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LINEARLY INDEPENDENT, ORTHOGONAL

AND EQUIVARIANT IMMERSIONS

BY BANG-YEN CHEN

Abstract

In this article we define the notions of linearly independent and ortho-
gonal immersions and introduce the notion of adjoint hyperquadrics of linearly
independent immersions. We investigate the relations between linearly inde-
dendent immersions, orthogonal immersions, equivariant immersions and adjoint
hyperquadrics. Several results in this respect are obtained.

1. Introduction

Let x : M—>£m be an immersion from an n-dimensional, connected manifold
M into the Euclidean m-space Em. With respect to the Riemannian metric g
on M induced from the Euclidean metric of the ambient space Em, M is a Rie-
mannian manifold. Denote by Δ the Laplacian operator of the Riemannian
manifold (M, g). The immersion x is said to be of finite type (cf. [1, 2] for
details) if each component of the position vector field of M in Em, also denoted
by x, can be written as a finite sum of eigenfunctions of the Laplacian operator,
that is, if

(1.1) x=c+X!+x2+ ••• +Xk

where c is a constant vector, xu •••, xk are non-constant maps satisfying Axt

=λtxt, i=l, ••• , k. If in particular all eigenvalues {λu ••• , λk} are mutually
different, then the immersion x (or the submanifold M) is said to be of k-type
and the decomposition (1.1) is called the spectral decomposition of the immer-
sion x.

For a finite type immersion whose spectral decomposition is given by (1.1)
we shall always assume in this article that the eigenvalues {λlf •••, λk) satisfy
λι< ••• <λk for simplicity. Moreover, for a such immersion we shall choose the
Euclidean coordinate system (uu ••• , um) on Em in such way that c is its origin.
Therefore, with respect to the Euclidean coordinate system so chosen, the
spectral decomposition of x is given by
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(1.2) x = Xi+ ••• +xk, Axi=λιxlf ι = l , ••• , k, λx< •" <λk

For a &-tyρe immersion x: M-*Em, let Et, ' ( I ^ { 1 , ••• , &}) denote the sub-
space of Em spanned by xt. The immersion x is said to be linearly independent
if the subspaces Eu •••, Ek are linearly independent (cf. Definition 2.1 for de-
tails). And the immersion x is said to be orthogonal if the subspaces E1} •••, Ek

are mutually orthogonal. Clearly, every orthogonal immersion is a linearly
independent immersion. There exist ample examples of orthogonal immersions
and ample examples of linearly independent immersions which are not ortho-
gonal.

For each linearly independent immersion x : M-^E™ and each point p^M
we introduce in this paper the notion of the adjoint hyperquadric Qv at p. If
the submanifold M lies in an adjoint hyperquadric Qp for some point p(=M,
then all of the adjoint hyperquadrics Qp, p^M give a common adjoint hyper-
quadric, denoted by Q. The unique adjoint hyperquadric Q so defined is called
the adjoint hyperquadric of the linearly independent immersion x.

The main purpose of this paper is to introduce the notions of linearly inde-
pendent and orthogonal immersions and the notion of adjoint hyperquadric of
a linearly independent immersion and to investigate the relations between linearly
independent immersions, orthogonal immersions, equivariant immersions, and
their adjoint hyperquadrics. Several fundamental results in this respect are
obtained.

2. Adjoint hyperquadrics and linearly independent immersions

Let x: M-+Em be an immersion of &-type and let

(2.1) x=c+Xι+ ••• +xk, Axt=λtXtf λι< ••• <λk

be the spectral decomposition of the immersion x, where c is a constant vector
and xlf •••, xk are non-constant maps. For each re{ l , •••, k) we put Ex-
Span \xi(p): p(ΞM). Then each Ex is a linear subspace of Em.

We give the following

DEFINITION 2.1. Let x:M->Em be an immersion of &-tyρe whose spectral
decomposition is given by (2.1). Then the immersion x is said to be linearly
independent if the subspaces Eu ••• , Ek are linearly independent, that is, the
dimension of subspace spanned by vectors in Eλ\J ••• \jEk is equal to dim ϋ \ +
••• +dim£ j f e . And the immersion x is said to be orthogonal if the subspaces
Eι, ••• , Ek are mutually orthogonal in Em.

