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Lines in Space: Combinatorics and Algorithms1

B. Chazelle,2 H. Edelsbrunner,3 L. J. Guibas,4 M. Sharir,5 and J. Stolfi6

Abstract. Questions about lines in space arise frequently as subproblems in three-dimensional computational
geometry. In this paper we study a number of fundamental combinatorial and algorithmic problems involving
arrangements ofn lines in three-dimensional space. Our main results include:

1. A tight2(n2) bound on the maximum combinatorial description complexity of the set of all oriented lines
that have specified orientations relative to then given lines.

2. A similar bound of2(n3) for the complexity of the set of all lines passing above then given lines.
3. A preprocessing procedure usingO(n2+ε) time and storage, for anyε > 0, that builds a structure supporting

O(logn)-time queries for testing if a line lies above all the given lines.
4. An algorithm that tests the “towering property” inO(n4/3+ε) time, for anyε > 0: don given red lines lie

all aboven given blue lines?

The tools used to obtain these and other results include Pl¨ucker coordinates for lines in space andε-nets
for various geometric range spaces.

Key Words. Computational geometry, Lines in space, Pl¨ucker coordinates,ε-Nets.

1. Introduction. In this paper we address certain combinatorial and algorithmic prob-
lems about lines in three-dimensional Euclidean space. Algorithmic questions about
lines in three dimensions arise in numerous applications, including the hidden surface
removal and ray tracing problems in computer graphics, motion planning, placement and
assembly problems in robotics, object recognition using three-dimensional range data in
computer vision, interaction of solids and of surfaces in solid modeling and CAD, and
terrain analysis and reconstruction in geography.

Though the geometry of lines in the plane is a well-studied part of computational
geometry, the corrresponding investigation of lines in three-dimensional space is a rela-
tively new area. Progress on three-dimensional problems is still relatively slow, mainly
because these problems are often harder than their planar counterparts. Typically, the
combinatorial structure of the geometric space of interest is more complicated and has
larger complexity in the spatial case than in the planar case. Thus, efficient algorithms
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for processing it are more difficult to obtain. Straight lines, one of the simplest types
of objects encountered in spatial problems, already present many of these difficulties.
In fact, as we will see below, lines in space are modeled best by nonlinear objects. For
a classical treatment of the geometry of lines in 3-space see the book by Sommerville
[So], or various kinematics texts [BR], [Hu].

In this paper we make contributions to three-dimensional computational geometry
by studying several combinatorial problems involvingarrangements of lines in space.
By the arrangement of a given set of lines we mean the partitioning of the space of all
lines introduced by the given lines. We first provide a combinatorial and algorithmic
analysis of what we call anorientation classof a collection of lines in space, i.e., the
topological boundary of the space of lines having a given orientation with all the given
lines. We show how to express the “above/below” relationship of lines in space by
means of the orientation relationship and use this reduction to analyze various problems
concerning the vertical relationship of lines in space. Even though (as is discussed
below) the “natural complexity” of an arrangement ofn lines in space is2(n4) (see
[MO]), we are able to solve each of the problems that we consider in nearly quadratic
space, or better. In a companion paper [CEGS1] we then apply these results to several
important practical problems involvingpolyhedral terrains(i.e., images of piecewise-
linear continuous bivariate real functions) and obtain reasonably efficient solutions.

In order to introduce and summarize our results in more detail here, we review some
basic geometric properties of lines in 3-space. A line requires four real parameters to
specify it, so it is natural to study arrangements of lines in space within an appropriate
parametric 4-space. Unfortunately, any reasonable such representation introduces non-
linear surfaces. For example, in many standard parametrizations the space of all lines
intersecting a given line is a quadric surface in 4-space. To obtain a combinatorial rep-
resentation of an arrangement ofn lines in space it is therefore necessary to construct
an arrangement ofn quadric surfaces in 4-space (in fact, the recent paper [MO] does
provide an implicit construction of such an arrangement; see also [Mc]). This arrange-
ment has complexityO(n4) (as follows, e.g., from a theorem of Milnor and Thom [Mi ])
which is usually unacceptable for practical applications; moreover, even if we were to
construct the arrangement, performing point-location (that is, “line-location”) in it is
difficult. These observations indicate why many of the recent works on visibility prob-
lems involving arbitrary collections of lines (or segments, or polyhedra) in space produce
bounds likeO(n4) or worse (see [PD], [GCS], [MO], and [Mc]).

Fortunately, there are two lucky breaks that we are able to exploit in this work, which
lead to improved solutions in many applications. The first is that there is an alternative
way to represent lines, usingPlücker coordinates(see, e.g., [St], [BR], and [Hu]; the
original reference is [Pl]). These coordinates transform (oriented) lines into either points
or hyperplanes in homogeneous 6-space (more precisely, in oriented projective 5-space)
in such a way that the property of one linel1 intersecting another linel2 is transformed into
the property of the Pl¨ucker point ofl1 lying on the Plücker hyperplane ofl2 (or vice versa).
Thus, at the cost of passing to five dimensions, we can linearize the incidence relationship
between lines. This Pl¨ucker machinery is developed in Section 2. For completeness, we
mention that another representation of lines in 3-space by two points in the plane, based
on theparallel coordinatesintroduced by Inselberg [I], has also been found useful in
practice.
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In studying arrangements of lines in space, it is more important to analyze therelative
orientationof two lines rather than only the incidence between them, as the latter is a
degenerate case of the former. We develop this concept of relative orientation in Section 3
and show how to determine efficiently if a query line is of a particular orientation class
with respect ton given lines. We give a method that takes preprocessing and storage
of O(n2+ε) and allows a query time ofO(logn). In the process we show that the total
combinatorial description complexity of any particular orientation class is in the worst
case2(n2). We get this bound by mapping our lines to hyperplanes in oriented projective
5-space using Pl¨ucker coordinates. Our orientation class then corresponds to a convex
polyhedron defined by the intersection ofn half-spaces based on these hyperplanes.
Our second lucky break now comes from the Upper Bound Theorem (see, e.g., [Ed]),
stating that the complexity of such a polyhedron is onlyO(nb5/2c) = O(n2) (the same
asymptotic order as in 4-space, which means that passing to five dimensions did not
really cost us anything extra in terms or complexity).

