

Ai
(
x∗

i

)
, λ̂

k
〉

+ 2
〈
λk+1 − λk,λk+1

〉
(68)

= −2
〈
λk+1 − λk, λ̂

k
〉
+ 2

〈
λk+1 − λk,λk+1

〉
(69)

= 2
〈
λk+1 − λk,λk+1 − λ̂

k
〉

(70)

= ‖λk+1 − λk‖2 + ‖λk+1 − λ̂
k‖2 − ‖λk − λ̂

k‖2 (71)

= ‖λk+1 − λk‖2 + β2
k

∥∥∥∥∥

n∑

i=1

Ai

(
xk+1

i − xk
i

)∥∥∥∥∥

2

− ‖λk − λ̂
k‖2 (72)

123

310 Mach Learn (2015) 99:287–325

≤ ‖λk+1 − λk‖2 + β2
k

(
n∑

i=1

‖Ai‖
∥∥∥xk+1

i − xk
i

∥∥∥

)2

− ‖λk − λ̂
k‖2 (73)

≤ ‖λk+1 − λk‖2 + nβ2
k

n∑

i=1

‖Ai‖2
∥∥∥xk+1

i − xk
i

∥∥∥
2 − ‖λk − λ̂

k‖2 (74)

Plugging the above into (51)–(52), we have (62)–(65). ��
Remark 4 Proposition 2 shows that the sequence {(xk

1, . . . , xk
n, λk)} is Fejér monotone.

Proposition 2 is different from Lemma 1 in Supplementary Material of Lin et al. (2011)
because for n > 2 we cannot obtain an (in)equality that is similar to Lemma 1 in Supple-
mentary Material of Lin et al. (2011) such that each term with minus sign could be made
non-positive. Such Fejér monotone (in)equalities are the corner stones for proving the con-
vergence of Lagrange multiplier based optimization algorithms. As a result, we cannot prove
the convergence of the naively generalized LADM for the multi-block case.

Then we have the following proposition.

Proposition 3 Let σ
(k)
i = ηiβk, i = 1, . . . , n. If {βk} is non-decreasing, ηi > n‖Ai‖2, i =

1, . . . , n, {(xk
1, . . . , xk

n, λk)} is generated by Algorithm 1, and (x∗
1, . . . , x∗

n,λ∗) is any KKT
point of problem (1), then

(1)
{∑n

i=1 ηi‖xk
i − x∗

i ‖2 + β−2
k ‖λk − λ∗‖2

}
is nonnegative and non-increasing.

(2) ‖xk+1
i − xk

i ‖ → 0, i = 1, . . . , n, and β−1
k ‖λk − λ̂

k‖ → 0.

(3)
∑+∞

k=1 β−1
k

〈
xk+1

i − x∗
i ,−σ

(k)
i (xk+1

i − uk
i) + A†

i (λ
∗)
〉
< +∞, i = 1, . . . , n.

Proof We divide both sides of (62)–(65) by β2
k to have

n∑

i=1

ηi

∥∥∥xk+1
i − x∗

i

∥∥∥
2 + β−2

k

∥∥∥λk+1 − λ∗
∥∥∥

2
(75)

≤
n∑

i=1

ηi‖xk
i − x∗

i ‖2 + β−2
k ‖λk − λ∗‖2 (76)

− 2β−1
k

n∑

i=1

〈
xk+1

i − x∗
i ,−σ

(k)
i

(
xk+1

i − uk
i

)
+ A†

i (λ
∗)
〉

(77)

−
n∑

i=1

(
ηi − n‖Ai‖2)

∥∥∥xk+1
i − xk

i

∥∥∥
2

(78)

−β−2
k ‖λk − λ̂

k‖2. (79)

Then by (46), ηi > n‖Ai‖2 and the non-decrement of {βk}, we can easily obtain (1). Second,
we sum both sides of (75)–(79) over k to have

2
+∞∑

k=0

β−1
k

n∑

i=1

〈
xk+1

i − x∗,−σ
(k)
i

(
xk+1

i − uk
i

)
+ A†

i (λ
∗)
〉

(80)

+
n∑

i=1

(
ηi − n‖Ai‖2)

+∞∑

k=0

∥∥∥xk+1
i − xk

i

∥∥∥
2

(81)

123

Mach Learn (2015) 99:287–325 311

+
+∞∑

k=0

β−2
k ‖λk − λ̂

k‖2 (82)

≤
n∑

i=1

ηi
∥∥x0

i − x∗∥∥2 + β−2
0 ‖λ0 − λ∗‖2. (83)

Then (2) and (3) can be easily deduced. ��
Now we are ready to prove Theorem 1. The proof resembles that in (Lin et al. 2011).

Proof of Theorem 1 By Proposition 3-(1) and the boundedness of {βk}, {(xk
1, . . . , xk

n,λk)} is

bounded, hence has an accumulation point, say (x
k j
1 , . . . , x

k j
n ,λk j) → (x∞

1 , . . . , x∞
n ,λ∞).

We accomplish the proof in two steps.
1. We first prove that (x∞

1 , . . . , x∞
n ,λ∞) is a KKT point of problem (1).

By Proposition 3-(2),
n∑

i=1

Ai

(
xk

i

)
− b = β−1

k

(
λ̂

k − λk
)

→ 0.

So any accumulation point of {(xk
1, . . . , xk

n)} is a feasible solution.

Since −σ
(k j −1)

i (x
k j
i − u

k j −1
i) ∈ ∂ fi (x

k j
i), we have

n∑

i=1

fi

(
x

k j
i

)
≤

n∑

i=1

fi
(
x∗

i

)+
n∑

i=1

〈
x

k j
i − x∗

i ,−σ
(k j −1)

i

(
x

k j
i − u

k j −1
i

)〉

=
n∑

i=1

fi
(
x∗

i

)+
n∑

i=1

〈
x

k j
i − x∗

i ,−ηiβk j −1

(
x

k j
i − x

k j −1
i

)
− A†

i

(
λ̂

k j −1
)〉

.

Let j → +∞. By observing Proposition 3-(2) and the boundedness of {βk}, we have
n∑

i=1

fi
(
x∞

i

) ≤
n∑

i=1

fi
(
x∗

i

)+
n∑

i=1

〈
x∞

i − x∗
i ,−A†

i (λ
∞)
〉

=
n∑

i=1

fi
(
x∗

i

)−
n∑

i=1

〈
A
(
x∞

i − x∗
i

)
,λ∞〉

=
n∑

i=1

fi
(
x∗

i

)−
〈

n∑

i=1

A
(
x∞

i

)− b,λ∞
〉

=
n∑

i=1

fi
(
x∗

i

)
.