Obviously, every 1-type immersion is an orthogonal immersion and hence
a linearly independent immersion.

Let x: M-^Em be an immersion of Jfe-type whose spectral decomposition is
given by (2.1). We choose the Euclidean coordinate system (ulf •••, um) on Em
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with c as the origin. Then we have the following spectral decomposition of x :

(2.2) x=Xι+...+Xkf ΔXι=λχXι, Λ < < Λ * .

For each / e { l , ••• , k) we choose a basis {cl3: / = 1 , •••, m%) of Et, where mx is
the dimension of Et. Put l—m^ ••• + m * and let JE1 denote the subspace of
Em spanned by Eu •••, £ * . If the immersion x is linearly independent, then
the vectors {ctJ: i=l, ~-, k j = 1 , ••• , m,} are linearly independent / vectors in
£ z . Furthermore, we choose the Euclidean coordinate system (ulf •••, wm) on
£ m such that Eι is defined by w ί + i = ••• =um=0. Regard each ctJ as a column
/-vector. We put

(^••5) o = ( ^ i i , ••• , C I T O J , *•• , C f t i , ••* , Ckmk)

Then the matrix 5 is a nonsingular /x/ matrix. Let Z) denote the diagonal
/X/ matrix given by

(2.4) D=Diag(λu .» , ^ , ... , Λ*, ..., JlA),

where λt repeats 77Zϊ-times. If we put A=SDS"\ then Acιj—λiclj for any fe
{1, ••• , k) and ; e { l , ••• , m<}. Therefore, we have

(2.5)' Ax = Ax

for the immersion x : M->Eι induced from the original immersion x: M-*Em.
By regarding the /X/ matrix A as an mXm matrix in a natural way (with
zeros for each of the additional entries), we obtain

(2.5) Ax = Ax, A=(atJ)

for the immersion x: M-*Em.
If x : M-+Em is a minimal immersion, then ,4=0. If x : M-+E1 (ClEm) is a

non-minimal full immersion, then the Euclidean coordinate functions uu •••, w*
of £*, restricted to M, do not satisfy any linear equation. Thus, the coordi-
nate functions UX\M> ••• , uι\M of M in Eι are linearly independent functions.
Therefore, if B is any ίxl matrix such that Ax—Bxf then A=B. Hence, the
IXl matrix A in (2.5)' defined above is unique. Consequently, if the (original)
immersion x: M-+Em is a non-minimal, linearly independent immersion, then
the mXm matrix A given in (2.5) is also uniquely defined (with respect to the
Eucli- dean coordinate system so chosen).

By using this mXm matrix A in (2.5) defined above, we give the following

DEFINITION 2.2. Let x : M-*Em be a non-minimal, linearly independent im-
mersion whose spectral decomposition is given by (2.1). Let M=(WI, ••• , um) be
a Euclidean coordinate system on Em with c as its origin and let A be the
mXm matrix in (2.5) associated with the immersion x defined above. Then,
for any point j e M , the equation
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(2.6) (Au, u> := Σ atJUiUj=cp, (cp=<Ax, *>(/>))

defines a hyperquadric Qp in £ m . We call the hyperquadric Qp the adjoint
hyperquadric of the immersion x at p. In particular, if x(M) is contained in an
adjoint hyperquadric Qv of x for some point p(=M, then all of the adjoint
hyperquadrics {Qp: p^M} give a common adjoint hyperquadric, denoted by Q.
We call the hyperquadric Q the adjoint hyperquadric of the linearly independent
immersion x.

The following result gives a necessary and sufficient condition for a com-
pact, linearly independent submanifold to lie in its adjoint hyperquadric.

THEOREM 2.1. Let x: M-+Em be a linearly independent immersion from a
compact manifold M into Em whose spectral decomposition is given by (2.2). Then
M is immersed into the adjoint hyperquadric of x if and only if M is immersed
into a hypersphere of Em centered at the origin.

