
Linearly Augmented
Deep Neural Network

Pegah Ghahremani, Johns Hopkins University,

Jasha Droppo, Michael L. Seltzer, Microsoft Research

Typical DNN Architecture

• Layers are a composition of an affine and a non-
linear function.

𝑓𝑖 𝑥 = 𝜙(𝑊𝑖𝑥 + 𝑏𝑖)

• Typical DNN is a composition of several similar
functions.

• Can be trained from random initialization, but
pre-training can help.

• Does DNN use all its capacity? Can we
reduce the model size?
• Small amount of neurons are active
• High memory usage

Non-Linear

Linear

Non-Linear

Linear

Non-Linear

Softmax

Features

Linear
L1

L2

L3

L4

SVD-DNN Architecture
• Alternating hourglass-linear and

nonlinear blocks.

• Layer concept is the same as typical
DNN.

• Training
• Train typical DNN.

• Compress linear transformations with SVD.

• Fine tune the model to regain the lost
accuracy.

• Can not be trained from random
initialization.

Non-Linear

Non-Linear

Non-Linear

Softmax

Features

Linear

Linear

Linear

L1

L2

L3

L4

SVD-DNN Architecture (alternate view)

• Layers are composition of an affine,
non-linear, and linear operation.

𝑓𝑖 𝑥 = 𝑉𝑖𝜙 𝑈𝑖𝑥 + 𝑏𝑖
• The SVD-DNN is a composition of

several of these layers.

• Each layer:
• Maps the from one continuous vector

space embedding to another.
• Is general function approximator.
• Is very inefficient at representing a linear

transformation.
Non-Linear

Non-Linear

Non-Linear

Softmax

Features

Linear

Linear

Linear

L1

L2

L3

LA-DNN Architecture

• Similar to SVD-DNN

• Augment each layer with a linear term.
𝑓𝑖 𝑥 = 𝑉𝑖𝜙 𝑈𝑖𝑥 + 𝑏𝑖 + 𝑇𝑖𝑥

• These layers:
• Use 𝑇𝑖 to model any linear component of

the desired layer transformation.

• Use 𝑉𝑖, 𝑈𝑖, 𝑏𝑖 to model the non-linear
residual.

• Posses greater modeling power, with a
similar parameter count.

Non-Linear

Non-Linear

Non-Linear

Softmax

Features

Linear

Linear

Linear

L1

L2

L3

Network Type Comparison

Train from Random Pre-training Compressed Notes

Typical DNN Yes Available No Vanishing gradients
Over-parameterized
Large Model
Unused Capacity

SVD-DNN No Required Yes DNN approximation
Smaller Model
Difficult to train

LA-DNN Yes Un-necessary Yes

LA-DNN Linear Component Parameters

• Recall the formula for the LA-DNN layer:
𝑓𝑖 𝑥 = 𝑉𝑖𝜙 𝑈𝑖𝑥 + 𝑏𝑖 + 𝑇𝑖𝑥

• The matrix 𝑇𝑖 can be Identity matrix.
• Fewest number of parameters, least flexible.

• It can be a full matrix.
• Most flexible, but increases parameter count considerably.

• It can be a diagonal matrix.
• Balance between flexibility and parameter count.

• Best configuration in our experiments.

LA-DNN Linear Component Values

• Q: How does the network weight
the linear component of its
transform?

• A: Lower transition weight for
higher layers

TIMIT Results (baseline)

• DNN-Sigmoid system size has been tuned to minimize TIMIT PER.

• LA-DNN variants easily beat the tuned DNN system.
• Better - Improvements in all metrics.

• Faster - Drastically fewer parameters speeds training and evaluation.

• Deeper - LA layers are able to benefit from deeper networks structure.

Model
Num of
H.Layers

Layers Size # Params
Training

CE
Training

Frame Err %
Validation

CE
Validation
Frame Err

PER %

DNN + Sigmoid 2 2048X2048 10.9M 0.66 21.39 1.23 37.67 23.63

LA-DNN + Sigmoid 6 1024X512 8M 0.61 20.5 1.18 35.8 22.28

LA-DNN+ReLU 6 1024X256 4.5M 0.54 18.6 1.22 35.5 22.08

TIMIT Results (Going Deeper)

• Keeping parameter count well under the baseline (10.9M)

• All metrics continue to improve – to at least forty-eight layers deep.