So we conclude that (x∞
1 , . . . , x∞

n) is an optimal solution to (1).

Again by −σ
(k j −1)

i (x
k j
i − u

k j −1
i) ∈ ∂ fi (x

k j
i) we have

fi (x) ≥ fi

(
x

k j
i

)
+
〈
x − x

k j
i ,−σ

(k j −1)

i (x
k j
i − u

k j −1
i)

〉

= fi

(
x

k j
i

)
+
〈
x − x

k j
i ,−ηiβk j −1

(
x

k j
i − x

k j −1
i

)
− A†

i

(
λ̂

k j −1
)〉

.

Fixing x and letting j → +∞, we see that

fi (x) ≥ fi (x∞
i) +

〈
x − x∞

i ,−A†
i (λ

∞)
〉
, ∀x.

123

312 Mach Learn (2015) 99:287–325

So −A†
i (λ

∞) ∈ ∂ fi (x∞
i), i = 1, . . . , n. Thus (x∞

1 , . . . , x∞
n ,λ∞) is a KKT point of problem

(1).
2. We next prove that the whole sequence {(xk

1, . . . , xk
n,λk)} converges to (x∞

1 , . . . , x∞
n ,

λ∞).
By choosing (x∗

1, . . . , x∗
n,λ∗) = (x∞

1 , . . . , x∞
n ,λ∞) in Proposition 3, we have

n∑

i=1

ηi

∥∥∥x
k j
i − x∞

i

∥∥∥
2 + β−2

k j

∥∥∥λk j − λ∞
∥∥∥

2 → 0.

By Proposition 3-(1), we readily have

n∑

i=1

ηi

∥∥∥xk
i − x∞

i

∥∥∥
2 + β−2

k

∥∥∥λk − λ∞
∥∥∥

2 → 0.

So (xk
1, . . . , xk

n,λk) → (x∞
1 , . . . , x∞

n ,λ∞).
As (x∞

1 , . . . , x∞
n ,λ∞) can be an arbitrary accumulation point of {(xk

1, . . . , xk
n,λk)}, we

conclude that {(xk
1, . . . , xk

n,λk)} converge to a KKT point of problem (1). ��

Appendix 2: Proof of Theorem 2

We first have the following proposition.

Proposition 4 If {βk} is non-decreasing and unbounded, ηi > n‖Ai‖2 and ∂ fi (x) is bounded
for i = 1, . . . , n, then Proposition 3 holds and

β−1
k λk → 0. (84)

Proof As the conditions here are stricter than those in Proposition 3, Proposition 3 holds.
Then we have that {β−1

k ‖λk − λ∗‖} is bounded due to Proposition 3-(1). So {β−1
k λk} is

bounded due to β−1
k ‖λk‖ ≤ β−1

k ‖λk − λ∗‖ + β−1
k ‖λ∗‖. {β−1

k λ̂
k} is also bounded thanks to

Proposition 3-(2).
We rewrite Lemma 2 as

− ηi

(
xk+1

i − xk
i

)
− A†

i

(
β−1

k λ̂
k
)

∈ β−1
k ∂ fi

(
xk+1

i

)
, i = 1, . . . , n. (85)

Then by the boundedness of ∂ fi (x), the unboundedness of {βk} and Proposition 3-(2), letting
k → +∞, we have that

A†
i (λ̌

∞
) = 0, i = 1, . . . , n. (86)

where λ̌
∞

is any accumulation point of {β−1
k λ̂

k}, which is the same as that of {β−1
k λk} due

to Proposition 3-(2).
Recall that we have assumed that the mapping A(x1, . . . , xn) ≡ ∑n

i=1 Ai (xi) is onto. So

∩n
i=1null(A†

i) = 0. Therefore by (86), λ̌
∞ = 0. ��

Based on Proposition 4, we can prove Theorem 2 as follows.

Proof of Theorem 2 When {βk} is bounded, the convergence has been proven in Theorem 1.
In the following, we only focus on the case that {βk} is unbounded.

By Proposition 3-(1), {(xk
1, . . . , xk

n)} is bounded, hence has at least one accumulation point
(x∞

1 , . . . , x∞
n). By Proposition 3-(2), (x∞

1 , . . . , x∞
n) is a feasible solution.

123

Mach Learn (2015) 99:287–325 313

Since
∑+∞

k=1 β−1
k = +∞ and Proposition 3-(3), there exists a subsequence {(xk j

1 , . . . , x
k j
n)}

such that
〈
x

k j
i − x∗

i ,−σ
(k j −1)

i

(
x

k j
i − u

k j −1
i

)
+ A†

i (λ
∗)
〉
→ 0, i = 1, . . . , n. (87)

As p
k j
i ≡ −σ

(k j −1)

i (x
k j
i − u

k j −1
i) ∈ ∂ fi (x

k j
i) and ∂ fi is bounded, we may assume that

x
k j
i → x∞

i and p
k j
i → p∞

i .

It can be easily proven that

p∞
i ∈ ∂ fi (x∞

i).

Then letting j → ∞ in (87), we have
〈
x∞

i − x∗
i , p∞

i + A†
i (λ

∗)
〉
= 0, i = 1, . . . , n. (88)

Then by p
k j
i ∈ ∂ fi (x

k j
i),

n∑

i=1

fi

(
x

k j
i

)
≤

n∑

i=1

fi
(
x∗

i

)+
n∑

i=1

〈
x

k j
i − x∗

i , p
k j
i

〉
. (89)

Letting j → ∞ and making use of (88), we have

n∑

i=1

fi
(
x∞

i

) ≤
n∑

i=1

fi
(
x∗

i

)+
n∑

i=1

〈
x∞

i − x∗
i , p∞

i

〉

=
n∑

i=1

fi
(
x∗

i

)−
n∑

i=1

〈
x∞

i − x∗
i , A†

i (λ
∗)
〉

=
n∑

i=1

fi
(
x∗

i

)−
n∑

i=1

〈
Ai
(
x∞

i − x∗
i

)
,λ∗〉

=
n∑

i=1

fi
(
x∗

i

)
. (90)

So together with the feasibility of {(x∞
1 , . . . , x∞

n)} we have that {(xk j
1 , . . . , x

k j
n)} converges

to an optimal solution {(x∞
1 , . . . , x∞

n)} to (1).
Finally, we set x∗

i = x∞
i and λ∗ be the corresponding Lagrange multiplier λ∞ in Propo-

sition 3. By Proposition 4, we have that

n∑

i=1

ηi

∥∥∥x
k j
i − x∞

i

∥∥∥
2 + β−2

k j

∥∥∥λk j − λ∞
∥∥∥

2 → 0.

