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Lines in Space: Combinatorics and Algorithms
B. Chazellé H. Edelsbrunnet,L. J. Guibas, M. Sharir® and J. Stolfl

Abstract. Questions aboutlinesin space arise frequently as subproblems in three-dimensional computational
geometry. In this paper we study a number of fundamental combinatorial and algorithmic problems involving
arrangements af lines in three-dimensional space. Our main results include:
1. Atight®(n?) bound on the maximum combinatorial description complexity of the set of all oriented lines
that have specified orientations relative to thgiven lines.
2. Asimilar bound of® (n®) for the complexity of the set of all lines passing abovertfgven lines.
3. Apreprocessing procedure usi@gn?+¢) time and storage, for any> 0, that builds a structure supporting
O(logn)-time queries for testing if a line lies above all the given lines.
4. An algorithm that tests the “towering property” @(n%3+¢) time, for anye > 0: don given red lines lie
all aboven given blue lines?
The tools used to obtain these and other results includekBi coordinates for lines in space andets
for various geometric range spaces.

Key Words. Computational geometry, Lines in spaceyékér coordinates;-Nets.

1. Introduction. Inthis paper we address certain combinatorial and algorithmic prob-
lems about lines in three-dimensional Euclidean space. Algorithmic questions about
lines in three dimensions arise in numerous applications, including the hidden surface
removal and ray tracing problems in computer graphics, motion planning, placement and
assembly problems in robotics, object recognition using three-dimensional range data in
computer vision, interaction of solids and of surfaces in solid modeling and CAD, and
terrain analysis and reconstruction in geography.

Though the geometry of lines in the plane is a well-studied part of computational
geometry, the corrresponding investigation of lines in three-dimensional space is a rela-
tively new area. Progress on three-dimensional problems is still relatively slow, mainly
because these problems are often harder than their planar counterparts. Typically, the
combinatorial structure of the geometric space of interest is more complicated and has
larger complexity in the spatial case than in the planar case. Thus, efficient algorithms
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for processing it are more difficult to obtain. Straight lines, one of the simplest types
of objects encountered in spatial problems, already present many of these difficulties.
In fact, as we will see below, lines in space are modeled best by nonlinear objects. For
a classical treatment of the geometry of lines in 3-space see the book by Sommerville
[SA, or various kinematics text8R], [Hul].

In this paper we make contributions to three-dimensional computational geometry
by studying several combinatorial problems involvieagangements of lines in space
By the arrangement of a given set of lines we mean the partitioning of the space of all
lines introduced by the given lines. We first provide a combinatorial and algorithmic
analysis of what we call aarientation clasof a collection of lines in space, i.e., the
topological boundary of the space of lines having a given orientation with all the given
lines. We show how to express the “above/below” relationship of lines in space by
means of the orientation relationship and use this reduction to analyze various problems
concerning the vertical relationship of lines in space. Even though (as is discussed
below) the “natural complexity” of an arrangementrofines in space i®(n*) (see
[MQ]), we are able to solve each of the problems that we consider in nearly quadratic
space, or better. In a companion papeE[5S] we then apply these results to several
important practical problems involvingplyhedral terraing(i.e., images of piecewise-
linear continuous bivariate real functions) and obtain reasonably efficient solutions.

In order to introduce and summarize our results in more detail here, we review some
basic geometric properties of lines in 3-space. A line requires four real parameters to
specify it, so it is natural to study arrangements of lines in space within an appropriate
parametric 4-space. Unfortunately, any reasonable such representation introduces non-
linear surfaces. For example, in many standard parametrizations the space of all lines
intersecting a given line is a quadric surface in 4-space. To obtain a combinatorial rep-
resentation of an arrangementrofines in space it is therefore necessary to construct
an arrangement af quadric surfaces in 4-space (in fact, the recent pagér][does
provide an implicit construction of such an arrangement; see &is§) [ This arrange-
ment has complexit® (n*) (as follows, e.g., from a theorem of Milnor and Tholi[)
which is usually unacceptable for practical applications; moreover, even if we were to
construct the arrangement, performing point-location (that is, “line-location”) in it is
difficult. These observations indicate why many of the recent works on visibility prob-
lems involving arbitrary collections of lines (or segments, or polyhedra) in space produce
bounds likeO(n*) or worse (seef D], [GCY, [MO], and [Mc]).

Fortunately, there are two lucky breaks that we are able to exploit in this work, which
lead to improved solutions in many applications. The first is that there is an alternative
way to represent lines, usirjucker coordinategsee, e.g.,${, [BR], and [Hu]; the
original reference isql]). These coordinates transform (oriented) lines into either points
or hyperplanes in homogeneous 6-space (more precisely, in oriented projective 5-space)
in such away that the property of one linéntersecting another lirlgis transformed into
the property of the Ricker point of; lying on the Plicker hyperplane df (or vice versa).

Thus, atthe cost of passing to five dimensions, we can linearize the incidence relationship
between lines. This BEker machinery is developed in Section 2. For completeness, we
mention that another representation of lines in 3-space by two points in the plane, based
on theparallel coordinatesntroduced by Inselberg], has also been found useful in
practice.
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In studying arrangements of lines in space, it is more important to analyrlalige
orientationof two lines rather than only the incidence between them, as the latter is a
degenerate case of the former. We develop this concept of relative orientation in Section 3
and show how to determine efficiently if a query line is of a particular orientation class
with respect tan given lines. We give a method that takes preprocessing and storage
of O(n?*%) and allows a query time dD(logn). In the process we show that the total
combinatorial description complexity of any particular orientation class is in the worst
cased (n?). We get this bound by mapping our lines to hyperplanes in oriented projective
5-space using Btker coordinates. Our orientation class then corresponds to a convex
polyhedron defined by the intersection mfalf-spaces based on these hyperplanes.
Our second lucky break now comes from the Upper Bound Theorem (see Eely,, [
stating that the complexity of such a polyhedron is 08l§n'>2) = O(n?) (the same
asymptotic order as in 4-space, which means that passing to five dimensions did not
really cost us anything extra in terms or complexity).