For many applications, however, we need to analyze the property of one line lying
above or below another. In Section 4 we show how, by adding certain auxiliary lines, we
can express “above/below” relationships by means of orientation relationships. Using
this reduction we provide an efficient method for testing if a query line lies above the
n given lines. Specifically, we give an algorithm for preprocessing a collectionL of n
lines in space inO(n2+ε) preprocessing time and storage. Our algorithm builds a data
structure that supportsO(logn) queries of the form: given a linel , does it lie above all
the lines ofL? If so, which line ofL lies “immediately below”l , i.e., what is the first
line of L to be hit asl is translated downward? We also demonstrate in Section 5 that
the worst-case combinatorial complexity of the “upper envelope” ofn lines is2(n3)—
the main observation being that such an envelope can be expressed as the union ofn
orientation classes of the kind discussed in the previous paragraph.

We also provide in Section 6 abatched versionof the algorithm for testing the
“above/below” relationship: Givenm blue lines andn red lines, determine whether
all blue lines lie above all red lines (we call this the “towering property”), and, if so,
find for each blue line the red line lying immediately below it (in the above sense). We
achieve this by an algorithm with running timeO((m+ n)4/3+ε), for anyε > 0.

The algorithms just mentioned, as well as many others developed in this paper, are
based on the recently introduced technique ofε-nets in computational geometry by
Haussler and Welzl, and Clarkson (see [HW], [Cl1], and [CF]). Originally ε-nets were
obtained by random sampling. The randomizations employed by the algorithms draw a
small random sample of the data objects, and use it to partition the problem into smaller
subproblems in a uniform manner. Even more recently, various efficient deterministic
techniques for constructingε-nets were obtained by Matouˇsek and others [Ma1]–[Ma3],
[CF]; see also the survey paper by Agarwal [AG]. Using these methods all the algorithmic
bounds given in this paper can be made to be worst-case bounds. The corresponding ran-
domized versions would be easier to implement and probably preferable in any practical
application.

We close the paper with a discussion of line separability by translation in Section 7,
and by describing several open problems about lines in space in Section 8. We hope that
this paper will stimulate further combinatorial and algorithmic work in three-dimensional
line geometry.
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2. Geometric Preliminaries. The main geometric object studied in this paper is a
line in 3-space. Such a linel can be specified by four real parameters in many ways. For
example, we can take two fixed parallel planes (e.g.,z= 0 andz= 1) and specifyl by
its two intersections with these planes. We can therefore represent all lines in 3-space,
except those parallel to the two given planes, as points in four dimensions. However, as
already noted, even simple relationships between lines, such as incidence between a pair
of lines, become nonlinear in 4-space. More specifically, a collectionL = {l1, . . . , ln} of
n lines induces a corresponding collection of hypersurfacesS = {s1, . . . , sn} in 4-space,
wheresi represents the locus of all lines that intersect, or are parallel to,l i (it is easily
checked that eachsi is a quadratic hypersurface). ThearrangementA = A(S) induced
by these hypersurfaces represents the arrangement of the lines inL, in the sense that
each (four-dimensional) cell ofA represents an isotopy class of lines in 3-space (i.e.,
any such line in the class can be moved continuously to any other line in the same class
without crossing, or becoming parallel to, any line inL).

This arrangement can be understood in three dimensions as follows. Given three lines
in general position7 in 3-space, they define a quadratic ruled surface, called aregulus,
which is the locus of all lines incident with the given three lines. A fourth line will in
general cut this surface in two, or zero, points. Thus four lines in general position will
have either two or zero lines incident with all four of them. These quadruplets of lines
with a common stabber correspond to vertices of the arrangementA. (In other words, a
line moving within an isotopy class comes to rest when it is in contact with four of the
given arrangement lines—each of them removing one of the four degrees of freedom that
the moving line has. Note that some of these contacts can be at infinity, corresponding
to the moving line becoming parallel to one of the given lines.) Similarly, the edges of
A correspond to the motion of a line while incident with three given lines, in the regulus
fashion described earlier. In the general case each vertex ofA has eight incident edges.
Higher-dimensional faces ofA can be obtained similarly, by letting the common stabber
move away from two, three, or all four of the lines defining a vertex. This shows that
the number of these higher-dimensional faces ofA is, in each case, related by at most
a constant factor to the number of vertices ofA. This last statement remains valid even
if the given lines are not in general position, as follows from a standard perturbation
argument.

By the discussion in the preceding paragraph (or by invoking the theorem of Milnor
and Thom [Mi ], as mentioned in the Introduction) we can conclude that the combinatorial
complexity of the arrangement ofn quadratic surfaces in 4-space isO(n4) and this
bound is attainable (see [MO]). In particular,A hasO(n4) vertices, where each such
vertex represents a line that meets four of the lines inL. Unfortunately, it is difficult to
handle such an arrangement of nonlinear hypersurfaces explicitly; tasks such as efficient
calculation and representation ofA, processing it for fast point location,8 and obtaining
sharp complexity bounds for certain portions of it become quite difficult.

7 We take this to mean that the lines are pairwise nonintersecting and nonparallel. For more lines we add the
condition that no five of our lines can be simultaneously incident with another line (not necessarily of our
collection).
8 An efficient technique for point location among algebraic manifolds was recently given in [CEGS2]. However,
that method requiresÄ(n5) space.
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We therefore exploit another representation of lines, usingPlücker coordinates and
coefficients(see [St], [BR], and [Hu] for a review of these concepts). Letl be an ori-
ented line, and leta, b be two points onl such that the line is oriented froma to b.
Let [a0,a1,a2,a3] and [b0, b1, b2, b3] be the homogeneous coordinates ofa andb, with
a0, b0 > 0 being the homogenizing weights. (By this we mean that the Cartesian coor-
dinates ofa are(a1/a0,a2/a0,a3/a0)). By definition, the Pl¨ucker coordinates ofl are the
six real numbers

π(l ) = [π01, π02, π12, π03, π13, π23],

whereπi j = ai bj − aj bi for 0≤ i < j ≤ 3. Similarly, the Pl¨ucker coefficients ofl are

$(l ) = 〈π23,−π13, π03, π12,−π02, π01〉,

i.e., the Plücker coordinates listed in reverse order with two signs flipped. The most
important property of Pl¨ucker coordinates and coefficients is that incidence between
lines is a bilinear predicate. Specifically,l 1 is incident tol 2 if and only if their Plücker
coordinatesπ1, π2 satisfy the relationship

π1
01π

2
23− π1

02π
2
13+ π1

12π
2
03+ π1

03π
2
12− π1

13π
2
02+ π1

23π
2
01 = 0.(1)

This formula follows from expanding the four-by-four determinant whose rows are the
coordinates of four distinct pointsa,b,c,d, witha,bonl 1 andc,d onl 2. This determinant
is equal to 0 if and only if the two lines are incident (or parallel). In general, the absolute
value of the quantity in (1) is six times the volume of the tetrahedronabcd,9 and its sign
gives the orientation of the tetrahedronabcd. As long asl 1 is oriented froma to b and
l 2 from c to d, this sign is independent of the choice of the four points, and defines the
relative orientationof the pairl 1, l 2, which we denote byl 1 ¦ l 2 [St].

