
Linearly Ordered Attribute Grammars
with Automatic Augmenting Dependency Selection

L. Thomas van Binsbergen
Royal Holloway, University of London

ltvanbinsbergen@acm.org

Jeroen Bransen
Utrecht University
j.bransen@uu.nl

Atze Dijkstra
Utrecht University

atze@uu.nl

Abstract
Attribute Grammars (AGs) extend Context-Free Grammars with at-
tributes: information gathered on the syntax tree that adds seman-
tics to the syntax. AGs are very well suited for describing static
analyses, code-generation and other phases incorporated in a com-
piler.

AGs are divided into classes based on the nature of the de-
pendencies between the attributes. In this paper we examine the
class of Linearly Ordered Attribute Grammars (LOAGs), for which
strict, bounded size evaluators can be generated. Deciding whether
an Attribute Grammar is linearly ordered is an NP-hard problem.
The Ordered Attribute Grammars form a subclass of LOAG for
which membership is tested in polynomial time by Kastens’ algo-
rithm (1980). On top of this algorithm we apply an augmenting
dependency selection algorithm, allowing it to determine member-
ship for the class LOAG. Although the worst-case complexity of
our algorithm is exponential, the algorithm turns out to be efficient
for practical full-sized AGs. As a result, we can compile the main
AG of the Utrecht Haskell Compiler without the manual addition
of augmenting dependencies.

The reader is provided with insight in the difficulty of deciding
whether an AG is linearly ordered, what optimistic choice is made
by Kastens’ algorithm and how augmenting dependencies can re-
solve these difficulties.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: semantics; D.3.4 [Programming Languages]: compilers,
code generation; F.3.1 [Logics and meanings of programs]: me-
chanical verification

Keywords attribute grammars; ordered attribute grammars; lin-
early ordered attribute grammars; Kastens’ algorithm; augmenting
dependencies; compilers; semantics; Utrecht Haskell Compiler

1. Introduction
Attribute Grammars (AGs) extend Context-Free Grammars (CFGs)
with attributes at each non-terminal [11]. Attribute definitions de-
scribe computations, in terms of other attributes and terminal sym-
bols, that gather information on (parts of) the abstract syntax tree

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEPM ’15, January 13–14, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3297-2/15/01. . . $15.00.
http://dx.doi.org/10.1145/2678015.2682543

associated with the grammar. These computations are useful to per-
form different kinds of static analyses and code-generation. Besides
being suitable for implementing compilers, programming with AGs
provides some general advantages [6]:

• AGs can be seen as a domain-specific language for tree-based
computations.

• AGs relieve the programmer of the task of efficiently combining
multiple computations on the same tree1.

• Descriptions of separate computations are easily divided into
coherent code-fragments, increasing the maintainability and
reusability of the source code.

• Most of the trivial pieces of code can be generated, allowing
the programmer to focus on exactly those pieces that require
creativity and expertise.

• AGs enable declarative programming in imperative settings.

Among other tools and compilers, the Utrecht University At-
tribute Grammar Compiler (UUAGC)2 and the Utrecht Haskell
Compiler (UHC)3 have been largely implemented using AGs. In
both cases, the UUAGC is used to compile the AGs, generating
Haskell code as output.

The UUAGC generates folds and algebras for executing the
semantics of an AG from its description (source text) [16]. In case
the attribute definitions are cyclic, the UUAGC relies on Haskell’s
lazy evaluation to remain executable, potentially leading to loops
at runtime. The UUAGC can also generate strict evaluators for
AGs that are non-circular [3, 10]. For some non-circular AGs we
can determine an evaluation order statically. AGs for which this is
possible form the class of Linearly Ordered Attribute Grammars
(LOAGs). The approach of finding a static evaluation order has
been introduced by Kastens in 1980 [8]. It allows the generation of
evaluators that are strict, efficient and require little memory. These
properties are desirable especially for large scale projects such as
the UHC. However, finding a linear order for the attributes of an
AG is an NP-complete problem [7].

The polynomial runtime algorithm given by Kastens orders only
a subset of the LOAGs, making some optimistic choices. These
choices are guided by the dependencies between attributes. LOAGs
of considerable size are likely to contain combinations of depen-
dencies that prevent Kastens’ algorithm from finding an evaluation
order. The main AG in the UHC is an example of such an AG.
Augmenting dependencies can be used to help Kastens’ algorithm

1 A computation can be efficient in multiple regards, e.g. time and space
complexity. This topic is briefly discussed in the future work section of this
paper.
2 http://www.cs.uu.nl/wiki/HUT/AttributeGrammarManual
3 http://www.cs.uu.nl/wiki/UHC

49

finding the order. This approach was successfully employed in the
development of the UHC and in other large AG projects found in
literature [12, 14]. Finding the right combination of augmenting
dependencies is not only tedious work, it also demands insight in
the produced evaluation order, where knowledge on this matter is
otherwise unnecessary. This paper deals with this problem, making
the following contributions:

• We explain the required constructions for ordering LOAGs.
• We show why Kastens’ algorithm is only suitable for a subset

of LOAG.
• We show how augmenting dependencies can be found automat-

ically.
• We present an algorithm capable of ordering all LOAGs by

selecting augmenting dependencies automatically with a back-
tracking strategy. Although the algorithm is exponential in the-
ory, we argue that backtracking is rare for practical AGs.

Section 2 introduces the running example of this paper and in-
troduces AGs informally. A formal definition of AGs is given in
Section 3. LOAGs are defined and examined in Section 4. In Sec-
tion 5 we show why Kastens’ algorithm can not find a static evalu-
ation order for all LOAGs. Section 6 explains how augmenting de-
pendencies are selected automatically. The most important Haskell
functions of our algorithm for ordering all LOAGs with automatic
augmenting dependency selection are given in Section 7.

2. Running Example
We introduce Attribute Grammars informally using a running ex-
ample. Every AG consists of three constructs that we introduce one
at a time: abstract syntax, attributes and semantic functions.

As a running example we consider a simplistic module system
IMODULE that declares modules similarly to Haskell. Each module
consists of a header and a body. The header declares the functions
that constitute the interface of the module, identifying which func-
tions the module exports. The function declarations in the header
are written as type signatures. The body of the module contains
the required function definitions, datatype definitions and optional
unexported helper definitions. Figure 1 gives an example.

module BinIntTrees
flatten :: Tree → [Int]

where
data Tree = Bin Tree Tree

| Leaf Int
flatten (Leaf i) = [i]
flatten (Bin l r) = flatten l ++ flatten r

Figure 1. A simple module defined with IMODULE.

The goal of the running example is to verify that the module’s
body implements the interface of the module, while gathering the
exported definitions. Additionally, we wish to verify that all the
type signatures and datatype definitions rely only on types that
are available to them. Attribute Grammars are used to define the
abstract syntax of this system, gather the exported definitions and
perform the static analyses for determining whether the module is
valid.

2.1 Abstract Syntax
In the pipeline common to most compilers (parsing→ validating→
generating) AGs are typically used in the second and third phase.
The abstract syntax tree, of which instances are generated by a

parser in the form of parse trees, forms the basis of an AG descrip-
tion. The abstract syntax of a language is a context-free grammar
describing the syntax without literals or keywords as terminal sym-
bols. For example, the concrete syntax displayed in Figure 1 con-
tains keywords module, where and data that are irrelevant to the
semantics of the language. In Figure 2 a description of the abstract
syntax of IMODULE is given in notation accepted by the UUAGC4.
The constructor functions of a datatype (non-terminal Dat) are rep-
resented by a list of types for every constructor. We allow ourselves
to simplify the representation of datatypes because a precise repre-
sentation would not add to the purpose of the example.

data Module | Module h : [TySig] b : Body
data Body | Body ds : [Dat] fs : [Fun]
data TySig | TySig id : FunId ty : [TyId]

data Dat | Dat id : TyId cons : [[TyId]]

data Fun | Fun id : FunId def : FunDef

Figure 2. Description of the abstract syntax of IMODULE.

