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Abstract

This paper introduces a one-dimensional (1D) higher-order exact formulation for linearized buckling analysis

of beam-columns. The Carrera Unified Formulation (CUF) is utilised and the displacement field is expressed

as a generic N -order expansion of the generalized unknown displacement field. The principle of virtual dis-

placements is invoked along with CUF to derive the governing equations and the associated natural boundary

conditions in terms of fundamental nuclei, which can be systematically expanded according to N by exploiting

an extensive index notation. After the closed form solution of the N -order beam-column element is sought,

an exact Dynamic Stiffness (DS) matrix is derived by relating the amplitudes of the loads to those of the re-

sponses. The global DS matrix is finally processed through the application of the Wittrick-Williams algorithm

to extract the buckling loads of the structure. Isotropic solid and thin-walled cross-section beams as well as

laminated composite structures are analysed in this paper. The validity of the formulation and its broad range

of applicability are demonstrated through comparisons of results from the literature and by using commercial

finite element codes.

Keywords: Carrera unified formulation; Dynamic stiffness method; Buckling; Higher-order theories; Thin-

walled; Beams; Composites
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1 Introduction

Buckling analysis of beam-columns has been widely investigated in the past and recent years because the

subject matter plays an important role in the design of structures. Several methodologies have therefore been

developed and there are excellent texts on the subject, see for example Timoshenko [1] and Matsunaga [2].

In most of the classical works on beam-column buckling, it has been assumed that when the equilibrium

of the column is disturbed, it becomes unstable due to bending in the plane of smaller second moment

of area. There are cases of practical interest where the column may buckle due to twisting or due to a

combination of both twisting and bending. Such types of torsion or bending-torsion buckling are particularly

relevant for thin-walled cross-sections. Some noteworthy contributions on instability of thin-walled columns

are due to Wagner [3], Goodier [4] and Vlasov [5], amongst others. More recent papers on this topic can

be found in Vo and Lee [6, 7] and Kim et al. [8]. In essence, Vo and Lee [6, 7] developed an analytical

model based on the shear deformable beam theory whereas Kim et al. [8] proposed a formulation based

on the displacement parameters defined at an arbitrarily chosen axis, including second-order terms of finite

semi-tangential rotations. Furthermore, the applications of the generalized beam theory to stability analyses

[9, 10] deserve some special mention. Other contributions on the subject include Zhang and Tong [11], Mohri

et al. [12] and Beale et al. [13].

Buckling analysis of composite beam-columns, of course, merits a separate discussion. The classical theory

based on Euler-Bernoulli beam model (EBBM) generally overestimates the critical buckling loads of short

beams since it does not include transverse shear effects. By contrast, the Timoshenko beam model (TBM)

accounts for the first-order shear deformation effects. However, TBM violates the zero shear stress condition on

the un-loaded lateral surfaces of the beam. The correct implementation of shear phenomena is of fundamental

importance for composite laminates because of their low transverse shear moduli compared to the axial tensile

moduli, as discussed in the excellent review of Kapania and Raciti [14, 15] which also includes a comprehensive

overview on composite beam works. Higher-order beam models for the stability analysis of composite beam-

columns have been therefore given wide coverage in the literature. Some noteworthy contributions are those

by Khedir and Reddy [16], Zhen and Wanji [17], Aydogdu [18], and Vo and Thai [19].

In the present work, a general formulation for buckling analysis of both solid and thin-walled isotropic

as well as anisotropic beam-columns is proposed. The methodology can deal with pure bending or torsional

buckling modes independently as well as allows for coupled bending-torsion instability phenomena and higher-

order shear effects. In the formulation presented, both metallic and composite columns can be analysed

with no restrictions on the cross-sectional geometry. This is achieved by making use of the Carrera Unified

Formulation (CUF) [20], which has received wide attention in recent years [21, 22, 23, 24]. CUF enables the

development of 1D displacement fields in an arbitrary, but kinematically enriched manner. The governing

differential equations can, in fact, be written in terms of the fundamental nuclei that depend nether on the

order of the theory nor on the cross-sectional geometry. In recent works, CUF has already been applied to
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buckling analysis of columns by using both Finite Element Method (FEM) [25] and a Navier type solution [26].

As it is known, FEM is a widely used numerical method in solid mechanics which transforms the governing

differential equations into a system of algebraic equations. However, only approximate solutions are given by

FEM. On the other hand, if the Navier solution is used, no numerical approximations are made, but of course,

only simply supported boundary conditions can be addressed.

A more powerful, but elegant approach for CUF theories can be achieved through the application of

the Dynamic Stiffness Method (DSM), which was recently applied by Pagani et al. [27, 28, 29] for free

vibration analysis of metallic and composite beams and plates. The DSM is appealing in free vibration and

buckling analyses because unlike the FEM, it provides exact solution of the governing equations of a structure

for any boundary conditions, once the initial assumptions on the displacements field have been made. The

uncompromising accuracy of the DSM when dealing with buckling analysis has been demonstrated by Banerjee

and Williams [30], Banerjee [31], Eisenberger and Reich [32], Eisenberger [33] and Abramovich et al. [34],

amongst others.

In this paper, CUF is employed to formulate the governing equations of the N -order beam-column. DSM is

subsequently used along with the algorithm ofWittrick andWilliams [35] to compute the critical buckling loads

of both isotropic and composite laminated beam-columns. The results are finally compared and contrasted

with those from the literature and from commercial FEM codes.