It is easily checked that any positive scalar multiple ofπ(l ) is also a valid set of
Plücker coordinates for the same oriented linel , corresponding to a different choice of
the defining pointsa andb, or to a positive scaling of their homogeneous coordinates.
Also, any negative multiple ofπ(l ) is a representation ofl with the opposite orientation.
Therefore, we can regard the Pl¨ucker coordinatesπ(l )as the homogeneous coordinates of
a point projective oriented 5-spaceP5, which is a double covering of ordinary projective
5-space.10 Dually, we can regard the Pl¨ucker coefficients$(l ) as the homogeneous
coefficients of an oriented hyperplane ofP5. Equation (1) merely states that linel 1 is
incident to linel 2 if and only if the Plücker pointπ(l 1) lies on the Pl¨ucker hyperplane
$(l 2). In fact, the relative orientationl 1 ¦ l 2 of the two lines is+1 if π(l 1) lies on the
positive side of the hyperplane$(l 2), and−1 if it lies on the negative side.

We observe that not every point ofP5 is the Plücker image of some line. It is
well known that the real six-tuple(πi j ) is such an image if and only if it satisfies the

9 It also equals the productabcd Dsinα, whereD is the distance betweenl 1 andl 2, andα is the angle between
the two lines.
10 The points ofP5 can be viewed as the oriented lines through the origin of<6, with the geometric structure
induced by the linear subspaces of<6; or, equivalently, as the points of the five-dimensional sphereS5, with the
geometric structure induced by its great circles. See [St] for more details on the theory of oriented projective
spaces.
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quadratic equation

π01π23− π02π13+ π12π03 = 0,(2)

which states that every line is incident to itself. Thus among the six Pl¨ucker coordinates
two are redundant. Equation (2) defines a four-dimensional subset ofP5, called the
Plücker hypersurface5. Notice that the relative orientation of a line relative to a sixtuplet
of numbers that does not correspond to a point on the Pl¨ucker hypersurface still makes
perfect sense—simply plug the appropriate numbers into (1). It turns out that such
“imaginary” lines do have a natural geometric interpretation in 3-space. They are known
aslinear complexesand their properties are studied in [FT] and [J].

3. The Orientation of a Line Relative to n Given Lines. We wish to analyze the
set C(L, σ ) consisting of all linesl in 3-space that have specified orientationsσ =
(σ 1, σ 2, . . . , σ n) relative ton given lines inL = (l 1, l 2, . . . , l n). (We call this set the
orientation classσ relative toL.) Translated to Pl¨ucker space, the definition says that
point π(l ) has to lie on sideσ i of every hyperplane$(l i ), and therefore inside the
convex polytopeC(L, σ ) in P5 that is the intersection of thosen half-spaces. The
orientation classC(L, σ ) is thus the intersection of the polytopeC(L, σ ) and the Pl¨ucker
hypersurface5. Note that since5 is of degree 2, it can interact in at most “a constant
fashion” with each feature of the polytopeC(L, σ ).

For the purpose of this paper, we consider the polytopeC(L, σ ) to be an adequate
description of the orientation classC(L, σ ). Computing the class then means computing
all the features of this polytope, i.e., all its faces (of any dimension). The number of
such features is thecombinatorial complexityof the class—intersecting with5 can only
increase this number by a constant factor. By the Upper Bound Theorem (see, e.g., [Ed]),
this complexity is onlyO(nb5/2c) = O(n2). It is not difficult to find configurations of
lines L that attain this bound. Consider the regulus (actually hyperbolic paraboloid)
z = xy and two families ofn/2 lines each of the regulus. One family consists of lines
from one of the two rulings of the regulus, and the other of lines from the other ruling.
By perturbing the lines of one family to be slightly off the regulus, we can make this a
nondegenerate arrangement. It is simple to check that in every elementary square defined
by two successive lines from one ruling and two successive lines from the other ruling
there corresponds a line incident to all four of the lines defining the square and passing
above all the rest. A more detailed construction of this kind is given in Section 5.

A possible data structure for representing the polytopeC(L, σ ) is its face-incidence
lattice, as described in [Ed]. Seidel’s output-sensitive convex hull algorithm [Se] con-
structs this representation inO(logn) amortized time per face. The more recent optimal
but complex convex hull algorithm of Chazelle [Ch] can also be used to obtain the
polytopeC in O(n2) time. As it turns out, in the algorithms to follow we only need to
compute orientation classes for collectionsL whose size is bounded by a constant, so
the representation issue does not arise in a significant way.

THEOREM1. The set of all lines in3-space that have specified orientations to n given
lines has combinatorial complexity2(n2) in the worst case, and can be calculated in
time O(n2).
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It was shown by Neil White (see [MO]) that the intersection of the convex polytope
C(L, σ ) and the Pl¨ucker hypersurface5may consist of many connected components. In
other words, an orientation class relative to the fixed linesLmay contain multiple distinct
isotopy classes. We note that the vertices of those isotopy classes are intersections of the
Plücker hypersurface5 with the edges of the polytopeC(L, σ ). Since5 is a quadratic
hypersurface, there are at most two such intersections per edge, and therefore the total
number of vertices in all those isotopy classes is onlyO(n2). In other words, there are
at mostO(n2) lines that touch four of the lines ofL and have specified orientations with
all the others. A slightly more complicated argument shows that there are at mostO(n2)

isotopy classes in one orientation class. We do not know if this bound can be attained.
We now give an efficient algorithm for deciding whether a given query linel in 3-

