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a b s t r a c t

We present a new linearization of T-Matrix and Mie computations for light scattering

by non-spherical and spherical particles, respectively. In addition to the usual extinc-

tion and scattering cross-sections and the scattering matrix outputs, the linearized

models will generate analytical derivatives of these optical properties with respect to

the real and imaginary parts of the particle refractive index, and (for non-spherical

scatterers) with respect to the ‘‘shape’’ parameter (the spheroid aspect ratio, cylinder

diameter/height ratio, Chebyshev particle deformation factor). These derivatives are

based on the essential linearity of Maxwell’s theory. Analytical derivatives are also

available for polydisperse particle size distribution parameters such as the mode radius.

The T-matrix formulation is based on the NASA Goddard Institute for Space Studies

FORTRAN 77 code developed in the 1990s. The linearized scattering codes presented

here are in FORTRAN 90 and will be made publicly available.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The generation of accurate light scattering properties

for spherical and non-spherical particles is extremely

important for many applications in a wide variety of

physical science disciplines. Of particular importance are

methods based on direct numerical solutions of Maxwell’s

equations of electrodynamics. The first accurate light

scattering calculations for spherical particles date back

to the pioneering work of Mie and Lorenz (see [1–3]

for reviews and perspective). There are many Mie codes

available in the public domain; in this work, our basis is a

model generated in the 1980s by a Dutch group [4].

For non-spherical particles, there are several methods

for computing optical properties; for a review, see [5]. Of

these methods, the T-matrix approach first conceived by

Waterman [6] has been developed extensively in the

last two decades for a huge variety of applications; the

data-base review [7] is useful in this regard. In this work,

our starting point is the popular and widely available

T-matrix code disseminated by the NASA Goddard Institute

for Space Studies (GISS) group [8,9]. Other codes are

reviewed in [10]. The NASA-GISS code is applicable to

randomly oriented spheroids, circular cylinders and Cheby-

shev particles. The reader is referred to two papers for

details: Ref. [8] presents a review of the theory, while Ref.

[9] presents a description of the FORTRAN 77 code for

numerical computations.

With changing climate dynamics, it has become

important to obtain accurate quantitative information

on aerosol optical properties on a global scale [11] from

both dedicated ground-based and space-borne instru-

ments [12]. To date, retrievals of aerosol optical thickness

are commonplace for many remote sensors. But in the

absence of polarimetric measurements, it is difficult

to obtain additional information (such as aerosol single

scattering albedo) that is important for estimates of

aerosol climate forcing. With the recent deployment of

polarimetric sensors such as the Research Scanning

Polarimeter (RSP) [13], the potential for extending and
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improving the retrieval of aerosol parameters to include

absorption properties was clearly demonstrated in a number

of studies (see for example [14,15]). The recent tragedy of

the aborted GLORY Mission [16] has deprived the com-

munity of a valuable tool for space-borne aerosol detec-

tion. However the RSP instrument will continue to be

deployed from air-borne platforms [17].

A 2005 study on GOME-2 measurements [18] demon-

strated the feasibility of deriving microphysical aerosol

parameters (refractive index, size distribution parameters)

in addition to the more usual macrophysical optical

properties such as aerosol extinction and scattering pro-

files. The retrieval was based on a forward model com-

prising a linearized vector radiative transfer (RT) code

acting alongside a linearized Mie model. The latter gen-

erates analytic partial derivatives of optical properties

with respect to microphysical aerosol parameters. This

type of combination tool is particularly useful for inverse

and sensitivity algorithms requiring analytic Jacobians (of

atmospheric parameters) in addition to the usual radia-

tion field simulations.

Another study for the OCO instrument used a similar

approach [19], this time in connection with the retrieval

of XCO2 columns from the weak and strong CO2 bands

(1.60 and 2.04 mm, OCO also samples the O2 A band);

aerosol characterization is an essential part of this retrie-

val, given the requirement to obtain CO2 estimates at

1–3 ppmv accuracy [20]. Rather than overburden the

forward model by specifying macrophysical aerosol opti-

cal properties in every layer, this study used a parameter-

ized tropospheric aerosol formulation with simple expo-

nential, linear or Gaussian loading profiles, and a handful

of microphysical Mie-based aerosol properties. The latter

are then retrieved along with the total loading and

another parameter (such as the exponential relaxation

constant) characterizing the loading profile. This method

allows for a better characterization of aerosol uncertainty

as a source of forward model error in the CO2 retrieval.

However, at wavelengths in and around the O2 A

absorption band, the vertical profile of aerosol scattering

is important for the accurate simulation of radiance and

polarization at top-of-atmosphere [21]. By analogy with

UV aerosol retrieval algorithms in which the profile of

Rayleigh scattering is used to calibrate the profile of

(high-altitude) absorbing aerosols [22], Zeng et al. [21]

showed that, for polarization measurements at the O2 A

band, the profile of O2 absorption may be used to calibrate

the profile of scattering aerosols [21].

The increasing need for knowledge of 3D aerosol

optical properties for both climate studies and satellite

remote sensing applications requires the development

of accurate measurements of all Stokes parameters for

characterizing aerosol scattering, as well as the develop-

ment of modeling tools that can rapidly and accurately

simulate the sensitivity of the four Stokes parameters of

the scattered light to changes in aerosol microphysical

parameters. In line with this goal, the present authors

have constructed a general tool for aerosol property

retrieval based on the linearized VLIDORT polarization

RT model [23] and the linearized Mie code outlined in

this paper.

It is well known that non-spherical dust particles are

omnipresent in the atmosphere, and these have different

phase functions compared to those for spherical particles [8];

such differences can lead to significant errors in ground-

based or satellite-based retrieval of aerosol optical thick-

ness and other aerosol parameters, as demonstrated by

Refs. [24,25], and references therein. Hence, the sensitiv-

ity of Stokes parameters to changes of (non-spherical)

particle characteristics is important, and this sensitivity

can be provided by the combination of VLIDORT and the

linearized T-matrix code for the remote sensing of aerosol

properties.

The Mie code was linearized independently in [18,26]

as well as by one of the present authors [R. Spurr, 2004,

unpublished note]. Here we present a new linearization of

the T-matrix formulation. For individual particles we

show that the T-matrix theory is analytically differenti-

able with respect to the three microphysical variables—

the real and imaginary parts mr and mi of the particle

refractive index mc¼mrþ imi, and the particle deforma-

tion characteristic or shape parameter e (for spheroids,

this is the ratio of the semi-axes; for cylinders, the

diameter/height ratio; for Chebyshev particles, the defor-

mation parameter).

In Section 2 we present an overview of the T-matrix

formulation, including a definition of the linearization

process for the T-matrix itself. In Section 3 we discuss

in detail analytic differentiation of the vector spherical

functions and integrals over the particle surface areas

with respect to mr, mi and e. Section 4 deals with poly-

disperse linearizations with respect to parameters char-

acterizing equivalent-sphere particle size distribution. In

Section 5, we present some results for extinction and

scattering cross-sections and scattering matrices and their

linearizations. Section 6 gives a brief digest of the new

Fortran 90 computer code for this linearization.

2. Basic definitions and the linearization principle

2.1. Optical properties and linearizations

We consider the scattering of light by spherical parti-

cles (Mie) or non-spherical particles with an axis of

rotational symmetry. Particles are assumed to be ran-

domly oriented and to scatter independently. The scatter-

ing is characterized by the extinction cross-section per

particle Cext, the scattering cross-section Csca per particle,

and the 4�4 normalized scattering matrix F(Y) for

scattering angle Y [27]. These quantities are ensemble-

averaged over all orientations. The absorption cross-sec-

tion is Cabs¼Cext�Csca, and the single scattering albedo is

o¼Csca/Cext.

In the conventional phenomenological description of

far-field scattering by a volume element dv, the scattering

and incident Stokes 4-vectors Isca and Iinc are related

through

Isca ¼
1

4pR2
Cscan0dvFðYÞIinc , ð1Þ

where R is the distance to a far-field observation point,

and n0 the particle number density. As noted in recent

R. Spurr et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 425–439426



work by Mishchenko (see for example [28]), expressions

such as (1) are properly valid when certain well-defined

conditions are observed, and for this reason we work only

with optical properties Cext, Csca and F(Y).