2 Carrera Unified Formulation for Beams

2.1 Preliminaries

The adopted rectangular cartesian coordinate system is shown in Fig. 1, together with the geometry of a

multi-layered structure. The cross-section of the beam lies on the xz-plane and it is denoted by Ω, whereas

the boundaries over y are 0 ≤ y ≤ L. Introducing the transposed displacement vector,

u(x, y, z) =

{

ux uy uz

}T

(1)

The stress, σ, and strain, ǫ, components are expressed in transposed forms as follows:

σ =

{

σyy σxx σzz σxz σyz σxy

}T

, ǫ =

{

ǫyy ǫxx ǫzz ǫxz ǫyz ǫxy

}T

(2)

In the case of small displacements with respect to a characteristic dimension in the plane of Ω, the strain-

displacement relations are

ǫ = Du (3)
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where D is the following linear differential operator matrix

D =
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(4)

In this work, geometric non-linearities are introduced in the axial strain in the Green-Lagrange sense.

ǫnlyy =
1

2
(u2

x,y
+ u2

y,y
+ u2

z,y
) (5)

The suffix after the comma in Eq. (5) denotes the derivatives with respect to that variable. Constitutive laws

are now exploited to obtain stress components to give

σ = C̃ǫ (6)

In the case of orthotropic material the matrix C̃ is

C̃ =

































C̃33 C̃23 C̃13 0 0 C̃36

C̃23 C̃22 C̃12 0 0 C̃26

C̃13 C̃12 C̃11 0 0 C̃16

0 0 0 C̃44 C̃45 0

0 0 0 C̃45 C̃55 0

C̃36 C̃26 C̃16 0 0 C̃66

































(7)

Coefficients C̃ij depend on Young modulus and Poisson ratio as well as on the fiber orientation angle, θ, which

is graphically defined in Fig. 2 where “1”, “2”, and “3” represent the cartesian axes of the material. For the

sake of brevity, the expressions for the coefficients C̃ij are not reported here, but can be found in standard

texts, see for example Tsai [36] and Reddy [37].

Within the framework of the CUF, the displacement field u(x, y, z) can be expressed as

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M (8)

where Fτ are the functions of the coordinates x and z on the cross-section. uτ is the vector of the generalized

displacements, M stands for the number of the terms used in the expansion, and the repeated subscript,
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τ , indicates summation. The choice of Fτ determines the class of the 1D CUF model that is required and

subsequently to be adopted. According to Eq. (8), Taylor expansion (TE) 1D CUF models consist of a

MacLaurin series that uses the 2D polynomials xi zj as Fτ functions, where i and j are positive integers

including zero. For instance, the displacement field of the second-order (N = 2) TE model can be expressed

as

ux = ux1
+ x ux2

+ z ux3
+ x2 ux4

+ xz ux5
+ z2 ux6

uy = uy1
+ x uy2

+ z uy3
+ x2 uy4

+ xz uy5
+ z2 uy6

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6

(9)

The order N of the expansion is set as an input option in the analysis; the integer N is arbitrary and it defines

the order the beam theory. Classical EBBM and TBM can be realised by using a suitable Fτ expansions as

explained in [20]. Classical theories and first-order models (N = 1) require the necessary assumption of

reduced material stiffness coefficients to correct Poisson’s locking (see [38]). In this paper, Poisson’s locking

is corrected according to the method outlined by Carrera et al. [20].

2.2 Governing differential equations of the N-order model

The principle of virtual displacements is used to derive the governing differential equations.

δLint − δLσ0
yy

= 0 (10)

where Lint stands for the strain energy and Lσ0
yy

is the work done by the axial pre-stress σ0
yy on the corre-

sponding non-linear strain ǫnlyy. δ stands for the usual virtual variation operator. The virtual variation of the

strain energy is

δLint =

∫

V

δǫTσ dV (11)

Equation (11) is rewritten using Eqs. (3), (6) and (8). After integrations by part, Eq. (11) reads

δLint =

∫

L

δuT
τ K

τsus dy +
[

δuT
τ Π

τsus

]y=L

y=0
(12)

where Kτs is the differential linear stiffness matrix and Πτs is the matrix of the natural boundary conditions

in the form of 3 × 3 fundamental nuclei. The components of Kτs are provided in the following and they are
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referred to as Kτs
(ij), where i is the row number (i = 1, 2, 3) and j denotes the column number (j = 1, 2, 3):

Kτs
(11) = E22

τ,xs,x
+ E44

τ,zs,z
+
(

E26
τ,xs

− E26
τs,x

) ∂

∂y
− E66

τs

∂2

∂y2

Kτs
(12) = E26

τ,xs,x
+ E45

τ,zs,z
+
(

E23
τ,xs

− E66
τs,x

) ∂

∂y
− E36

τs

∂2

∂y2

Kτs
(13) = E12

τ,xs,z
+ E44

τ,zs,x
+
(

E45
τ,zs

− E16
τs,z

) ∂

∂y

Kτs
(21) = E26

τ,xs,x
+ E45

τ,zs,z
+
(

E66
τ,xs

− E23
τs,x

) ∂

∂y
− E36

τs

∂2

∂y2

Kτs
(22) = E66

τ,xs,x
+ E55

τ,zs,z
+
(

E36
τ,xs

− E36
τs,x

) ∂

∂y
− E33

τs

∂2

∂y2

Kτs
(23) = E16

τ,xs,z
+ E45

τ,zs,x
+
(

E55
τ,zs

− E13
τs,z

) ∂

∂y

Kτs
(31) = E44

τ,xs,z
+ E12

τ,zs,x
+
(

E16
τ,zs

− E45
τs,z

) ∂

∂y

Kτs
(32) = E45

τ,xs,z
+ E16

τ,zs,x
+
(

E13
τ,zs

− E55
τs,z

) ∂

∂y

Kτs
(33) = E44

τ,xs,x
+ E11

τ,zs,z
+
(

E45
τ,xs

− E45
τs,x

) ∂

∂y
− E55

τs

∂2

∂y2

(13)