space lies in a particular orientation classσ relative to a setL of n fixed lines. We
begin by preprocessing the fixed lines into a tree-like data structure6(L, σ ), using
a net-based partitioning technique that somewhat resembles those of [Cl2] and [CF].
For simplicity, we describe the construction for the classσ = (+,+, . . . ,+); the same
construction can be applied to other classes by reversing the orientation of the appropriate
lines ofL. Consider then Plücker hyperplanes that correspond to the given linesL.
We choose anε-netR for simplex range queries among these hyperplanes, with some
fixed sizer > 0. We compute the open five-dimensional polytopeC(R) = C(R,+r )

that is the intersection of their positive half-spaces. Then we decomposeC(R) into a
collectionK(R) of openk-dimensional simplices, fork ≤ 5, by picking a vertexv of
C(R), recursively triangulating all the faces ofC(R) that are not incident tov, and then
taking the convex hull of the pointv and each of these simplices. By the Upper Bound
Theorem,C(R) has onlyO(r 2) faces, andK(R) contains onlyO(r 2) simplices. The
time required for these steps is dominated byO(nr4/ log4 r ), the cost of selecting the
net deterministically [Ma3]. Since none of these simplices meets any of the hyperplanes
ofR , it follows from the net property (see [HW] and [Cl1]) that each simplex inK(R)
will meet at mostc(n/r ) logr of the n original hyperplanes, for some constantc > 0
independent ofr andn.

We then proceed to discard any simplex ofK(R) that lies entirely on the negative side
of some of then hyperplanes. Each surviving simplexs becomes a child of the root of
our data structure; the subtree rooted ats consists of theO((n/r ) logr ) hyperplanes that
intersects, recursively preprocessed as described above. If all simplices get discarded,
or if the polytopeC(R)was empty to begin with, then the orientation class is empty, and
the problem is trivial:noquery line can be positively oriented with respect to all lines in
L. (Note that the converse is not necessarily true.)

The storage and preprocessing time required in this technique obey the recursion

T(n) = O(r 2) · T
(
C

n

r
logr

)
+ O

(
nr4

log4 r

)
for some constantC. It is not hard to prove that this solves toT(n) = O(n2+ε), for some
positive numberε that tends to 0 asr increases. (Note however that increasingr also
increases the constant of proportionality.)

Testing a query linel proceeds as follows. We first test whether any of theO(r 2)

simplices at the top level of the tree contains the Pl¨ucker pointπ(l ). If so, we search
recursively in the subtree rooted at that simplex. If not, then we know thatl is not
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positively oriented relative toL. There are onlyO(logn) levels to recurse in, so the
worst-case query time isO(logn). Again, the constant of proportionality depends onr
(or, alternatively, onε).

THEOREM2. Given n lines in space and an orientation classσ , we can preprocess
these lines by a procedure whose running time and storage is O(n2+ε), for anyε > 0,
so that, given any query line l, we can determine, in O(logn) time, whether l lies in the
orientation classσ with respect to the given lines.

We note that a simple modification of this data structure allows us tocomputein
O(logn) time the orientation class of a linel relative ton fixed ones, rather than merely
test whetherl is in a predetermined class. The modification consists in computing (and
triangulating) the whole zone of the Pl¨ucker hypersurface5 in the arrangement of the
net hyperplanesR, rather than just the cellC(R,+r ). The complexity of this zone is
O(r 4 logr ) in the worst case, by a recent result [APS]. By an analysis similar to that given
above, it follows that there is a structure of sizeO(n4+ε) that can be used to compute
the orientation class of a given line within the above time bound.

4. Testing Whether a Line Lies Aboven Given Lines. We now consider a particular
case of the general problem discussed in the previous section, which turns out to have
significant applications on its own. We are concerned with the property of one line
lying above or below another. Formally,l 1 lies abovel 2 if there is a vertical line that
meets both lines, and its intersection withl 1 is higher than its intersection withl 2. We
assume that neitherl 1 nor l 2 is vertical, and the two lines are not parallel. Our previous
nondegeneracy assumptions already exclude concurrent or parallel lines; whenever we
discuss the “above/below” relation, we also exclude vertical lines from consideration.

We can express this notion in terms of the relative orientation of these lines, as follows.
Assume the linesl 1 and l 2 have been oriented in an arbitrary way, and consider their
(oriented) perpendicular projections 1′, l 2′ onto thexy-plane, seen from above. Observe
thatl 1 is abovel 2 if and only if

the direction ofl 1′ is clockwise to that ofl 2′ andl 1 ¦ l 2 = +1,

or

the direction ofl 1′ is counterclockwise to that ofl 2′ andl 1 ¦ l 2 = −1.

Now we introduce the line at infinityλ2 that is parallel tol 2 and passes through zenith
point z∞ = (0, 0, 0, 1), the point at positive infinity on thez-axis. We orient the lineλ2

so that its projection on thexy-plane has the same direction as the projection ofl 2. It
is easy to check that the direction ofl 1′ is clockwise ofl 2′ if and only if l 1 ¦ λ2 = −1.
Therefore, we conclude thatl 1 is abovel 2 if and only if

l 1 ¦ l 2 = −l 1 ¦ λ2.(3)

Intuitively, l 1 passes abovel 2 if and only if l 1 passes “between” the linesl 2 andλ2.
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Thus, to express the fact that one line lies above another we need to check consistency
between two linear inequalities. This fact complicates the analysis of the above/below
relationship, in particular when many lines are involved.

Now letL be a collection ofn lines in 3-space, and consider the setU(L), the upper
envelope ofL, consisting of all linesl that pass above every line ofL. We introduce the
auxiliary lines at infinity3 = {λ1, λ2, . . . , λn}, with eachλi parallel to the corresponding
l i and passing through the pointz∞. Then, according to (3), a linel is above all lines in
L if and only if l ¦ l i = −l ¦ λi ; that is, if the orientation class ofl relative to the setL
is exactly opposite to its orientation with respect to the set3.

Therefore, the setU(L) is the union of all orientation classesC(L ∪3, σ · σ̄ ) where
σ · σ̄ is a sign sequence of the form(σ 1, σ 2, . . . , σ n,−σ 1,−σ 2, . . . ,−σ n). Luckily
for us, onlyn of these classes are nonempty. To see why, we assume that thex and
y coordinate axes have been rotated and the lines oriented so that the projection ofl 1

coincides with the negativey-axis, and all other lines (including the query linel ) point
toward increasingx. We assume also that the linesl 2, . . . , l n are sorted in order of
increasingxy-slope. It is easy to see that if thexy slope ofl lies between those ofl k and
l k+1, then its orientation class relative to the set3 is (−k+n−k). Therefore, we conclude
that there are onlyn orientation classes relative to3.