For many applications, however, we need to analyze the property of one line lying
above or below another. In Section 4 we show how, by adding certain auxiliary lines, we
can express “above/below” relationships by means of orientation relationships. Using
this reduction we provide an efficient method for testing if a query line lies above the
n given lines. Specifically, we give an algorithm for preprocessing a collegtiohn
lines in space irD(n?*¢) preprocessing time and storage. Our algorithm builds a data
structure that supportd(logn) queries of the form: given a linle does it lie above all
the lines of£? If so, which line ofL lies “immediately below, i.e., what is the first
line of £ to be hit ad is translated downward? We also demonstrate in Section 5 that
the worst-case combinatorial complexity of the “upper envelopef lafes is® (n®)—
the main observation being that such an envelope can be expressed as the umion of
orientation classes of the kind discussed in the previous paragraph.

We also provide in Section 6 batched versiorof the algorithm for testing the
“above/below” relationship: Givem blue lines andh red lines, determine whether
all blue lines lie above all red lines (we call this the “towering property”), and, if so,
find for each blue line the red line lying immediately below it (in the above sense). We
achieve this by an algorithm with running tin@((m + n)*3+#), for anye > 0.

The algorithms just mentioned, as well as many others developed in this paper, are
based on the recently introduced techniques-ofets in computational geometry by
Haussler and Welzl, and Clarkson (se®/], [CI1], and [CF]). Originally e-nets were
obtained by random sampling. The randomizations employed by the algorithms draw a
small random sample of the data objects, and use it to partition the problem into smaller
subproblems in a uniform manner. Even more recently, various efficient deterministic
techniques for constructingnets were obtained by Matsek and others\al]-[Ma3],

[CH]; see also the survey paper by Agarwalt]]. Using these methods all the algorithmic
bounds given in this paper can be made to be worst-case bounds. The corresponding ran-
domized versions would be easier to implement and probably preferable in any practical
application.

We close the paper with a discussion of line separability by translation in Section 7,
and by describing several open problems about lines in space in Section 8. We hope that
this paper will stimulate further combinatorial and algorithmic work in three-dimensional
line geometry.
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2. Geometric Preliminaries. The main geometric object studied in this paper is a
line in 3-space. Such a linecan be specified by four real parameters in many ways. For
example, we can take two fixed parallel planes (& g-,0 andz = 1) and specify by

its two intersections with these planes. We can therefore represent all lines in 3-space,
except those parallel to the two given planes, as points in four dimensions. However, as
already noted, even simple relationships between lines, such as incidence between a pair
of lines, become nonlinear in 4-space. More specifically, a collegdien{l, ..., I,} of

n lines induces a corresponding collection of hypersurf&ces(s?, . . ., s"} in 4-space,
wheres' represents the locus of all lines that intersect, or are parallgl fivjs easily
checked that eac$! is a quadratic hypersurface). Tagangement4 = A(S) induced

by these hypersurfaces represents the arrangement of the lidgsnirihe sense that

each (four-dimensional) cell ofl represents an isotopy class of lines in 3-space (i.e.,
any such line in the class can be moved continuously to any other line in the same class
without crossing, or becoming parallel to, any linedh

This arrangement can be understood in three dimensions as follows. Given three lines
in general positiohin 3-space, they define a quadratic ruled surface, callegaus
which is the locus of all lines incident with the given three lines. A fourth line will in
general cut this surface in two, or zero, points. Thus four lines in general position will
have either two or zero lines incident with all four of them. These quadruplets of lines
with a common stabber correspond to vertices of the arrangesdin other words, a
line moving within an isotopy class comes to rest when it is in contact with four of the
given arrangement lines—each of them removing one of the four degrees of freedom that
the moving line has. Note that some of these contacts can be at infinity, corresponding
to the moving line becoming parallel to one of the given lines.) Similarly, the edges of
A correspond to the motion of a line while incident with three given lines, in the regulus
fashion described earlier. In the general case each vertédais eight incident edges.
Higher-dimensional faces of can be obtained similarly, by letting the common stabber
move away from two, three, or all four of the lines defining a vertex. This shows that
the number of these higher-dimensional facesla$, in each case, related by at most
a constant factor to the number of vertices4fThis last statement remains valid even
if the given lines are not in general position, as follows from a standard perturbation
argument.

By the discussion in the preceding paragraph (or by invoking the theorem of Milnor
and Thom Mi], as mentioned in the Introduction) we can conclude that the combinatorial
complexity of the arrangement of quadratic surfaces in 4-space@n*) and this
bound is attainable (se&IP]). In particular,.A hasO(n%) vertices, where each such
vertex represents a line that meets four of the lineS.itWnfortunately, it is difficult to
handle such an arrangement of nonlinear hypersurfaces explicitly; tasks such as efficient
calculation and representation.df processing it for fast point locatidhand obtaining
sharp complexity bounds for certain portions of it become quite difficult.

7 We take this to mean that the lines are pairwise nonintersecting and nonparallel. For more lines we add the
condition that no five of our lines can be simultaneously incident with another line (not necessarily of our
collection).

8 An efficient technique for point location among algebraic manifolds was recently giveEiR$2. However,

that method requireg (n®) space.
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We therefore exploit another representation of lines, uBiigker coordinates and
coefficientysee B}, [BR], and [Hu] for a review of these concepts). Liebe an ori-
ented line, and leg, b be two points ol such that the line is oriented fromto b.

Let [ag, a1, @, ag] and [by, by, by, bs] be the homogeneous coordinatesa@ndb, with

ap, by > 0 being the homogenizing weights. (By this we mean that the Cartesian coor-
dinates ofa are(ai/ag, ax/ag, as/ap)). By definition, the Riitker coordinates dfare the

six real numbers

(1) = [7o1, o2, W12, 703, 13, 23],

wherer;; = ajb; — gl for 0 <i < j < 3. Similarly, the Rlicker coefficients of are
w (1) = (mwe3, —m13, W03, T12, —T02, T01),

i.e., the Plicker coordinates listed in reverse order with two signs flipped. The most
important property of Ricker coordinates and coefficients is that incidence between
lines is a bilinear predicate. Specifically,is incident tol? if and only if their PLicker
coordinatesr!, 72 satisfy the relationship

1_2 1_2 1_2 1_2 1_2 1_2
1) T017T93 — T ig + T1oMG3 + TagTip — WigMoz + Tosmh = 0.