The generic term Eαβ
τ,θs,ζ

above is a cross-sectional moment parameter

Eαβ
τ,θs,ζ

=

∫

Ω

C̃αβFτ,θFs,ζ dΩ (14)

The suffix after the comma in Eq. (13) denotes the derivatives with respect to the corresponding variable. As

far as the boundary conditions are concerned, the components of Πτs are

Πτs
(11) = E26

τs,x
+ E66

τs

∂

∂y
, Πτs

(12) = E66
τs,x

+ E36
τs

∂

∂y
, Πτs

(13) = E16
τs

Πτs
(21) = E23

τs,x
+ E36

τs

∂

∂y
, Πτs

(22) = E36
τs,x

+ E33
τs

∂

∂y
, Πτs

(23) = E13
τs,z

Πτs
(31) = E45

τs, Πτs
(32) = E55

τs,z
, Πτs

(33) = E45
τs,x

+ E55
τs

∂

∂y

(15)

The virtual variation of the axial pre-stress is

δLσ0
yy

=

∫

L

(
∫

Ω

σ0
yyδǫ

nl
yy dΩ

)

dy (16)

After substituting Eqs. (8) and (5) into Eq. (16) and after performing integration by parts, one obtaines

δLσ0
yy

= −σ0
yy

∫

L

δuT
τ K

τs
σ0
yy
us dy + σ0

yy

[

δuT
τ Π

τs
σ0
yy
us

]y=L

y=0
(17)

where Kτs
σ0
yy

is the fundamental nucleus of the differential geometric stiffness matrix.

Kτs
σ0
yy

=













Eτs
∂2

∂y2 0 0

0 Eτs
∂2

∂y2 0

0 0 Eτs
∂2

∂y2













(18)
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where

Eτs =

∫

Ω

FτFs dΩ (19)

The components of Πτs
σ0
yy

are

Πτs
σ0
yy

=













Eτs
∂
∂y

0 0

0 Eτs
∂
∂y

0

0 0 Eτs
∂
∂y













(20)

Thus the explicit forms of the governing equations are

δuxτ : (σ0
yyEτs − E66

τs)uxs,yy +
(

E26
τ,xs

− E26
τs,x

)

uxs,y +
(

E22
τ,xs,x

+ E44
τ,zs,z

)

uxs

−E36
τsuys,yy +

(

E23
τ,xs

− E66
τs,x

)

uys,y +
(

E26
τ,xs,x

+ E45
τ,zs,z

)

uys

+
(

E45
τ,zs

− E16
τs,z

)

uzs,y +
(

E44
τ,zs,x

+ E12
τ,xs,z

)

uzs = 0

δuyτ : −E36
τsuxs,yy +

(

E66
τ,xs

− E23
τs,x

)

uxs,y +
(

E26
τ,xs,x

+ E45
τ,zs,z

)

uxs

+(σ0
yyEτs − E33

τs)uys,yy +
(

E36
τ,xs

− E36
τs,x

)

uys,y +
(

E66
τ,xs,x

+ E55
τ,zs,z

)

uys

+
(

E55
τ,zs

− E13
τs,z

)

uzs,y +
(

E16
τ,xs,z

+ E45
τ,zs,x

)

uzs = 0

δuzτ :
(

E16
τ,zs

− E45
τs,z

)

uxs,y +
(

E44
τ,xs,z

+ E12
τ,zs,x

)

uxs

+
(

E13
τ,zs

− E55
τs,z

)

uys,y +
(

E45
τ,xs,z

+ E16
τ,zs,x

)

uys

+(σ0
yyEτs − E55

τs)uzs,yy +
(

E45
τ,xs

− E45
τs,x

)

uzs,y +
(

E44
τ,xs,x

+ E11
τ,zs,z

)

uzs = 0

(21)

LettingPτ =

{

Pxτ Pyτ Pzτ

}T

to be the vector of the generalized forces, the natural boundary conditions

are

δuxτ : Pxs = (E66
τs − σ0

yyEτs)uxs,y + E26
τs,x

uxs + E36
τsuys,y + E66

τs,x
uys + E16

τs,z
uzs

δuyτ : Pys = E36
τsuxs,y + E23

τs,x
uxs + (E33

τs − σ0
yyEτs)uys,y + E36

τs,x
uys + E13

τs,z
uzs

δuzτ : Pzs = E45
τs,z

uxs + E55
τs,z

uys + (E55
τs − σ0

yyEτs)uzs,y + E45
τs,x

uzs

(22)

For a fixed approximation order N , Eqs. (21) and (22) have to be expanded using the indices τ and s in order

to obtain the governing differential equations and the natural boundary conditions of the desired model.
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Equation (21) is a set of three coupled ordinary differential equations and it can be written in a matrix

form as follows:

δuτ : Lτs ũs = 0 (23)

where

ũs =

{

uxs uxs,y uxs,yy uys uys,y uys,yy uzs uzs,y uzs,yy

}T

(24)

and Lτs is the 3×9 fundamental nucleus which contains the coefficients of the ordinary differential equations.