For the particles considered in this paper, F(Y) has the

form

F Yð Þ ¼

a1ðYÞ b1ðYÞ 0 0

b1ðYÞ a2ðYÞ 0 0

0 0 a3ðYÞ b2ðYÞ
0 0 �b2ðYÞ a4ðYÞ

0

BBBB@

1

CCCCA
, ð2Þ

where there are only six independent quantities (four for

Mie scattering). It is convenient (and more efficient) for

most applications to use expansions of these F-matrix

entries in terms of generalized spherical functions Pl
mnðxÞ

a1ðYÞ ¼
XLM

l ¼ 0

al
1P

l
00ðcosYÞ; a4ðYÞ ¼

XLM

l ¼ 0

al
4P

l
00ðcosYÞ;

ð3aÞ

a2ðYÞ7a3ðYÞ ¼
XLM

l ¼ 0

ðal
27al

3ÞP
l
2,72ðcosYÞ; ð3bÞ

b1ðYÞ ¼
XLM

l ¼ 0

bl
1P

l
02ðcosYÞ; b2ðYÞ ¼

XLM

l ¼ 0

bl
2P

l
02ðcosYÞ: ð3cÞ

The (1, 1) entry is the phase function, represented as

an expansion in terms of ordinary Legendre polynomials;

it is normalized to unity. We note also the asymmetry

parameter: g ¼ 1=3a1
1. For more details, see for example [27].

The basic set C of optical properties for a single

particle is then

C� fCext ,Csca,a
l
1,a

l
2,a

l
3,a

l
4,b

l
1,b

l
2g: ð4Þ

For polydisperse ensembles, we must average over the

particle size distribution (PSD). If n(r,v)dr is the number of

particles in the range [r, rþdr], r1 and r2 are the minimum

and maximum such radii, and N(v) is the particle number

density, then the polydisperse cross-sections /CextS, /CscaS
and the expansion coefficient sets /glS (where fglg is one of

fal
1,a

l
2,a

l
3,a

l
4,b

l
1,b

l
2g) are given by

Cext ¼
1

NðvÞ

Z r2

r1

CextðrÞnðr,vÞdr; Csca ¼
1

NðvÞ

Z r2

r1

CscaðrÞnðr,vÞdr;

ð5aÞ

gl ¼
1

Csca

Z r2

r1

glðrÞCscaðrÞnðr,vÞdr: ð5bÞ

Here, vector v is shorthand for the set of parameters

characterizing the PSD; for example v¼{rg, sg} for a lognor-

mal distribution with mode radius rg and standard deviation

sg. Integrations are done numerically, usually with Gauss–

Legendre quadrature.

Bimodal distributions are common in aerosol retrie-

vals; in this case we have separate sets C(1) and C(2) of

monodisperse optical properties, plus associated PSDs

n(1)(r) and n(2)(r). Total polydisperse cross-sections and

expansion coefficients are given by

Cext,sca ¼ f Cð1Þ
ext,scaþð1�f ÞCð2Þ

ext,sca; ð6aÞ

gl ¼
f Cð1Þ

scag
ð1Þ
l

þð1�f ÞCð2Þ
scag

ð2Þ
l

f Cð1Þ
scaþð1�f ÞCð2Þ

sca

: ð6bÞ

Here, f ¼Nð1Þ=½Nð1ÞþNð2Þ� is the fractional number density

corresponding to PSD n(1)(r). Often, the two distributions

are of the same form (e.g. both lognormal), and sometimes

PSD properties will be shared, e.g. a common lognormal

standard deviation but different mode radii [18].

A linearized T-matrix or Mie scattering model will not

only produce the above set of properties in Eqs. (4), (5a)

and (5b), but also their analytic partial derivatives (i) with

respect to the individual-particle microphysical proper-

ties mr, mi and e, and (ii) with respect to any member vk of

the set of parameters v characterizing the PSD. For a

bimodal distribution, we also include the partial deriva-

tive with respect to the fractional weight f in the second

category. Thus, we distinguish two types of analytic

derivatives:

Type 1: with respect to single-particle characteristics:

@c

@mr
,
@c

@mi

ðT�Matrix, MieÞ; @c

@e
ðT-matrix onlyÞ

Type 2: with respect to particle size distribution

parameters and the fractional weight f:

@c

@vk

,
@c

@f
ðT-matrix, MieÞ

Here, vk 2 v is any one of the PSD parameters. For

spheroids, shape factor e is the ratio of the two semi-axes

(oblate, e41; prolate eo1; sphere e¼1); for cylinders, e
is the diameter to height ratio; for Chebyshev particles, e
is the deformation parameter [29]. Some remarks are in

order:

(1) Mie scattering can be formulated as a special case of

the T-matrix theory. It is possible with the NASA-GISS

T-matrix code to obtain results for spherical particles

to a high degree of accuracy by using a limiting

case for spheroidal particles for which e takes a value

very close to 1.0 [9]. In practice, it is better to use a

dedicated stand-alone Mie code for applications

requiring spherical particle scattering, and there are

a number of codes available in the literature. In this

paper, we have created a stand-alone linearized Mie

package in tandem with the linearized T-matrix

model.

(2) We do not consider derivatives with respect to the

equivalent-sphere radius. For a single particle this

radius is an input parameter; for polydisperse parti-

cles, equivalent-sphere radii are specified through

the PSD function. However, when the ‘‘equivalent-

surface-area-sphere’’ representation is used in the

T-matrix code, it is necessary to calculate the particle

surface area and volume. Both these quantities are

functions of the shape factor e, and their derivatives

with respect to e must be factored into the computa-

tion of overall optical property derivatives @c=@e.
These additional derivatives are not required for the

linearized ‘‘equivalent-volume-sphere’’ representation

in the T-matrix code.

R. Spurr et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 425–439 427



(3) For bimodal polydisperse applications, derivatives

with respect to the number density fractional weight

f are trivial; indeed from Eqs. (6a) and (6b) we find

@Cext,sca

@f
¼ Cð1Þ

ext,sca�Cð2Þ
ext,sca, ð7aÞ

@gL
@f

¼
½Cð1Þ

scag
ð1Þ
L �Cð2Þ

scag
ð2Þ
L ��gL½C

ð1Þ
sca�Cð2Þ

sca�
f Cð1Þ

scaþ 1�fð ÞCð2Þ
sca

ð7bÞ

2.2. The T-matrix ansatz and its linearization

For electromagnetic scattering by an arbitrary fixed

homogeneous object, expressions for the incident, inter-

nal and scattered electric fields (Einc, Epar and Esca, respec-

tively) in terms of vector spherical wave functions Mmn

and Nmn [8] are

EincðRÞ ¼
Xnmax

n ¼ 1

Xn

m ¼ �n

½amnRgMmnðkRÞþbmnRgNmnðkRÞ�, ð8Þ

EparðRÞ ¼
Xnmax

n ¼ 1

Xn

m ¼ �n

½cmnRgMmnðmckRÞþdmnRgNmnðmckRÞ�,

ð9Þ

EscaðRÞ ¼
Xnmax

n ¼ 1

Xn

m ¼ �n

½pmnMmnðkRÞþqmnNmnðkRÞ�: ð10Þ

Here, R is the radius vector with origin inside the particle

(which has circumscribed radius r0), k is the wave number

and mc the complex refractive index of the particle

(relative to the outside medium). Linearity of Maxwell’s

theory and the boundary conditions dictates that there

must be a linear relationship between the incident {amn,

bmn} and scattered {pmn, qmn} field coefficients; we express

this in terms of the T-matrix T

p

q

" #
¼ TU

a

b

� �
¼ T11 T12

T21 T22

" #
U

a

b

� �
: ð11Þ

Similarly, one may write down linear systems relating

the incident and internal fields, and the scattered and

internal fields

a

b

� �
¼

Q11 Q12

Q21 Q22

" #

U
c

d

� �
;

p

q

" #

¼�
RgQ11 RgQ 12

RgQ21 RgQ 22

" #

U
c

d

� �
:

ð12Þ

Combining (12) and (11), we find

T11 T12

T21 T22

" #

¼�
RgQ 11 RgQ12

RgQ 21 RgQ22

" #

U
Q 11 Q 12

Q 21 Q 22

" #�1

,

or T¼�RgQUQ�1 ð13Þ

In this expression, matrices RgQ and Q are constructed

from vector spherical wave functions that have been

integrated over the particle’s surface. These spherical

functions are products of well-known analytic functions,

based on Bessel and Wigner d functions; detailed formu-

lae are given below.