The abstract syntax consists of non-terminals Module, Body,
TySig, Dat and Fun, each with a single, equally named produc-
tion. Each production has a set of child nodes that are either ter-
minal (e.g. TyId) or non-terminal. Non-terminal Module has two
children, the module’s header and its body, identified by h and b
respectively. We say that h and b are non-terminal occurrences of
type [TySig] and Body respectively. In a parse tree every node is
an instance of one of the non-terminals and is derived by one of the
production rules of that non-terminal. Declarations for lists of non-
terminals, e.g. [TySig], are missing. The required non-terminals
and productions for lists are generated by the UUAGC and shown
in Figure 3.

data [TySig] | Nil
| Cons hd : TySig tl : [TySig]

data [Fun] | Nil
| Cons hd : Fun tl : [Fun]

data [Dat] | Nil
| Cons hd : Dat tl : [Dat]

Figure 3. Generated abstract syntax of IMODULE.

2.2 Attributes
The next step is to add attributes to the grammar. Attributes are
associated with non-terminals and defined at production level. For
every attribute a of non-terminal X there is one attribute occur-
rence at every occurrence of X . Similarly, we speak of attribute
instances at the level of parse trees.

Synthesized attributes (top-down) are used to gather information
and can be viewed as results of computations. Inherited attributes
(bottom-up) are used to share information and can be viewed as
parameters of a computation. Figure 4 shows the attribute declara-
tions we use for IMODULE.

An attribute is not uniquely identified by its name. Instead, it
is identified by the combination of a non-terminal, a name and a
direction (inh or syn), e.g. Module.err(syn). In the same way, an
attribute occurrence is identified by the combination of a produc-
tion, a node, a name and a direction, e.g. Module.b.err(syn).

4 The UUAGC uses datatypes and constructors to define abstract syntax.
Throughout this paper we use formal language terminology and speak of
non-terminals and production rules instead.

50

-- Types from other modules
attr Module inh ts : [TyId]

-- The exported function definitions
syn ex : [(FunId ,FunDef)]

-- Whether the module is invalid
syn err : Bool

-- All types defined by the module
syn ts : [TyId]

-- Functions declared in the header
attr Body inh ss : [FunId]

-- Types from other modules
inh ts : [TyId]

-- The exported function definitions
syn ex : [(FunId ,FunDef)]

-- Whether the body is invalid
syn err : Bool

-- All types defined by the module
syn ts : [TyId]

attr [TySig] TySig -- Declaration for two non-terminals
inh ts : [TyId]

syn ss : [FunId]
syn err : Bool

attr [Dat] Dat
inh ts : [TyId]

syn ts : [TyId]

syn err : Bool

attr [Fun] Fun
inh ss : [FunId]
syn ex : [(FunId ,FunDef)]

Figure 4. Attribute declarations for IMODULE.

2.3 Semantic functions
With the attributes in place, it is now possible to define the seman-
tics of IMODULE. Semantic function definitions describe for every
attribute occurrence how it is computed in terms of other attribute
occurrences and terminal symbols.

The flow of information from attribute to attribute is shown in
graphs. In the dependency graphs we use throughout this paper, an
arrow a → b implies that a is used to calculate b and thus that
b depends on a. In other words, our graphs are actually data flow
graphs rather than dependency graphs, but the latter can be obtained
by reversing all edges so we speak about dependency graphs in the
rest of this paper.

Figures 8 and 9 show dependency graphs for productions
Module and Body. The parent node of a production, identified by
lhs, is positioned above its children. Each non-terminal occurrence
is connected with its attribute occurrences: synthesized attributes
at its right and inherited attributes at its left.

There are two types of dependencies: dependencies that appear
between parent and child nodes (black) and the dependencies that
appear above parent nodes or below child nodes (gray). The black
dependencies are direct dependencies, extracted directly from the
semantic functions. The gray dependencies are induced dependen-
cies, i.e. dependencies between those attributes at some other pro-
duction. The productions that induce the dependencies between oc-
currences of children h , ds , and fs are not shown.

2.3.1 Semantics
This section explains how the attributes are used to describe the
semantics of IMODULE on a high-level. The explanation follows
the order shown in Figure 5.

Module

lhs:Module
ts ex err ts

h:[TySig]
ts err ss

b:Body

ss ts ex err ts

ds:[Dat]
ts err ts

fs:[Fun]

ss ex

Figure 5. A linear order for evaluating the attributes of IMODULE.
The order is not complete, the gray arrows represent parts that have
not been fully specified. Note that this graph is not a dependency
graph.

Recall that our goals are verifying that only available types are
used, verifying that the module’s body implements the interface
and gathering the definitions of the exported functions.

First we verify that all the type signatures and datatype defini-
tions use only available types. Types are made available by other
modules (lhs.ts(inh) → b.ts(inh)), e.g. Int from Prelude, or
through datatype definitions in the module’s body (b.ts(syn)).
Child ds in Body uses the types arriving from other modules
to verify whether its datatype declarations use only available
types (ds.ts(inh) → ds.err(syn)) and appends the newly con-
structed types to the received set, passing the new set upwards
(ds.ts(syn) → b.ts(syn)). The new set of types is presented
to the module’s header (b.ts(syn) → h.ts(inh)), enabling the
header to verify whether its type signatures are valid (h.ts(inh)→
h.err(syn)).

Secondly, we construct the list of exported definitions and test
whether this list is complete. The signatures produced by the header
are passed downwards into the body of the module (h.ss(syn)
→ b.ss(inh)). Body ’s child fs (function definitions) uses the
signatures arriving from the header to produce a list of exports
(fs.ss(inh) → fs.ex(syn)), by returning only the definitions
that are required according to the module’s interface. The exports
are passed upwards to the module declaration (fs.ex(syn) →
b.ex(syn)). The exported function definitions (lhs.ex) and ex-
ported types (lhs.ts) are directly copied from the body. The mod-
ule reports an error (lhs.err) when the lists of exports is incom-
plete (b.ex(syn) is compared with h.ss(syn)) or when b or h re-
port an error.

2.3.2 Definitions
Dependency graphs are useful as visual aids. It might therefore be
a design choice to draw these graphs before giving the actual AG
description. To fully describe an AG, every dependency needs to be
reflected in some semantic function definition. Some dependencies
represent the flow of information from one attribute to another
without modification (e.g. Body.lhs.ts(inh)→ Body.ds.ts(inh)
and Module.b.ex(syn) → Module.lhs.ex(syn)). The semantic

51

function definitions for such dependencies can be generated by the
UUAGC based on the attribute’s name and direction.

The semantic function definitions for the attributes of non-
terminal lists are also generated by the UUAGC. For example,
the equation for [Dat].lhs.ts(syn), of type [TyId], is generated
using (++) to combine results from individual Dat-elements with
[] as a base element (corresponding to Haskell’s monoid instance
for lists). The UUAGC allows the user to specify which union
function and which base element to use for an attribute. The gener-
ated semantic function definitions are shown in Figure 7. Figure 6
appends the manual semantic function definitions to IMODULE.
Occurrences of attributes and terminals are referenced using the
@-symbol in the right-hand side of the equations.

sem Module | Module
lhs.err = ¬ (all (∈ (map fst @b.ex)) @h.ss)

∨ @h.err ∨ @b.err
h.ts = @b.ts
b.ss = @h.ss

sem TySig | TySig
lhs.ss = [@id]
lhs.err = ¬ (all (∈ @lhs.ts) @ty)

sem Dat | Dat
lhs.ts = @id : @lhs.ts
lhs.err = ¬ (all (all (∈ @lhs.ts)) @cons)

sem [Dat] | Cons
lhs.ts = @tl .ts
tl.ts = @hd .ts

sem Fun | Fun
lhs.ex = if (@id ∈ @lhs.ss)

then [(@id ,@def)]
else []

Figure 6. The manual semantic function definitions for the seman-
tics of IMODULE.