The components of matrix Lτs are provided below and they are referred to as Lτs
(ij), where i is the row number

(i = 1, 2, 3) and j is the column number (j = 1, 2, ..., 9)

Lτs
(11) = E22

τ,xs,x
+ E44

τ,zs,z
, Lτs

(12) = E26
τ,xs

− E26
τs,x

, Lτs
(13) = σ0

yyEτs − E66
τs

Lτs
(14) = E26

τ,xs,x
+ E45

τ,zs,z
, Lτs

(15) = E23
τs,x

− E66
τs,x

, Lτs
(16) = −E36

τs

Lτs
(17) = E12

τ,xs,z
+ E44

τ,zs,x
, Lτs

(18) = E45
τ,zs

− E16
τs,z

, Lτs
(19) = 0

Lτs
(21) = E26

τ,xs,x
+ E45

τ,zs,z
, Lτs

(22) = E66
τ,xs

− E23
τs,x

, Lτs
(23) = −E36

τs

Lτs
(24) = E66

τ,xs,x
+ E55

τ,zs,z
, Lτs

(25) = E36
τ,xs

− E36
τs,x

, Lτs
(26) = σ0

yyEτs − E33
τs

Lτs
(27) = E16

τ,xs,z
+ E45

τ,zs,x
, Lτs

(28) = E55
τ,zs

− E13
τs,z

, Lτs
(29) = 0

Lτs
(31) = E44

τ,xs,z
+ E12

τ,zs,x
, Lτs

(32) = E16
τ,zs,x

− E45
τs,z

, Lτs
(33) = 0

Lτs
(34) = E45

τ,xs,z
+ E16

τ,zs,x
, Lτs

(35) = E13
τ,zs

− E55
τs,z

, Lτs
(36) = 0

Lτs
(37) = E44

τ,xs,x
+ E11

τ,zs,z
, Lτs

(38) = E45
τ,xs

− E45
τs,x

, Lτs
(39) = σ0

yyEτs − E55
τs

(25)

For a given expansion order, N , the equilibrium equations can be obtained in the form of Eq. (26) given below

by expanding Lτs for τ = 1, 2, ..., (N + 1)(N + 2)/2 and s = 1, 2, ..., (N + 1)(N + 2)/2 as shown in Fig. 3. It

reads:

L ũ = 0 (26)
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In a similar way, the boundary conditions of Eqs. (22) can be written in a matrix form as

δuτ : Ps = Bτs ûs (27)

where

ûs =

{

uxs uxs,y uys uys,y uzs uzs,y

}T

(28)

and Bτs is the 3× 6 fundamental nucleus which contains the coefficients of the natural boundary conditions

Bτs =













E26
τs,x

(E66
τs − σ0

yyEτs) E66
τs,x

E36
τs E16

τs,z
0

E23
τs,x

E36
τs E36

τs,x
(E33

τs − σ0
yyEτs) E13

τs,z
0

E45
τs,z

0 E55
τs,z

0 E45
τs,x

(E55
τs − σ0

yyEτs)













(29)

For a given expansion order N , the natural boundary conditions can be obtained in the form of Eq. (30) by

expanding Bτs in the same way as Lτs to finally give

P = Bû (30)

Matrices L and B are evaluated for each layer of the laminated beam; global matrices are then obtained by

summing the contribution of each layer.

3 Solution of the Differential Equations

Equation (26) is a system of ordinary differential equations (ODEs) of second order in y with constant

coefficients. A change of variables is used to reduce the second order system of ODEs to a first order system,

Z =

{

Z1 Z2 . . . Zn

}T

= û =

{

ux1 ux1,y uy1 uy1,y uz1 uz1,y . . . uxM uxM,y uyM uyM,y uzM uzM,y

}T
(31)

where û is the expansion of ûs for a given theory order, M = (N + 1)(N + 2)/2 is the number of expansion

terms for the given N-order beam theory, and n = 6 ×M is the dimension of the unknown vector as well as

the number of differential equations. In [27], an automatic algorithm to transform the L matrix of Eq. (26)

into the matrix S of the following linear differential system was described:

Z′(y) = SZ(y) (32)
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Once the problem is described in terms of Eq. (32), the solution can be written as follows:



















Z1

Z2

...

Zn



















=



















δ11 δ21 . . . δn1

δ12 δ22 . . . δn2
...

...
. . .

...

δ1n δ2n . . . δnn





































C1e
λ1y

C2e
λ2y

...

Cne
λny



















(33)

where λi is the i-th eigenvalue of the S matrix, δij is the j-th element of the i-th eigenvector of the S matrix

and Ci are the integration constants which need to be determined by using the boundary conditions. The

above equation can be written in matrix form as:

Z = δCeλy (34)

It should be noted that the vector Z does not only contain the displacements but also their first derivatives

which will come at hand when computing the boundary conditions. If only the displacements are needed,

by recalling Eq. (31), only the rows 1, 3, 5, . . . , n − 1 should be taken into account, giving a solution in the

following form:

ux1(y) = C1δ11e
λ1y + C2δ21e

λ2y + . . .+ Cnδn1e
λny

uy1(y) = C1δ13e
λ1y + C2δ23e

λ2y + . . .+ Cnδn3e
λny

uz1(y) = C1δ15e
λ1y + C2δ25e

λ2y + . . .+ Cnδn5e
λny

...