Proof. Assume that M is immersed into a hypersphere Sm'\r) of Em with
radius r centered at the origin. Denote by H and H the mean curvature vec-
tors of M in Em and of M in Sm~\r), respectively. Then we have

(2.7) H=H--x.

This implies <//, x>=— r. Since Ax = — nH, n=dimM, we obtain <Δx, x>=nr.
Therefore, by (2.5), we conclude that M is immersed into the adjoint hyper-
quadric defined by (Au, u>=nr, where nr is a constant.

Conversely, suppose that x: M^>Em is a linearly independent immersion of
a compact manifold M such that x(M) is contained in an adjoint hyperquadric
Qp for some point p. Then we have (Ax, χ}=cp where cp is the constant
given by cp—ζAx, x>(p). Since Ax=Ax=— nH, we have

(2.8)

Because M is compact, we also have (cf. [1, p. 193])

(2.9) ( 11+<H, *>}*l=0.
j M

Formulas (2.8) and (2.9) imply cp— — n. Therefore,

, x>=2<Δ;c, x>-2n=-2n«H, *>+l)=0.

Thus, by Hopf's lemma, <JC, x} is a constant. Hence M is immersed into a
hypersphere of Em centered at the origin. This completes the proof of the
theorem.
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Remark 2.1. Although the implication (Φ=) in Theorem 2.1 holds in general
without the assumption of compactness, the implication (=Φ) does not hold in
general if M is not compact. For example, let M be the product surface of a
unit plane circle and a line. Then the inclusion map x of M into E3 defined by

x(u, v)—(cos w, sin u, v)

is a non-spherical, linearly independent immersion whose adjoint hyperquadric
is given by u\+ul=l. It is clear that M coincides with the adjoint hyper-
quadric Q of M in Ez.

We give the following lemma for later use.

LEMMA 2.2. Let x: M-+Em be a linearly independent immersion whose
spectral decomposition is given by (2.2). Then, for any vector X tangent to M,
we have

where X=Xi-\ \-Xk, Xi<=Et=Span{xt}.

Proof. This lemma follows from the linearly independence of the immer-
sion and the fact lxx = X, where 7 is the Levi-Civita connection of Em.

The following result provides a necessary and sufficient condition for a
linearly independent immersion to be an orthogonal immersion in terms of the
adjoint hyperquadric.

THEOREM 2.3. Let x: M-+Em be a non-minimal, linearly independent im-
mersion. Then M is immersed by x as a minimal submanifold of the adjoint
hyperquadric if and only if the immersion x is an orthogonal immersion.

Proof. Let x: M^»Em be a non-minimal, linearly independent immersion
whose spectral decomposition is given by (2.2). Then there exists an raXm
matrix A=^(atJ) such that Ax=Λx as we mentioned before. Assume that M is
immersed as a minimal submanifold of the adjoint hyperquadric Q of x defined
by

(2.10) S atjUiUj=b

for some constant b. We put f=^ΣatjUiUj. Then the adjoint hyperquadric Q
is a level hypersurface of / and the gradient vector field of / is given by

(2.11) 7/=(2α11w1+(αi2+fl2i)w2H \-(aίm+amί)um, •••

On the other hand, —nH=Ax=Λx yields
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(2.12) —wJΪ=(fl nMH hfllmMm, — , flm

at every point p^M. Since M is assumed to be immersed in the adjoint hyper-
quadric Q as a minimal submanifold, 7 / is parallel to the mean curvature vec-
tor H of M in Em along the image of x. Thus, there is a function μ on M
such that Vf=μH.

If the immersion x is full, then the coordinate functions uu ••• , wTO, re-
stricted to M, are linearly independent, since the immersion is nonlinear. Thus,
by using (2.11), (2.12) and the condition lf=μH, we may conclude that μ=2
and A is a symmetric matrix. On the other hand, from (2.2) and (2.5), we have

(2.13) (Ax1-λ1x1)+ ~. +(Axk-λkxk)=0 .

Because J(Axι)=A(Jxt)=λtAxt, equation (2.13) yields

M(Ax1-λίx1)+ ••• +λί(Axk-λkxk)=0, 7 = 1, 2, ••• , fe .