By Proposition 3-(1), we readily have

n∑

i=1

ηi‖xk
i − x∞

i ‖2 + β−2
k ‖λk − λ∞‖2 → 0.

So (xk
1, . . . , xk

n) → (x∞
1 , . . . , x∞

n). ��

123

314 Mach Learn (2015) 99:287–325

Appendix 3: Proof of Theorem 3

Proof of Theorem 3 We first prove that there exist linear mappings Bi , i = 1, . . . , n, such
that Bi ’s are not all zeros and

∑n
i=1 Bi A†

i = 0. Indeed,
∑n

i=1 Bi A†
i = 0 is equivalent to

n∑

i=1

Bi AT
i = 0, (91)

where Ai and Bi are the matrix representations of Ai and Bi , respectively. (91) can be further
written as

(A1 . . . An)

⎛

⎜⎝
BT

1
...

BT
n

⎞

⎟⎠ = 0. (92)

Recall that we have assumed that the solution to
∑n

i=1 Ai (xi) = b is non-unique. So
(A1 . . . An) is not full column rank hence (92) has nonzero solutions. Thus there exist
Bi ’s such that they are not all zeros and

∑n
i=1 Bi A†

i = 0.
By Lemma 2,

− σ
(k)
i

(
xk+1

i − uk
i

)
∈ ∂ fi

(
xk+1

i

)
, i = 1, . . . , n. (93)

As ∂ fi is bounded, i = 1, . . . , n, so is

n∑

i=1

Bi

(
σ

(k)
i

(
xk+1

i − uk
i

))
= βk

(
vk+1 − vk

)
, (94)

where vk = φ(xk
1, . . . , xk

n) and

φ(x1, . . . , xn) =
n∑

i=1

ηi Bi (xi). (95)

In (94) we have utilized
∑n

i=1 BiA†
i = 0 to cancel λ̂k , whose boundedness is uncertain.

Then we have that there exists a constant C > 0 such that

‖vk+1 − vk‖ ≤ Cβ−1
k . (96)

If
∑+∞

k=1 β−1
k < +∞, then {vk} is a Cauchy sequence, hence has a limit v∞. Define

v∗ = φ(x∗
1, . . . , x∗

n), where (x∗
1, . . . , x∗

n) is any optimal solution. Then

‖v∞ − v∗‖ =
∥∥∥∥∥v0 +

∞∑

k=0

(vk+1 − vk) − v∗
∥∥∥∥∥ (97)

≥ ‖v0 − v∗‖ −
∞∑

k=0

‖vk+1 − vk‖ (98)

≥ ‖v0 − v∗‖ − C
∞∑

k=0

β−1
k . (99)

123

Mach Learn (2015) 99:287–325 315

So if (x0
1, . . . , x0

n) is initialized badly such that

‖v0 − v∗‖ > C
∞∑

k=0

β−1
k , (100)

then ‖v∞ − v∗‖ > 0, which implies that (xk
1, . . . , xk

n) cannot converge to (x∗
1, . . . , x∗

n). Note
that (100) is possible because φ is not a zero mapping given the conditions on Bi . ��

Appendix 4: Proofs of Proposition 1 and Theorem 4

Proof of Proposition 1 If x̃ is optimal, it is easy to check that (24) holds.
Since −A†

i (λ
∗) ∈ ∂ fi

(
x∗

i

)
, we have

f (x̃) − f (x∗) +
n∑

i=1

〈
A†

i (λ
∗), x̃i − x∗

i

〉
≥ 0.

So if (24) holds, we have

f (x̃) − f (x∗) +
n∑

i=1

〈
A†

i (λ
∗), x̃i − x∗

i

〉
= 0, (101)

n∑

i=1

Ai (x̃i) − b = 0. (102)

With (102), we have

n∑

i=1

〈
A†

i (λ
∗), x̃i − x∗

i

〉
=

n∑

i=1

〈
λ∗, Ai

(
x̃i − x∗

i

)〉 =
〈
λ∗,

n∑

i=1

Ai
(
x̃i − x∗

i

)
〉

= 0. (103)

So (101) reduces to f (x̃) = f (x∗). As x̃ satisfies the feasibility condition, it is an optimal
solution to (1). ��
Proof of Theorem 4 We first deduce

∥∥∥∥∥∥

n∑

i=1

Ai

(
xk+1

i

)
− b

∥∥∥∥∥∥

2

=
∥∥∥∥∥∥

n∑

i=1

Ai

(
xk

i

)
− b +

n∑

i=1

Ai

(
xk+1

i − xk
i

)
∥∥∥∥∥∥

2

≤
⎛

⎝

∥∥∥∥∥∥

n∑

i=1

Ai

(
xk

i

)
− b

∥∥∥∥∥∥
+

n∑

i=1

∥∥∥Ai

(
xk+1

i − xk
i

)∥∥∥

⎞

⎠
2

≤ (n + 1)

⎛

⎜⎝

∥∥∥∥∥∥

n∑

i=1

Ai

(
xk

i

)
− b

∥∥∥∥∥∥

2

+
n∑

i=1

‖Ai ‖2
∥∥∥xk+1

i − xk
i

∥∥∥
2

⎞

⎟⎠

≤ (n + 1)

⎛

⎝β−2
k

∥∥∥λk − λ̂k

∥∥∥
2 + max

{
‖Ai ‖2

ηi − n ‖Ai ‖2

} n∑

i=1

(
ηi − n ‖Ai ‖2

) ∥∥∥xk+1
i − xk

i

∥∥∥
2
⎞

⎠

123

316 Mach Learn (2015) 99:287–325

≤ (n + 1) max

{
1,

{
‖Ai ‖2

ηi − n ‖Ai ‖2

}}⎛

⎝β−2
k

∥∥∥λk − λ̂k

∥∥∥
2 +

n∑

i=1

(
ηi − n ‖Ai ‖2

) ∥∥∥xk+1
i − xk

i

∥∥∥
2
⎞

⎠

= α−1

⎛

⎝β−2
k

∥∥∥λk − λ̂k

∥∥∥
2 +

n∑

i=1

(
ηi − n ‖Ai ‖2

) ∥∥∥xk+1
i − xk

i

∥∥∥
2
⎞

⎠ . (104)

By Proposition 2, we have

β−1
k

n∑

i=1

〈
xk+1

i − x∗
i ,−σ

(k)
i

(
xk+1

i − uk
i

)
+ A†

i (λ
∗)
〉

+1

2

n∑

i=1

(
ηi − n ‖Ai‖2)

∥∥∥xk+1
i − xk

i

∥∥∥
2 + 1

2
β−2

k ‖λk − λ̂
k‖2

≤ 1

2

(
n∑

i=1

ηi

∥∥∥xk
i − x∗

i

∥∥∥
2 + β−2

k

∥∥∥λk − λ∗
∥∥∥

2
)