This observation leads to a fast algorithm for deciding whether a query linel passes
aboven fixed linesL. For each of then valid orientation classesσk = (−k+n−k), we
build a data structure6k(L) = 6(L∪3, σk · σ̄k), as described in Section 3. Then to test
a given query linel we first use binary search to locate itsxy-slope among the slopes of
then given lines. This information determines the orientation classσk of l relative to the
lines in3. Once this has been found, we use the data structure6k(L) to test whetherl
has the opposite orientation classσ̄k relative to the lines inL.

This straightforward algorithm uses space approximately cubic inn. To reduce the
amount of space, we merge all then data structures6k(L) into a single data struc-
ture6∗(L) as follows. Assume all lines inL have been sorted byxy slope and ori-
ented as described above. Letm be a parameter, to be chosen later. PartitionL into m
subsetsL1, . . . ,Lm, each subset consisting of approximatelyn/m consecutive lines in
slope order. Prepare the data structures6

p
j (L) = 6(Lp

j , (+ + · · ·+)) and6s
j (L) =

6(Ls
j , (− − · · ·−)) for each prefix setLp

j =
⋃

1≤k< j Lk (1 ≤ j ≤ m) and each suffix
setLs

j =
⋃

j<k≤m Lk (2 ≤ j ≤ m). The storage and preprocessing time for these steps
amount toO(mn2+ε), for anyε > 0. Then recursively build the data structure6∗(Lj )

for each subsetLj (using the same choice of the parameterm). Therefore6∗(L) is a
data structure tree whose degree ism and whose depth will beO(logn/ logm). Testing
a query linel now proceeds as follows. As before, we use binary search to locate the
xy slope ofl between the slopes of two linesl k and l k+1 of L. (This step has to be
performed only once.) LetLj be the subset containing the linel k. By construction, the
xy slope ofl is greater than the slopes of all lines inLp

j and less than the slopes of all
lines inLs

j . Then we can test, inO(logn) time, whetherl lies above all lines in these
two subsets, using the data structures6

p
j and6s

j . If l does not lie above all these lines
we stop immediately; otherwise we recursively testl againstLj using the data structure
6∗(Lj ). If we setm = dnνe, for some fixed and very smallν > 0, the entire procedure
takes timeO((logn)2/ logm)) = O(logn). The storage and preprocessing time amount
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to O(mn2+ε(logn)/ logm), which can also be written asO(n2+ε), for a different yet still
arbitrarily small value ofε > 0.

We can also provide a modified version of this procedure, having the same complexity
bounds, that can determine, for each query linel lying above all lines ofL, which is the
first line ofL that l will hit when translated vertically downward. The key observation
is that translation ofl downward corresponds to motion ofπ(l ) along a straight line,
sayρ(l ), on the Plücker hypersurface5: the coordinatesπ(l ) change linearly with the
altitude ofl , as follows:

[π01, π02, π12, π03, π13− tπ01, π23− tπ02],

wheret is a parameter denoting the altitude. Asl moves vertically, it will become incident
with another linel ′ exactly whenρ(l ) crosses the plane$(l ′), and the crossing point
can be computed in constant time. Moreover, the crossing point determines the line
ρ(l ) uniquely, since it corresponds to a unique line in 3-space and the inverse of the
downward translation is a unique upward translation. Note that ast tends to infinity
(which corresponds to lifting the line up by an infinite amount), its Pl¨ucker image tends
to a point of the form [0, 0, 0, 0,−π01,−π02]. These limit points constitute a lineτ in
P5, and correspond to lines at infinity of 3-space passing through the zenith point.

Recall that at each step in the construction of the data structure6(L)we take a netRof
the hyperplanes$(l i ) and construct the convex polytopeC(R). Instead of decomposing
C(R) into simplices, we divide its interior by a set of hypersurfaces with the property
that no lineρ(l ) crosses one of these hypersurfaces, and the resulting cells still have
constant complexity. Specifically, take a decomposition of the boundary ofC(R) into
simplices, and back-project from each such simplexs along the linesρ that terminate
at points ons. The collection of these back-projections yields a decomposition ofC(R)
into O(r 2) cells. We argue that the combinatorial complexity of each cell is a constant
independent ofr . Indeed, the base of each cell is a four-dimensional simplex, the walls
of the cell are a lifting of the boundary of this simplex along the linesρ(l ), and the roof
of the cell is some interval on the lineτ . Because of the way these cells are constructed,
to each cellc there corresponds a unique linel (c) of R that is first hit as we translate
downward any line whose Pl¨ucker point lies inc. Again, theε-net theory tells us that we
can find a subset ofO((n/r ) logr ) lines ofL such that the downward translation of any
line l , with π(l ) in c, will not meet any other line ofL until it reachesλ.

Therefore, if we use this modified cell decomposition ofC(R)when constructing the
data structure6∗(L), then we test a linel for being above then given lines, we can at
the same time locate the nearest line belowl .

THEOREM3. Given n lines in space, we can preprocess them by a procedure whose
running time and storage is O(n2+ε), for any ε > 0, so that, given any query line l,
we can determine, in O(logn) time, whether l lies above all the given lines, and, if so,
which is the first line ofL that l will hit when translated downward.

5. The Complexity of the Upper Envelope ofn Lines. In the previous section we
saw that the upper envelopeU(L) of a set ofn lines in 3-space is the union ofn orientation
classes relative to the setL ∪3. Each of these classes can be described as polytope of
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Fig. 1.The hyperbolic paraboloidz= xy and its two families of generating lines.

P5 with at mostO(n2) features. Therefore, the combinatorial complexity ofU(L) is at
mostO(n3).

Notice that each of thesen selected orientation classes relative toL ∪ 3 defines a
single isotopy class. This is so because any two linesρ1,ρ2 in this class point in the same
sector defined by the lines ofL down in thexy-plane. Thus we can always continuously
moveρ1 toρ2 by first lifting it up high enough, then rotating it to align withρ2, and then
dropping it down ontoρ2. In particular, this implies that in each of thesen orientation
classes, there are at mostO(n2) lines that touch four lines ofL, and lie above all the
remaining ones. (Each such line is the intersection of the Pl¨ucker hypersurface5with an
edge of polytopeC(L, σ ); since5 is a quadric, there are at most two such intersections
per edge.)