Averaging over orientations is essential for non-sphe-

rical particles, and it is here that the analytic nature of the

T-matrix formulation is really useful. The rotational

transformation rule for the T-matrix is [30]

2T ij
mnm0n0 ¼

Xn

m1 ¼ �n

Xn0

m2 ¼ �n0
½Dn0

m0m2
ða,b,gÞ��1 1T ij

m1nm2n0D
n
mm1

ða,b,gÞ:

ð14Þ

Here, Dn
m0m are the Wigner D functions, and (a, b, g) the

Euler rotation angles. The pre-suffices on the T-matrix

entries denote coordinate systems 1 and 2. This is an

important result; once the T-matrix is known in coordi-

nate system 1, then Eq. (14) allows us to calculate it in

any other system. For rotationally symmetric particles, a

convenient system takes the z-axis as that for rotation,

and in this system the T-matrix has the symmetry relation

T ij
mnm0n0 ¼ dmm0T ij

mnmn0 [30].

We also note the relation T ij
mnm0n0 ¼ ð�1Þmþm0

T ij
�m0n0�mn

which is a consequence of scattering matrix reciprocity

[8]. For particles with spherical symmetry, the T-matrix

ansatz reduces to

T11
mnm0n0 ¼�dnn0bn; T22

mnm0n0 ¼�dnn0 an; T12
mnm0n0 ¼ T21

mnm0n0 ¼ 0:

ð15Þ

Here, an and bn are the usual Lorenz–Mie coefficients.

Eq. (14) is the basis for averaging over particle orienta-

tions. For the case of randomly oriented particles and the

incident field in the form of a plane electromagnetic wave,

the Wigner D-function orthogonality property allows us

to derive the following well-known results for the extinc-

tion and scattering cross-sections for randomly oriented

particles [8]:

Cext ¼�2p

k
2
Re

Xnmax

n ¼ 1

Xn

m ¼ �n

½T11
mnmnþT22

mnmn�, ð16Þ

Csca ¼
2p

k
2

Xnmax

n ¼ 1

Xnmax

n0 ¼ 1

Xn

m ¼ �n

Xn0

m0 ¼ �n0

X2

i ¼ 1

X2

j ¼ 1

T ij
mnm0n0

���
���
2
: ð17Þ

For computing orientation averages of the scattering

matrix expansion coefficients, the approach follows the

use of the Clebsch–Gordan expansion for the Wigner d

functions [8]. This has proved convenient for the compu-

tation of nested sums of T-matrix coefficients; more

details in Section 3.1.

We now consider the T-matrix linearization. If x is

any of the Type-1 variables (refractive index component,

shape factor), then we may differentiate Eq. (13) directly

to obtain the derivative T-matrix:

@T=@x¼�@½RgQ �=@xUQ�1�RgQU@½Q�1�=@x ð18Þ

Now, since QUQ�1 ¼ Ê (the identity matrix), we find

@½Q�1�=@x¼�Q�1
U@½Q �=@xUQ�1 ð19Þ

Substituting (19) in (18), we find

@T=@x¼� @½RgQ �=@xþTU@½Q �=@x
� �

UQ�1: ð20Þ

The major computational task in determining the

T matrix is evaluation of the inverse matrix Q�1; in the

NASA-GISS code, the LAPACK software is deployed for this

task. We see in Eq. (20) that the only additional work

required for computing the linearized T-matrix is the

determination of derivatives of the matrices RgQ and Q,

R. Spurr et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 425–439428



since Q�1 and T itself are already available to us. Compu-

tation of these derivative matrices will also be dealt with

in the next section.

3. Type 1 derivatives for the T-matrix and Mie codes

3.1. Vector spherical wave functions

For the scattered field in Eq. (10), the vector spherical

wave functions Mmn and Nmn are given by

MmnðkRÞ ¼ ð�1Þmdnhð1Þ
n ðxÞCmnðWÞeimj, x¼ kR; ð21Þ

NmnðkRÞ ¼ ð�1Þmdn
nðnþ1Þ

x
h
ð1Þ
n ðxÞPmnðWÞþ

1

x

@

@x
½xhð1Þn ðxÞ� BmnðWÞ

� �
eimj;

ð22Þ

BmnðWÞ ¼ b0 @

@W
½dn0mðWÞ�þ bu im

sinW
d
n
0mðWÞ; ð23aÞ

CmnðWÞ ¼ b0 im

sinW
d
n
0mðWÞ�bu @

@W
½dn0mðWÞ�; ð23bÞ

PmnðWÞ ¼
R

R
d
n
0mðWÞ; dn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ1Þ

4pnðnþ1Þ

s

: ð23cÞ

Hankel functions (of the first type) are h
ð1Þ
n ðxÞ, and the

Wigner d functions are given by

d
n
lmðWÞ ¼ An

lmð1�mÞðl�mÞ=2ð1þmÞ�ðlþmÞ=2 d
n�m

dmn�m
ð1�mÞn�lð1þmÞnþ l

;

ð24Þ

An
lm ¼ ð�1Þn�m

2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþmÞ!

ðn�lÞ!ðnþ lÞ!ðn�mÞ!

s

: ð25Þ

Here, m¼ cosW. Eq. (24) is valid for nZnn �maxð9l9,9m9Þ;
otherwise d

n
0mðWÞ ¼ 0 for nonn. The relations between the

Wigner d and D functions and the generalized spherical

functions are

Dn
m0mða,b,gÞ ¼ e�im0ad

n
m0mðbÞe�img; d

n
lmðWÞ ¼ im�lPn

lmðcosWÞ:
ð26Þ

The orthogonality condition for the Wigner d functions is
Z p

0

d
n
m0mðbÞd

n0

m0mðbÞsinbdb¼ dn0n

2

2nþ1
: ð27Þ

The orientation averaging proceeds through use of the

Clebsch–Gordan expansion:

d
n
mm0 ðbÞdn

0

m1m
0
1
ðbÞ ¼

Xnþn0

n1 ¼ 9n�n09

Cn1 ,mþm1
nmn0m1

C
n1 ,m

0 þm0
1

nm0n0m0
1

d
n1

mþm1 ,m0 þm0
1
ðbÞ:

ð28Þ

For details, see [8,27].

For the fields in Eqs. (8) and (9), the RgM and RgN

functions are obtained by replacing the Hankel functions

h
ð1Þ
n ðxÞ by Bessel functions jnðxÞ and ynðxÞ. For the interior

field (Eq. (9)), we require Bessel functions of complex

argument z�mcx¼ ðmrþ imiÞx.

3.2. Linearization of Bessel functions

Bessel functions in the Mie and T-matrix codes are

determined by recursion. If x is the (real-valued) radial

coordinate kR, then the downward recursion for spherical

Bessel function jnðxÞ is given by

FnðxÞ � xjnðxÞ; FnðxÞ ¼ GnðxÞFn�1ðxÞ, ð29aÞ

GnðxÞ ¼
2nþ1

x
�Gnþ1ðxÞ

� ��1

; GN1
ðxÞ ¼ 0: ð29bÞ

Here, N1 is the recursion starting value; there are a number

of ways of setting this point. We use the specification in

[4,8], namely, N1ðxÞ ¼ xþ4:05x1=3þ60. For linearization,

there is no dependence on refractive index variables, but

x will depend on the particle shape parameter e if we are

using the equivalent-surface-area-sphere (ESAS) represen-

tation. Thus we must also consider the linearized recursion

F 0nðxÞ � x0jnðxÞþxj0nðxÞ; F 0nðxÞ ¼ GnðxÞF 0n�1ðxÞþG0
nðxÞFn�1ðxÞ;

ð30aÞ

G0
nðxÞ ¼ ½GnðxÞ�2 G0

nþ1ðxÞþ
2nþ1

x2
x0

� �
; G0

N1
ðxÞ ¼ 0: ð30bÞ

Prime indicates derivative @=@e. The determination of

@x=@e is given in the next sub-section.

Similarly the upward recursion for spherical Bessel

function yn xð Þ is

FnðxÞ ��xynðxÞ; Fnþ1ðxÞ ¼
2nþ1

x
FnðxÞ�Fn�1ðxÞ; ð31aÞ

F�1ðxÞ ¼ sinx; F0ðxÞ ¼ cosx: ð31bÞ

In this case, we use N1 as the recursion finishing point.