This formula follows from expanding the four-by-four determinant whose rows are the
coordinates of four distinct poingsb, ¢, d, with a, bonl* andc, d onl 2. This determinant

is equal to 0 if and only if the two lines are incident (or parallel). In general, the absolute
value of the quantity in (1) is six times the volume of the tetrahedtmrd,® and its sign
gives the orientation of the tetrahedrabcd As long ad? is oriented froma to b and

12 from c to d, this sign is independent of the choice of the four points, and defines the
relative orientationof the pairl?, 12, which we denote bit o 12 [Si].

It is easily checked that any positive scalar multiplendf) is also a valid set of
Pliicker coordinates for the same oriented lineorresponding to a different choice of
the defining pointa andb, or to a positive scaling of their homogeneous coordinates.
Also, any negative multiple of (1) is a representation dfwith the opposite orientation.
Therefore, we can regard thaieKer coordinates (I ) as the homogeneous coordinates of
a point projective oriented 5-spa@8, which is a double covering of ordinary projective
5-space? Dually, we can regard the itker coefficientso (1) as the homogeneous
coefficients of an oriented hyperplane®?. Equation (1) merely states that lifkis
incident to linel? if and only if the Plicker pointr (1%) lies on the Riicker hyperplane
@ (12). In fact, the relative orientatiolt ¢ 12 of the two lines is+1 if 7 (1) lies on the
positive side of the hyperplane (12), and—1 if it lies on the negative side.

We observe that not every point @° is the Plicker image of some line. It is
well known that the real six-tuplér;;) is such an image if and only if it satisfies the

9 ltalso equals the produabcd Dsine, whereD is the distance betweéhand| 2, andw is the angle between
the two lines.

10 The points ofP® can be viewed as the oriented lines through the origii%fwith the geometric structure
induced by the linear subspace®if or, equivalently, as the points of the five-dimensional spE&rwith the
geometric structure induced by its great circles. SEefor more details on the theory of oriented projective
spaces.
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guadratic equation
(2 123 — 702713 + m12omo3 = 0,

which states that every line is incident to itself. Thus among the sigl®@l ‘coordinates

two are redundant. Equation (2) defines a four-dimensional subsgpP otalled the
Plucker hypersurfacEl. Notice that the relative orientation of a line relative to a sixtuplet
of numbers that does not correspond to a point on thekel hypersurface still makes
perfect sense—simply plug the appropriate numbers into (1). It turns out that such
“imaginary” lines do have a natural geometric interpretation in 3-space. They are known
aslinear complexesand their properties are studied T and [J].

3. The Orientation of a Line Relative ton Given Lines. We wish to analyze the
setC(L, o) consisting of all lined in 3-space that have specified orientatiens=
(1,02, ..., 0" relative ton given lines in = (11,12, ..., 1. (We call this set the
orientation class relative to£.) Translated to Ricker space, the definition says that
point 7(1) has to lie on sides’ of every hyperplaner (I'), and therefore inside the
convex polytopeC(L, o) in P° that is the intersection of thogse half-spaces. The
orientation clas€ (£, o) is thus the intersection of the polytof&L, o) and the Riicker
hypersurfacdl. Note that sincdl is of degree 2, it can interact in at most “a constant
fashion” with each feature of the polytof& L, o).

For the purpose of this paper, we consider the poly©pé, o) to be an adequate
description of the orientation cla€$L, o). Computing the class then means computing
all the features of this polytope, i.e., all its faces (of any dimension). The number of
such features is thrmombinatorial complexitgf the class—intersecting witii can only
increase this number by a constant factor. By the Upper Bound Theorem (se&d@)g., [
this complexity is onlyO(n'>2) = O(n?). It is not difficult to find configurations of
lines £ that attain this bound. Consider the regulus (actually hyperbolic paraboloid)
z = xy and two families of/2 lines each of the regulus. One family consists of lines
from one of the two rulings of the regulus, and the other of lines from the other ruling.
By perturbing the lines of one family to be slightly off the regulus, we can make this a
nondegenerate arrangement. Itis simple to check that in every elementary square defined
by two successive lines from one ruling and two successive lines from the other ruling
there corresponds a line incident to all four of the lines defining the square and passing
above all the rest. A more detailed construction of this kind is given in Section 5.

A possible data structure for representing the polytGpE&, o) is its face-incidence
lattice, as described irEf]. Seidel's output-sensitive convex hull algorithiad con-
structs this representation @(log n) amortized time per face. The more recent optimal
but complex convex hull algorithm of Chazell€lj] can also be used to obtain the
polytopeC in O(n?) time. As it turns out, in the algorithms to follow we only need to
compute orientation classes for collectiohsvhose size is bounded by a constant, so
the representation issue does not arise in a significant way.

THEOREM1. The set of all lines irB-space that have specified orientations to n given
lines has combinatorial complexity(n?) in the worst caseand can be calculated in
time O(n?).
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It was shown by Neil White (seé/[O]) that the intersection of the convex polytope
C(L, o) and the Rlicker hypersurfacH may consist of many connected components. In
otherwords, an orientation class relative to the fixed lihegay contain multiple distinct
isotopy classes. We note that the vertices of those isotopy classes are intersections of the
Pliicker hypersurfacel with the edges of the polytog@(L, o). Sincell is a quadratic
hypersurface, there are at most two such intersections per edge, and therefore the total
number of vertices in all those isotopy classes is ddly?). In other words, there are
at mostO(n?) lines that touch four of the lines @f and have specified orientations with
all the others. A slightly more complicated argument shows that there are a0t
isotopy classes in one orientation class. We do not know if this bound can be attained.