−1

2

(
n∑

i=1

ηi

∥∥∥xk+1
i − x∗

i

∥∥∥
2 + β−2

k+1

∥∥∥λk+1 − λ∗
∥∥∥

2
)

. (105)

So by Lemma 2 and combining the above inequalities, we have

β−1
k

⎛

⎝ f (xk+1) − f (x∗) +
n∑

i=1

〈
xk+1

i − x∗
i , A†

i (λ
∗)
〉
+ αβ0

2

∥∥∥∥∥

n∑

i=1

Ai

(
xk+1

i

)
− b

∥∥∥∥∥

2
⎞

⎠

≤ β−1
k

(
n∑

i=1

〈
xk+1

i − x∗
i ,−σ

(k)
i

(
xk+1

i − uk
i

)〉
+

n∑

i=1

〈
xk+1

i − x∗
i , A†

i (λ
∗)
〉)

+α

2

∥∥∥∥∥

n∑

i=1

Ai

(
xk+1

i

)
− b

∥∥∥∥∥

2

≤ β−1
k

n∑

i=1

〈
xk+1

i − x∗
i ,−σ

(k)
i

(
xk+1

i − uk
i

)
+ A†

i (λ
∗)
〉

+ 1

2
β−2

k

∥∥∥λk − λ̂k

∥∥∥
2 + 1

2

n∑

i=1

(
ηi − n ‖Ai‖2)

∥∥∥xk+1
i − xk

i

∥∥∥
2

≤ 1

2

(
n∑

i=1

ηi

∥∥∥xk
i − x∗

i

∥∥∥
2 + β−2

k

∥∥∥λk − λ∗
∥∥∥

2
)

− 1

2

(
n∑

i=1

ηi

∥∥∥xk+1
i − x∗

i

∥∥∥
2 + β−2

k+1

∥∥∥λk+1 − λ∗
∥∥∥

2
)

. (106)

Here we use the fact that βk ≥ β0, which is guaranteed by (18) and (20). Summing the above
inequalities from k = 0 to K , and dividing both sides with

∑K
k=0 β−1

k , we have

K∑

k=0

γk f (xk+1) − f (x∗) +
n∑

i=1

〈
K∑

k=0

γkxk+1
i − x∗

i , A†
i (λ

∗)
〉

(107)

123

Mach Learn (2015) 99:287–325 317

+αβ0

2

K∑

k=0

γk

∥∥∥∥∥

n∑

i=1

Ai

(
xk+1

i

)
− b

∥∥∥∥∥

2

(108)

≤ 1

2
∑K

k=0
β−1

k

(
n∑

i=1

ηi
∥∥x0

i − x∗
i

∥∥2 + β−2
0

∥∥λ0 − λ∗∥∥2

)
. (109)

Next, by the convexity of f and the squared Frobenius norm ‖ · ‖2, we have

f (x̄K) − f (x∗) +
n∑

i=1

〈
x̄K

i − x∗
i , A†

i (λ
∗)
〉
+ αβ0

2

∥∥∥∥∥

n∑

i=1

Ai (x̄K
i) − b

∥∥∥∥∥

2

(110)

≤
K∑

k=0

γk f (xk+1) − f (x∗) +
n∑

i=1

〈
K∑

k=0

γkxk+1
i − x∗

i , A†
i (λ

∗)
〉

(111)

+ αβ0

2

K∑

k=0

γk

∥∥∥∥∥

n∑

i=1

Ai

(
xk+1

i

)
− b

∥∥∥∥∥

2

. (112)

Combining (107)–(109) and (110)–(112), we have

f (x̄K) − f (x∗) +
n∑

i=1

〈
x̄K

i − x∗
i , A†

i (λ
∗)
〉
+ αβ0

2

∥∥∥∥∥

n∑

i=1

Ai

(
x̄K

i

)
− b

∥∥∥∥∥

2

(113)

≤ 1

2
K∑

k=0

β−1
k

(
n∑

i=1

ηi
∥∥x0

i − x∗
i

∥∥2 + β−2
0

∥∥λ0 − λ∗∥∥2

)
. (114)

��

Appendix 5: Proof of Theorem 5

We only need to prove the following proposition. Then by the same technique for proving
Theorem 1, we can prove Theorem 5.

Proposition 5 For {(xk
1, . . . , xk

2n, λk)} generated by Algorithm 2 and a KKT point (x∗
1, . . . ,

x∗
2n,λ∗) of problem (27), we have that

βk

2n∑

i=1

σ
(k)
i

∥∥∥xk+1
i − x∗

i

∥∥∥
2 + ‖λk+1 − λ∗‖2 (115)

≤ βk

n∑

i=1

σ
(k)
i

∥∥∥xk
i − x∗

i

∥∥∥
2 + ‖λk − λ∗‖2 (116)

− 2βk

2n∑

i=1

〈
xk+1

i − x∗
i ,−σ

(k)
i

(
xk+1

i − uk
i

)
+ Â†

i (λ
∗)
〉

(117)

−βk

n∑

i=1

(
σ

(k)
i − βk(n‖Ai‖2 + 2)

) ∥∥∥xk+1
i − xk

i

∥∥∥
2

(118)

123

318 Mach Learn (2015) 99:287–325

−βk

2n∑

i=n+1

(
σ

(k)
i − 2βk

) ∥∥∥xk+1
i − xk

i

∥∥∥
2

(119)

−‖λk − λ̂
k‖2. (120)

Proof We continue from (72):

−2βk

2n∑

i=1

σ
(k)
i

〈
xk+1

i − x∗
i , xk

i − uk
i

〉
+ 2

〈
λk+1 − λk,λk+1

〉
(121)

= ‖λk+1 − λk‖2 + β2
k

∥∥∥∥∥

2n∑

i=1

Âi

(
xk+1

i − xk
i

)∥∥∥∥∥

2

− ‖λk − λ̂
k‖2 (122)

= ‖λk+1 − λk‖2 + β2
k

∥∥∥∥∥

n∑

i=1

Ai

(
xk+1

i − xk
i

)∥∥∥∥∥

2

(123)

+β2
k

n∑

i=1

∥∥∥
(

xk+1
i − xk

i

)
−
(

xk+1
n+i − xk

n+i

)∥∥∥
2 − ‖λk − λ̂

k‖2 (124)

≤ ‖λk+1 − λk‖2 + nβ2
k

n∑

i=1

‖Ai‖2
∥∥∥xk+1

i − xk
i

∥∥∥
2

(125)