We now exhibit a set ofn lines that attains this cubic bound. The example consists
of three collections of lines,A, B, andC, of roughly equal size. The lines in setsA
andB are parallel to thexz-plane and to theyz-plane, respectively, and form a grid of
orthogonal generating lines of hyperbolic paraboloidz = xy. See Figure 1. The lines
in setC pass well below the paraboloid and have a steepz slope; theirxy projections
form a narrow pencil near the linex+ y = 0—see Figure 2. The lines ofC are arranged
so that as we walk along their “upper envelope” we visit each of them in a sufficiently
long interval along which we can obtain “tangential views” of the entire portion of the
hyperbolic paraboloid covered byA and B. Thus for every triplet of linesa, b, c, one
line from each collection, we can find a line lying so that it connects the intersection of
a andb with an appropriate point onc, and lies above all other lines. The boundÄ(n3)

then follows. The technical details of this construction are given below.
To start, we letm = bn/3c, A = {a1,a2, . . . ,am}, B = {b1, b2, . . . ,bm}, andC =

{c1, c2, . . . , cn−2m}, where

ai = {(x, y, z): (y = i ) and(z= i x)},
bj = {(x, y, z): (x = j ) and(z= j y)},
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Fig. 2.The oriented line groupsA, B, C (solid) and a representative of the oriented linesL(i, j, k, t) (dashed),
viewed from above.

and

ck =
{
(x, y, z):

(
y =

(
k

n2
− 1

)
x

)
and(z= nx− n5)

}
.

Note that the lines in groupC all lie on the planez= nx− n5 and are concurrent to the
point (0, 0,−n5) on thez-axis.

We now choose the Pl¨ucker coordinates for each of the lines defined above. We
pick the points [1, 0, i, 0] and [1, 1, i, i ] on line ai , which gives the Pl¨ucker coordi-
nates [1, 0,−i, i, 0, i 2]. For linebj , we take the points [1, j, 0, 0] and [1, j, 1, j ], which
yields [0, 1, j, j, j 2, 0]. Finally, for line ck we choose the points [1, 0, 0,−n5] and
[1, 1, k/n2−1, n−n5], which gives the Pl¨ucker coordinates [1, k/n2−1, 0, n, n5, kn3−
n5].

Now we introduce the lineL(i, j, k, t) which passes through the points [1, j, i, i j ]
and [1, t, (k/n2 − 1)t, nt − n5]. Note thatL(i, j, k, t) intersects linesai , bj , andck. Its
Plücker coordinates are[

t − j,

(
k

n2
− 1

)
t − i,

(
jk

n2
− i − j

)
t, nt − n5− i j ,

j ((n− i )t − n5),

(
n− jk

n2
+ j

)
i t − in5

]
.

In order to show that for proper choices oft the lineL(i, j, k, t) lies above all lines
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in A∪ B ∪ C (except for those it intersects), we compute

L(i, j, k, t) ¦ ar = (i − r )

(
n− r + j − jk

n2

)
t + (i − r )( jr − n5),

L(i, j, k, t) ¦ br = ( j − r )

(
i − n− r + kr

n2

)
t + ( j − r )(n5− r i ),

and

L(i, j, k, t) ¦ cr = (k− r )

(
j

n
− i j

n2
− n3

)
t.

Now sett = (n5 − i j )/(n− i + j ). For large enoughn the projection on thexy-plane
of anyL(i, j, k, t) is clockwise of the projection of any line inA or B. The slope of the
projection ofcr isα = −1+r /n2 and that ofL(i, j, k, t) isβ = (i−(−1+k/n2)t)/( j−t).
After performing some algebraic computations we find that ifn is large enough, then
α > β if and only if k ≤ r . In other words,L(i, j, k, t) is clockwise to allcr with k ≤ r
and it is counterclockwise to the others. Thus, lineL(i, j, k, t) lies above (or intersects)
all lines in A∪ B ∪ C if and only if the four inequalities below are satisfied:

L(i, j, k, t) ¦ ar ≥ 0 for 1≤ r ≤ m,(4)

L(i, j, k, t) ¦ br ≥ 0 for 1≤ r ≤ m,(5)

L(i, j, k, t) ¦ cr ≥ 0 for 1≤ r < k,(6)

and

L(i, j, k, t) ¦ cr ≥ 0 for k ≤ r ≤ n− 2m.(7)

It is easy to check that (6) and (7) are always satisfied ifn is sufficiently large. To see
that the same is true for (4) and (5) we rewrite the inequalities. Inequality (4) becomes

−
(

j − n5− i j

n− i + j

)
(r − i )2+

(
n5− i j

n− i + j

)
jk

n2
(r − i ) ≥ 0,

while, for inequality (5), we get

+
(

i + n5− i j

n− i + j

)
(r − j )2−

(
n5− i j

n− i + j

)
kr

n2
(r − j ) ≥ 0.

In both cases the first term dominates the other ifn is sufficiently large. Therefore
each inequality is satisfied andL(i, j, k, t) lies above each of then lines. Note that the
n lines can be made mutually disjoint by perturbing them a little without making the
combinatorial complexity of the upper envelope any smaller. This completes the detailed
construction.

THEOREM4. The maximum combinatorial complexity of the entire upper envelope of
n lines in space is2(n3).
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6. Testing the Towering Property. In this section we exhibit a reasonably efficient
deterministic algorithm for testing whethern blue linesb1, . . . ,bn in 3-space lie above
m other red linesr1, . . . , rm; this is what we call the “towering property.” Our method
runs in timeO((m+n)4/3+ε), for anyε > 0, a substantial improvement over the obvious
O(mn) method.

We first consider the case where thexy-slope of every red line is at least as large as that
of any blue line. In that case if we map the blue lines (oriented so as to havexy-projections
going from left to right) to pointsλ1, . . . , λn in P5 via Plücker coordinates, and the red
lines (similarly oriented) to hyperplanesρ1, . . . , ρm in P5 via Plücker coefficients, then
the towering property is equivalent to asserting that alln blue points lie in the convex
polyhedronC obtained by intersecting the appropriate half-spaces bounded by them red
hyperplanes, as given by (1).

How do we test this latter property? We again use a net-based partitioning method, as
in the previous section. However, first we dispose of some boundary cases. Ifn ≥ m2 (so
there are relatively few red lines), then we compute the upper envelope of the red lines,
as in the preceding section. That is, we compute the intersectionC of the appropriate
half-spaces bounded by the red hyperplanes, and preprocess it for point location. Then
we test whether the Pl¨ucker image of every blue line lies inC. All this can be done in
time O(m2+ε + n logm). Dually, in the casem≥ n2, we can solve our problem in time
O(n2+ε+m logn) (by mapping the blue lines to hyperplanes and the red lines to points).