We now give an efficient algorithm for deciding whether a given queryllime3-
space lies in a particular orientation classelative to a set of n fixed lines. We
begin by preprocessing the fixed lines into a tree-like data stru&@urk o), using
a net-based partitioning technique that somewhat resembles thoS&panpd [CH].

For simplicity, we describe the construction for the class (+, +, ..., +); the same
construction can be applied to other classes by reversing the orientation of the appropriate
lines of L. Consider then Plicker hyperplanes that correspond to the given lifies

We choose amr-netR for simplex range queries among these hyperplanes, with some
fixed sizer > 0. We compute the open five-dimensional polytépgr) = C(R, +")

that is the intersection of their positive half-spaces. Then we decon@p@sg into a
collectionC(R) of openk-dimensional simplices, fdk < 5, by picking a vertex of
C(R), recursively triangulating all the facesG{R) that are not incident to, and then
taking the convex hull of the pointand each of these simplices. By the Upper Bound
Theorem,C(R) has onlyO(r?) faces, andC(R) contains onlyO(r?) simplices. The
time required for these steps is dominated®gnr?/log*r), the cost of selecting the
net deterministicallylfla3]. Since none of these simplices meets any of the hyperplanes
of R , it follows from the net property (se&lV] and [CI1]) that each simplex ilC(R)

will meet at mostc(n/r) logr of the n original hyperplanes, for some constant- 0
independent of andn.

We then proceed to discard any simplex@fR) that lies entirely on the negative side
of some of then hyperplanes. Each surviving simplesbecomes a child of the root of
our data structure; the subtree rooted ebnsists of theD ((n/r) logr) hyperplanes that
intersects, recursively preprocessed as described above. If all simplices get discarded,
or if the polytopeC (R) was empty to begin with, then the orientation class is empty, and
the problem is trivialno query line can be positively oriented with respect to all lines in
L. (Note that the converse is not necessarily true.)

The storage and preprocessing time required in this technique obey the recursion

n nré
T() =002 T (c— Iogr) +0 (—)

r log*r
for some constarg. It is not hard to prove that this solvesT@n) = O(n>), for some
positive numbek that tends to 0 as increases. (Note however that increasinglso
increases the constant of proportionality.)

Testing a query liné proceeds as follows. We first test whether any of @@?)

simplices at the top level of the tree contains thecREr pointrz(l). If so, we search
recursively in the subtree rooted at that simplex. If not, then we knowltig@hot
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positively oriented relative t&€. There are onlyO(logn) levels to recurse in, so the
worst-case query time i©(logn). Again, the constant of proportionality dependsron
(or, alternatively, orz).

THEOREM2. Given n lines in space and an orientation classwe can preprocess
these lines by a procedure whose running time and storaggmg*®), for anys > 0,
so that given any query line, lwe can determinen O(logn) time whether| lies in the
orientation classr with respect to the given lines

We note that a simple modification of this data structure allows utoputein
O(logn) time the orientation class of a liheelative ton fixed ones, rather than merely
test whethet is in a predetermined class. The modification consists in computing (and
triangulating) the whole zone of theudeKer hypersurfac#l in the arrangement of the
net hyperplane®, rather than just the ce€C (R, +"). The complexity of this zone is
O(r*logr) inthe worst case, by a recent resélF[S]. By an analysis similar to that given
above, it follows that there is a structure of si2gn*+¢) that can be used to compute
the orientation class of a given line within the above time bound.

4. Testing Whether a Line Lies Aboven Given Lines. We now consider a particular
case of the general problem discussed in the previous section, which turns out to have
significant applications on its own. We are concerned with the property of one line
lying above or below another. Formally, lies above? if there is a vertical line that
meets both lines, and its intersection withis higher than its intersection witk. We
assume that neithét norl? is vertical, and the two lines are not parallel. Our previous
nondegeneracy assumptions already exclude concurrent or parallel lines; whenever we
discuss the “above/below” relation, we also exclude vertical lines from consideration.
We can express this notion in terms of the relative orientation of these lines, as follows.
Assume the line$! andl? have been oriented in an arbitrary way, and consider their
(oriented) perpendicular projections 2" onto thexy-plane, seen from above. Observe
thatl? is above ? if and only if

the direction o1’ is clockwise to that of?" andl! ¢ 12 = +1,

or
the direction o1!’ is counterclockwise to that 6 andl! ¢ 12 = —1.

Now we introduce the line at infinity? that is parallel td? and passes through zenith
pointz,, = (0, 0, 0, 1), the point at positive infinity on the-axis. We orient the ling2
so that its projection on they-plane has the same direction as the projectiol? oft

is easy to check that the directionldf is clockwise ofi?’ if and only if 11 ¢ A2 = —1.
Therefore, we conclude thHtis above ? if and only if

(3) Tol?2=—11o a2

Intuitively, |1 passes abovi if and only if I* passes “between” the liné$ and A2.
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Thus, to express the fact that one line lies above another we need to check consistency
between two linear inequalities. This fact complicates the analysis of the above/below
relationship, in particular when many lines are involved.

Now let £ be a collection oh lines in 3-space, and consider the&€r), the upper
envelope of, consisting of all lines that pass above every line 6f We introduce the
auxiliary lines atinfinityA = {11, A2, ..., A"}, with each\! parallel to the corresponding
I" and passing through the point,. Then, according to (3), a lifeis above all lines in
Lifandonly ifl o1l = —I o Al; that is, if the orientation class bfrelative to the set’
is exactly opposite to its orientation with respect to the/set

Therefore, the sét(£) is the union of all orientation classé$L U A, ¢ - &) where
o - & is a sign sequence of the for@a?, o2, ..., 0", —ol, —0?, ..., —o"). Luckily
for us, onlyn of these classes are nonempty. To see why, we assume thatating
y coordinate axes have been rotated and the lines oriented so that the projettion of
coincides with the negative-axis, and all other lines (including the query lineoint
toward increasingt. We assume also that the links ..., |" are sorted in order of
increasingxy-slope. It is easy to see that if thg slope ofl lies between those df and
Ik+1 then its orientation class relative to the aeis (—K+"X). Therefore, we conclude
that there are only orientation classes relative 1v.