The linearization with respect to the particle shape para-

meter e proceeds in a similar fashion

F 0nðxÞ ��x0ynðxÞ�xy0nðxÞ; ð32aÞ

F 0nþ1ðxÞ ¼
2nþ1

x2
½xF 0nðxÞ�x0FnðxÞ��F 0n�1ðxÞ;

F 0�1ðxÞ ¼ cosx; F 00ðxÞ ¼�sinx: ð32bÞ

For complex-valued Bessel functions, we require a

downward recursion similar to Eqs. (29a) and (29b),

except in place of particle size parameter x, we have the

complex argument z¼ ðmrþmiÞx. For the refractive index

linearizations, we then have

F 0nðzÞ � z0CnðzÞþzC0
nðzÞ; F 0nðzÞ ¼GnðzÞF 0n�1ðzÞþG0

nðzÞFn�1ðzÞ;
ð33aÞ

G0
nðzÞ ¼ ½GnðzÞ�2 G0

nþ1ðzÞþ
2nþ1

z2
z0

� �
; G0

N2
¼ 0: ð33bÞ

Here, the prime symbol indicates derivatives @=@mr or

i@=@mi. Similar considerations apply to @=@e. The recursion

start is defined similarly through N2ðzÞ ¼ zþ4:05z1=3þ60.

Mie formulae. In this special case, we can go directly

to the Lorentz–Mie an and bn coefficients through the

well-known results:

an ¼
KnðzÞ
mc

þ n
x

h i
CnðxÞ�Cn�1ðxÞ

KnðzÞ
mc

þ n
x

h i
Fn xð Þ�Fn�1ðxÞ

;
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bn ¼
mcKnðzÞþ n

x


 �
CnðxÞ�Cn�1ðxÞ

mcKnðzÞþ n
x


 �
FnðxÞ�Fn�1ðxÞ

; ð34aÞ

KnðzÞ ¼�n

z

Cn�1ðzÞ
CnðzÞ

; CnðxÞ ¼ xjnðxÞ; FnðxÞ ¼ x½jnðxÞ�iynðxÞ�:

ð34bÞ

Differentiations with respect to mr and mi follow directly

by chain-rule application of the above formula.

3.3. Surface integral linearization (T-matrix only)

Surface integrals are discussed in detail in [9]; here

we summarize key formulas and focus on linearization

aspects. For non-spherical particles the radius r¼ rðW,jÞ is
a function of angular coordinates W and j, and we must

therefore consider quantities such as
Z

S

n̂ðrÞ � fRgMm0n0 ðkr,W,jÞ �Mmnðkr,W,jÞgdS, ð35Þ

when evaluating the T-matrix. These surface integrals are

calculated in spherical coordinates, with n̂ðrÞ the outward

normal vector. In general we may write for unit vectors

fr̂,Ŵ,ûg [30]:

n̂ðrÞdS¼ r̂�1

r

@r

@W
Ŵ� 1

rsinW

@r

@j
û

� �
r2 sinWdWdj: ð36Þ

In our case with rotationally symmetric particles, there

is no azimuth dependence, so that r¼ rðWÞ only and the

term for û vanishes. Thus we need to evaluate the

difference of two integrals:

Jr ¼
Z p

0

Fðr,WÞr2 sinWdW; JW ¼
Z p

0

Gðr,WÞ @r
@W

rsinWdW:

ð37Þ

Here Fðr,WÞ and Gðr,WÞ are the r and y components

respectively of the kind of cross-product vector terms

seen in equations of type (35); exact forms need not

concern us here. As noted in [8,30], these integrals are

restricted to ranges ½0,p=2� for particles with a plane of

symmetry perpendicular to the rotation axis; for example

rðp�WÞ ¼ rðWÞ for spheroids. The integrals in Eq. (37) are

done using a double-range Gaussian quadrature scheme

f�mi,wig and fþmi,wig over the half-range intervals [�1, 0]

and [0,1], respectively, where m¼ cosW and i¼ 1,2. . .NG=2.

Thus we may write

Jr ¼
Z 1

�1

Fðr,WÞr2dmffi
XNG

i ¼ 1

wiFðmiÞr2i ; ð38aÞ

JW ¼
Z 1

�1

Gðr,WÞ @r
@W

rdmffi
XNG

i ¼ 1

wiGðmiÞ
@r

@W

����
i

ri: ð38bÞ

These integrals depend on the type of particle. The

choice of NG is critical to the convergence of the T-matrix

solution; an initial value is chosen such that NG¼ LNmax,

where L is an integer (dependent on particle choice) and

Nmax is the size of the matrix Q. For more details, see [9].

Spheroids. The explicit form used here is

rðWÞ ¼
~RðeÞe1=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2Wþe2 cos2W
p ;

1

r

@r

@W
¼ ðe2�1ÞsinWcosW

sin2Wþe2 cos2W
;

ð39Þ

Here, ~RðeÞ is the equivalent sphere radius, and shape factor

e is the ratio of the vertical and horizontal semi-major axes.

For the equivalent volume sphere, ~RðeÞ is not dependent on
e, but for the equivalent surface-area sphere, this depen-

dency must be accounted for (Section 3.4 below).

Linearization will require differentiation of Eqs. (38)

and (39) with respect to the shape factor. Differentiating

through the integrals in Eqs. (38a) and (38b) we find

@Jr
@e

ffi
XNG

i ¼ 1

wiri ri
@F mi

� �

@e
þ2F mi

� � @ri
@e

� �
; ð40aÞ

@JW
@e

ffi
XNG

i ¼ 1

wi ri
@r

@W

����
i

@G mi

� �

@e
þG mi

� � @

@e

@r

@W

����
i

ri

� � �
: ð40bÞ

Differentiation of Eq. (39) yields

@rðWÞ
@e

¼ rðWÞ 1
~RðeÞ

@ ~RðeÞ
@e

þ 1

3e
� ecos2W

sin2Wþe2 cos2W

" #
; ð41aÞ

@

@e

1

r

@r

@W

� 
¼ 2esinWcosW

½sin2Wþe2 cos2W�2
: ð41bÞ

As noted already, the derivative of ~RðeÞ in Eq. (41a) will

be zero for the equivalent volume sphere.

Cylinders. There are two surfaces here, and the shape

factor is now the diameter to height ratio. Then the

quadrature is split according to [9]:

rðWÞ ¼ ð2=3Þ1=3e1=3
~RðeÞ
sinW

;
1

r

@rðWÞ
@W

¼�cotW ðtanW4eÞ;

ð42aÞ

rðWÞ ¼ ð2=3Þ1=3e�2=3
~RðeÞ
cosW

;
1

r

@rðWÞ
@W

¼ þtanW ðtanWreÞ:

ð42bÞ

The linearization with respect to e is easy; the non-

zero terms are

@rðWÞ
@e

¼ rðWÞ 1
~RðeÞ

@ ~RðeÞ
@e

þ 1

3e

" #

ðtanW4eÞ; ð43aÞ

@rðWÞ
@e

¼ rðWÞ 1
~RðeÞ

@ ~RðeÞ
@e

� 2

3e

" #

ðtanWreÞ: ð43bÞ

Chebyshev particles. These particles are generated

through continuous deformation of a sphere of radius

r0 ¼ ~RðeÞ using a Chebyshev polynomial of degree n; the

deformation parameter e is always less than one:

rðWÞ ¼ ~RðeÞ 1þecosnW

 �

;
1

r

@rðWÞ
@W

¼� ensinnW

1þecosnW
: ð44Þ

The linearization with respect to e is also straight-

forward

@rðWÞ
@e

¼ @ ~RðeÞ
@e

1þecosnW

 �

þ ~RðeÞcosnW;
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@

@e

1

r

@r

@W

� 
¼� nsinnW

½1þecosnW�2
: ð45Þ

3.4. Equivalent surface area sphere (ESAS) linearization

(T-matrix only)

In this section, we look at the non-zero derivative

@ ~RðeÞ=@e which applies in the ESAS representation. In this

case, the equivalent sphere radius ~R0 (a free parameter

that does not depend on the nature of the particle under

consideration) must be multiplied by a factor SðeÞwhich is

related to the particle surface area and volume. Specifi-

cally

~RðeÞ ¼ ~R0SðeÞ � ~R0
EV ðeÞ
EAðeÞ

; EV ðeÞ ¼
VðeÞ

ð4=3Þp

� �1=3
;

EAðeÞ ¼
AðeÞ
4p

� �1=2
: ð46Þ

The volume and area functions VðeÞ and AðeÞ are treated

separately for the three particle types here. Note that

S eð Þ ¼ 1 for the sphere.

