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Typical DNN Architecture

• Layers are a composition of an affine and a non-
linear function.

𝑓𝑖 𝑥 = 𝜙(𝑊𝑖𝑥 + 𝑏𝑖)

• Typical DNN is a composition of several similar 
functions.

• Can be trained from random initialization, but 
pre-training can help.

• Does DNN use all its capacity? Can we 
reduce the model size?
• Small amount of neurons are active
• High memory usage
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SVD-DNN Architecture
• Alternating hourglass-linear and 

nonlinear blocks.

• Layer concept is the same as typical 
DNN.

• Training
• Train typical DNN.

• Compress linear transformations with SVD.

• Fine tune the model to regain the lost 
accuracy.

• Can not be trained from random 
initialization.
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SVD-DNN Architecture (alternate view)

• Layers are composition of an affine, 
non-linear, and linear operation.

𝑓𝑖 𝑥 = 𝑉𝑖𝜙 𝑈𝑖𝑥 + 𝑏𝑖
• The SVD-DNN is a composition of 

several of these layers.

• Each layer:
• Maps the from one continuous vector 

space embedding to another.
• Is general function approximator.
• Is very inefficient at representing a linear 

transformation.
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LA-DNN Architecture

• Similar to SVD-DNN

• Augment each layer with a linear term.
𝑓𝑖 𝑥 = 𝑉𝑖𝜙 𝑈𝑖𝑥 + 𝑏𝑖 + 𝑇𝑖𝑥

• These layers:
• Use 𝑇𝑖 to model any linear component of 

the desired layer transformation.

• Use 𝑉𝑖, 𝑈𝑖, 𝑏𝑖 to model the non-linear 
residual.

• Posses greater modeling power, with a 
similar parameter count.

Non-Linear

Non-Linear

Non-Linear

Softmax

Features

Linear

Linear

Linear

L1

L2

L3



Network Type Comparison

Train from Random Pre-training Compressed Notes

Typical DNN Yes Available No Vanishing gradients
Over-parameterized
Large Model
Unused Capacity

SVD-DNN No Required Yes DNN approximation
Smaller Model
Difficult to train

LA-DNN Yes Un-necessary Yes



LA-DNN Linear Component Parameters

• Recall the formula for the LA-DNN layer:
𝑓𝑖 𝑥 = 𝑉𝑖𝜙 𝑈𝑖𝑥 + 𝑏𝑖 + 𝑇𝑖𝑥

• The matrix 𝑇𝑖 can be Identity matrix.
• Fewest number of parameters, least flexible.

• It can be a full matrix.
• Most flexible, but increases parameter count considerably.

• It can be a diagonal matrix.
• Balance between flexibility and parameter count.

• Best configuration in our experiments.



LA-DNN Linear Component Values

• Q: How does the network weight 
the linear component of its 
transform?

• A: Lower transition weight for 
higher layers



TIMIT Results (baseline)

• DNN-Sigmoid system size has been tuned to minimize TIMIT PER.

• LA-DNN variants easily beat the tuned DNN system.
• Better - Improvements in all metrics.

• Faster - Drastically fewer parameters speeds training and evaluation.

• Deeper - LA layers are able to benefit from deeper networks structure.

Model
Num of 
H.Layers

Layers Size # Params
Training 

CE
Training 

Frame Err %
Validation

CE
Validation 
Frame Err

PER %

DNN + Sigmoid 2 2048X2048 10.9M 0.66 21.39 1.23 37.67 23.63

LA-DNN + Sigmoid 6 1024X512 8M 0.61 20.5 1.18 35.8 22.28

LA-DNN+ReLU 6 1024X256 4.5M 0.54 18.6 1.22 35.5 22.08



TIMIT Results (Going Deeper)

• Keeping parameter count well under the baseline (10.9M)

• All metrics continue to improve – to at least forty-eight layers deep.