+ 2β2
k

n∑

i=1

(∥∥∥xk+1
i − xk

i

∥∥∥
2 +

∥∥∥xk+1
n+i − xk

n+i

∥∥∥
2
)

− ‖λk − λ̂
k‖2. (126)

Then we can have (115)–(120). ��

Appendix 6: Proof of Theorem 6

To prove Theorem 6, we need the following proposition:

Proposition 6 For {(xk
1, . . . , xk

n, λk)} generated by Algorithm 3 and a KKT point (x∗
1, . . . ,

x∗
n,λ∗) of problem (1) with fi described in Sect. 5, we have that

n∑

i=1

(
fi

(
xk+1

i

)
− fi

(
x∗

i

)+
〈
A†

i (λ
∗), xk+1

i − x∗
i

〉)
(127)

≤ 1

2

n∑

i=1

τ
(k)
i

(∥∥∥xk
i − x∗

i

∥∥∥
2 −

∥∥∥xk+1
i − x∗

i

∥∥∥
2
)

+ 1

2βk

(
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

)
(128)

− 1

2

n∑

i=1

(
τ

(k)
i − Li − nβk‖Ai‖2

) ∥∥∥xk+1
i − xk

i

∥∥∥
2 − 1

2βk
‖λ̂k − λk‖2 (129)

Proof It can be observed that

0 ∈ ∂hi

(
xk+1

i

)
+ ∇gi

(
xk

i

)
+ A†

i (λ̂
k) + τ

(k)
i

(
xk+1

i − xk
i

)
.

123

Mach Learn (2015) 99:287–325 319

So we have

hi (xi) − hi

(
xk+1

i

)
≥
〈
−∇gi

(
xk

i

)
− A†

i (λ̂
k) − τ

(k)
i

(
xk+1

i − xk
i

)
, xi − xk+1

i

〉
, ∀xi ,

and
n∑

i=1

fi

(
xk+1

i

)
=

n∑

i=1

(
hi

(
xk+1

i

)
+ gi

(
xk+1

i

))

≤
n∑

i=1

(
hi

(
xk+1

i

)
+ gi

(
xk

i

)
+
〈
∇gi

(
xk

i

)
, xk+1

i − xk
i

〉
+ Li

2

∥∥∥xk+1
i − xk

i

∥∥∥
2
)

=
n∑

i=1

(
hi

(
xk+1

i

)
+ gi

(
xk

i

)
+
〈
∇gi

(
xk

i

)
, xi − xk

i

〉
+
〈
∇gi

(
xk

i

)
, xk+1

i − xi

〉

+ Li

2

∥∥∥xk+1
i − xk

i

∥∥∥
2)

≤
n∑

i=1

(
gi (xi) + hi (xi) +

〈
A†

i (λ̂
k) + τ

(k)
i

(
xk+1

i − xk
i

)
, xi − xk+1

i

〉
+ Li

2

∥∥∥xk+1
i − xk

i

∥∥∥
2
)

.

On the one hand,
n∑

i=1

(
fi

(
xk+1

i

)
− fi (xi) +

〈
A†

i (λ̂
k), xk+1

i − xi

〉)
−
〈

n∑

i=1

Ai

(
xk+1

i

)
− b, λ̂k − λ

〉
(130)

≤
n∑

i=1

(
−τ

(k)
i

〈
xk+1

i − xk
i , xk+1

i − xi

〉
+ Li

2

∥∥∥xk+1
i − xk

i

∥∥∥
2
)

−
〈

n∑

i=1

Ai

(
xk+1

i

)
− b, λ̂k − λ

〉

=
n∑

i=1

(
−τ

(k)
i

〈
xk+1

i − xk
i , xk+1

i − xi

〉
+ Li

2

∥∥∥xk+1
i − xk

i

∥∥∥
2
)

− 1

βk

〈
λk+1 − λk , λ̂k − λ

〉

=
n∑

i=1

[
τ

(k)
i

2

(∥∥∥xk
i − xi

∥∥∥
2 −

∥∥∥xk+1
i − xi

∥∥∥
2 −

∥∥∥xk+1
i − xk

i

∥∥∥
2
)

+ Li

2

∥∥∥xk+1
i − xk

i

∥∥∥
2
]

− 1

2βk

(
‖λk+1 − λ‖2 − ‖λk − λ‖2 + ‖λ̂k − λk‖2 − ‖λk+1 − λ̂k‖2

)

=
n∑

i=1

[
τ

(k)
i

2

(∥∥∥xk
i − xi

∥∥∥
2 −

∥∥∥xk+1
i − xi

∥∥∥
2 −

∥∥∥xk+1
i − xk

i

∥∥∥
2
)

+ Li

2

∥∥∥xk+1
i − xk

i

∥∥∥
2
]

− 1

2βk

⎛

⎝‖λk+1 − λ‖2 − ‖λk − λ‖2 + ‖λ̂k − λk‖2 − β2
k

∥∥∥∥∥

n∑

i=1

Ai

(
xk+1

i − xk
i

)∥∥∥∥∥

2
⎞

⎠

≤ 1

2

n∑

i=1

τ
(k)
i

(∥∥∥xk
i − xi

∥∥∥
2 −

∥∥∥xk+1
i − xi

∥∥∥
2
)

− 1

2

n∑

i=1

(
τ

(k)
i − Li − nβk‖Ai ‖2

) ∥∥∥xk+1
i − xk

i

∥∥∥
2

+ 1

2βk

(
‖λk − λ‖2 − ‖λk+1 − λ‖2 − ‖λ̂k − λk‖2

)
. (131)

On the other hand,

n∑

i=1

(
fi

(
xk+1

i

)
− fi (xi) +

〈
A†

i (λ), xk+1
i − xi

〉)
−
〈

n∑

i=1

Ai (xi) − b, λ̂k − λ

〉

=
n∑

i=1

(
fi

(
xk+1

i

)
− fi (xi) +

〈
A†

i (λ̂
k), xk+1

i − xi

〉)
−
〈

n∑

i=1

Ai

(
xk+1

i

)
− b, λ̂k − λ

〉
.

123

320 Mach Learn (2015) 99:287–325

So we have

n∑

i=1

(
fi

(
xk+1

i

)
− fi (xi) +

〈
A†

i (λ), xk+1
i − xi

〉)
−
〈

n∑

i=1

Ai (xi) − b, λ̂k − λ

〉

≤ 1

2

n∑

i=1

τ
(k)
i

(∥∥∥xk
i − xi

∥∥∥
2 −

∥∥∥xk+1
i − xi

∥∥∥
2
)

− 1

2

n∑

i=1

(
τ

(k)
i − Li − nβk‖Ai‖2

) ∥∥∥xk+1
i − xk

i

∥∥∥
2

+ 1

2βk

(
‖λk − λ‖2 − ‖λk+1 − λ‖2 − ‖λ̂k − λk‖2

)
.