2.3.3 Reflection
We have described semantics, useful in the second phase of a
compiler for IMODULE, in a small number of simple steps. The AG
computing the semantics of our system is orderable, while Kastens’
algorithm is not able to recognise it as such, as we shall see in
Section 5. Section 6 explains the use of augmenting dependencies
and shows which augmenting dependency successfully hints at the
order proposed in Figure 5 and how the augmenting dependency is
found.

3. Attribute Grammars
This section formalises AGs and other concepts required in subse-
quent sections.

Definition 1. An Attribute Grammar (AG) is a triple 〈G,A,E〉,
where G = 〈V = Σ ∪ N,P, S〉 is a context-free grammar. V
is partitioned into a set of terminal symbols Σ and a set of non-
terminal symbolsN . P is a non-empty set of productions, with p ∈
P of the form p : Xp,0 → α1Xp,1, α2Xp,2, . . . , α|p|Xp,|p|α|p|+1,
with αi ∈ Σ∗ and non-terminal occurrences Xp,i. A non-terminal
occurrence Xp,i is an occurrence of non-terminal X ∈ N iff
T (Xp,i) = X . S ∈ N is the start symbol of the grammar. A is a
set of attributes (X · a), with X ∈ N and a an attribute identifier.
A is divided into sets of inherited and synthesized attributes for
every X ∈ N , i.e. Ainh(X) and Asyn(X) respectively. (X · a)

sem Module | Module b.ts = @lhs.ts
lhs.ts = @b.ts
lhs.ex = @b.ex

sem Body | Body ds.ts = @lhs.ts
fs.ss = @lhs.ss
lhs.ex = @fs.ex
lhs.ts = @ds.ts
lhs.err = @ds.err

sem [TySig] | Nil lhs.err = False
lhs.ss = []

| Cons lhs.err = @hd .err ∨ @tl .err
lhs.ss = @hd .ss ++ @tl .ss
hd.ts = @lhs.ts
tl.ts = @lhs.ts

sem [Dat] | Nil lhs.err = False
lhs.ts = @lhs.ts

| Cons lhs.err = @hd .err ∨ @tl .err
hd.ts = @lhs.ts

sem [Fun] | Nil lhs.ex = []
| Cons lhs.ex = @hd .ex ++ @tl .ex

hd.ss = @lhs.ss
tl.ss = @lhs.ss

Figure 7. The generated semantic function definitions for the se-
mantics of IMODULE.

Module

lhs:Module
ts ex err ts

h:[TySig]
ts err ss

b:Body

ss ts ex err ts

Figure 8. Induced dependency graph for production Module. Di-
rect dependencies are black, induced dependencies are gray.

denotes that the attribute identified by a is associated with non-
terminal X . E is the set of semantic function definitions, with
(Xp,i · a, λ) ∈ E denoting that λ is the definition for the attribute
occurrence (Xp,i · a).

3.1 Input and output dependencies
The attribute occurrences of production p ∈ P are divided into
input and output occurrences. The input occurrences of p, denoted
with Oinp(p), are the occurrences made available to p by the
context of p. Output occurrences of p, denoted with Oout(p), are
the occurrences that the semantic functions of p deliver to the
context of p [13, 15].

Oinp(p) ={ Xp,0 · a | (X · a) ∈ Ainh(T (Xp,0)) } ∪
{ Xp,i · a | i > 0, (X · a) ∈ Asyn(T (Xp,i)) }

(1)

52

Body

lhs:Body
ss ts ex err ts

ds:[Dat]
ts err ts

fs:[Fun]

ss ex

Figure 9. Induced dependency graph for production Body. Direct
dependencies are black, induced dependencies are gray.

Oout(p) ={ Xp,0 · a | (X · a) ∈ Asyn(T (Xp,0)) } ∪
{ Xp,i · a | i > 0, (X · a) ∈ Ainh(T (Xp,i)) }

(2)
The dependency graphs in this paper show input occurrences

with gray backgrounds and output occurrences with white back-
grounds.

In this paper we consider AGs that are normalised: only input
occurrences of a production can be used in the right-hand side of
semantic function definitions for that production and only output
occurrences of a production are considered to have semantic func-
tion definitions. The class of AGs we consider is therefore a subset
of the class of AGs written in Bochmann Normal Form as only the
first of the two restrictions is used to define this class [2].

3.2 Direct dependencies
From the semantic functions we extract the direct dependencies.
We define the set SFP (b) to be the occurrences referenced in
the right-hand side of the semantic function of b. Using SFP we
formalise the direct dependency graph of production p:

DP (p) = { (Xp,i · a→ Xp,j · b)
| (Xp,j · b ∈ Oout(p))

, (Xp,i · a ∈ SFP (Xp,j · b)) }
(3)

4. Linearly Ordered Attribute Grammars
We are interested in finding an evaluation order of an AG’s at-
tributes statically, as the order can be used to generate simple
and efficient evaluators. The Linearly Ordered Attribute Grammars
form the largest class of AGs for which this is possible [7, 15].

Definition 2. An AG = 〈G,A,D〉, with context-free grammar
G = 〈Σ ∪ N,P, S〉, is a Linearly Ordered Attribute Grammar or
LOAG, if there exist linear orders LO(p) for all p ∈ P such that:

• Every linear order LO(p) respects the direct dependencies, i.e.
if (Xp,i · a→ Xp,j · b) ∈ DP (p) then (Xp,i · a < Xp,j · b) ∈
LO(p).

• The relative ordering of the attributes is the same for all occur-
rences of a non-terminal, i.e. if (Xp,i · a < Xp,i · b) ∈ LO(p)
then (Xq,j · a < Xq,j · b) ∈ LO(q) for all p, q, i and j with
T (Xp,i) = T (Xq,j).

From the linear orders on productions we can obtain a linear
order LO(δ) for any valid parse tree δ of the input AG. A strict
evaluator can be generated that evaluates all attribute instances of δ
in the order specified by LO(δ). Since we are interested in finding
the linear order statically we can only argue about non-terminals,
attributes, productions and attribute occurrences.

LOAGs have been a popular subject in AG literature, although
defined slightly differently in several instances [1, 7, 13, 15]. The

subclass OAG, for which Kastens’ algorithm can generate evalu-
ators in polynomial runtime, has been more popular in practical
implementations due to the complexity of generating evaluators for
LOAGs. This paper shows that LOAGs are useful in practice too,
by giving an algorithm that is efficient for practical LOAGs. The
definition of LOAGs given here supports this purpose and allows
simple comparison with Kastens’ OAG.

4.1 LOAG preconditions
A linear order that respects all direct dependencies can only exist
if there are no dependency cycles. An acyclic direct dependency
graph is a precondition for LOAGs.

Every parse tree is the product of ‘gluing’ multiple production
rules together [11]. We therefore also have to test for any depen-
dency cycles produced by ‘gluing’ productions together. For that
purpose we introduce the notion of an induced dependency graph.
An acyclic induced dependency graph is a second precondition for
LOAGs.