Prolate spheroids (eo1). The volume is VðeÞ ¼
ð4=3Þpa2b; the surface area and function S eð Þ in (46) are

AðeÞ ¼ 2pa2HðeÞ � 2pa2 1þ sin�1
ffiffiffiffiffiffiffiffiffiffiffi
1�e2

p

e
ffiffiffiffiffiffiffiffiffiffiffi
1�e2

p
" #

;

SðeÞ ¼
ffiffiffi
2

p
e�1=3HðeÞ�1=2: ð47Þ

Here, we have polar and equatorial radii a and b, respec-

tively, such that e¼a/b. The derivatives are

@S

@e
¼�S

1

3e
þ H0

2H

� �
;

H0 � @H

@e
¼ �e

ffiffiffiffiffiffiffiffiffiffiffi
1�e2

p
�ð1�2e2Þsin�1

ffiffiffiffiffiffiffiffiffiffiffi
1�e2

p

e2ð1�e2Þ3=2
: ð48Þ

Oblate spheroids (e41). The volume is again VðeÞ ¼
ð4=3Þpa2b. Functions AðeÞ and S eð Þ are given by

AðeÞ ¼ pa2HðeÞ � pa2 2þ 1

e
ffiffiffiffiffiffiffiffiffiffiffi
e2�1

p ln
eþ

ffiffiffiffiffiffiffiffiffiffiffi
e2�1

p

e�
ffiffiffiffiffiffiffiffiffiffiffi
e2�1

p
" #

;

SðeÞ ¼ 2e�1=3HðeÞ�1=2: ð49Þ

Linearization with respect to e proceeds by analytic

differentiation of Eq. (49); this is a straightforward alge-

braic exercise.

Cylinders. Here, factor e is the diameter to height ratio.

The formulas for this case are particularly simple; the

function S eð Þ and its derivative are given by

SðeÞ ¼ 2e

3

� �1=3 2þe

2e

� �1=2

;
@SðeÞ
@e

¼�SðeÞ ðe�1Þ
3eð2þeÞ :

ð50Þ

Chebyshev particles. Radius r Wð Þ is given by Eq. (44). To

find the surface area and volume, we use a quadrature:

AðeÞ ¼
XNS

i ¼ 1

wi½1þecosnWi�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þecosnWi�2þ1þe2n2 sin2nWi

q
;

ð51aÞ

VðeÞ ¼
XNS

i ¼ 1

wisinWi½1þecosnWi�2ðsinWi½1þecosnWi�þenxiÞ:

ð51bÞ

Here, the quadrature is fxi, wig over the interval [�1, 1],

and xi ¼ cosWi. The number of quadrature points NS¼60

in the original F77 NASA-GISS code [9]; we have retained

this number. Differentiation of Eqs. (51a) and (51b) with

respect to the deformation parameter is a lengthy but

straightforward exercise.

4. Type 2 derivatives for the T-matrix and Mie codes

For polydisperse applications, we use a range of

(equivalent-sphere) particle size distributions present in

the Mie code of [4]; details, see Table 5. Suppose cðrÞ is
any monodisperse optical property to be integrated over

size radius. Then the PSD integrations are done using a

series of Gauss–Legendre quadratures frkj,wkjg,k¼
1, . . .NQ ðjÞ, one for each block j, where there are NB blocks

covering the full range r1,r2½ �

/cS� 1

NðvÞ

Z r2

r1

cðrÞnðr,vÞdrffi
PNB

j ¼ 1

PNQðjÞ
k ¼ 1

nðrkj,vÞcðrkjÞwkj
PNB

j ¼ 1

PNQðjÞ
k ¼ 1

nðrkj,vÞwkj

:

ð52Þ

If vq is one of the set v of (up to 3) parameters character-

izing the PSD, then the linearization of Eq. (52) with

respect to vq is

@/cS
@vq

ffi
PNB

j ¼ 1

PNQ ðjÞ
k ¼ 1

@nðrkj ,vÞ
@vq

cðrkjÞ�/cS

 �

wkj

PNB
j ¼ 1

PNQ ðjÞ
k ¼ 1

nðrkj,vÞwkj

: ð53Þ

It is well known that orientation averaging in the

T-matrix solutions tends to reduce high-frequency varia-

tions, so that it is not necessary to use more than one

quadrature block in the PSD integration. Thus for T-matrix

polydispersion, NB¼1.

One example will suffice to illustrate the PSD linear-

ization process. For the lognormal distribution with

Table 1

Sample finite difference validation.

Analytic T-matrix Jacobians Finite-difference T-matrix Jacobians

Lx Cextð Þ Lx Cscað Þ Lx gð Þ Fx Cextð Þ Fx Cscað Þ Fx gð Þ

x¼mr 1.0228Eþ01 8.9886Eþ00 �1.6865E�01 1.0226Eþ01 8.9872Eþ00 �1.6857E�01

x¼mi 1.0343E�02 �6.4536E�01 3.7953E�02 1.0343E�02 �6.4536E�01 3.7953E�02

x¼e �4.8533E�01 �2.8879E�01 �7.7285E�02 �4.8522E�01 �2.8869E�01 �7.7280E�02
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parameters rg (mode radius) and sg (standard deviation)

we have

nðrÞ ¼ 1ffiffiffiffiffiffi
2p

p
rsg

exp � ðlnr�lnrgÞ2

2s2g

" #
; ð54aÞ

@nðrÞ
@rg

¼ nðrÞ
rg

ðlnr�lnrgÞ;
@nðrÞ
@sg

¼�nðrÞ
sg

1� ðlnr�lnrgÞ2

s2g

" #
:

ð54bÞ

Similar results can be established for the gamma, mod-

ified-gamma, and power-law distributions commonly

found in the literature; in all cases, analytic differentiation

of these well known functions is straightforward.

5. Some results

5.1. Finite difference testing

All linearized outputs from the monomodal T-matrix

code are normalized, that is, if we are seeking a Jacobian

with respect to quantity x, then the actual output is (say

for the extinction coefficient)

LxðCextÞ � x
@Cext

@x
: ð55Þ

Given this definition, one way to obtain a finite difference

estimate of the derivative is

FxðCextÞffi
Cextðx0Þ�CextðxÞ

d
, ð56Þ

where the perturbed quantity is x
0
¼ xð1þdÞ for some

small number d. Comparing (55) and (56) allows us to

make a finite-difference validation of the analytic weight-

ing functions in a convenient manner. In practice the

optimum value of d will depend on the parameter under

consideration; experience with this testing indicates that

d¼10�4 is best for the shape factor and refractive index

real part parameters, whereas d¼10�3 is good enough for

the refractive index imaginary part and the PSD para-

meter derivatives.

Table 1 has examples of finite difference Jacobian

validations for the extinction and scattering cross-sec-

tions and the asymmetry parameter, with calculations for

monodisperse oblate spheroids with mrþ imi¼1.42þ
0.005i, shape factor e¼1.7, and particle size parameter

12.56; a perturbation d¼10�4 gives results accurate to

the 4th significant figure.

For a single-mode call to the linearized Mie code, all

weighting function outputs are unnormalized (absolute

derivatives). For the bimodal applications, T-matrix deri-

vatives are normalized and Mie derivatives again unnor-

malized. The only exception is with fractional number

density derivatives @/cS=@f , which are unnormalized for

both codes.

Finally we note that the computer code package has a

facility for carrying out this finite difference validation for

any type of particle, as well as some coding for testing the

new T-matrix Fortran 90 against the old NASA-GISS

Fortran 77 package.

5.2. Examples of output

Here we present some sample results, focusing on the

linearized optical properties. This section is intended to

give a flavor of the kind of output generated by the

linearized model; specific retrieval applications are beyond

the scope of the present work. In order to give an overview,

we have employed color contour plots similar to those for

example in [5] (Plates 2.1–2.4). We look at the following

situations for randomly oriented rotationally symmetric

particles.