Let xi = x∗
i and λ = λ∗, we have

n∑

i=1

(
fi

(
xk+1

i

)
− fi

(
x∗

i

)+
〈
A†

i (λ
∗), xk+1

i − x∗
i

〉)

≤ 1

2

n∑

i=1

τ
(k)
i

[∥∥∥xk
i − x∗

i

∥∥∥
2 −

∥∥∥xk+1
i − x∗

i

∥∥∥
2
]

+ 1

2βk

(
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

)

− 1

2

n∑

i=1

(
τ

(k)
i − Li − nβk‖Ai‖2

) ∥∥∥xk+1
i − xk

i

∥∥∥
2 − 1

2βk
‖λ̂k − λk‖2.

��
Proof of Theorem 6 As x∗ minimizes

∑n
i=1 f (xi) + 〈

λ∗,
∑n

i=1 Ai (xi) − b
〉
, we have

0 ≤
n∑

i=1

(
fi

(
xk+1

i

)
− fi

(
x∗

i

)+
〈
A†

i (λ
∗), xk+1

i − x∗
i

〉)
.

By Proposition 6, we have

n∑

i=1

1

2

(
τ

(k)
i − Li − nβk‖Ai‖2

) ∥∥∥xk+1
i − xk

i

∥∥∥
2 + 1

2βk
‖λ̂k − λk‖2

≤ 1

2

n∑

i=1

τ
(k)
i

(∥∥∥xk
i − x∗

i

∥∥∥
2 −

∥∥∥xk+1
i − x∗

i

∥∥∥
2
)

+ 1

2βk

(
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

)
.

Dividing both sides by βk and using τ
(k)
i − Li − nβk‖Ai‖2 ≥ βk(ηi − n‖Ai‖2), the non-

decrement of βk and the non-increment of β−1
k τ

(k)
i , we have

1

2

n∑

i=1

(
ηi − n‖Ai‖2)

∥∥∥xk+1
i − xk

i

∥∥∥
2 + 1

2β2
k

‖λ̂k − λk‖2 (132)

≤ 1

2

n∑

i=1

(
β−1

k τ
(k)
i

∥∥∥xk
i − x∗

i

∥∥∥
2 − β−1

k+1τ
(k+1)
i

∥∥∥xk+1
i − x∗

i

∥∥∥
2
)

+
(

1

2β2
k

‖λk − λ∗‖2 − 1

2β2
k+1

‖λk+1 − λ∗‖2

)
. (133)

123

Mach Learn (2015) 99:287–325 321

It can be easily seen that (xk
1, . . . , xk

n, λk) is bounded, hence has an accumulation point, say

(x
k j
1 , . . . , x

k j
n ,λk j) → (x∞

1 , . . . , x∞
n ,λ∞).

Summing (132)–(133) over k = 0, . . . ,∞, we have

1

2

n∑

i=1

(
ηi − n‖Ai‖2)

∞∑

k=0

∥∥∥xk+1
i − xk

i

∥∥∥
2 +

∞∑

k=0

1

2β2
k

‖λ̂k − λk‖2

≤ 1

2

n∑

i=1

β−1
0 τ

(0)
i

∥∥x0
i − x∗

i

∥∥2 + 1

2β2
0

‖λ0 − λ∗‖2.

So ‖xk+1
i − xk

i ‖ → 0 and β−2
k ‖λ̂k − λk‖ → 0 as k → ∞. Hence

∥∥∑n
i=1 Ai (xk

i) − b
∥∥ → 0,

which means that x∞
1 , . . . , x∞

n is a feasible solution.
From (130)–(131), we have

n∑

i=1

(
fi

(
x

k j +1
i

)
− fi (xi) +

〈
A†

i (λ̂
k j), x

k j +1
i − xi

〉)
−
〈

n∑

i=1

Ai

(
x

k j +1
i

)
− b, λ̂k j − λ

〉

≤ 1

2

n∑

i=1

τ
(k j)

i

(∥∥∥x
k j
i − xi

∥∥∥
2 −

∥∥∥x
k j +1
i − xi

∥∥∥
2
)

− 1

2

n∑

i=1

(
τ

(k j)

i − Li − nβk j ‖Ai‖2
) ∥∥∥x

k j +1
i − x

k j
i

∥∥∥
2

+ 1

2βk j

(
‖λk j − λ‖2 − ‖λk j +1 − λ‖2 − ‖λ̂k j − λk j ‖2

)
.

Let j → ∞. By the boundedness of τ
(k j)

i we have

n∑

i=1

(
fi (x∞

i) − fi (xi) +
〈
A†

i (λ
∞), x∞

i − xi

〉)
≤ 0, ∀xi .

Together with the feasibility of (x∞
1 , . . . , x∞

n), we can see that (x∞
1 , . . . , x∞

n , λ∞) is a KKT
point.

By choosing (x∗
1, . . . , x∗

n,λ∗) = (x∞
1 , . . . , x∞

n ,λ∞) we have

n∑

i=1

ηi

∥∥∥x
k j
i − x∞

i

∥∥∥
2 + 1

β2
k j

∥∥∥λk j − λ∞
∥∥∥

2 → 0.

Using (132)–(133), we have

n∑

i=1

ηi

∥∥∥xk
i − x∞

i

∥∥∥
2 + 1

β2
k

∥∥∥λk − λ∞
∥∥∥

2 → 0.

So (xk
1, . . . , xk

n,λk) → (x∞
1 , . . . , x∞

n ,λ∞). ��

123

322 Mach Learn (2015) 99:287–325

Appendix 7: Proof of Theorem 7

Proof of Theorem 7 By the definition of α and τ
(k)
i ,

1

2

[
n∑

i=1

(
τ

(k)
i − Li − nβk‖Ai‖2

) ∥∥∥xk+1
i − xk

i

∥∥∥
2 + 1

βk
‖λ̂k − λk‖2

]
(134)

≥ βk

2

[
n∑

i=1

(
ηi − n‖Ai‖2)

∥∥∥xk+1
i − xk

i

∥∥∥
2 + 1

β2
k

‖λ̂k − λk‖2

]

≥ αβk

2
(n + 1)

(
n∑

i=1

‖Ai‖2
∥∥∥xk+1

i − xk
i

∥∥∥
2 + 1

β2
k

‖λ̂k − λk‖2

)

≥ αβk

2
(n + 1)

(
n∑

i=1

‖Ai

(
xk+1

i − xk
i

)
‖2 + 1

β2
k

‖λ̂k − λk‖2

)

= αβk

2
(n + 1)