This observation leads to a fast algorithm for deciding whether a query fiasses
aboven fixed lines£. For each of thea valid orientation classes, = (—+"%), we
build a data structurEy(£) = (LU A, ok - 6k), as described in Section 3. Then to test
a given query ling¢ we first use binary search to locatextg-slope among the slopes of
then given lines. This information determines the orientation ctass | relative to the
lines in A. Once this has been found, we use the data strudlu¢€) to test whether
has the opposite orientation clagsrelative to the lines irC.

This straightforward algorithm uses space approximately cubit ifo reduce the
amount of space, we merge all thedata structure&y (L) into a single data struc-
ture X*(L) as follows. Assume all lines i have been sorted byy slope and ori-
ented as described above. Iretbe a parameter, to be chosen later. Partifiointo m

subsetsLy, ..., L, €ach subset consisting of approximatelyn consecutive lines in
slope order. Prepare the data Structuid§L) = S(L], (+ +---+)) andZ3(L) =
(L}, (= — -+ —)) for each prefix seJ:ZJ-p = Ui<kj Lk (1 < j < m) and each suffix

setﬁjs = Uj —k=m £k (2 < ] < m). The storage and preprocessing time for these steps
amount toO(mr?*¢), for anye > 0. Then recursively build the data Structlze(L;)

for each subsef; (using the same choice of the parametgr ThereforeX*(£) is a
data structure tree whose degreeniand whose depth will b® (logn/logm). Testing

a query linel now proceeds as follows. As before, we use binary search to locate the
xy slope ofl between the slopes of two lin¢s and %! of £. (This step has to be
performed only once.) Lef; be the subset containing the liHe By construction, the

xy slope ofl is greater than the slopes of all lines4R and less than the slopes of all
lines in /;js. Then we can test, i@ (logn) time, whethel lies above all lines in these
two subsets, using the data structuﬂ?%and Ef. If I does not lie above all these lines
we stop immediately; otherwise we recursively teagainstC; using the data structure
~*(Lj). If we setm = [n"], for some fixed and very small > 0, the entire procedure
takes timeO((logn)?/logm)) = O(logn). The storage and preprocessing time amount
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to O(mr?*¢ (logn)/ logm), which can also be written &3(n?*+¢), for a different yet still
arbitrarily small value ot > 0.

We can also provide a modified version of this procedure, having the same complexity
bounds, that can determine, for each querylilyéng above all lines of, which is the
first line of £ that!l will hit when translated vertically downward. The key observation
is that translation of downward corresponds to motion sfl) along a straight line,
sayp(l), on the Plicker hypersurfacél: the coordinateg (1) change linearly with the
altitude ofl, as follows:

[7o1, 702, T12, o3, W13 — tmwo1, 23 — tmwoy],

wheret is a parameter denoting the altitude. lAsoves vertically, it will become incident
with another lind’” exactly whenp(l) crosses the plane (I’), and the crossing point
can be computed in constant time. Moreover, the crossing point determines the line
o () uniquely, since it corresponds to a unique line in 3-space and the inverse of the
downward translation is a unique upward translation. Note thattaads to infinity
(which corresponds to lifting the line up by an infinite amount), itsdREr image tends
to a point of the form [00, 0, 0, —mo1, —7o2]- These limit points constitute a linein
P, and correspond to lines at infinity of 3-space passing through the zenith point.
Recallthat ateach step in the construction of the data struetiZgwe take a ner of
the hyperplaness (I') and construct the convex polytofgR). Instead of decomposing
C(R) into simplices, we divide its interior by a set of hypersurfaces with the property
that no linep(l) crosses one of these hypersurfaces, and the resulting cells still have
constant complexity. Specifically, take a decomposition of the bounda@y(B into
simplices, and back-project from each such sim@edong the linesp that terminate
at points ors. The collection of these back-projections yields a decompositi@&f)
into O(r?) cells. We argue that the combinatorial complexity of each cell is a constant
independent of. Indeed, the base of each cell is a four-dimensional simplex, the walls
of the cell are a lifting of the boundary of this simplex along the lipd3, and the roof
of the cell is some interval on the line Because of the way these cells are constructed,
to each celk there corresponds a unique lihg) of R that is first hit as we translate
downward any line whose &tker point lies irc. Again, thes-net theory tells us that we
can find a subset dD((n/r) logr) lines of £ such that the downward translation of any
linel, with (1) in c, will not meet any other line of until it reaches..
Therefore, if we use this modified cell decompositiol€gR) when constructing the
data structur&e*(£), then we test a liné for being above tha given lines, we can at
the same time locate the nearest line below

THEOREM3. Given n lines in spagave can preprocess them by a procedure whose
running time and storage is @), for anys > 0, so that given any query line,|

we can determinen O(logn) time, whether | lies above all the given lineand if so,
which is the first line of that | will hit when translated downward

5. The Complexity of the Upper Envelope ofn Lines. In the previous section we
saw that the upper envelop&L) of a set oh lines in 3-space is the union nrientation
classes relative to the sétU A. Each of these classes can be described as polytope of
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T

Fig. 1. The hyperbolic paraboloid = xy and its two families of generating lines.

PS5 with at mostO(n?) features. Therefore, the combinatorial complexity/gr) is at
mostO(n3).

Notice that each of these selected orientation classes relativelt@ A defines a
single isotopy class. This is so because any two litep? in this class point in the same
sector defined by the lines gfdown in thexy-plane. Thus we can always continuously
movep? to p? by first lifting it up high enough, then rotating it to align witi?, and then
dropping it down ontg?. In particular, this implies that in each of theserientation
classes, there are at ma3{n?) lines that touch four lines of, and lie above all the
remaining ones. (Each such line is the intersection of thekelr hypersurfacH with an
edge of polytop& (L, o); sincell is a quadric, there are at most two such intersections
per edge.)