LA-DNN with ReLU Units

Num  of 
H.Layers

Layers Size # Params

Training Validation

PER %Training 
CE

Training 
Frame Err %

Validation
CE

Validation 
Frame Err

3 1024X256 2.9M 0.61 20.7 1.2 35.77 22.39

6 1024X256 4.5M 0.54 18.6 1.22 35.5 22.08

12 512X256 3.8M 0.55 19.2 1.21 35.5 21.8

24 256X256 3.5M 0.55 19.31 1.21 35.3 22.06

48 256X128 3.4M 0.56 19.5 1.21 35.4 21.7



AMI-HMI Results

• DNN+Sigmoid WER increases if model size is reduced.

• LA-DNN+Sigmoid beats DNN+Sigmoid with fewer parameters.

• LA-DNN+ReLU beats DNN+ReLU with fewer parameters.

Model
Num  of 
H.Layers

Layers Size # Params

Training Validation
WER 

%Training 
CE

Training 
Frame Err %

Validation
CE

Validation 
Frame Err

DNN+Sigmoid 6 2048X2048 37.6M 1.46 37.83 2.11 49.3 31.67

DNN+Sigmoid 6 1024X1024 12.5M 1.59 40.75 2.13 50.0 32.43

DNN+ReLU 6 1024X1024 12.5M 1.45 40.47 2.00 47.5 31.54

LA-DNN+Sigmoid 6 2048X512 18.4M 1.35 35.3 31.88

LA-DNN+ReLU 6 1024X512 10.5M 1.34 35.7 2.02 47.3 30.68



AMI-HMI Results (Going Deeper)

• Deeper network, with fewer parameters, improves all validation metrics - To at least 
forty eight layers!

• Larger 48 layer system is slightly better.

LA-DNN with ReLU Units

Num  of 
H.Layers

Layers Size # Params

Training Validation

WER %Training 
CE

Training 
Frame Err %

Validation
CE

Validation 
Frame Err

3 2048X512 12.1M 1.34 35.6 2.03 47.8 31.5

6 1024X512 10.5M 1.34 35.7 2.00 47.3 30.7

12 1024X256 8.9M 1.31 35.2 2.01 47.2 30.4

24 512X256 8.2M 1.34 35.7 1.99 47.2 30.2

48 256X256 7.9M 1.35 35.9 1.97 47.0 29.9

48 512X256 14M 1.25 33.9 2.00 46.7 29.7



Relation of LA-DNN to Pre-training

• Do we really need deep architecture?

• Complicated functions with high level abstraction (Bengio and Lecun
2007)
• more complex  functions given the same number of parameters 
• hierarchical representations

• How to train a deep network using normal DNN?
• Problems with training deeper network
• Gradient vanishing  

• DNN solution => Unsupervised Pre-training

• LA-DNN solution => Bypass connection



Relation of LA-DNN to Pre-training

• What problem does pre-training 
really tackle??

• Pre-training initializes the 
network in a region of  the 
parameter space that is:
• A better starting point for the non-

convex optimization

• Easier for optimization

• Near better local optima

• LA-DNN is naturally initialized to 
a good information-preserving, 
gradient-passing starting point.

smaller CE after 
1st epoch 

LA-DNN Converge after 20 
epochs 



Conclusion

• Proposed a new layer structure for DNN.

• Including “linear augmentation”:
• Tackles gradient vanishing problem

• Improve initial gradient computation and results in faster convergence.

• Higher modeling capacity with fewer parameters.

• Enables training truly deep networks.

• Faster convergence, smaller network, better results.



BONUS SLIDES



DNN vs. LA-DNN
• In a Basin of attraction of gradient 

descent corresponding to better 
generalization performance

• Smaller initial learning rate(LR) 
• DNN initial LR  is 0.8:3.2

• LA-DNN LR is  0.1:0.4

• Closer to the final solution in the region of 
parameter space and needs smaller step size. 0.0000001
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Linear Augmented Model

• Better gradient for initial 
steps

• Faster convergence rate
• Better error backpropagation

• Better initial model 

smaller CE after 
1st epoch 

LA-DNN Converge after 20 epochs 



SDNN versus Deep stacking network 
(DSN) 

• In DSN,  the input of layer l is the outputs of all 
previous layers stacked together.

• In DSN, we increase layer dimension, specially in 
a very deep networks. 