4.2 Induced dependencies
If there is a path between two attribute occurrences (Xp,i · a)
and (Xp,i · b) then there has to be a dependency (Xq,j · a →
Xq,j · b), for all Xq,j with T (Xq,j) = T (Xp,i), in order to
take all possible ways in which production rules can be ‘glued’
together into account. We have to be pessimistic and consider all
such induced dependencies.

Adding induced dependencies might result in new paths be-
tween two attributes of a non-terminal occurrence and hence to
more induced dependencies. See Figure 10 for an example of how
induced dependencies are propagated.

P1

lhs:X
a b

P2

lhs:Y
c d

x:X
a b

P3

lhs:Z
e f

y:Y
c d

x:X
a b

Figure 10. Dependency (a → b) in P1 induces a dependency
(a → b) in P2 and P3, which causes a path from c to d in P2
and thus an induced dependency (c → d) in P2 and P3. The new
path from e to f in P3 induces a dependency (e→ f) in P3.

In any induced dependency graph all the occurrences of the
same non-terminal (e.g. Body in productions Module and Body
of Figures 8 and 9) display the same dependencies between its
attributes. These shared dependencies are collected at non-terminal
level in the graph IDS (left-hand side of Figure 17)5. To recognise
paths of dependencies we use ID+

P , the transitive closure of IDP .

5 Kastens introduces IDS as the induced dependency graph for symbols
(hence the S), although only non-terminal symbols have attributes.

53

IDP (p) = DP (p) ∪ { (Xp,i · a→ Xp,i · b) | q ∈ P
, (Xq,j · a→ Xq,j · b) ∈ ID+

P (q)

, (T (Xp,i) = T (Xq,j)) }
(4)

IDS(X) = { (X · a→ X · b) | p ∈ P,
(Xp,i · a→ Xp,i · b) ∈ IDP (p), X = T (Xp,i) }

(5)

4.3 Interfaces and visit-sequences
To find a linear order on attribute instances of any parse tree, we
first determine in which order the generated evaluator will examine
the nodes of any parse tree. We do so by deciding for every non-
terminal which visits are made to it and in which order. Every visit
is a pair of inherited and synthesized attributes that can be seen as
a function that receives the inherited attributes as parameters and
returns the synthesized attributes as a result.

Definition 3. An interface If (X) for non-terminalX is a sequence
of n visits, i.e. If (X) = (vi)

n
i=1, where every visit vi is a pair

(Ii, Si), with Ii ⊆ Ainh(X) and Si ⊆ Asyn(X). The interface
must be complete and the visits disjoint:⋃

(Ii,Si)∈If (X)

Ii = Ainh(X)
⋃

(Ii,Si)∈If (x)

Si = Asyn(X) (6)

∀((Ii, Si) ∈ If (X), (Ij , Sj) ∈ If (X), i 6= j) (Ii ∩ Ij = ∅)
∀((Ii, Si) ∈ If (X), (Ij , Sj) ∈ If (X), i 6= j) (Si ∩ Sj = ∅)

(7)

Reflecting on Figure 5 we see that all nodes are visited once by
the linear order we proposed, except node b of type Body which
is visited twice. The first visit to b is ({ts}, {ts}) and the second
is ({ss}, {ex, err}). These visits make up the interface for non-
terminal Body shown in Figure 11.

I1 S1 I2 S2

ts ts

err

ss ex

Figure 11. A possible interface for non-terminal Body.

Visits are connected by visit-sequences. For every non-terminal
X and for every visit vi ∈ If (X), we show how every production
of X implements visit vi with a visit-sequence. A visit-sequence
is a sequence of eval- and visit-instructions. The generated evalu-
ator executes these instructions in the order specified by the visit-
sequence. Every eval-instruction is associated with an attribute oc-
currence and tells the evaluator to execute the semantic function
definition of that attribute occurrence. Every visit-instruction is as-
sociated with a non-terminal occurrence K and a visit number i,
and tells the evaluator to execute the visit-sequences implement-
ing the i-th visit to K. For every visit-sequence s in a valid set
of visit-sequences - with s implementing visit vi = (Ii, Si) to an
occurrence K of non-terminal X , derived by production p - the
following conditions must hold:

1. Before s is executed, every j-th visit to K, with j < i, must be
executed.

2. Before s is executed, every occurrence of attributes Ii at K
must be evaluated.

3. Every occurrence of attributes Si at the parent of p must be
evaluated in s.

4. If occurrence b, depending on a, is evaluated in s:

(a) Then a must be evaluated in s before b,

(b) or there must be a visit-instruction in s, before b is evalu-
ated, of which the corresponding visit-sequence evaluates
a.

Figures 12 and 13 show visit-sequences for productions Module
and Body that encode the linear order proposed in Figure 5. The
first three conditions on a valid set of visit-sequences can easily be
checked using these figures:

1. There is no visit-sequence in which there is a visit 2 before a
visit 1.

2. Every visit is preceded by the evaluation of the inherited at-
tributes of that visit (the parameters of that computation).

3. Every visit-sequence evaluates the synthesized attributes of the
implemented visit (the results of that computation).

1 : eval b.ts
2 : visit 1 b
3 : eval h.ts
4 : visit 1 h
5 : eval b.ss
6 : visit 2 b
7 : eval lhs.ex
8 : eval lhs.err
9 : eval lhs.ts

Figure 12. A visit-sequence for the production Module of non-
terminal Module that implements visit ({ts}, {ex, err, ts}).

1 : eval ds.ts
2 : visit 1 ds
3 : eval lhs.ts

1 : eval fs.ss
2 : visit 1 fs
3 : eval lhs.ex
4 : eval lhs.err

Figure 13. Two visit-sequences for production Body of non-
terminal Body separated by a line break. The top visit-sequence
implements visit ({ts}, {ts}) and the bottom visit-sequence im-
plements visit ({ss}, {ex, err}).

The fourth condition can be checked by looking at the individual
linear orders that the visit-sequences encode: no dependency in the
induced dependency graphs given in Figures 8 and 9 is contradicted
by the linear orders shown in Figures 14 and 15.

Similarly to the way production rules are ‘glued’ together to
form a valid parse tree δ of the input grammar, the linear orders
encoded by visit-sequences can be ‘glued’ together to form a linear
order on δ [13]. Such ‘gluing’ is only possible if all visit-sequences
rely on the same set of interfaces, one for every non-terminal.
This explains the need for constructing interfaces and the second
requirement of Definition 2. Figure 16 shows how the orders of
Figures 12 and 13 are ‘glued’ together. The result is the same order
as the one shown in Figure 5.

We can now describe a high-level algorithm for LOAGs:

• Test the two preconditions for LOAGs.
• Only if they hold:

54

Module

lhs:Module
ts ex err ts

h:[TySig]
ts err ss

b:Body

ss ts ex err ts

Figure 14. The linear order encoded by the visit-sequence of Fig-
ure 12. The gray arrows represent the linear orders of other visit-
sequences.

b

Body
ss ts ex err ts

ds:[Dat]
ts err ts

fs:[Fun]

ss ex

Figure 15. The linear order encoded by the visit-sequences of
Figure 13. The gray arrows represent the linear orders of other visit-
sequences.

Module

lhs:Module
ts ex err ts

h:[TySig]
ts err ss

b:Body

ss ts ex err ts

ds:[Dat]
ts err ts

fs:[Fun]

ss ex

Figure 16. Linear orders encoded by visit-sequences can be
‘glued’ together if the visit-sequences adhere the same interfaces
for their shared non-terminals. Note that the gray arrows around
node b of type Body in Figures 14 and 15 have been replaced by
paths.

Use graph IDS to find interfaces for all non-terminals.

Use the interfaces and graph IDP to implement all visits of
the interfaces using visit-sequences.

Kastens’ algorithm is an implementation of this high-level al-
gorithm. The next section shows how Kastens’ algorithm finds the
interfaces and why this method does not suffice for all LOAGs.