In Fig. 1, we look at the extinction cross-section Cext
and its two normalized derivatives mr@Cext/@mr and e@Cext/
@e for oblate and prolate spheroid particles, with incident

light at wavelength 0.55 mm and fixed imaginary refrac-

tive index component mi¼0.005. Results are plotted for

a range of values [0.4, 2.0] for the shape factor e, and
a range [1.1, 1.6] for the real refractive index component

mr. Calculations were done using the equivalent surface

area sphere (ESAS) representation. Left panels show results

for a monodisperse situation with particle size 1 mm (size

parameter �12.56), with the right panels containing

results for a polydisperse aggregate characterized by a

lognormal PSD with mode radius 0.5 mm and standard

deviation 2 mm.

Focusing next on Chebyshev particles in Fig. 2, we look

at the extinction cross-section Cext and the single scatter-

ing albedo o (top left and top right, respectively), and

their normalized derivatives mi@Cext/@mi and mi@o/@mi

(middle row) with respect to the imaginary component

mi of the refractive index, and derivatives e@Cext/@e
and e@o/@e (bottom row) with respect to the Chebyshev

deformation parameter. Incident light has wavelength

0.95 mm and the real part of the refractive index compo-

nent is fixed at mr¼1.33. Results are plotted for a range of

values [0.01, 0.3] for the deformation parameter e, and a

range [0.002, 0.22] for the imaginary refractive index

component mi. Calculations were done using the equiva-

lent surface-area-sphere (ESAS) representation.

In Fig. 3, we return to oblate spheroids, looking this

time at angular distributions. Results are shown for

monodisperse spheroids with shape factor e¼1.7 and

refractive index 1.42þ0.008i, at wavelength 0.443 mm.

We look at the normalized scattering matrix element

F11(Y) and the corresponding degree of linear polariza-

tion (in %) �F21(Y)/F11(Y) (top left and top right, respec-

tively), along with their three derivatives e@/@e, mr@/@mr

and miq/qmi (rows 2 to 4, respectively). Results are plotted

against scattering angle Y from 0 to 1801, and for a range

[0, 20] for the particle size parameter. Calculations are

again done using the ESAS representation. The plot for

�F21(Y)/F11(Y) (top right) is closely similar to one of the

graphs in Plate 2.1 of [5]. It can be seen that polarization

at backscattering angles has large sensitivity to changes of

shape factor; this offers the promise for retrieval of

particle shape from multi-angle polarization measure-

ments. The sensitivity drops significantly at scattering

angle close to 1801 for particles with size parameters less

than 5; this is also the condition for low polarization.

In Fig. 4, we look at a bimodal aggregate, comprising

a dust mode with lognormal polydisperse spheroidal
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particles with mc¼1.53þ0.005i, and a sulfate mode with

lognormal polydisperse spheres of refractive index mc¼
1.43þ2�10�8i. We look at the scattering matrix element

F11 (plotted on a natural logarithmic scale for conveni-

ence) and the degree of linear polarization PLIN (in %)

�F21(Y)/F11(Y) (first and second rows), along with their

sensitivities with respect to the fractional number density

weight f of the dust mode (rows three and four). Results

are plotted against the fraction of dust for a fixed dust-

particle shape factor 1.7 (left column), and against the

dust particle shape factor (varying from 0.7 to 2) with a

fixed fractional weight of f¼0.5 (right column). The

sensitivities are here defined as the (normalized) deriva-

tives of the Ln(F11) or PLIN with respect to f. Variations of

both F11 and PLIN with respect to f (i.e. vertical changes of

color in the upper two panels on the left) are much less

than their counterparts with respect to shape factor

(i.e. color changes in the two upper panels, right column).

An overview of the sensitivity of such variations with f

and shape factor is seen in the lower two rows of Fig. 4;

moreover, PLIN has relatively larger sensitivity to f than

F11. Note that, since PLIN is less than 40% (second row in

Fig. 4), the normalized relative sensitivity f@[Ln(PLIN)]/@f is

larger than f@PLIN/@f as shown here. [f@[Ln(PLIN)]/qf is not

shown here, as PLIN is zero at scattering angles 01 and 180].

Overall, Fig. 4 suggests that, at least for the aerosol para-

meters specified here, angular polarization is useful for

retrieving the fraction of non-spherical large particles [31].

6. Computer codes

The initial-release package of linearized FORTRAN 90

T-matrix and Mie codes may be obtained upon inquiry

from the corresponding author; the codes are in the

public domain, and when the codes become optimized

and better established, it is intended that they will again

be available from the GISS website (http://www.giss.nasa.

gov/�crmim). The F90 T-matrix package is based on the

existing NASA-GISS F77 code [9], while the Mie package is

based on the Meerhoff code [4]. The new F90 codes are

accompanied by a User Guide.
For the T-matrix part of the package, the following

remarks apply to the F90 upgrade:

	 Most of the original naming conventions in the F77

code have been preserved;

	 all subroutines have declared input and output explicitly

—no common block storage;

	 all code is ‘‘implicit none’’ with explicit declaration of

all variables;

	 all subroutine I/O has explicit intent (In/Out/InOut)

signifiers;

	 equivalence statements have been removed;

	 code has an explicit exception handling procedure for

dealing with program failure;

	 dimensioning is symbolic throughout, no allocatable

arrays (at least in this version).

Spheroids C_ext, Size parameter 12.56, n_i 0.005, Monodisperse(left), Lognormal PSD (right)

Normalized Jacobians: W.R.T. n_r (middle row), W.R.T. EPS (Bottom row)
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The choice of PSD for the F90 T-matrix code has been

extended to include all the options present in the Meerhoff

[4] code (see Table 5). However, all original PSD specifica-

tions from the F77 NASA-GISS code have been preserved,

and the user can still choose one of these PSDs by turning

on the Boolean flag ‘‘Do_PSD_Oldstyle’’ (see below). This

option is useful for validation against the F77 code. Note

that the PSD-linearization is only possible with the new-

style PSD choices, for which the PSDs were explicitly

differentiated as part of the linearized Mie package.

The code has been made more flexible, with a greater

range of input choices, now specified by reading from

configuration files—an example of this is described in detail

below for the T-matrix case. As far as output is concerned,

some users may require just the ‘‘bulk’’ optical properties

(extinction and scattering cross-sections, single scattering

albedo), and in this case, the code calculating the expansion

coefficients is turned off. Note however that if the asym-

metry parameter is desired, then the expansion coefficient

code must be activated. Similarly, in many applications (e.g.

when providing optical property inputs for radiative transfer

modeling) it is only necessary to compute the bulk quan-

tities and expansion coefficients—thus the F-matrix output

for a regular grid of scattering angles is optional.

6.1. Code descriptions

There are two main directories in the package (Fig. 5).

The main Tmatrix_environment directory contains a

number of ‘‘makefiles’’, which will generate executables

named according to any test programs present. Modules

and object files are stored in separate subdirectories to

avoid clutter. This directory also contains the configura-

tion files. Results files may also be stored separately. The

Mie part of the package is structured similarly.

The complete set of modules to be used in any call

to the linearized T-matrix model is found in the other

directory Tmatrix_sourcecode, which contains the 14 files

outlined in Table 2. The Mie code is simpler; all functions

(with the exception of the parameters, the bimodal

masters and the I/O read and write routine) are contained

in the two master modules (Table 3).

6.2. Configuration file example

Table 4 contains an example of a configuration file.

Each file is divided into 4 groups. In this particular case,

the program will perform a full calculation of bulk

properties and expansion coefficients and the F-matrix,

using the equivalent surface area sphere (ESAS) represen-

tation with a lognormal PSD (new-style) of mode radius

0.5 mm and standard deviation 2 mm, with limiting radii

0.1 and 5 mm, for oblate spheroids of shape factor 1.7 and

refractive index (1.53, 0.005) at wavelength 0.55 mm. This

input will also generate 5 linearizations: weighting func-

tions with respect to the two refractive index compo-

nents, the shape factor and the two PSD parameters.

Similar configuration files have been designed for the

Monodisperse Chebyshevs (T2), size par = 6.61, n_r 1.33, C_ext (left), SS_alb (right) 
Normalized Jacobians: W.R.T. n_i (middle row), W.R.T. EPS (Bottom row)
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Mie code. In addition, there are configuration files for

bimodal applications (requiring two sets of microphysical

values and PSD inputs).