LA-DNN with ReLU Units

Num of
H.Layers

Layers Size # Params

Training Validation

PER %Training
CE

Training
Frame Err %

Validation
CE

Validation
Frame Err

3 1024X256 2.9M 0.61 20.7 1.2 35.77 22.39

6 1024X256 4.5M 0.54 18.6 1.22 35.5 22.08

12 512X256 3.8M 0.55 19.2 1.21 35.5 21.8

24 256X256 3.5M 0.55 19.31 1.21 35.3 22.06

48 256X128 3.4M 0.56 19.5 1.21 35.4 21.7

AMI-HMI Results

• DNN+Sigmoid WER increases if model size is reduced.

• LA-DNN+Sigmoid beats DNN+Sigmoid with fewer parameters.

• LA-DNN+ReLU beats DNN+ReLU with fewer parameters.

Model
Num of
H.Layers

Layers Size # Params

Training Validation
WER

%Training
CE

Training
Frame Err %

Validation
CE

Validation
Frame Err

DNN+Sigmoid 6 2048X2048 37.6M 1.46 37.83 2.11 49.3 31.67

DNN+Sigmoid 6 1024X1024 12.5M 1.59 40.75 2.13 50.0 32.43

DNN+ReLU 6 1024X1024 12.5M 1.45 40.47 2.00 47.5 31.54

LA-DNN+Sigmoid 6 2048X512 18.4M 1.35 35.3 31.88

LA-DNN+ReLU 6 1024X512 10.5M 1.34 35.7 2.02 47.3 30.68

AMI-HMI Results (Going Deeper)

• Deeper network, with fewer parameters, improves all validation metrics - To at least
forty eight layers!

• Larger 48 layer system is slightly better.

LA-DNN with ReLU Units

Num of
H.Layers

Layers Size # Params

Training Validation

WER %Training
CE

Training
Frame Err %

Validation
CE

Validation
Frame Err

3 2048X512 12.1M 1.34 35.6 2.03 47.8 31.5

6 1024X512 10.5M 1.34 35.7 2.00 47.3 30.7

12 1024X256 8.9M 1.31 35.2 2.01 47.2 30.4

24 512X256 8.2M 1.34 35.7 1.99 47.2 30.2

48 256X256 7.9M 1.35 35.9 1.97 47.0 29.9

48 512X256 14M 1.25 33.9 2.00 46.7 29.7

Relation of LA-DNN to Pre-training

• Do we really need deep architecture?

• Complicated functions with high level abstraction (Bengio and Lecun
2007)
• more complex functions given the same number of parameters
• hierarchical representations

• How to train a deep network using normal DNN?
• Problems with training deeper network
• Gradient vanishing

• DNN solution => Unsupervised Pre-training

• LA-DNN solution => Bypass connection

Relation of LA-DNN to Pre-training

• What problem does pre-training
really tackle??

• Pre-training initializes the
network in a region of the
parameter space that is:
• A better starting point for the non-

convex optimization

• Easier for optimization

• Near better local optima

• LA-DNN is naturally initialized to
a good information-preserving,
gradient-passing starting point.

smaller CE after
1st epoch

LA-DNN Converge after 20
epochs

Conclusion

• Proposed a new layer structure for DNN.

• Including “linear augmentation”:
• Tackles gradient vanishing problem

• Improve initial gradient computation and results in faster convergence.

• Higher modeling capacity with fewer parameters.

• Enables training truly deep networks.

• Faster convergence, smaller network, better results.

BONUS SLIDES

DNN vs. LA-DNN
• In a Basin of attraction of gradient

descent corresponding to better
generalization performance

• Smaller initial learning rate(LR)
• DNN initial LR is 0.8:3.2

• LA-DNN LR is 0.1:0.4

• Closer to the final solution in the region of
parameter space and needs smaller step size. 0.0000001

0.000001

0.00001

0.0001

0.001

0.01

2 7 12 17 22 27 32 37

Epoch

Average Learning Rate per sample

Baseline(2,2028)

Augmented-
Sigmoid(6X1024X512)
Agmented -ReLU(6X1024X512)

Linear Augmented Model

• Better gradient for initial
steps

• Faster convergence rate
• Better error backpropagation

• Better initial model

smaller CE after
1st epoch

LA-DNN Converge after 20 epochs

SDNN versus Deep stacking network
(DSN)

• In DSN, the input of layer l is the outputs of all
previous layers stacked together.

• In DSN, we increase layer dimension, specially in
a very deep networks.