Otherwise, we choose a netR of a constant numberr of red half-spaces in
O(nr4/ log4 r ) time, compute their intersection, denoted as above byCR, and obtain
a simplicial cell decomposition of this convex polyhedron intoO(r 2) simplices. Just as
in Section 4, each simplexσ of this decomposition will meet at mostc(m/r ) logr of
the red hyperplanes, for some absolute constantc > 0. Again as before, it is possible to
choose these simplices so that if a red hyperplane avoids a simplexσ , thenσ is contained
in the half-space of the hyperplane. We now locate then blue points in these chosen sim-
plices (by an exhaustive method, for example). If all the points do not lie in them, we
have a negative answer to the towering question and we are done. If all goes according
to plan, however, we end up withO(r 2) separate towering subproblems, each involving
some blue points together withO((m/r ) logr ) red half-spaces. Because a blue point can
lie in only one simplex, the subsets of the blue points belonging to each simplex form a
partition of the set of all blue points.

Let D(m, n) denote the time complexity of testing the towering property forn blue
points andm red hyperplanes inP5. The above divide-and-conquer method gives us the
following recurrence forD(m, n):

D(m, n) = O(m2+ε + n logm), if n ≥ m2,

D(m, n) = O(n2+ε +m logn), if m≥ n2,

and

D(m, n) =
∑

i

D
(
c
(m

r

)
logr, ni

)
+ O

(
(m+ n)r 4

log4 r

)
otherwise,

wherec is some fixed constant, and theni ’s areO(r 2) positive integers summing up to
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n. We easily prove that the worst case occurs when theni ’s are roughly equal. This gives

D(m, n) ≤ br2D

(
c
(m

r

)
logr,

dn

r 2

)
+ O

(
(m+ n)r 4

log4 r

)
,

for some additional constantsb andd. A similar recurrence is solved in [EGS1]. Using
the techniques of that paper, we derive that for any fixedε > 0 we can first choose the
ε in the boundary casesn ≥ m2 or m ≥ n2 above small enough, and then the net sizer
large enough so that

D(m, n) = O(m2/3+εn2/3+ε + (m+ n) log(m+ n)).

We now return to the general towering problem and relax all assumptions on the
slopes of the projections. Compute the median slope among the projections onto the
xy-plane of all the red and blue lines together. This partitions the red lines into two sets,
R1 and R2, and the blue lines into two sets,B1 and B2, such that each line inR2 ∪ B2

projects onto thexy-plane into a line of slope at least as large as that of any projected
line of R1 ∪ B1; furthermore, the sizes ofR1 ∪ B1 andR2 ∪ B2 are roughly equal. Now
we solve the towering problem recursively with respect toR1 versusB1 and then forR2

versusB2. If no negative answer has been produced yet, then we may apply the previous
algorithm to the pairs(R1, B2) and(R2, B1). The correctness of the procedure follows
from the fact that all pairs of red and blue lines are (implicitly) checked.

If T(m, n) is the expected time of this algorithm, then

T(m, n) = T(m1, n1)+ T(m2, n2)+ O(m2/3+εn2/3+ε + (m+ n) log(m+ n)),

with m1+m2 = m, n1+n2 = n, andm1+n1 = m2+n2. The solution to this recurrence
relation is maximized ifm1 = m2,= m/2 andn1 = n2 = n/2. In this case we get

T(m, n) = O(m2/3+εn2/3+ε + (m+ n) log2(m+ n)).

An additional computation similar to that detailed at the end of the previous section
allows us to determine, within the same bounds, the red line immediately below each
blue line, and thus also, if the towering property holds, the smallest vertical distance
between the two groups of lines. So we conclude with our theorem:

THEOREM5. Given n blue lines and m red lines in space, we can test that all the blue
lines pass above all the red lines(the towering property) in time and space
O(m2/3+εn2/3+ε + (m + n) log2(m + n)), for any ε > 0. If so, within the same time
bound, we can actually find the first red line below each blue line.

This is upper-bounded byO((m+ n)4/3+ε), a simpler expression to remember (but
where the coefficient of proportionality depends onε).

7. Separating Lines by Translation. We address here the question of whether it is
always possible to “take apart” a set of lines in 3-space by moving a proper subset of
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Fig. 3.The groupA of linesa1, a2, anda3.

them to infinity, through a continuous sequence of translations, without ever causing
lines to cross.

More precisely, letL be a set of pairwise-disjoint lines in 3-space, and letX + v
denote the result of translating a set of linesX by a vectorv. We ask whether there are
always a proper partition ofL in two subsetsF (fixed) andM (moving), and a continuous
functionv(t) from< to<3 such thatv(0) = E0, no line inM + v(t) meets or is parallel
to a line inF for all t ≥ 0, and all lines inM + v(t) get infinitely far from the origin as
t →∞.

The answer is “no.” Here is a counterexample with nine lines, consisting of three
groupsA, B, C of three lines each. GroupA consists of the linesa0 througha2 joining
the following pairs of points, given in Cartesian coordinates:

a0 through (4,−2,+ε) and (0, 1,−ε)
a1 through (0, 1,+ε) and (−4, 0,−ε)
a2 through (−4, 0,+ε) and (4,−2,−ε)

whereε is a small number, say 10−100. See Figure 3. The other two groups are obtained
from A through±120◦ rotation around the(1, 1, 1) axis. See Figure 4. Note thatA
“surrounds” one of the other two groups,B, in the sense that all the lines ofB pass
through the triangle defined by projectinga0 througha2 onto thexy-plane. In the same
way, groupB surrounds the third groupC, andC surroundsA.

Now suppose the partition leaves one group—sayA—entirely in F and suppose
bi ∈ M . Then the displacement vectorsv(t) are confined to a bi-infinite triangular prism
whose axis is parallel tobi and whose faces are parallel toa0 througha2. Since these
displacements never takebi very far from the origin, the linebi must be inF . However,
if all lines of B are fixed, the same argument shows thatC is entirely fixed, andM = ∅,
a contradiction. We conclude that no group can be entirely inF ; and since we can swap
M and F by negating all displacementsv(t), the same argument shows that no group
can be entirely inM .