6.3. Exception handling

Both the T-matrix and Mie codes have consistent

exception handling procedures for dealing with input

checking and execution failures. An overall Boolean flag

is output for ‘‘success/failure’’, and there is also an integer

status variable plus three character strings for output

messages. Inputs are checked for consistency, and in the

case of input error, a message will be generated describ-

ing the error, plus a second message outlining the action

required to correct the error along with 2 or 3 traces to

establish the location of the error. Dimensioning and

convergence issues are the main causes of T-matrix

execution failure, and the appropriate messages from

the F77 code have been retained in the F90 package. In

both codes, dimensioning checks will suggest new para-

meters to use.

6.4. Particle-size distributions

Table 5 summarizes PSD options in the T-matrix and

Mie packages. For PSD_Index¼3 (Old-style power law)

and FixR1R2¼T, then PSD_Par1 is an effective radius,

PSD_Par2 an effective variance.

7. Concluding remarks

In this paper we have described a complete lineariza-

tion of the T-matrix model as it applies to randomly

oriented axially symmetric particles. The linearity of

Maxwell’s equations and the intrinsic analytical nature

of the T-matrix code allow us to carry out analytic

differentiation of the entire T-matrix solution with

respect to any variables characterizing the particles in

question. We distinguish two types of linearization: (1)

with respect to single particle characteristics (real and

imaginary components of the refractive index, particle

shape or deformation factor), and (2) with respect to

particle size distribution parameters characterizing poly-

disperse aggregations.

The NASA-GISS T-matrix code package has been trans-

lated to Fortran 90, and additional code written to gen-

erate the Type 1 and Type 2 optical property derivatives

as noted in Section 2.1. The new code has been validated

against the old NASA-GISS FORTRAN 77 package, and all

optical property derivatives have been checked against

finite-difference estimations. We have developed a sepa-

rate linearization package for the Mie code, even though

Mie theory is a special case of the T-matrix formulation.

The Type-1 Mie linearization applies only to derivatives

with respect to the refractive index components. Type-2

linearizations apply equally to the Mie and T-matrix

formulations.

Left Column : Ln(F_11) ; n_r.d(Ln(F11))/dn_r; n_i.d(Ln(F11))/dn_i; eps.d(Ln(F11))/deps

Right Column: P_lin = -F_21/F_11 (in %); n_r.d(P_lin)/dn_r; n_i.d(P_lin)/dn_i; eps.d(P_lin)/deps
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Row 1: Ln(F_11); Row 2: P_lin = -F_21/F_11 (in %)

Row 3: frac.d(Ln(F11))/dfrac; Row 4: frac.d(P_lin)/dfrac 

Left column: Shape factor 1.7; Right column: Fraction 0.5
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Fig. 5. Directory structure of the linearized T-matrix/Mie package.
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Table 2

Subdirectory ‘‘Tmatrix_sourcecode’’, F90 modules.

Module Purpose

tmat_parameters.f90 Dimensioning and type-kind parameters

tmat_distributions.f90 Computation of PSDs (old style and new style) and linearizations (new style only)

tmat_master.f90 Top-level module for computing optical property stuff, standard output only

tmat_master_PLUS.f90 Top-level module for computing optical property standard and linearized output

tmat_functions.f90 Work-horse routines for Bessel and other functions

tmat_functions_PLUS.f90 Work-horse routines for Bessel and other functions, and any linearizations thereof

tmat_makers.f90 Routines for creating Q, RgQ and T-matrix

tmat_makers_PLUS.f90 Routines for creating Q, RgQ and T-matrix, and all linearizations thereof

tmat_scattering.f90 Routines for calculating expansion coefficients and F-matrices

tmat_scattering_PLUS.f90 Routines for expansion coefficients and F-matrices, and all linearizations thereof

Utilities_LAPACK.f90 LAPACK routines (F90 syntactical translation of original F77 code)

Tmat_IO_readwrite.f90 Routines for reading configuration files and writing standard and extended outputs to files

Tmat_master_bimodal.f90 Bimodal wrapper, standard output

Tmat_master_bimodal_PLUS.f90 Bimodal wrapper, standard and linearized output

Table 3

Subdirectory ‘‘Mie_sourcecode’’, F90 modules.

Module Purpose

Mie_parameters.f90 Mie dimensioning and type-kind parameters

Mie_distribution.f90 PSD distribution functions

Mie_main.f90 Mie module for computing optical properties, standard output only

Mie_main_PLUS.f90 Mie module for computing optical properties, standardþ linearized output

Mie_IO_readwrite.f90 Routines for reading configuration files and writing standard and extended outputs to files

Mie_master_bimodal.f90 Bimodal wrapper, standard output

Mie_master_bimodal_PLUS.f90 Bimodal wrapper, standard and linearized output

Table 4

Configuration file example for the T-matrix model.

Value Name Description Remarks

*** First group (Boolean flags)

T Do_Expcoeffs Flag for expansion coefficient output New feature

T Do_Fmatrix Flag for optional F-matrix output New: Do_Expcoeffs must be set

F Do Monodisperse Flag for a monodisperse calculation New feature

T Do_EqSaSphere Flag for using equivalent surface area sphere (ESAS)

representation

Formerly a non-Boolean input

T Do_LinearRef Flag for linearizing w.r.t. real and imaginary parts of

refractive index

T Do_LinearEps Flag for linearizing w.r.t. shape parameter

T Do_LinearPSD Flag for linearizing w.r.t. PSD parameters Only works for the ‘‘New-style’’ PSD choices

F Do_psd_OldStyle Flag for using original PSD choices If set, use the NASA-GISS F77 original PSD choices

*** Second group (PSD control)

4 psd_index Particle size distribution (PSD) index See Table 5 for choices

0.5 psd_pars1 First PSD parameter See Table 5

2.0 psd_pars2 Second PSD parameter

0.0 psd_pars3 Third PSD parameter

1.0 Monoradius Size (mm) of equivalent-sphere particle Monodisperse only

F FixR1R2 Flag for fixing R1 & R2 internally Only if Do_psd_OldStyle not set

0.1 R1 Minimum radius (microns) Not needed if FixR1R2 is set

1.0 R2 Maximum radius (microns) Not needed if FixR1R2 is set

*** Third group (General control)

�1 np �1(spheroids), �2(cylinder), 40(Chebyshev) Same as GISS-F77 options

20 nkmax Number of PSD quadrature points Same name as in GISS-F77

91 npna Number of F-matrix outputs Same name as in GISS-F77

2 ndgs Number of ESAS division points Same name as in GISS-F77

2.0 eps Aspect ratio, deformation parameter , etc. Shape parameter

0.001 accuracy Accuracy for convergence As in GISS-F77, formerly DELT

*** Fourth group (optical inputs)

0.5 lambda Wavelength Always micrometers

1.53 n_real Real part of refractive index

0.008 n_imag Imaginary part of refractive index
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At present, the code is restricted to double precision

floating point arithmetic; in the next version we plan to

allow for a user-specified level of numerical precision

(this is a nice F90 feature), so that the code can be run in

‘‘extended precision’’ mode without the need for a sepa-

rate package as is currently the case with the GISS F77

code. This will extend the usage to particle size para-

meters in excess of 100. Performance and allocatable-

memory optimizations are also planned.

All software in the package is in the public domain;

the codes may be downloaded on a trial basis from RT

Solutions by contacting the corresponding author. This is

the first ‘‘beta’’ version; user feedback will help to con-

solidate this code and improve portability and robustness,

and it is intended that the second release will be made

from the NASA GISS website.

The original motivation for the development of this

package has come from Earth-atmosphere remote-

sensing inverse problems for aerosol retrieval, with the

emphasis on retrieving microphysical aerosol character-

istics rather than macrophysical optical properties. In this

context, the package is best used in conjunction with a

linearized radiative transfer model such as VLIDORT; such

a combination is then able to deliver forward-model

analytic Jacobians necessary for aerosol retrieval pro-

blems using least-squares fitting (with or without reg-

ularization). T-matrix codes for non-spherical scattering

are found in many other atmospheric physics applications

as well as diverse fields such as hydrometeor scattering

and biomedical applications, and it is hoped that the

present code will contain something for everyone.

We note that there is no reason why the linearization

process described here cannot be extended to other non-

spherical scattering situations using the T-matrix approach

(for instance, coated or chiral particles, situations with

non-random orientations, etc.). Future work will focus on

the linearization of these variants of T-matrix theory, and

we will also focus on the generation of Jacobians from

distributions of homogeneous spheres.