5. Kastens’ algorithm
In his 1980 paper, Kastens presents a polynomial algorithm for
deciding whether an AG is an Ordered Attribute Grammar (OAG),
a subclass of LOAG [8]. OAG is a proper subclass of LOAG6, hence
every OAG is an LOAG but there exist LOAGs that are not an OAG
[3, 12].

5.1 Constructing interfaces
Kastens’ algorithm constructs If (X) from IDS(X) by partition-
ing the attributes of X in disjoint sets Pi, with i > 1, as follows:

• Assign all synthesized attributes that have no outgoing depen-
dencies to P1.

• Assign all inherited attributes that have no outgoing dependen-
cies to P2.

• Assign all synthesized attributes a to the set Pi if i is odd,
all the inherited attributes that depend on a are assigned to Pj

with j < i and all synthesized attributes that depend on a are
assigned to Pk with k 6 i.

• Assign all inherited attributes a to the set Pi if i is even, all the
synthesized attributes that depend on a are assigned to Pj with
j < i and all inherited attributes that depend on a are assigned
to Pk with k 6 i.

Note that the set partitioning constructed by the above proce-
dure is almost of the same shape as our interfaces, except that we
pair Pi with Pi−1 to form a visit (if i is even) and our indices are
ascending with respect to the dependencies: if attributes a and b are
in different visits and (a → b) ∈ IDS then a is assigned to a visit
with lower index then b.

Interfaces are thus constructed from the partitioning as follows:
Ifm is the highest even index with Pm∪Pm−1 6= ∅, then v = m/2
is the number of visits in If (X). If (X) is formed by saying
(Pm, Pm−1) is the first visit, (Pm−2, Pm−3) is the second visit,
up until the v-th visit (P2, P1).

Figure 17 shows the interfaces calculated by Kastens’ algorithm
for non-terminals [TySig] and Body of IMODULE. The right-hand
side of the figure shows the first (and only) visit (I1, S1) of the
interfaces for both non-terminals. The induced dependencies from
IDS have been added to the picture (solid gray). It shows that IDS

can be split into connected components that we call threads (T1 and
T2).

Interfaces must satisfy the requirement that the induced depen-
dencies do not point ‘in the wrong direction’ (westwards in our
figures). Interfaces that do not satisfy this requirement do not allow
visit-sequences that satisfy condition 4 of the conditions on visit-
sequences (Section 4.3).

Kastens’ method for creating interfaces ensures that no depen-
dency points westwards; however, there is still freedom in splitting
visits and moving attributes across visits in the interface. For ex-
ample, the attributes of T2 are assigned to the same visit as the
attributes of T1, although the induced dependencies do not enforce
this. If we split the visit of non-terminal Body such that the at-
tributes Body.ts(inh) and Body.ts(syn) are in an earlier visit, we
would get another interface (the one from Figure 11), in which no
induced dependency will point westward as well. As we shall see
later, the combination of the interfaces from Figure 17 is invalid
and it is impossible to discover this by looking at the individual
interfaces.

Deciding which interfaces to select is a combinatorial problem
and constitutes the NP-hardness of finding a linear order. When the

6 The removal of the adverb linearly suggests that the ordered attribute
grammars form a greater class even though they form a strict subclass. We
decide to stick with the established terminology however.

55

interface contains multiple threads with multiple visits, many dif-
ferent interfaces without arrows pointing westwards are possible.
Kastens’ algorithm optimistically decides to construct the interface
containing the smallest number of visits. The next section shows
that this choice is not always correct.

I1 S1

T1

T2

T1

T2

I1 S1

h:[TySig]

ts err ss ts err

ss

b:Body

ss ts ex err ts err

tsts

ss ex

Figure 17. Graphs IDS (left) and interfaces (right) with induced
intra-visit dependencies (gray) and non-induced intra-visit depen-
dencies (dashed gray) for [TySig] (top) and Body (bottom).

5.2 Intra-visit dependencies
By fixing the interfaces we introduce a third type of dependency,
the intra-visit dependency, that has to be taken into account at con-
dition 4 of the conditions on valid sets of visit-sequences (Section
4.3). From condition 2 it follows that every synthesized attribute of
a visit vi depends on all inherited attributes of vi. From condition
1 it follows that all attributes of vi depend on all attributes of visit
vj when j < i. Given If (X), the interface of X , we gather the
intra-visit dependencies of X in the set IVD(X):

IVD(X) = { X · a→ X · b | (Ii, Si) ∈ If (X),

X · a ∈ Ii, X · b ∈ Si }
∪

{ X · a→ X · b | (Ii−1, Si−1) ∈ If (X),

(Ii, Si) ∈ If (X),

X · a ∈ Si−1, X · b ∈ Ii }
(8)

All induced dependencies are represented by the intra-visit de-
pendencies, i.e. IDS(X) ⊆ IVD+(X). However, some intra-visit
dependencies might not be induced (dashed gray in Figure 17).

The intra-visit dependencies imposed by the interfaces might
produce cycles together with the direct dependencies at produc-
tion level, making it impossible to construct a set of valid visit-
sequences. Selecting a combination of interfaces for all non-
terminals simultaneously such that no cycles occur is a combi-
natorial problem as fixing one interface might impose restrictions
on the other interfaces.

5.3 Ordered Attribute Grammars
An AG is an LOAG if there exist interfaces whose intra-visit de-
pendencies do not lead to cycles with the direct dependencies. An
AG is an OAG if Kastens’ algorithm finds these interfaces.

Definition 4. An AG is an Ordered Attribute Grammar or OAG iff
the graph EDP is acyclic with IVD(X) based on If (X) calcu-
lated by Kastens’ algorithm.

EDP (p) =DP (p) ∪
{ (Xp,i · a→ Xp,i · b)
| (X · a→ X · b) ∈ IVD(X), X = T (Xp,i) }

(9)

It is important to note that the definition above would be a
definition for LOAGs if it had not stated that the interfaces are
calculated by Kastens’ algorithm (shown in Section 5).

The interfaces of Figure 17 are the ones constructed by Kas-
tens’ algorithm. These interfaces impose the intra-visit dependen-
cies (Body.ss(inh) → Body.ts(syn)) and ([TySig].ts(inh) →
[TySig].ss(syn)) (among others). Together with the direct depen-
dencies (h.ss → b.ss) and (b.ts → h.ts) of production Module
these intra-visit dependencies generate the cycle (h.ts → h.ss →
b.ss→ b.ts→ h.ts) shown in Figure 18. The AG description given
for IMODULE is therefore not an OAG. However, if the interface of
Body is split into two visits there is no dependency cycle. We have
given this interface in Figure 11. Figure 14 shows that there is no
dependency cycle using this interface.

Module

lhs:Module
ts ex err ts

h:[TySig]
ts err ss

b:Body

ss ts ex err ts

Figure 18. The intra-visit dependencies imposed by the interfaces
calculated by Kastens’ algorithm form a cycle with the direct de-
pendencies in production Module.

In the next section we show that Kastens’ algorithm can be
forced to find this interface by adding an augmenting dependency.

6. Augmenting Dependencies
In his 1980 paper, Kastens introduces another class that trivially
equals LOAG.

Definition 5. An AG is an Arranged Orderly Attribute Grammar
(AOAG) if it is recognised as an OAG by extending the set of direct
dependencies with a set of augmenting dependencies called ADS.

Every AOAG is an LOAG because the AOAG is recognised as
an OAG with the right set of augmenting dependencies (proving we
can construct the required linear orders). Every LOAG is an AOAG
because for the LOAG there exists a set of interfaces that impose
a set of intra-visit dependencies that cause no cycles. These intra-
visit dependencies can be taken as augmenting dependencies and
added to the AG description to recognise the LOAG as an OAG.
Therefore the classes are equal.