We now exhibit a set of lines that attains this cubic bound. The example consists
of three collections of linesA, B, andC, of roughly equal size. The lines in sefs
andB are parallel to thexz-plane and to thg z-plane, respectively, and form a grid of
orthogonal generating lines of hyperbolic parabolbig: xy. See Figure 1. The lines
in setC pass well below the paraboloid and have a stesfope; theirxy projections
form a narrow pencil near the line+ y = 0—see Figure 2. The lines 6f are arranged
so that as we walk along their “upper envelope” we visit each of them in a sufficiently
long interval along which we can obtain “tangential views” of the entire portion of the
hyperbolic paraboloid covered b and B. Thus for every triplet of lines, b, c, one
line from each collection, we can find a line lying so that it connects the intersection of
a andb with an appropriate point og, and lies above all other lines. The boufdn®)
then follows. The technical details of this construction are given below.

To start, we lem = |n/3], A= {al,a2,...,am}, B = {b},b?% ..., b"M}, andC =
{ct, c?, ..., c"2M where

a = {(x,y,2: (y=i)and(z=ix)},
bl = {(x,y,2): (x=])and(z = jy)},
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YyYYyYvyvyy

Fig. 2. The oriented line group4, B, C (solid) and a representative of the oriented lih€s j, k, t) (dashed),
viewed from above.

and

k= {(X, Y, 2): (y: <% —1) x) and(z = nx—n5)}.

Note that the lines in grou@ all lie on the plane = nx — n® and are concurrent to the
point (0, 0, —n°) on thez-axis.

We now choose the Btker coordinates for each of the lines defined above. We
pick the points [10,i,0] and [1 1,i,i] on line &', which gives the Riéker coordi-
nates [10, —i, i, 0, i?]. For lineb!, we take the points [1j, 0, 0] and [1, j, 1, j], which
yields [0, 1, j, j, j2, 0]. Finally, for line ¢ we choose the points [D, 0, —n®] and
[1, 1, k/n? — 1, n —n%], which gives the Ricker coordinates [k/n?> — 1, 0, n, n®, kn3 —
n®).

Now we introduce the lind(i, j, k, t) which passes through the points j1i,ij]
and [1 t, (k/n?> — 1t, nt — n%]. Note thatL i, j, k, t) intersects lines', b/, andcX. Its
Pliicker coordinates are

[k ik 5 .
t—j, F_lt_l’ F_I_J t,nt—n>—ij,
. . 5 jk Y. s
J((n—=Dt —n>), (n—F—H)lt—m]

In order to show that for proper choicestahe lineL(i, j, k, t) lies above all lines
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in AU B U C (except for those it intersects), we compute
o r . .k . . 5
L@, j,k,tyoa = (i —r) n—r—|—j—F t+ 30 —-r)(gr —n>),
. r . : kr . 5 .
L, j. ktyob = (j—r) |—n—r+ﬁ t+(j —r)(n>—ri),
and
LG, j.ktyoc =k—r) l—i—nS t.
9 9 b n n2

Now sett = (n® —ij)/(n —i + j). For large enough the projection on thay-plane
ofanyL(i, j, k, t) is clockwise of the projection of any line iA or B. The slope of the
projection oft’ isa = —1+4r/n?andthatol (i, j, k, t)isg = (i —(—1+k/n?)t)/(j —t).
After performing some algebraic computations we find that i$ large enough, then
a > Bifandonly ifk < r. In other wordsL (i, |, k, t) is clockwise to alc" withk < r
and it is counterclockwise to the others. Thus, ling, j, k, t) lies above (or intersects)
all lines in AU B U C if and only if the four inequalities below are satisfied:

4 Ld, j,ktyoa >0 for 1<r <m,
(5) L, j,ktyob >0 forl<r <m,
(6) LG, j.ktyoc >0 for 1<r <k,
and

@ Ld, j,ktyoc >0 fork<r <n-—2m.

Itis easy to check that (6) and (7) are always satisfiedsfsufficiently large. To see
that the same is true for (4) and (5) we rewrite the inequalities. Inequality (4) becomes

N - n>—ij \ jk .
—(J—m>(r—l)+(m>ﬁ(r—|)20,

while, for inequality (5), we get

NS —ij - n® —ij \ kr .
R a— )= —) =0 - 0.
o Y (Y
In both cases the first term dominates the othar i§ sufficiently large. Therefore
each inequality is satisfied andi, j, k, t) lies above each of thelines. Note that the
n lines can be made mutually disjoint by perturbing them a little without making the

combinatorial complexity of the upper envelope any smaller. This completes the detailed
construction.

THEOREM4. The maximum combinatorial complexity of the entire upper envelope of
n lines in space i® (n%).
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6. Testing the Towering Property. In this section we exhibit a reasonably efficient
deterministic algorithm for testing whethelue linesb, ..., b, in 3-space lie above
m other red linesq, ..., ry; this is what we call the “towering property.” Our method
runs in timeO ((m+n)#3*+#), for anys > 0, a substantial improvement over the obvious
O(mn) method.

We first consider the case where theslope of every red line is at least as large as that
ofany blueline. In that case if we map the blue lines (oriented so as txlygwmjections
going from left to right) to points.1, ..., A, in P° via Plicker coordinates, and the red
lines (similarly oriented) to hyperplangs, . .., pm in P° via Plicker coefficients, then
the towering property is equivalent to asserting thandlue points lie in the convex
polyhedrorC obtained by intersecting the appropriate half-spaces bounded byrtgk
hyperplanes, as given by (1).

How do we test this latter property? We again use a net-based partitioning method, as
in the previous section. However, first we dispose of some boundary cases nf (so
there are relatively few red lines), then we compute the upper envelope of the red lines,
as in the preceding section. That is, we compute the interse€tafrthe appropriate
half-spaces bounded by the red hyperplanes, and preprocess it for point location. Then
we test whether the Btker image of every blue line lies & All this can be done in
time O(m?** + nlogm). Dually, in the casen > n?, we can solve our problem in time
O(n?** +mlogn) (by mapping the blue lines to hyperplanes and the red lines to points).