uzM (y) = C1δ1(n−1)e
λ1y + C2δ2(n−1)e

λ2y + . . .+ Cnδn(n−1)e
λny

(35)

Once the displacements and their first derivatives are known, the boundary conditions can be easily obtained

by remembering that û is equal to Z (Eq. (31)) and by substituting the solution of Eq. (34) into the boundary

conditions (Eq. (30)) to give

P = BδCeλy = ΛCeλy (36)

The boundary conditions can be written in explicit form as follows:

Px1(y) = C1Λ11e
λ1y + C2Λ12e

λ2y + . . .+ CnΛ1ne
λny

Py1(y) = C1Λ21e
λ1y + C2Λ22e

λ2y + . . .+ CnΛ2ne
λny

Pz1(y) = C1Λ31e
λ1y + C2Λ32e

λ2y + . . .+ CnΛ3ne
λny

...

PzM (y) = C1Λn1e
λ1y + C2Λn2e

λ2y + . . .+ CnΛnne
λny

(37)
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The matrix Lτs is an efficient way to write the differential equations and the greatest advantage is that it

allows for automatic formulation of the differential equations of any order beam theories in a systematic way.

In sharp contrast to the structural problems solved in the literature, where by using a Navier-type solution or

FEM the system becomes algebraic, here by using L the differential equations can be written automatically,

thus allowing the exact solution for any-order theory possible with relative ease.

4 Dynamic Stiffness Method

4.1 Dynamic stiffness matrix

The procedure to obtain the DS matrix can be summarised as follows: (i) Seek a closed form analytical

solution of the governing differential equations of the pre-stressed structural element; (ii) Apply a number

of general boundary conditions equal to twice the number of integration constants in algebraic form which

are usually the nodal displacements and forces; (iii) Eliminate the integration constants by relating the

generalized nodal forces to the corresponding generalized displacements which generates the DS matrix. The

closed form solution has already been found in the previous section and now the generic boundary conditions

for generalized displacements and forces need to be applied (see Fig. 4) to develop the DS matrix.

Starting from the displacements, the boundary conditions can be written as

At y = 0 :

ux1(0) = −U1x1

uy1(0) = −U1y1

uz1(0) = −U1z1

...

uzM (0) = −U1zM

(38)

At y = L :

ux1(L) = U2x1

uy1(L) = U2y1

uz1(L) = U2z1

...

uzM (L) = U2zM

(39)

By evaluating Eqs. (35) in 0 and L and applying the boundary conditions of Eq.s (38) and (39), the following
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matrix relation for the nodal displacements is obtained:
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−δ11 −δ21 . . . −δn1

−δ13 −δ23 . . . −δn3

−δ15 −δ25 . . . −δn5

...
...

. . .
...

−δ1(n−1) −δ2(n−1) . . . −δn(n−1)

δ11eλ1L δ21eλ2L . . . δn1eλnL

δ13eλ1L δ23eλ2L . . . δn3eλnL

δ15eλ1L δ25eλ2L . . . δn5eλnL
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(40)

The above equation can be written in a more compact form as

U = AC (41)

Similarly, boundary conditions for generalized nodal forces are as follows:

At y = 0 :

Px1(0) = −P1x1

Py1(0) = −P1y1

Pz1(0) = −P1z1

...

PzM (0) = −P1zM

(42)

At y = L :

Px1(L) = P2x1

Py1(L) = P2y1

Pz1(L) = P2z1

...

PzM (L) = P2zM

(43)

By evaluating Eqs. (37) in 0 and L and applying the BCs of Eq.s (42) and (43), the following matrix relation
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for the nodal forces is obtained:
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−Λn1 −Λn2 . . . −Λnn
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(44)

The above equation can be written in a more compact form as

P = RC (45)

The constants vector C from Eqs. (41) and (45) can now be eliminated to give the DS matrix of one beam

element as follows:

P = KU (46)

where

K = RA−1 (47)

is the required DS matrix, which is the basic building block to compute the exact buckling loads of a higher-

order beam-columns. The DSM has also many of the general features of the FEM. In particular, it is possible

to assemble elemental DS matrices to form the overall DS matrix of any complex structures consisting of

beam elements (see Fig. 5). The global DS matrix can be written as

PG = KGUG (48)

where KG is the square global DS matrix of the final structure. For the sake of simplicity, the subscript “G”

is omitted hereinafter.

As far as the boundary conditions are concerned, they can be applied by using either the well-known penalty

method (often used in FEM) or by simply removing rows and columns of the stiffness matrix corresponding

to the degrees of freedom which need to be suppressed.

4.2 Eigenvalues and eigenmodes calculation

For linearized buckling analysis of structures, FEM generally leads to a linear eigenvalue problem. By contrast,

the DSM leads to a transcendental (non-linear) eigenvalue problem for which the Wittrick-Williams algorithm
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[39] is recognisably the best available solution technique at present. The basic working principle of the

algorithm can be briefly summarised in the following steps:

(i) A trial critical load −σ0
yy = λ∗ is chosen to compute the dynamic stiffness matrix K

∗ of the final

structure;

(ii) K
∗ is reduced to its upper triangular form by the usual form of Gauss elimination to obtain K

∗
△

and

the number of negative terms on the leading diagonal of K∗
△

is counted; this is known as the sign count

s(K∗) of the algorithm;

(iii) The number, j, of critical loads (λ) of the structure which lie below a trial buckling load (λ∗) is given

by:

j = j0 + s(K∗) (49)

where j0 is is the number of critical buckling loads of all individual elements with clamped-clamped

(CC) boundary conditions on their opposite sides which still lie below the trial critical buckling load λ∗.