Acknowledgments

The authors would like to thank Xiong Liu for useful

discussions, and Mick Christi for help preparing the

package User Guide. This work was funded under the

ROSES 2009 NRA (NNH09ZDA001N, ROSES A19 NASA

Glory Science Team). Partial support was provided by

the NASA Remote Sensing Theory and Radiation Sciences

programs managed by Lucia Tsaoussi and Hal Maring.

References

[1] van de Hulst HC. Light scattering by small particles. New York:
Wiley; 1957.

[2] Bohren CF, Huffman DR. Absorption and scattering of light by small
particles. New York: Wiley; 1998.

[3] Mishchenko MI, Travis LD. Gustav Mie and the evolving discipline
of electromagnetic scattering by particles. Bulletin of the American
Meteorological Society 2008;89:1853–61.

[4] de Rooij WA, van der Stap CCAH. Expansion of Mie scattering
matrices in generalized spherical functions. Astronomy and Astro-
physics 1984;131:237–48.

[5] Mishchenko MI, Hovenier JW, Travis LD. Light scattering by non-
spherical particles. San Diego: Academic Press; 2000.

[6] Waterman PC. Symmetry, unitarity, and geometry in electromag-
netic scattering. Physical Review D 1971;3:825–39.

[7] Mishchenko MI, Zakharova NT, Videen G, Khlebtsov NG, Wriedt T.
Comprehensive T-matrix reference data-base: a 2007–2009 update.
Journal of Quantitative Spectroscopy and Radiative Transfer 2010;111:
650–8.

[8] Mishchenko MI, Travis LD, Mackowski DW. T-matrix computations
of light scattering by nonspherical particles: a review. Journal of
Quantitative Spectroscopy and Radiative Transfer 1996;55:535–75.

[9] Mishchenko MI, Travis LD. Capabilities and limitations of a current
FORTRAN implementation of the T-matrix method for randomly
oriented, rotationally symmetric scatterers. Journal of Quantitative
Spectroscopy and Radiative Transfer 1998;60:309–24.

[10] Wriedt T. Light scattering theories and computer codes. Journal of
Quantitative Spectroscopy and Radiative Transfer 2009;110:833–43.

[11] Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB,
Tignor M, Miller HL, editors. Climate Change 2007:The Physical
Science Basis. Cambridge: Cambridge University Press; 2007.

[12] Mishchenko MI, Cairns B, Hansen JE, Travis LD, Burg R, Kaufman YJ,
et al. Monitoring of aerosol forcing of climate from space: analysis
of measurement requirements. Journal of Quantitative Spectro-
scopy and Radiative Transfer 2004;88:149–61.

[13] Cairns B, Travis LD, Russell EE. Research scanning polarimeter:
calibration and ground-based measurements. Proceedings of the
SPIE 1999;3754:186–97.

[14] Mishchenko MI, Travis LD. Satellite retrieval of aerosol proper-
ties over the ocean using polarization as well as intensity of
reflected sunlight. Journal of Geophysical Research 1997;102:
16989–7013.

[15] Chowdhary J, Cairns B, Mishchenko MI, Hobbs PV, Cota G, Rede-
mann J, et al. Retrieval of aerosol scattering and absorption
properties from photopolarimetric observations over the ocean
during the CLAMS experiment. Journal of the Atmospheric Sciences
2005;62:1093–117.

[16] Mishchenko MI, Cairns B, Kopp G, Schueler CF, Fafaul BA, Hansen JE,
et al. Precise and accurate monitoring of terrestrial aerosols and
total solar irradiance: introducing the Glory Mission. Bulletin of the
American Meteorological Society 2007;88:677–91.

[17] Waquet F, Cairns B, Knobelspiesse K, Chowdhary J, Travis LD,
Schmid B, et al. Polarimetric remote sensing of aerosols over land.
Journal of Geophysical Research 2009;114:D01206.

Table 5

Summary of PSD options.

Old Tmatrix New Tmatrix/Mie Description of PSD_Index

4 1 Two parameter GAMMA with ALPHA and B given

2 Two parameter GAMMA with REFF and VEFF given

3 3-parameter bimodal equal-weight GAMMAS, 2 REFF, 1 VEFF

2 4 Two parameter LogN with RG and SIGMA given

5 Two parameter LogN with REFF and VEFF given

3/5 6 Power-law with R1, R2 and ALPHA (¼3, old style)

7 3-parameter modified-gamma with ALPHA,GC,GAMMA given

1 8 3-parameter modified-gamma with ALPHA,B,GAMMA given

R. Spurr et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 425–439438



[18] Hasekamp OP, Landgraf J. Linearization of vector radiative transfer
with respect to aerosol properties and its use in satellite remote
sensing. Journal of Geophysical Research 2005;110:D04203.

[19] Butz A, Hasekamp OP, Frankenberg C, Aben I. Retrievals of atmo-
spheric CO2 from simulated space-borne measurements of back-
scattered near-infrared sunlight: accounting for aerosol effects.
Applied Optics 2009;48:332–6.

[20] Crisp D, Atlas RM, Breon F-M, Brown LR, Burrows JP, Ciais P, et al.
The orbiting carbon observatory (OCO) mission. Advances in Space
Research 2004;34:700–9.

[21] Zeng J, Han Q, Wang J. High-spectral resolution simulation of
polarization of skylight: sensitivity to aerosol vertical profile.
Geophysical Research Letters 2008;35:L20801.

[22] Torres O, Bhartia PK, Herman JR, Ahmad Z, Gleason J. Derivation of
aerosol properties from satellite measurements of backscattered
ultraviolet radiation, theoretical basis. Journal of Geophysical
Research 1998;103:17099–110.

[23] Spurr R. LIDORT and VLIDORT: Linearized pseudo-spherical scalar
and vector discrete ordinate radiative transfer models for use in
remote sensing retrieval problems. In: Kokhanovsky A, editor. Light
scattering reviews, vol. 3. Berlin: Springer; 2008 p. 229–75.

[24] Mishchenko MI, et al. Aerosol retrievals from AVHRR radiances:
effects of particle nonsphericity and absorption and an updated
long-term global climatology of aerosol properties. Journal of

Quantitative Spectroscopy and Radiative Transfer 2003;79/80:
953–72.

[25] Wang J, Liu X, Christopher SA, Reid JS, Reid E, Maring HB. The
effects of non-sphericity on geostationary satellite retrievals of dust
aerosols. Geophysical Research Letters 2003;30:2293.

[26] Grainger RG, Lucas J, Thomas GE, Ewan G. The calculation of Mie
derivatives. Applied Optics 2004;43:5386–93.

[27] Mishchenko MI, Travis LD, Lacis AA. Scattering, absorption, and
emission of light by small particles. Cambridge: Cambridge Uni-
versity Press; 2002 Available from /http://www.giss.nasa.gov/
staff/mmishchenko/books.htmlS.

[28] Mishchenko MI. Multiple scattering, radiative transfer, and weak
localization in discrete random media: unified microphysical
approach. Reviews of Geophysics 2008;46:RG2003.

[29] Wiscombe WJ, Mugnai A. Scattering from nonspherical Chebyshev
particles. 2: means of angular scattering patterns. Applied Optics
1988;27:2405–21.

[30] Tsang L, Kong JA, Shin RT. Theory of microwave remote sensing.
New York: Wiley; 1985.

[31] Dubovik O, Herman M, Holdak A, Lapyonok T, Tanre D, Deuze JL,
et al. Statistically optimized inversion algorithm for enhanced
retrieval of aerosol properties from spectral multi-angle polari-
metric satellite observations. Atmospheric Measurement Techni-
ques 2011;4:957–1018.

R. Spurr et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 425–439 439

http://www.giss.nasa.gov/staff/mmishchenko/books.html
http://www.giss.nasa.gov/staff/mmishchenko/books.html

	Linearized T-matrix and Mie scattering computations
	

	Linearized T-matrix and Mie scattering computations
	Introduction
	Basic definitions and the linearization principle
	Optical properties and linearizations
	The T-matrix ansatz and its linearization

	Type 1 derivatives for the T-matrix and Mie codes
	Vector spherical wave functions
	Linearization of Bessel functions
	Surface integral linearization (T-matrix only)
	Equivalent surface area sphere (ESAS) linearization (T-matrix only)

	Type 2 derivatives for the T-matrix and Mie codes
	Some results
	Finite difference testing
	Examples of output

	Computer codes
	Code descriptions
	Configuration file example
	Exception handling
	Particle-size distributions

	Concluding remarks
	Acknowledgments
	References