6.1 Manually adding augmenting dependencies
A reference to an attribute can be added to the right-hand side of
a semantic function definition, without changing the semantics of
that expression, using conditional expressions. Add the attribute a
of the augmenting dependency (a → b) to the semantic function
definition of b as the else-branch of an if-then-else expression with
a guard that is always True. The then-branch contains the old
semantic function definition. This method is being used frequently
in practice, for example in [3, 12, 14]. A difficulty of this approach
is that the resulting AG may not be well-typed.

Augmenting dependencies can also be made explicit by adding
syntax to the AG compiler (as has been done in the UUAGC) for the
special purpose of extending DP to contain the set of augmenting
dependencies. This way the types of the attributes are no longer a
concern and arbitrary augmenting dependencies can be added.

56

D′P (p) = DP (p) ∪ { (Xp,i · a→ Xp,i · b)
| (X · a→ X · b) ∈ ADS)

, X = T (Xp,i) }
(10)

Adding augmenting dependencies by hand is only a solution
for small AGs that are not likely to be changed. Although the
method has been used to compile the UHC, it requires a great
deal of trial-and-error to find the right augmenting dependencies for
such a large AG description. Moreover, adding (and also removing)
static analyses often requires a revision of the set of augmenting
dependencies.

6.2 Automatically adding augmenting dependencies
We consider the following problem: “given an AG that is not an
OAG (there is at least one dependency cycle) that does satisfy the
LOAG preconditions (there are no direct or induced dependency
cycles), find a set of augmenting dependencies that show the AG is
an AOAG”.

If there is a dependency cycle while the LOAG preconditions
hold, that dependency cycle must contain some intra-visit depen-
dencies that are not part of IDS (or there was a cycle containing
only direct or induced dependencies). We can prevent this depen-
dency cycle by selecting the reverse of one of these intra-visit de-
pendencies as an augmenting dependency.

In our example, Kastens’ algorithm can be forced to generate
the interface shown in Figure 11 for non-terminal Body by adding
the augmenting dependency b.ts(syn) → b.ss(inh). Figure 19
shows how the augmenting dependency is used to force a differ-
ent relative ordering for the threads of non-terminal Body. Recall
that in the figures depicting interfaces no dependencies may point
westward.

I1 S1 I1 S1

I1 S1 I2 S2

T1

T2

err

tsts

ss ex

T1

T2

err

tsts

ss ex

T1

ts ts

err

ss ex

Figure 19. Choosing the augmenting dependency ts(syn) →
ss(inh) results in a different interface for non-terminal Body. Top-
left: the old interface. Top-right: the old interface with the augment-
ing dependency highlighted. Bottom: the new interface.

6.2.1 Selecting augmenting dependencies
The goal of an augmenting dependency is to impose a new depen-
dency between attributes of the same non-terminal, such that the
threads calculated for that non-terminal are different, leading to a
different interface and a different set of imposed intra-visit depen-
dencies.

We argue that if there exists some set of augmenting depen-
dencies that prove an AG is ordered, then we can prove that the
AG is ordered using only intra-visit dependencies not in IDS . We
find the set with a backtracking algorithm. As candidates to our
selection procedure we only consider the reverses of non-induced
intra-visit dependencies (the dashed gray dependencies). Moreover,
these intra-visit dependencies should be part of a dependency cycle.

Since the problem is NP-hard, our set of candidates can not al-
ways be perfect: it may contain dependencies that, by adding them
to the direct dependencies, lead to a cyclic IDP (the preconditions
for LOAGs no longer hold). Let IDP be the induced dependency
graph before adding (a → b) as an augmenting dependency and
ID′P afterwards. We examine which dependencies in IDP will
lead to cycles in ID′P :

1. A dependency (b→ a) ∈ IDP .

2. A dependency (b′ → a′) ∈ IDP causing a cycle with (a′ →
b′) ∈ ID′P that is imposed as an induced dependency from the
new dependency (a→ b).

3. A dependency (c → d) ∈ IDP causing a cycle with (d →
c) ∈ ID′P that is imposed as an induced dependency, through
a series of steps, by the new dependency (a→ b).

4. Both (c → d) ∈ ID′P and (d → c) ∈ ID′P are induced by
(a→ b).

In the first three cases, the augmenting dependency is not a
candidate. In the fourth case, the augmenting dependency must
induce a dependency, and its reverse, simultaneously.

Counter

lhs:Body
ss ts ex err ts

b:Body

ss ts ex err ts

Figure 20. The choice of (Body.b.ts(syn) → Body.b.ss(inh))
as an augmenting dependency results in a cycle in production
Counter that is unresolvable, as it induces both the dependency
(Counter.lhs.ts(inh) → Counter.lhs.ex(syn)) and the depen-
dency (Counter.b.ex(syn)→ Counter.b.ts(inh)).

From the cycle in Figure 18 we extract candidates (b.ts(syn)
→ b.ss(inh)) and (h.ss(syn) → h.ts(inh)) which both suc-
cessfully alter the interfaces such that IMODULE is recognised
as an OAG. If we add production Counter (shown in Figure
20) to the AG description, we observe that selecting candidate
(b.ts(syn) → b.ss(inh)) induces both (b.ex(syn) → b.ts(inh)
and (lhs.ts(inh) → lhs.ex(syn)) in Counter. Graph IDP be-
comes cyclic and backtracking is required for the algorithm to
choose (h.ss→ h.ts) as an augmenting dependency instead. This
counter-example to our selection procedure is both contrived and
type incorrect. Any AG which forces our algorithm to backtrack
will contain constructions similar to the one described and we ex-
pect that such dependency combinations are rare in practical AGs.
Our claim is supported by the tests we ran as no backtracking was
required for any of the UHC’s AG descriptions (more about this in
Section 8).

7. AOAG Algorithm
We have written the functions using our own AOAG monad built
on top of Haskell’s ST monad. The code given in this section is a
pseudo version of our actual implementation in the UUAGC.

57

7.1 Calculating interfaces
Function aoag is the main function of the AOAG algorithm7 and is
given in Figure 21.

-- receives direct dependency graph DP

aoag :: Graph s → AOAG s (Maybe (Graph s))
aoag dp = do

-- induced dependencies, Section 4.2
m_ids ← induced dp
case m_ids of

Nothing → return Nothing -- cycle in IDP

(idp, ids)→ do
-- construct set partitioning, Figure 22
-- by calling partition on all non-terminals

itfs ← partition_nts ids
-- all ivds and non-induced ivds, Section 5.2

(ivds,ni_ivds)← intras itfs
mc ← oagtest dp ivds
case mc of -- did oagtest find a cycle in EDP ?

-- no, it is an OAG and we return the interfaces
Nothing → return (Just itfs)

-- yes, start backtracking algorithm
Just c → explore c dp idp ids itfs ni_ivds

Figure 21. The main function of the AOAG algorithm

The function returns a set of interfaces which can be used
together with function intras and DP to calculate EDP from
Definition 4 (not shown). GraphEDP is used to calculate the visit-
sequences exactly as in Kastens’ algorithm and Pennings [8, 13].
Note that we do not convert the set partitionings to interfaces and
use the set partitionings directly (even though we refer to them as
interfaces).

The dependency graphs (of type Graph s) are STRef s that
point to the graph hidden in state behind the usual graph operations.
Since we use pointers, we have to make copies of IDP and the
interfaces to allow backtracking.

Function partition in Figure 22 calculates the interfaces ac-
cording to Kastens’ algorithm by assigning every attribute a to a
set partition Pi (see Section 5) based on the successors of a ac-
cording to IDS(X).