Note that j0 is required because the DSM allows for an infinite number of critical buckling loads to be

accounted for when all the nodes of the structure are fully clamped so that one or more individual elements

of the structure can still buckle on their own between the nodes. j0 corresponds to U = 0 modes of Eq. (48)

when P = 0. Assuming that j0 is known, and s(K∗) can be obtained by counting the number of negative

terms in K
∗
△

, a suitable procedure can be devised, for example the bi-section method, to bracket any critical

load between an upper and lower bound of the trial load λ∗ to any desired accuracy. The computation of

j0 can be cumbersome and may require additional analysis to compute the clamped-clamped (CC) buckling

loads of the single elements within the structure. The problem can be overcome by splitting the element into

many smaller elements for which the CC critical loads will be exceptionally high and hence j0 will be zero

within all practical range of interest.

Once the critical buckling loads have been computed and the related global DS matrix evaluated, the

corresponding nodal generalized displacements can be obtained by solving the associated homogeneous system

of Eq. (48). By utilizing the nodal generalized displacementsU, the integration constantsC of the element can

be computed with the help of Eq. (41). In this way, using Eq. (35), the unknown generalized displacements

can be computed as a function of y. Finally, by using Eq. (8), the complete displacement field can be generated

as a function of x, y, z. Clearly, the plot of the required mode shapes can be visualised on a fictitious 3D

mesh. By following this procedure it is possible to compute the exact buckling modes using just one element

which is, of course, impossible in FEM.
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5 Numerical Results

In this section, the present 1D higher-order DS elements are used to compute the numerical results. First, a

compact metallic beam is considered. Then, thin-walled structures are analysed to show the capability of the

present CUF-DSM formulation to deal with coupled torsional-bending buckling phenomena. Symmetric and

anti-symmetric cross-ply laminated composite beams are finally addressed. The results are compared with

those from the literature and in some cases with those from 3D FEM models by using commercial codes.

5.1 Metallic rectangular cross-section beam

A cantilever metallic beam is analysed as the first illustrative example. The same structure was addressed

in [2, 25], whose results are quoted hereafter for comparison purposes. The beam has a solid rectangular

cross-section as shown in Fig. 6 and the material is aluminium alloy with elastic modulus E = 71.7 GPa and

Poisson’s ratio ν = 0.3.

Table 1 shows the first three critical buckling loads for a length-to-height ratio, L/h, equal to 20. Critical

loads are given in non-dimensional form as follows:

P ∗

cr =
PcrL

2

π2EI
(50)

where I is the moment of inertia, I = bh3

12 . The second column of Table 1 shows the n-th non-dimensional

critical buckling load from the Euler buckling formula give by

P ∗

crEuler
= n2 (51)

In column 3 the results by Matsunaga [2] are given whereas columns 4 to 7 report the results by classical and

refined models based on TE CUF models of the present paper. The exact solution by the present DSM are

compared to those from FEM, which was used in [25].

Figure 7 shows the variation of the first non-dimensional critical buckling load versus the length-to-side

ratio, L/h, for different higher-order beam models by the present approach and the results are compared to

those from [2] and from classical Euler ones. The same results are given in tabular form in Table 2.

The following comments arise from the analysis:

• Refined theories are mandatory when dealing with buckling analysis of short beam-columns.

• Euler buckling formula overestimates the critical loads of the beam-columns, even sometimes when a

high length-to-side ratio is considered.

• Higher-order CUF theories are effective in refining the solution and the results are in good agreement

with those available in the literature.
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• The critical buckling load becomes lower as the expansion order for TE CUF models increases. This is

significant because other theories give unconservative estimates of critical buckling loads, which can be

dangerous.

• The exact solutions provided with the DSM is slightly higher then those by FEM. This is unusual and

may be due to numerical problems inherent in FEM.

5.2 Thin-walled symmetric and non-symmetric cross-sections

The cantilever C-shaped section beam of Fig. 8 is now addressed. The main dimensions of the cross-section

are a1 = 4 cm, a2 = 2 cm, h = 10 cm and t = 0.5 cm. The beam has a length L = 2 m and is made of

homogeneous isotropic material with elastic modulus E = 3× 104 N/cm2 and shear modulus G = 1.15× 104

N/cm2.

Table 3 shows the first three critical buckling loads by higher-order beam models by the present CUF-

DSM methodology. The results are compared with those given by Vo and Lee [6], who developed an analytical

model based on the shear deformable beam theory, and those from [8], where a general formulation for spatial

free vibration and stability analysis of non-symmetric thin-walled DS space frame members considering the

effects of shear deformations was presented. A FEM solution from ABAQUS is also provided by [8]. Figure 9

shows the second buckling mode by the seventh-order (N = 7) CUF-DSM model. The figure clearly shows

that the present method can predict the flexural-torsional buckling load accurately. The analysis highlights

that

• Relatively higher-order kinematics are needed to detect flexural-torsional buckling modes of axially

loaded thin-walled structures accurately.

• The results by the proposed CUF-DSM models are in good agreement with the results found in the

literature.