Otherwise, we choose a n® of a constant number of red half-spaces in
O(nr*/log*r) time, compute their intersection, denoted as abov€hy and obtain
a simplicial cell decomposition of this convex polyhedron ifit@ ) simplices. Just as
in Section 4, each simplex of this decomposition will meet at mostm/r) logr of
the red hyperplanes, for some absolute constanD. Again as before, it is possible to
choose these simplices so that if a red hyperplane avoids a simplesno is contained
in the half-space of the hyperplane. We now locatentbkie points in these chosen sim-
plices (by an exhaustive method, for example). If all the points do not lie in them, we
have a negative answer to the towering question and we are done. If all goes according
to plan, however, we end up with(r?) separate towering subproblems, each involving
some blue points together with((m/r) logr) red half-spaces. Because a blue point can
lie in only one simplex, the subsets of the blue points belonging to each simplex form a
partition of the set of all blue points.

Let D(m, n) denote the time complexity of testing the towering propertyrfésue
points andn red hyperplanes i°. The above divide-and-conquer method gives us the
following recurrence foD (m, n):

D(m,n) = O(M*"* + nlogm), if n>m
D(m,n) = O(n*"* + mlogn), if m>n?

and

D(m, n) = IZ D (c (rm) logr, ni) +0 (%) otherwise

wherec is some fixed constant, and thgs are O(r?) positive integers summing up to
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n. We easily prove that the worst case occurs whemgtiseare roughly equal. This gives

4
D(m, n) < br?D <c (rT) logr, %) + 0 (%) ,

for some additional constantsandd. A similar recurrence is solved ifc[5S7]. Using
the techniques of that paper, we derive that for any fixed 0 we can first choose the
¢ in the boundary cases> m? or m > n? above small enough, and then the net size
large enough so that

D(m, n) = O(M?***n?3* 4 (m + n) log(m + n)).

We now return to the general towering problem and relax all assumptions on the
slopes of the projections. Compute the median slope among the projections onto the
xy-plane of all the red and blue lines together. This partitions the red lines into two sets,
R; and R, and the blue lines into two setB; and B,, such that each line iR, U By
projects onto thexy-plane into a line of slope at least as large as that of any projected
line of Ry U By; furthermore, the sizes d®; U B; and R, U B, are roughly equal. Now
we solve the towering problem recursively with respedRtorersusB; and then forR,
versusB;. If no negative answer has been produced yet, then we may apply the previous
algorithm to the pairgR;, B,) and(Ry, B;). The correctness of the procedure follows
from the fact that all pairs of red and blue lines are (implicitly) checked.

If T(m, n) is the expected time of this algorithm, then

T(m, n) = T(My, ny) + T (Mg, Np) + OMP3#n?3+ 4+ (m+ n) log(m + n)),

with m; +my = m, n; +n, = n, andmy; +n; = my+n,. The solution to this recurrence
relation is maximized ifm; = m,, = M/2 andn; = n, = n/2. In this case we get

T(m, n) = O(M?***n??+  (m 4 n) log?(m + n)).

An additional computation similar to that detailed at the end of the previous section
allows us to determine, within the same bounds, the red line immediately below each
blue line, and thus also, if the towering property holds, the smallest vertical distance
between the two groups of lines. So we conclude with our theorem:

THEOREMS5. Given n blue lines and m red lines in spae can test that all the blue
lines pass above all the red line@he towering property in time and space
O(m?3ten23+e 1 (m 4 n)log?(m + n)), for any e > 0. If so, within the same time
bound we can actually find the first red line below each blue line

This is upper-bounded b@((m + n)#3+¢), a simpler expression to remember (but

where the coefficient of proportionality dependsedn

7. Separating Lines by Translation. We address here the question of whether it is
always possible to “take apart” a set of lines in 3-space by moving a proper subset of
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ap

a

a2

Fig. 3. The groupA of linesay, ap, andas.

them to infinity, through a continuous sequence of translations, without ever causing
lines to cross.

More precisely, letZ be a set of pairwise-disjoint lines in 3-space, andXet v
denote the result of translating a set of linédy a vectorv. We ask whether there are
always a proper partition af in two subsets- (fixed) andM (moving), and a continuous
functionwv(t) from % to N3 such thaw(0) = 0, no line iNM + v(t) meets or is parallel
toalineinF forallt > 0, and all lines inM + v(t) get infinitely far from the origin as
t — oo.

The answer is “no.” Here is a counterexample with nine lines, consisting of three
groupsA, B, C of three lines each. Groufi consists of the lineay througha; joining
the following pairs of points, given in Cartesian coordinates:

ap through (4,-2,+¢) and (0,1, —¢)
a; through (0,1, +¢) and (—4,0, —¢)
a; through (—4,0,4+¢) and 4, -2, —¢)

wheres is a small number, say 18°°. See Figure 3. The other two groups are obtained
from A through+120 rotation around th&l, 1, 1) axis. See Figure 4. Note that
“surrounds” one of the other two groupB, in the sense that all the lines &f pass
through the triangle defined by projectiagthrougha, onto thexy-plane. In the same
way, groupB surrounds the third grou@, andC surroundsA.

Now suppose the partition leaves one group—say-entirely in F and suppose
b € M. Then the displacement vectar@) are confined to a bi-infinite triangular prism
whose axis is parallel tb; and whose faces are paralleldgthrougha,. Since these
displacements never takevery far from the origin, the ling must be inF. However,
if all lines of B are fixed, the same argument shows thas entirely fixed, andM = ¢,
a contradiction. We conclude that no group can be entirely;iand since we can swap
M and F by negating all displacementst), the same argument shows that no group
can be entirely irM.

So, theM, F partition must split all three groups. We consider gréujpr a moment.
Note that thez-slope of the linesg througha; is less tharz, and thatg; . ; passes only
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Fig. 4. All three groupsA, B, andC together—the full counterexample.