Because λι< ••• <λk, we obtain Axx—λxxXy * = 1, ••• , &. Since τ4 is symmetric
and distinct eigenspaces of a symmetric matrix are mutually orthogonal, the
immersion x is an orthogonal immersion.

If the immersion x is not full, then x gives rise a full, linearly independent
immersion x: M-+E1 (cEm). Let A denote the corresponding Ixί matrix with
Ax—Ax. Then A is obtained from A by putting zeros on the additional entries
as we mentioned before. Since M is immersed by x as a minimal submanifold
in the adjoint hyperquadric of x, M is immersed by x as a minimal submani-
fold in the adjoint hyperquadric of x. Thus, by applying the previous case,
we conclude that the immersion x is orthogonal and hence the immersion x is
also orthogonal.

Conversly, assume x is an orthogonal immersion. Let

f = λ i < X u * i > + '•• - ^ λ k i X k , Xk>>

Then Lemma 2.2 implies

Xf=2{λι<xu X1}+ .» +λk(xk) Xk>}

for any vector X tangent to M. From this we conclude that M is immersed in
an adjoint hyperquadric given by (Au, u}=b for some constant b and also the
gradient of / is given by —2nH. Since the gradient of / is normal to the
hyperquadric, M is immersed in the adjoint hyperquadric as a minimal submani-
fold. This completes the proof of the theorem.

Remark 2.2. From the definition of linearly independent immersions we see
that if x : M-^Em is a linearly independent &-type immersion of an w-dimen-
sional manifold M into Em, then

Remark 2.3. In [3] the relations between linearly independent immersions,
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orthogonal immersions and the conditions introduced in [5, 6] are further di-
cussed. Also see [7] for a special case of Theorem 2.3.

Remark 2.4. There exist ample examples of orthogonal immersions and
ample examples of linearly independent immersions which are not orthogonal.
For instances, every &-type curve lying fully in E2k is an example of linearly
independent immersion and the immersion of the curve is orthogonal if and
only if it is a W-curve. Moreover, the product of any two linearly independent
immersions is again a linearly independent immersion.

3. Equivariant immersions and adjoint hyperquadrics

The purpose of this section is to prove the following general result for
equivariant immersions of a compact homogeneous spaces.

THEOREM 3.1. Let x : M—>£m be an equivariant isometric immersion of a
compact n-dimensional Riemannian homogeneous space M into Em. Then M is
immersed as a minimal submanifold of the adjoint hyperquadric.

Proof. Let x : M-^Em be an equivariant isometric immersion of a compact
connected Riemannian homogeneous space M into Em. Without loss of generality
we may assume the immersion is full. It is known that the immersion x is
spherical. Thus x(M) is contained in a hypersphere S m - 1 of Em. Without loss
of generality, we may also assume that S™"1 is centered at the origin of Em.
Denote by G=I0(M) the identity component of the group of all isometries of
M. Then G is a compact Lie group which acts transitively on M and there is
a Lie homomorphism φ: G-^SO(Em) such that x(g(p))=φ(g)(x(p)) for every
g^G and p^M. Because (φ, Em) is a representation of the compact Lie group
G, (φ, Em) is the direct sum of some irreducible subrepresentations (φίf Ex), •••,
(φk, Ek) such that Em is the Euclidean direct sum Ex@ ••• @Ek of Eu ••• , Ek.
Let xt denote the £t-component of x. Then we have

(3.1) Xi(g(P))=φt(g)(xt(P)), g^Gf p ^ M , i = l , • • • , & .

Since Elt ••• , Ek are mutually orthogonal in Em, χ—χx-{- ••• +χk is an ortho-
gonal decomposition.

Now we claim that each xx is a 1-tyρe map, that is, Axt=λtxt, z'e{l, •••, k),
for some real numbers λt. In order to do so, we choose a fixed point O<ΞM.
Denote by K the isotropy subgroup of G at o. Then M can be identified with
G/K in a natural way. Consider a biinvariant Riemannian metric on the com-
pact Lie group G such that the projection π: G-^M—G/K is a Riemannian sub-
mersion. Let eu ••• , eN be any orthonormal basis of the Lie algebra Q=TeG
of G, where e is the identity element of G.