So, theM , F partition must split all three groups. We consider groupA for a moment.
Note that thez-slope of the linesa0 througha2 is less thanε, and thatai+1 passes only
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Fig. 4.All three groupsA, B, andC together—the full counterexample.

2ε aboveai (where indices are computed modulo 3). Therefore, ifai+1 is fixed and
ai is moving, the displacement vectorsv(t) must lie below a plane of slope close to
ε that passes 2ε above the origin of<3. Conversely, ifaj is fixed andaj+1 is moving,
the displacementsv(t) must lieabovea similar plane that passes 2ε below the origin.
Combining these two arguments, we conclude that if the partitionM , F splits groupA,
then the displacementsv(t) are confined to a narrow wedge whose faces are very close
to thexy-plane.

Applying the same argument to the other two groups, we conclude that the displace-
mentsv(t) lie in the intersection of three narrow wedges, each close to the corresponding
coordinate plane. However, this intersection is bounded (its diameter is at most a few
timesε), which meansM cannot be moved to infinity, a contradiction. We have thus
proved:

THEOREM6. There is a set of nine mutually disjoint lines in3-space that cannot be
taken apart by continuously translating a proper subset off to infinity.

8. Open Problems. Although the manifold of all nonoriented lines in 3-space has been
well studied [HP], less seems to be known about the manifold of oriented lines that we
have used in this paper, and which seems to be computationally of significant advantage.
It is known that this manifold is topologically equivalent to the oriented Grassmann
manifold M̃4,2(<), which happens to be the same asS2× S2.11

In general, it appears that most questions about lines in space are still open. Below
we list some of the most natural ones.

11 A geometric proof can be given by associating to every pair of unit vectorsu, v (placed at the origin of
3-space) the oriented linel that passes through the tip of the vector(u× v)/(1+ u · v) and has the direction
of the vectoru + v. Whenu = −v the line l is by definition the line at infinity on the plane normal tov
and oriented relative tov according to the right-hand rule. It is easy to check that this mapping is continuous,
one-to-one, and generates all oriented lines of 3-space.
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A. Isotopy Classes. We already mentioned several open problems about isotopy classes.
What is the maximum number of isotopy classes than can be associated with a single
orientation class? We conjecture that this number is2(n2).

B. Many Cells in Line Arrangements. We saw in Section 3 that any single “line” cell
in an arrangement ofn lines has combinatorial complexityO(n2). On the other hand, we
know that allO(n4) cells have total combinatorial complexity of onlyO(n4). So what
about the total combinatorial complexity ofm distinct cells? A particularly interesting
case of this would be to determine the total complexity of the “unbounded component”
of the arrangement, that is, of those cells containing lines that can be pulled away to
infinity. Such problems have been extensively studied for arrangements of lines and
segments in the plane, and for arrangements of planes and hyperplanes in three and
higher dimensions [EGS1], [CEGSW], [EGS2]. If we blindly use the result form cells
in an arrangement ofn hyperplanes in five dimensions from [EGS2] we get a very weak
estimate for our problem. The reason is that only those features of them cells lying on
the Plücker hypersurface matter for us. It would be interesting to develop such a “many-
faces” theory for arrangements of lines in space. A curious subproblem here is to find a
geometrically intuitive way to partition a line cell into natural subcells, each of constant
description complexity (i.e., to triangulate the cell), so that the number of such subcells
is proportional to the feature complexity of the original cell.

Related to many-faces problems are questions about incidences. We have been able
to obtain anO(n7/4) upper bound on the number of triple intersections of noncoplanar
lines amongn given lines in space [CEG+], and very recently this was improved to
O(n23/14log31/14n) [Sh2]. A lower bound ofÄ(n3/2) is easy to construct and a natural
open problem is to close this gap.

C. The Complexity of a Surface Upper Envelope. Given a collection ofn lines in 3-
space, we can consider a surfaceϕ(x, y) defined as follows. For each point(x, y) in the
plane the value of the surfaceϕ(x, y) is the smallestz with the property that there is a
line through the point(x, y, z) which passes above then given lines. We know that this
surface consists of a bunch of patches of different reguli joined together. What is the
combinatorial complexity of this surface?

D. k-Sets and Related Concepts for Line Arrangements. We saw that the upper enve-
lope ofn lines in space hasO(n2) vertices in the consistent orientation case. This means
that there are onlyO(n2) other lines stabbing four of the given lines and passing above
all the rest. How many lines are there stabbing four of the given lines and passing above
at mostk of the given lines? A preliminary calculation using the techniques of [CS] and
[Sh1] suggests that the right answer isO(n2k2). Many more questions about standard
k-sets [Ed] have analogs in this line setting and deserve further study.

E. Order Statistics and Centerlines. Since lines in space can form cycles, they can
have strange order statistics. For example, if all lines form a cycle in the above/below
relation, then each line could be above half of the other lines and below the other half.
We can associate with a line arrangement these counts of how many lines lie above and
below each line; it would be nice to characterize the valid count sequences. We may also
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think of analogs in the line case of the notion of centerpoints for collections of points (in
the plane or space). For example, given a collection of lines in space, does another line
(the “centerline”) always exist such that in all planes passing through the centerline the
intersections of the given lines with that plane are roughly evenly distributed (a constant
fraction lying) in each of the half-planes defined by the centerline? In a somewhat related
vein, Paterson [P] was able to show recently that for any set ofn lines in space three
mutually orthogonal planes always exist so that each orthant thus defined is cut by only
n/2 of the lines.

F. Cycles in Line Arrangements. In [CEG+] the following result is presented. LetL
be a given collection ofn nonvertical lines in 3-space. Define a directed graphG whose
vertices are the lines ofL and whose directed edges are of the formEl1l2 if l1 lies abovel2.
Then we can test, in randomized expected timeO(n4/3+ε), for anyε > 0, whetherG is
acyclic. Many related open questions remain. For example, how fast can we compute the
strong components of this graphG? If there is a cycle present, then what is the minimum
number of cuts we need to break up our lines so that the resulting collection of segments
is acyclic?

G. Taking Lines Apart. We could try to extend Theorem 6 in a number of ways. For
instance, we conjecture that a configuration of lines in 3-space exists that cannot be
taken apart even if we allow the moving subset to go through arbitrary rigid (Euclidean)
motions, or arbitrary affine maps, instead of just translations. We may also study what
happens if we are allowed to partition the lines into three or more independently moving
subsets.
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