A hollow square cross-section beam is further considered. The cross-section, which is shown in Fig. 10, has

each side equal to a = 0.1 m and the uniform thickness equal to t = a/20. The whole structure is made of the

same aluminium alloy as in the case of the rectangular solid cross-section beam-column. The critical buckling

loads for various length-to-side ratios, L/a, are shown in Table 4, where the results by the present CUF-

DSM methodology are compared to those from Giunta and al. [40], who adopted Navier-type solutions for

simply-supported (SS) CUF beams and 3D FE models by ANSYS. It is clear that DSM can provide analytical

solutions for CUF models, which exhibit 3D capabilities as the expansion order N is increased. Table 5 shows

the first four buckling modes for the slender configuration, L/a = 100. The i-th mode is characterized by

having i half-waves in the axial direction of the beam. It is clear from the analysis that, in the case of the

slender beams, classical theories yield acceptable results unless higher buckling modes are considered. In the

case of short beams (e.g. L/a = 15), refined beam models are necessary to obtain a 3D-like solution.
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5.3 Cross-ply laminae

In this section a number of cross-ply laminated beam-columns are addressed and their stability characteristics

are investigated. First, simply supported (SS) composite beam-columns with symmetric cross-ply [0◦/90◦/0◦]

and anti-symmetric cross-ply [0◦/90◦] stacking sequences are considered. Each lamina has the same thickness

and two different sets of material properties are considered as follows:

Material set I: E1/E2 = 10, G12 = G13 = 0.6E2, G23 = 0.5E2, ν12 = 0.25

Material set II: E1/E2 = 10, G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = 0.25

The critical buckling loads from the present higher-order CUF-DSM refined beam theories are shown in Table 6

and they are given in the following non-dimensional form:

P ∗

cr =
PcrL

2

E2bh3
(52)

In Table 6 the proposed solutions are compared to those available in the literature, see Vo and Thai [19]

and Aydogdu [18]. The former [19] used FEM in conjunction with both a first-order beam theory (FOBT)

and a higher-order beam theory (HOBT) accounting for the parabolic variation od shear strains through the

thickness. The latter [18] proposed a three-degree-of-freedom shear deformable beam theory and the Ritz

method was used to carry out stability analyses. The following comments are noteworthy:

• The present formulation can deal with the linearized stability analysis of composite laminated beam-

columns.

• The solutions from both first- and higher-order beam models from the literature can be improved by

the present CUF-DSM theories, especially when short beams and softer materials (e.g. Material set II)

are considered.

In the last illustrative example, a rectangular beam with symmetric cross-ply [0◦/90◦/0◦/90◦]s arrange-

ments is considered. The laminate is made of eight identical graphite/epoxy plies. The material has the

following characteristics: E1 = 1.344× 105 MPa, E2 = E3 = 1.034× 104 MPa, G12 = G13 = 4.999× 103 MPa,

G23 = 1.999 × 103 MPa, ν12 = ν13 = ν23 = 0.33. The beam-column has length L = 127 mm, width

b = 12.7 mm, and height h = 10.16 mm. Table 7 shows the critical buckling loads of this beam-column for

both clamped-free (CF) and clamped-clamped (C-C) boundary conditions. Classical EBBM and up to the

fifth-order (N = 5) CUF-DSM beam models are used for the results given in Table 7, which are compared to

those provided by Chattopadhyay and Radu [41], who used the classical lamination plate theory (CLPT), the

first-order shear deformation theory (FSDT), and a higher-order plate theory (HOT) to carry out instability

analyses of composite plates. The analysis clearly demonstrates the capability of the present beam-column

modelling technique, which is able to reproduce and to some extent refine the solutions from 2D plate models.
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6 Conclusions

Higher-order theories and exact solutions for buckling analysis of beam-columns have been presented in this

paper. Carrera Unified Formulation (CUF) has been employed along with the principle of virtual displace-

ments to formulate the governing differential equations and the natural boundary conditions of beam-columns

in terms of fundamental nuclei. These nuclei do not depend on the theory-order N , which is a free param-

eter of the formulation. The Dynamic Stiffness Method (DSM) has then been used in conjunction with the

Wittrick-Williams algorithm to carry out stability analyses for both isotropic and anisotropic beam-columns.

Both solid and thin-walled cross-sections have been analysed and the results have been compared with those

available in the literature. The analysis demonstrates the need for higher-order models when dealing with

short beams, shear deformable materials (e.g. composites), and thin-walled cross-sections. The validity of the

present methodology is fully established. Further research could be aimed at extending the present CUF-DSM

formulation for vibration analysis of axially loaded higher-order beams.
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Tables

Mode Euler Matsunaga [2] TBM N=1 N=2 N=3
FEM [25] DSM FEM [25] DSM FEM [25] DSM FEM [25] DSM

1 1.000 0.992 0.990 0.993 0.993 0.993 0.993 0.993 0.992 0.992
2 4.000 3.873 3.875 3.886 3.884 3.886 3.885 3.887 3.873 3.874
3 9.000 8.387 8.422 8.444 8.437 8.444 8.444 8.451 8.387 8.391

Table 1: First three non-dimensional buckling loads (P ∗

cr = PcrL
2

π2EI
) of the metallic beam, L/h = 20.

L/h Euler Matsunaga [2] Present CUF-DSM
N=2 N=3 N=4 N=5

2 1.000 0.5723 0.5999 0.5741 0.5733 0.5730
4 1.000 0.8342 0.8497 0.8350 0.8349 0.8348
5 1.000 0.8860 0.8973 0.8866 0.8866 0.8865
10 1.000 0.9683 0.9718 0.9685 0.9685 0.9685
20 1.000 0.9919 0.9930 0.9919 0.9919 0.9919

Table 2: First non-dimensional buckling load (P ∗

cr = PcrL
2

π2EI
) of the metallic beam for different length-to-height

ratios L/h.