For each Z<Ξ{1, ••• , k), denote also by φι the homomorphism g—>%o(Et) in-
duced from φi: G-^El} where %o(Et) is the Lie algebra of SO(Et). Then each
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φi(ea) is a skew-symmetric linear transformation of Et and Σέ=i0<(£α)2 is a
symmetric linear transformation. Let Ad: G-+GL($) be the adjoint representa-
tion of G. Since ad{g){h)—ghg"1 and φt is a Lie homomorphism, we have

φi(g)φi(X)φi(g-1)=φi(Λd(g)X)

for a n y J*feg, g^G a n d z ' e { l , •••, k). T h e r e f o r e w e find

Σ φi(eay)φt(g-ι)= Σ ^(Λdte)* . )^ Σ Φi(ea)
2

α=*l / α=l α=l

for any geG. This shows that Σ^i^i^α) 2 lies in the centralizer of φt(G).
Since the representation (φu Et) is irreducible, Schur's lemma in representation
theory implies that

(3.2) Έφi(ea)
2=-λJt,

for some constants λt, where It is the identity transformation on Et. On the
other hand, it is known that the Laplacian of xx is given by (see, for instances,
[9, pp. 17-21])

(3.3) Δx,(£)= - Σ - S **( e χ P *««) I *-o= - Σ φi(ea)\Xi(P)).

Therefore, by (3.2) and (3.3), we obtain the claim. Consequently, the immer-
sion x is an orthogonal immersion. Hence, by Theorem 2.3, M is immersed as
a minimal submanifold of the adjoint hyperquadric. This completes the proof
of the theorem.

Remark 3.1. The method of proof of Theorem 3.1 is similar to the proof
of [8]. For equivariant isometric immersions of compact Riemannian homo-
geneous spaces with irreducible isotropy actions, see also [4] and [8].

4. Immersions with <Δx, x}=0.

From (2.5) and the definition of adjoint hyperquadrics, we see that if a
manifold M is immersed by an immersion x as a submanifold of an adjoint
hyperquadric at some point p<^M, then <Δx, x} is a constant function on M.

In this section we ask the following simple geometric problem.

PROBLEM 4.1. Let x : M-*Em be an immersion. When the immersion satisfies
the condition <ΔΛ;, X > = 0 ?

Since the position vector x(p) of an w-dimensional cone in Em with vertex
at the origin of Em is tangent to the cone, we see that every cone in Em with
vertex at the origin satisfies the condition <Δx, x}=0. Also Aχ——nH implies
that every minimal submanifold of Em also satisfies the condition.

The following result shows that in fact cones and minimal submanifolds
of Em are the only such submanifolds when the codimension is one.
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PROPOSITION 4.1. Let x:M->En+ί be an immersion from an n-dimensional
manifold M into En+1. Then (Ax, x>—0 identically on M if and only if locally
M is immersed either as a minimal hypersurface or as a hypercone with vertex
at the origin of En+1.

Proof. Let x: M-^>En+1 be an immersion from an n-dimensional manifold
M into En+ί satisfying (Ax, %>=0 on M. If x is a minimal immersion, there
is nothing to prove. So we may assume that the mean curvature vector H of
the immersion x: M-+En+1 is nonzero. Since Ax=—nH, the condition (Δx, x)
=0 implies that the position vector field x of M in En+1 is a tangent vector
field of M. Let γ(s) be any integral curve of x parameterized by the arclength
s. Then the velocity vector γ'(s) is parallel to x(ϊ(s)) which is nothing but γ(s).
Because γ'(s) is a unit vector field along γ> this implies γ"(s)=Q. Therefore,
the integral curve γ(s)=as+b for some constant vectors a and b in En+1. Con-
sequently, γ'(s)—a and asJtb—f(s)a for some function /. This shows that b
and a are parallel. Hence the integral curve γ is a portion of the straight
line which passes through the origin. Consequently, M is locally a hypercone
with the vertex at the origin. The converse is trivial.

Remark 4.1. Proposition 4.1 implies that open portions of straight lines are
the only curves in E2 which satisfies the condition (Ax, x>=0.
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