⎛

⎝
n∑

i=1

‖Ai

(
xk+1

i − xk
i

)
‖2 +

∥∥∥∥∥

n∑

i=1

Ai

(
xk

i

)
− b

∥∥∥∥∥

2
⎞

⎠

≥ αβk

2

∥∥∥∥∥

n∑

i=1

Ai

(
xk+1

i

)
− b

∥∥∥∥∥

2

. (135)

So by (127)–(129) and the non-decrement of βk , we have

n∑

i=1

(
fi

(
xk+1

i

)
− fi

(
x∗

i

)+
〈
A†

i (λ
∗), xk+1

i − x∗
i

〉)
+ αβ0

2

∥∥∥∥∥

n∑

i=1

Ai

(
xk+1

i

)
− b

∥∥∥∥∥

2

(136)

≤
n∑

i=1

(
fi

(
xk+1

i

)
− fi

(
x∗

i

)+
〈
A†

i (λ
∗), xk+1

i − x∗
i

〉)
+ αβk

2

∥∥∥∥∥

n∑

i=1

Ai

(
xk+1

i

)
− b

∥∥∥∥∥

2

(137)

≤ 1

2

n∑

i=1

τ
(k)
i

(∥∥∥xk
i − x∗

i

∥∥∥
2 −

∥∥∥xk+1
i − x∗

i

∥∥∥
2
)

+ 1

2βk

(
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

)
.

(138)

Dividing both sides by βk and using the non-decrement of βk and the non-increment of
β−1

k τ
(k)
i , we have

1

βk

⎡

⎣
n∑

i=1

(
fi

(
xk+1

i

)
− fi

(
x∗

i

)+
〈
A†

i (λ
∗), xk+1

i − x∗
i

〉)
+ αβ0

2

∥∥∥∥∥

n∑

i=1

Ai

(
xk+1

i

)
− b

∥∥∥∥∥

2
⎤

⎦

(139)

≤ 1

2

n∑

i=1

β−1
k τ

(k)
i

(∥∥∥xk
i −x∗

i

∥∥∥
2 −

∥∥∥xk+1
i −x∗

i

∥∥∥
2
)

+ 1

2β2
k

(∥∥∥λk −λ∗
∥∥∥

2−
∥∥∥λk+1 − λ∗

∥∥∥
2
)

≤ 1

2

n∑

i=1

(
β−1

k τ
(k)
i

∥∥∥xk
i − x∗

i

∥∥∥
2 − β−1

k+1τ
(k+1)
i

∥∥∥xk+1
i − x∗

i

∥∥∥
2
)

123

Mach Learn (2015) 99:287–325 323

+
(

1

2β2
k

∥∥∥λk − λ∗
∥∥∥

2 − 1

2β2
k+1

∥∥∥λk+1 − λ∗
∥∥∥

2
)

. (140)

Summing over k = 0, . . . , K and dividing both sides by
∑K

k=0 β−1
k , we have

n∑

i=1

(
K∑

k=0

γ k fi

(
xk+1

i

)
− fi

(
x∗

i

)+
〈
A†

i (λ
∗),

K∑

k=0

γ kxk+1
i − x∗

i

〉)
(141)

+ αβ0

2

K∑

k=0

γ k

∥∥∥∥∥

n∑

i=1

Ai

(
xk+1

i

)
− b

∥∥∥∥∥

2

(142)

≤
(

n∑

i=1

β−1
0 τ

(0)
i

∥∥x0
i − x∗

i

∥∥2 + β−2
0

∥∥λ0 − λ∗∥∥2

)
/

K∑

k=0

2β−1
k . (143)

Using the convexity of fi and ‖ · ‖2, we have

n∑

i=1

(
fi

(
x̄K

i

)
− fi

(
x∗

i

)+
〈
A†

i (λ
∗), x̄K

i − x∗
i

〉)
+ αβ0

2

∥∥∥∥∥

n∑

i=1

Ai

(
x̄K

i

)
− b

∥∥∥∥∥

2

(144)

≤
n∑

i=1

(
K∑

k=0

γ k fi

(
xk+1

i

)
− fi

(
x∗

i

)+
〈
A†

i (λ
∗),

K∑

k=0

γ kxk+1
i − x∗

i

〉)
(145)

+ αβ0

2

K∑

k=0

γ k

∥∥∥∥∥

n∑

i=1

Ai

(
xk+1

i

)
− b

∥∥∥∥∥

2

. (146)

So we have

n∑

i=1

(
fi

(
x̄K

i

)
− fi

(
x∗

i

)+
〈
A†

i (λ
∗), x̄K

i − x∗
i

〉)
+ αβ0

2

∥∥∥∥∥

n∑

i=1

Ai

(
x̄K

i

)
− b

∥∥∥∥∥

2

(147)

≤
(

n∑

i=1

β−1
0 τ

(0)
i ‖x0

i − x∗
i ‖2 + β−2

0 ‖λ0 − λ∗‖2

)
/

K∑

k=0

2β−1
k . (148)

��

References

Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM Journal of Imaging Sciences, 2(1), 183–202.

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011) Distributed optimization and statistical learning
via the alternating direction method of multipliers. In M. Jordan (Ed.), Foundations and trends in machine
learning. Hanover, MA: Now Publishers Inc.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.
Cai, J., Candès, E., & Shen, Z. (2010). A singular value thresholding algorithm for matrix completion. SIAM

Journal of Optimization, 20(4), 1956–1982.
Candès, E., & Recht, B. (2009). Exact matrix completion via convex optimization. Foundations of Computa-

tional Mathematics, 9(6), 717–772.
Candès, E., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis? JACM, 58(3), 11.
Chandrasekaran, V., Parrilo, P., & Willsky, A. (2012). Latent variable graphical model selection via convex

optimization. The Annals of Statistics, 40(4), 1935–1967.

123

324 Mach Learn (2015) 99:287–325

Chang, E., Zhu, K., Wang, H., Bai, H., Li, J., Qiu, Z., & Cui, H. (2007). Psvm: Parallelizing support vector
machines on distributed computers. In NIPS.

Chang, E. (2011). Foundations of large-scale multimedia information management and retrieval: Mathematics
of perception. Berlin: Springer.

Chen, C., He, B., Ye, Y., & Yuan, X. (2013). The direct extension of ADMM for multi-block convex mini-
mization problems is not necessarily convergent. Preprint.

Deng, W., & Yin, W. (2012). On the global and linear convergence of the generalized alternating direction
method of multipliers. DTIC Document: Tech. rep.

Deng, W., Yin, W., & Zhang, Y. (2011). Group sparse optimization by alternating direction method. TR11-06,
Department of Computational and Applied Mathematics, Rice University.