Mode Present CUF-DSM ABAQUS [8] Kim et al. [8] Vo and Lee [6]
N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8

1 14.227 14.227 14.178 14.178 14.111 14.111 13.875 14.001 13.789 12.977
2 127.805 127.242 125.076 122.885 120.428 119.034 117.375 113.100 111.840 113.440
3 212.883 212.086 209.810 206.955 203.568 201.510 199.125 190.080 191.160 190.567
4 350.977 348.070 332.065 315.729 298.065 289.034 280.125 256.670 255.100 263.999
5 679.430 666.727 606.728 551.271 498.744 475.502 454.875 408.530 406.280 −

Table 3: Flexural-torsional buckling loads [N] for the axially compressed C-section beam
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L/a 3D FEM [40] N = 4 N = 3 N = 2 TBM EBBM
Ref. [40] DSM Ref. [40] DSM Ref. [40] DSM Ref. [40] DSM Ref. [40] DSM

100 10.651 10.664 10.664 10.664 10.664 10.668 10.668 10.668 10.668 10.672 10.672
50 42.497 42.551 42.551 42.551 42.551 42.605 42.604 42.604 42.604 42.669 42.669
20 261.040 261.340 261.341 261.340 261.343 263.360 263.359 263.320 263.320 265.850 265.850
15 457.010 457.310 457.305 457.320 457.318 463.510 463.509 463.400 463.400 471.260 471.260

Table 4: Critical buckling loads [MPa] for various length-to-side ratio, L/a, of the SS square box beam

Model Mode 1 Mode 2 Mode 3 Mode 4
Giunta et al. [40]

3D FEM 10.651 42.443 95.008 167.780
N = 4 10.664 42.551 95.339 168.500
N = 3 10.664 42.551 95.339 168.500
N = 2 10.668 42.604 95.607 169.340
TBM 10.668 42.603 95.602 169.330
EBBM 10.672 42.669 95.934 170.370

Present CUF-DSM
N = 4 10.664 42.551 95.339 168.507
N = 3 10.664 42.551 95.339 168.507
N = 2 10.668 42.604 95.607 169.340
TBM 10.668 42.603 95.603 169.327
EBBM 10.672 42.669 95.935 170.373

Table 5: First four buckling loads [MPa] of the SS square box beam for L/a = 100

L/h Present CUF-DSM Vo and Thai [7] Aydogdu [18]
N = 2 N = 3 N = 4 N = 5 FOBT HOBT

Material set I - [0◦/90◦/0◦]
5 4.992 4.668 4.667 4.666 4.752 4.709 4.726
10 6.937 6.751 6.750 6.749 6.805 6.778 −

20 7.677 7.618 7.618 7.617 7.630 7.620 7.666
50 7.917 7.904 7.904 7.903 7.897 7.896 −

Material set I - [0◦/90◦]
5 1.856 1.831 1.820 1.816 1.883 1.910 1.919
10 2.140 2.130 2.126 2.125 2.148 2.156 −

20 2.226 2.223 2.222 2.222 2.226 2.228 2.241
50 2.252 2.252 2.252 2.252 2.249 2.249 −

Material set II - [0◦/90◦/0◦]
5 4.319 3.666 3.666 3.560 4.069 3.717 3.728
10 6.600 6.126 6.126 6.033 6.420 6.176 −

20 7.570 7.403 7.402 7.366 7.503 7.416 7.459
50 7.896 7.868 7.868 7.862 7.875 7.860 −

Material set II - [0◦/90◦]
5 1.745 1.711 1.710 1.705 1.605 1.758 1.765
10 2.100 2.086 2.086 2.084 1.876 2.104 −

20 2.215 2.211 2.211 2.210 1.958 2.214 2.226
50 2.252 2.252 2.252 2.252 1.983 2.247 −

Table 6: Effect of length-to-height ratio, L/h , on the non-dimensional critical buckling loads (P ∗

cr = PcrL
2

E2bh3 )
of symmetric and anti-symmetric cross-ply SS laminated beams
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BCs Present CUF-DSM Chattopadhyay and Radu [41]
EBBM N = 2 N = 3 N = 4 N = 5 CLPT FSDT HOT

CF 16696 15752 15615 15607 15606 16344 15772 15364
CC 261957 163934 151256 151137 151132 261623 165644 152179

Table 7: Critical buckling loads [N] of the 8-layer cross-ply rectangular beam for different boundary conditions
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Figure 1: Geometry and reference system for a laminated composite beam

Figure 2: Fiber orientation angle
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Figure 3: Expansion of the matrix Lτs for a given expansion order
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Figure 4: Boundary conditions of the beam element and sign conventions

x

z

y

1

2

Figure 5: Assembly of dynamic stiffness matrices
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Figure 6: Rectangular cross-section
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Figure 7: First non-dimensional critical buckling load (P ∗

cr = PcrL
2

π2EI
) versus length-to-height ratio, L/h, for
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Figure 8: Cross-section of the C-shaped beam

Figure 9: Second flexural-torsional buckling mode of the C-shaped section beam by the seventh-order (N = 7)
CUF model.

28



a

a

x
z

t

Figure 10: Cross-section of the box beam
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