7.2 Backtracking algorithm
Backtracking is performed by function explore , given in Figure 23.
It uses function insertCandidate that inserts a dependency a to
the induced dependency graph in such a way that all the effects of
choosing a as a candidate are propagated through IDP and IDS .
If a cycle is encountered Nothing is returned, otherwise all the new
induced dependencies imposed by a are returned. The new induced
dependencies may demand a rectification of the interfaces. The
interfaces are rectified by increasing the partition index of certain
attributes until no more dependencies are pointing ‘in the wrong
direction’. An example of rectification is shown in Figure 19 and
the function reschedule is shown in Figure 24. Function depOccs
(of type Edge → [Edge]) transforms dependencies from non-
terminal level to production level by generating all the occurrences
of the given dependency.

7 We have named the algorithm after the class AOAG because the algorithm
adds augmenting dependencies to the direct dependencies of the input AG.
In the future work section we discuss an algorithm that solves the problem
more directly and refer to this algorithm as the LOAG algorithm.

partition :: Graph s → Nonterminal → AOAG s ()
partition ids x = do

as ← attributes x -- A(X)
forM _ as (assign ids) -- attempt to assign all

where
assign :: Graph s → Vertex → AOAG s ()
assign ids a = do

dir ← direction a -- synthesized or inherited
mnr ← partition_ix a -- has a been assigned?
when (isNothing mnr) $ do -- only if not:

succs ← successors ids a
case succs of -- has no successors

[] → let part | dir ≡ Syn = 1
| dir ≡ Inh = 2

in wrap_up a part -- assign
ss → do

-- returns the highest partition index to
-- which an successors has been
-- assigned, or Nothing if not all
-- successors have been assigned yet

mmax_part ← max_partition ss
-- can we assign a yet?

case mmax_part of
Nothing → return () -- no

-- attribute b, partition index mx
Just (b,mx)→ -- yes

-- rules of Section 5.1
let dir_b | even mx = Inh

| odd mx = Syn
part | dir_b ≡ dir = mx

| dir_b 6≡ dir = mx + 1
in wrap_up a part -- assign

where wrap_up a part = do -- actual assignment
assign_partition a part
preds ← predecessors ids a

-- some preds might now be assignable
forM _ preds (assign ids)

Figure 22. Function partition assigns every attribute to a partition
for constructing interfaces.

7.3 Extending implementations of Kastens’ algorithm
In this section we have given an outline of a Haskell implementa-
tion of the AOAG algorithm together with the definition of some of
its most important functions. Existing implementations of Kastens’
algorithm can easily be extended and turned into an algorithm for
scheduling LOAGs with a small number of changes.

Kastens’ algorithm can detect three types of cycles depending
on the graph in which it is encountered: DP , IDP or EDP . The
first change is to obtain the non-induced intra-visit dependencies
(candidates) from the interfaces. The second change is to ensure
that the main function of the algorithm returns failure when it
discovers a cycle in DP or IDP . The third change is to add the
set of augmenting dependencies (ADS) as an additional parameter
to the main function. The augmenting dependencies are then added
to DP (as shown in Section 6.1).

The main function can now call itself recursively and use ADS
as an accumulating parameter. If the initial call (with an empty
ADS) encounters a cycle in DP or IDP then the input AG is not
LOAG. If it encounters a cycle in EDP then the input AG is not

58

-- try candidates one-by-one until the first result
explore :: [Vertex] → Graph s → Graph s

→ Graph s → Graph s → [Edge]
→ AOAG s (Maybe (Graph s))

explore c dp idp ids itfs =
-- candidates are swapped ivds and part of the cycle

explore ′ ◦ filter (∈ [(f , t) | f ← c, t ← c])
◦ concatMap (depOccs ◦ swap)

where
explore ′ :: [Edge]→ AOAG s (Maybe (Graph s))
explore ′ [] = return Nothing -- no more candidates
explore ′ (a : as) = do

idpC ← copy idp
idsC ← copy ids
ifC ← copy itfs
let backtrack = explore c dp idpC idsC ifC as
mEs ← insertCandidate a idp -- see Section 7.2
case mEs of -- is IDP cyclic?

Nothing → backtrack -- yes
Just es → do -- no

reschedule ids es -- rectify interfaces
(ivds,ni_ivds) ← intras itfs
mc ← oagtest dp ivds
case mc of -- is there another cycle in EDP ?

Nothing → return (Just itfs) -- no
Just c → do -- yes, select candidates

mres ← explore c dp idp ids itfs ni_ivds
case mres of -- did the candidates help?

Nothing → backtrack -- no
Just res → return (Just res) -- yes

Figure 23. Function explore executes the backtracking algorithm
for automatically selecting augmenting dependencies.

OAG but we can try to find augmenting dependencies that prove it
is AOAG/LOAG. Whenever a cycle is encountered in a call to the
main function, the main function should behave as follows:

• If the cycle is in DP or IDP it returns failure.
• If the cycle is in EDP we use the candidates obtained from

the interfaces. We extend ADS with one of the candidates to
get ADS ′ and use it as an argument in a recursive call. If this
call returns failure we add another candidate to ADS instead
(backtracking step). If failure is returned while there are no
more candidates to try, we return failure as well. If the call
returns a result (for example graphEDP), we return this result.
In this case ADS ′ proves that the input AG is an AOAG/LOAG
and visit-sequences can be constructed from the (non-cyclic)
EDP constructed by the successful call.

Calling the main function recursively is very inefficient as
the graphs DP and IDP are recalculated at every call with
only a relatively small number of extra edges. That is why we
have chosen to propagate the changes in graph IDP directly us-
ing insertCandidate and adjust the interfaces accordingly using
reschedule as shown in the definition of explore in Figure 23.

reschedule :: Graph s → [Edge]→ AOAG s ()
reschedule ids es = forM _ es fix_edge
where fix_edge :: Edge → AOAG s ()

fix_edge (f , t) = do
Just oldf ← partition_ix f
Just oldt ← partition_ix t
dirf ← direction f
dirt ← direction t
let newf | oldf < oldt = oldt + dist

| otherwise = oldf
dist | dirf 6≡ dirt = 1

| otherwise = 0
unless (oldf ≡ newf) $ do

-- replace the previous assignment
reassign_partition f newf
preds ← predecessors f

-- some predecessors might need to be fixed
forM _ (map (flip (,) f) preds) fix_edge

Figure 24. Function reschedule makes sure that all edges are
pointing in the right direction, given a list of edges that are the
result of adding a certain fake dependency.

8. Discussion
8.1 Theoretical contributions
This paper presents an algorithm of exponential complexity for
finding a static evaluation order of any LOAG, where others have
given algorithms of polynomial complexity for recognising a subset
of the LOAGs [8, 12, 13]. We argue that backtracking is rare
for practical AGs and that our algorithm is therefore efficient in
practice.

This paper explains why Kastens’ algorithm is incomplete: it
does not solve the combinatorial problem of finding the right sets
of visits for every interface simultaneously.

AGs that are not in LOAG form a class that can be divided into
two based on whether these AGs satisfy the LOAG preconditions.
The preconditions can be tested in polynomial time, thus AGs that
do not satisfy the preconditions are efficiently recognised. AGs
that are not in LOAG but do satisfy the LOAG preconditions can
be constructed. This is shown by Natori et al. [12]. These AGs
will force our algorithm to perform an exhaustive search of all
candidates. We have not encountered any real-world examples of
such AGs to test our algorithm with. It is interesting to see if we can
generate large examples, either from scratch or by altering existing
AGs, to examine the runtime of our algorithm further.