Esser, E. (2009). Applications of Lagrangian-based alternating direction methods and connections to split
Bregman. CAM Report 09-31, UCLA.

Favaro, P., Vidal, R., Ravichandran, A. (2011). A closed form solution to robust subspace estimation and
clustering. In CVPR.

Fazel, M. (2002). Matrix rank minimization with applications. Ph.D. thesis.
Fortin, M., & Glowinski, R. (1983). Augmented Lagrangian methods. Amsterdam: North-Holland.
Goldfarb, D., & Ma, S. (2012). Fast multiple splitting algorithms for convex optimization. SIAM Journal of

Optimization, 22(2), 533–556.
Goldstein, T., & Osher, S. (2008). The split Bregman method for �1 regularized problems. SIAM Journal of

Imaging Sciences, 2(2), 323–343.
He, B., & Yuan, X. (2012). On the O(1/n) convergence rate of the Douglas–Rachford alternating direction

method. SIAM Journal of Numerical Analysus, 50(2), 700–709.
He, B., Tao, M., & Yuan, X. (2012). Alternating direction method with Gaussian back substitution for separable

convex programming. SIAM Journal of Optimization, 22(2), 313–340.
He, B., & Yuan, X. (2013). Linearized alternating direction method with Gaussian back substitution for

separable convex programming. Numerical Algebra, Control and Optimization, 3(2), 247–260.
Hong, M., Luo, Z. Q. (2012). On the linear convergence of the alternating direction method of multipliers.

Preprint, arXiv:12083922.
Jacob, L., Obozinski, G., & Vert, J. (2009). Group Lasso with overlap and graph Lasso. In ICML.
Ji, H., Liu, C., Shen, Z., & Xu, Y. (2010). Robust video denoising using low rank matrix completion. In CVPR.
Lin, Z., Chen, M., & Ma, Y. (2009a). The augmented Lagrange multiplier method for exact recovery of

corrupted low-rank matrices. UIUC Technical Report UILU-ENG-09-2215.
Lin, Z., Ganesh, A., Wright, J., Wu, L., Chen, M., & Ma, Y. (2009b). Fast convex optimization algorithms for

exact recovery of a corrupted low-rank matrix. UIUC Technical Report UILU-ENG-09-2214.
Lin, Z., Liu, R., & Su, Z. (2011). Linearized alternating direction method with adaptive penalty for low-rank

representation. In NIPS.
Liu, G., & Yan, S. (2011). Latent low-rank representation for subspace segmentation and feature extraction.

In ICCV.
Liu, R., Lin, Z., & Su, Z. (2013). Linearized alternating direction method with parallel splitting and adaptive

penalty for separable convex programs in machine learning. In ACML.
Liu, G., Lin, Z., & Yu, Y. (2010). Robust subspace segmentation by low-rank representation. In ICML.
Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., & Ma, Y. (2012). Robust recovery of subspace structures by low-rank

representation. IEEE Transactions on PAMI, 35(1), 171–184.
Ma, S., Goldfarb, D., & Chen, L. (2011). Fixed point and bregman iterative methods for matrix rank mini-

mization. Mathematical Programming, 128(1–2), 321–359.
Meier, L., Geer, S. V. D., & Bühlmann, P. (2008). The group Lasso for logistic regression. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 70(1), 53–71.
Rockafellar, R. (1970). Convex analysis. Princeton: Princeton University Press.
Shen, X., & Wu, Y. (2012). A unified approach to salient object detection via low rank matrix recovery. In

CVPR.
Subramanian, A., Tamayo, P., Mootha, V., Mukherjee, S., et al. (2005). Gene set enrichment analysis: A

knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National
Academy of Sciences, 102(43), 267–288.

Tao, M. (2014). Some parallel splitting methods for separable convex programming with O(1/t) convergence
rate. Pacific Journal of Optimization, 10(2), 359–384.

Toh, K., & Yun, S. (2010). An accelerated proximal gradient algorithm for nuclear norm regularized least
squares problems. Pacific Journal of Optimization, 6(15), 615–640.

Tron, R., & Vidal, R. (2007). A benchmark for the comparison of 3D montion segmentation algorithms. In
CVPR.

123

http://arxiv.org/abs/12083922

Mach Learn (2015) 99:287–325 325

van de Vijver, M., He, Y., van’t Veer, L., Dai, H., et al. (2002). A gene-expression signature as a predictor of
survival in breast cancer. The New England Journal of Medicine, 347(25), 1999–2009.

Wright, J., Yang, A., Ganesh, A., Sastry, S., & Ma, Y. (2009). Robust face recognition via sparse representation.
IEEE Transactions on PAMI, 31(2), 210–227.

Xu, Y., Yin, W., & Wen, Z. (2011). An alternating direction algorithm for matrix completion with nonnegative
factors. CAAM Technical Report TR11-03.

Yang, J., & Yuan, X. (2013). Linearized augmented Lagrangian and alternating direction methods for nuclear
norm minimization. Mathematics of Computation, 82(281), 301–329.

Ye, J., Ji, S., & Chen, J. (2008). Multi-class discriminant kernel learning via convex programming. JMLR, 9,
719–758.

Zhang, X., Burger, M., & Osher, S. (2011). A unified primal-dual algorithm framework based on Bregman
iteration. Journal of Scientific Computing, 46(1), 20–46.

123

	Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning
	Abstract
	1 Introduction
	1.1 Exemplar problems in machine learning
	1.1.1 Latent low-rank representation
	1.1.2 Nonnegative matrix completion
	1.1.3 Group sparse logistic regression with overlap

	1.2 Related work
	1.3 Contributions and differences from prior work
	1.4 Organization

	2 Review of LADMAP for the two-block case
	3 LADMPSAP for the multi-block case
	3.1 LADM with parallel splitting and adaptive penalty
	3.2 Stopping criteria
	3.3 Global convergence
	3.4 Enhanced convergence results
	3.5 Convergence rate

	4 Practical LADMPSAP for convex programs with convex set constraints
	5 Proximal LADMPSAP for even more general convex programs
	6 Numerical results
	6.1 Solving latent low-rank representation
	6.2 Solving nonnegative matrix completion
	6.3 Solving group sparse logistic regression with overlap
	6.3.1 Synthetic data
	6.3.2 Pathway analysis on breast cancer data

	7 Conclusions
	Acknowledgments
	Appendix 1: Proof of Theorem 1
	Appendix 2: Proof of Theorem 2
	Appendix 3: Proof of Theorem 3
	Appendix 4: Proofs of Proposition 1 and Theorem 4
	Appendix 5: Proof of Theorem 5
	Appendix 6: Proof of Theorem 6
	Appendix 7: Proof of Theorem 7
	References