2¢ aboveg (where indices are computed modulo 3). Thereforey, if is fixed and

a is moving, the displacement vectorgt) must lie below a plane of slope close to

¢ that passess2above the origin ofit®. Conversely, ifgy is fixed andaj11 is moving,

the displacements(t) must lieabovea similar plane that passes Below the origin.
Combining these two arguments, we conclude that if the parthofir splits groupA,

then the displacementst) are confined to a narrow wedge whose faces are very close
to thexy-plane.

Applying the same argument to the other two groups, we conclude that the displace-
mentsv(t) lie in the intersection of three narrow wedges, each close to the corresponding
coordinate plane. However, this intersection is bounded (its diameter is at most a few
timese), which meandM cannot be moved to infinity, a contradiction. We have thus
proved:

THEOREMG6. There is a set of nine mutually disjoint lines3rmspace that cannot be
taken apart by continuously translating a proper subset off to infinity

8. OpenProblems. Althoughthe manifold of all nonoriented lines in 3-space has been
well studied HF], less seems to be known about the manifold of oriented lines that we
have used in this paper, and which seems to be computationally of significant advantage.
It is known that this manifold is topologically equivalent to the oriented Grassmann
manifold Mg 2(9), which happens to be the sameS&sx $2.11

In general, it appears that most questions about lines in space are still open. Below
we list some of the most natural ones.

11 A geometric proof can be given by associating to every pair of unit veciors(placed at the origin of
3-space) the oriented linghat passes through the tip of the veatorx v)/(1 + u - v) and has the direction

of the vectoru + v. Whenu = —v the linel is by definition the line at infinity on the plane normaldo

and oriented relative to according to the right-hand rule. It is easy to check that this mapping is continuous,
one-to-one, and generates all oriented lines of 3-space.
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A. Isotopy Classes We already mentioned several open problems aboutisotopy classes.
What is the maximum number of isotopy classes than can be associated with a single
orientation class? We conjecture that this numbeé (s?).

B. Many Cells in Line Arrangements We saw in Section 3 that any single “line” cell

in an arrangement aflines has combinatorial complexi§(n?). On the other hand, we
know that allO(n*) cells have total combinatorial complexity of on(n*). So what
about the total combinatorial complexity of distinct cells? A particularly interesting
case of this would be to determine the total complexity of the “unbounded component”
of the arrangement, that is, of those cells containing lines that can be pulled away to
infinity. Such problems have been extensively studied for arrangements of lines and
segments in the plane, and for arrangements of planes and hyperplanes in three and
higher dimensionsgGS1], [CEGSW], [EGSZ. If we blindly use the result fom cells

in an arrangement of hyperplanes in five dimensions frolaGS7 we get a very weak
estimate for our problem. The reason is that only those features of teds lying on

the Plicker hypersurface matter for us. It would be interesting to develop such a “many-
faces” theory for arrangements of lines in space. A curious subproblem here is to find a
geometrically intuitive way to partition a line cell into natural subcells, each of constant
description complexity (i.e., to triangulate the cell), so that the number of such subcells
is proportional to the feature complexity of the original cell.

Related to many-faces problems are questions about incidences. We have been able
to obtain anO(n”"#) upper bound on the number of triple intersections of noncoplanar
lines amongn given lines in spaceJEG'], and very recently this was improved to
0O(n®M4og*4n) [Sh2. A lower bound of2(n%?) is easy to construct and a natural
open problem is to close this gap.

C. The Complexity of a Surface Upper Envelop&iven a collection of lines in 3-
space, we can consider a surface, y) defined as follows. For each poifx, y) in the

plane the value of the surfaggx, y) is the smallest with the property that there is a

line through the pointx, y, z) which passes above tinegiven lines. We know that this
surface consists of a bunch of patches of different reguli joined together. What is the
combinatorial complexity of this surface?

D. k-Sets and Related Concepts for Line Arrangemerif§e saw that the upper enve-
lope ofn lines in space ha®(n?) vertices in the consistent orientation case. This means
that there are only(n?) other lines stabbing four of the given lines and passing above
all the rest. How many lines are there stabbing four of the given lines and passing above
at mostk of the given lines? A preliminary calculation using the technique£6&f and

[Sh1] suggests that the right answer@(n?k?). Many more questions about standard
k-sets Ed] have analogs in this line setting and deserve further study.

E. Order Statistics and Centerlines Since lines in space can form cycles, they can
have strange order statistics. For example, if all lines form a cycle in the above/below
relation, then each line could be above half of the other lines and below the other half.
We can associate with a line arrangement these counts of how many lines lie above and
below each line; it would be nice to characterize the valid count sequences. We may also
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think of analogs in the line case of the notion of centerpoints for collections of points (in
the plane or space). For example, given a collection of lines in space, does another line
(the “centerline”) always exist such that in all planes passing through the centerline the
intersections of the given lines with that plane are roughly evenly distributed (a constant
fraction lying) in each of the half-planes defined by the centerline? In a somewhat related
vein, PatersonH] was able to show recently that for any setrofines in space three
mutually orthogonal planes always exist so that each orthant thus defined is cut by only
n/2 of the lines.

F. Cycles in Line Arrangements In [CEG'] the following result is presented. L&}

be a given collection af nonvertical lines in 3-space. Define a directed grépithose
vertices are the lines &f and whose directed edges are of the fofimif |; lies abovd,.

Then we can test, in randomized expected tin@*3+), for anys > 0, whethelG is
acyclic. Many related open questions remain. For example, how fast can we compute the
strong components of this gra@? If there is a cycle present, then what is the minimum
number of cuts we need to break up our lines so that the resulting collection of segments
is acyclic?

G. Taking Lines Apart We could try to extend Theorem 6 in a number of ways. For
instance, we conjecture that a configuration of lines in 3-space exists that cannot be
taken apart even if we allow the moving subset to go through arbitrary rigid (Euclidean)
motions, or arbitrary affine maps, instead of just translations. We may also study what
happens if we are allowed to partition the lines into three or more independently moving
subsets.
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