8.2 Practical contributions
The build process of the Utrecht Haskell Compiler compiles many
AGs, some of which, including the main AG, require augment-
ing dependencies to be added in the source code to find a static
evaluation order. Adding the right augmenting dependencies is te-
dious work, demanding insight in the scheduling process and the
occasional trial-and-error. We have tested the AOAG algorithm on
the AGs encountered in the UHC and compiled them successfully,
in runtimes comparable with the original implementation of Kas-
tens’ algorithm. The AOAG algorithm compiles the main AG in
13 seconds, automatically selecting 10 augmenting dependencies,
while our old implementation of Kastens’ algorithm takes 17 sec-
onds with 24 augmenting dependencies that were manually added
to the source code while the UHC was developed. Using the same
24 augmenting dependencies the AOAG algorithm takes 6 seconds

59

to compile, showing that roughly 7 seconds are required to evaluate
the effects of the automatically selected augmenting dependencies.

The following numbers give an indication of the size of UHC’s
main AG. It consist of:

• 30 non-terminals.
• 134 productions.
• 1332 attributes (44.4 per non-terminal!).
• 9766 direct dependencies.

Even though the main AG contains many complicated depen-
dency patterns, none of these patterns form a counter-example to
our augmenting dependency selection mechanism and no back-
tracking is required.

We have tested our algorithm on all AGs contained in the UHC,
AGs of other projects within Utrecht University and simple exam-
ples encountered in literature. We would have liked to test with
more real-world AGs. Unfortunately there is no default syntax for
writing AGs and we currently cannot easily test examples that have
not been written in syntax that the UUAGC accepts.

The AOAG algorithm can be used as a complete compiler for
LOAGs and as a tool for finding augmenting dependencies. These
augmenting dependencies can be added to the source code man-
ually. It has been implemented as a replacement for Kastens’ al-
gorithm in the latest version of the UUAGC and can be found on
Hackage8.

8.3 Future and relevant work
Other alternatives to Kastens’ algorithm are found in literature. For
example, Natori et al. introduce class OAG* [12] with an alternative
way of constructing the interfaces. The Eli system contains a vari-
ant of Kastens’ algorithm for recognising a superclass of OAG [9].
Pennings describes an algorithm for chained scheduling, relying
on alternative induced dependency graphs [13]. These approaches
lead to polynomial runtime algorithms for detecting membership
of a subclass of LOAG (and a superclass of OAG). We have not
implemented these approaches to compare them with the AOAG
algorithm, although it would be interesting to see whether these
algorithms are sufficient to compile the UHC without augmenting
dependencies.

Adding an augmenting dependency might lead to a cycle that
can only be solved by yet another augmenting dependency, influ-
encing the runtime of the algorithm. AGs can be constructed that
require an arbitrary number of augmenting dependencies, while a
different choice in the first step works immediately. We have not
investigated whether taking this into account can improve the run-
time of the algorithm for large AG descriptions.

A common approach for solving NP hard problems is the use
of a so-called SAT solver. The SAT problem is the standard NP
complete problem [5] and even though no polynomial time algo-
rithms for solving the problem are known, there exist many heuris-
tic solvers that work well in many practical cases [4]. In future work
we encode the LOAG scheduling problem as a SAT problem and
use an existing SAT solver to solve the scheduling problem. Such
approach may not only lead to a solution that works better in prac-
tice, but also allows for extra constraints to be put on the resulting
schedule. Such extra constraints may be used to optimise the sched-
ule even further.

Pennings’ chained scheduling algorithm finds an order that is
better suited for evaluators generated in purely functional program-
ming languages. In an AG compiler generating both imperative
and purely functional code, it is beneficial to have multiple options
available. We have been able to express constraints in our SAT for-

8 http://hackage.haskell.org/package/uuagc

mulation for minimising the number of visits in the interfaces. It
would be interesting to find other optimisations that we can ex-
press with constraints, and to investigate what the effects of these
optimisations are on the time and space efficiency of the generated
evaluators.

8.4 Conclusion
Finding a static evaluation order for AGs is hard. We have shown
that we can find an order for all LOAGs, by automatically selecting
augmenting dependencies from a set of candidates with a back-
tracking algorithm. Although the algorithm we presented is expo-
nential in theory, experiments with the Utrecht Haskell Compiler
show that it is efficient for practical full-sized AG descriptions and
does not require backtracking.

References
[1] H. Alblas. Attribute evaluation methods. In Attribute Grammars,

Applications and Systems, volume 545 of Lecture Notes in Computer
Science, pages 48–113. Springer Berlin / Heidelberg, 1991. ISBN 978-
3-540-54572-9.

[2] G. V. Bochmann. Semantic evaluation from left to right. Communica-
tions of the ACM, 19(2):55–62, Feb. 1976.

[3] J. Bransen, A. Middelkoop, A. Dijkstra, and S. D. Swierstra. The
Kennedy-Warren algorithm revisited: ordering Attribute Grammars.
In C. Russo and N.-F. Zhou, editors, Practical Aspects of Declarative
Languages, volume 7149 of Lecture Notes in Computer Science, pages
183–197. Springer Berlin / Heidelberg, 2012.

[4] K. Claessen, N. Een, M. Sheeran, N. Sörensson, A. Voronov, and
K. Åkesson. Sat-solving in practice. Discrete Event Dynamic Systems,
19(4):495–524, Dec. 2009. ISSN 0924-6703.

[5] S. A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the Third Annual ACM Symposium on Theory of Comput-
ing, STOC ’71, pages 151–158, New York, NY, USA, 1971. ACM.

[6] A. Dijkstra. Stepping Through Haskell. PhD thesis, Utrecht Univer-
sity, 2005.

[7] J. Engelfriet and G. Filè. Simple multi-visit attribute grammars.
Journal of computer and system sciences, 24(3):283–314, 1982.

[8] U. Kastens. Ordered attributed grammars. Acta Informatica, 13:229–
256, 1980.

[9] U. Kastens, P. Pfahler, and M. T. Jung. The eli system. In Proceed-
ings of the 7th International Conference on Compiler Construction,
CC ’98, pages 294–297, London, UK, UK, 1998. Springer Berlin /
Heidelberg.

[10] K. Kennedy and S. K. Warren. Automatic generation of efficient
evaluators for attribute grammars. In Proceedings of the 3rd ACM
SIGACT-SIGPLAN symposium on Principles on programming lan-
guages, POPL ’76, pages 32–49, New York, NY, USA, 1976. ACM.

[11] D. E. Knuth. Semantics of context-free languages. Mathematical
systems theory, 2(2):127–145, June 1968.

[12] S. Natori, K. Gondow, T. Imaizumi, T. Hagiwara, and T. Katayama.
On eliminating type 3 circularities of ordered attribute grammars. In
D. Parigot and M. Mernik, editors, Second Workshop on Attribute
Grammars and their Applications, WAGA’99, pages 93–112, Amster-
dam, The Netherlands, March 1999. INRIA rocquencourt.

[13] M. C. Pennings. Generating Incremental Attribute Evaluators. Ph.D.
thesis, Computer Science, Utrecht University, November 1994.

[14] T. W. Reps and T. Teitelbaum. The Synthesizer Generator Reference
Manual. Texts and monographs in computer science. Springer Berlin
/ Heidelberg, 3rd edition, 1989. ISBN 978-3-540-96910-5.

[15] J. Saraiva. Purely Functional Implementation of Attribute Grammars.
PhD thesis, Utrecht University, 1999.

[16] S. D. Swierstra, P. R. A. Alcocer, and J. Saraiva. Designing and im-
plementing combinator languages. In Advanced Functional Program-
ming, volume 1608 of Lecture Notes in Computer Science, pages 150–
206. Springer Berlin / Heidelberg, 1999.

60

