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Abstract 

Mathematical Morphology is a theory based on geometry, 

algebra, topology and set theory, with strong application 

to digital image processing. This theory is characterized 

by two basic operators:  dilation and erosion. In this work 

we redefine these operators based on compensatory fuzzy 

logic using a linguistic definition, compatible with previ-

ous definitions of Fuzzy Mathematical Morphology. A 

comparison to previous definitions is presented, assessing 

robustness against noise. 

Keywords: Fuzzy Logic, Compensatory Fuzzy Logic, 

Mathematical Morphology, Fuzzy Mathematical Mor-

phology.  

1. Introduction 

Mathematical Morphology (MM) is a theory based on 

concepts of geometry, algebra, topology and the theory of 

sets, created to characterize physical and structural prop-

erties of various materials [1-3]. MM allows processing 

images with different objectives, such as enhancing dif-

fuse zones, segmenting objects, detecting edges, analyze 

structures, among others. The central idea of the MM is to 

examine the geometric structures of an image by super-

posing with small localized patterns, called structuring 

elements (SE), in different parts of it [1]. The two basic 

operations of the MM are dilation and erosion. Its compo-

sition generates filtering operators, for example, opening 

and closing. 

Another existing approach in the literature of Mathe-

matical Morphology is the Fuzzy Mathematical Morphol-

ogy (FMM), which is supported by concepts of fuzzy log-

ic and fuzzy set theory [4-11]. Unlike bimodal logic, 

vagueness and uncertainty are qualities of this approach. 

Particularly, in predicate fuzzy logic, a truth value be-

tween 0 and 1 can be associated with each predicate, ex-

tending the boolean concept that the predicates should be 

only true or false. 

Compensatory fuzzy logic (CFL) is a multivariate 

model, a particular case of the FMM, based on the re-

placement of t-norms and s-norms by conjunctions and 

disjunctions [12-13]. This is possible by relaxing con-

strains imposed by t-norms and s-norms, which are by 

themselves also conjunctions and disjunctions.  

By replacing t-norm and s-norm by conjunction and 

disjunction, respectively, we obtain the dilation and ero-

sion operators for the Compensatory Fuzzy Mathematical 

Morphology (CMM), called compensatory dilation and 

compensatory erosion, respectively. Two different im-

plementations of the CMM were presented at this moment 

[12,21].  

In this work new operators based on the definition of 

the CMM are presented, but replacing the supreme and 

infimum by logical operators, which allow for a linguistic 

interpretation of their meaning. We call the New Com-

pensatory Morphological Operators. These operators are 

compared to the existing ones (MM and CMM) on their 

robustness against noise. 

2. Theorical Concepts 

The theory of Mathematical Morphology (MM) is a pow-

erful tool in the Digital Image Processing field. A key as-

pect of this theory is the use of the structuring element 

(SE), a probe set that is used to test the image in several 

ways, generating information about its geometry. One of 

the reasons of the success of Mathematical Morphology is 

its simplicity of implementation: most of the operators 

can be built by combination of basic operators of nega-

tion, complement, dilation and erosion. The last two are 

considered the pillars of MM, and most of its variants are 

based on variants of these operators, as for example in the 

gray level morphology [14]. 

2.1. Binary Mathematical Morphology 

Here we define the basic operators of the MM for binary 

images. A binary X  is a subset of 2  , represented by 

its characteristic function  2 0,1:X  . 

Let A  and B  two subsets of  2
U  , the binary dila-

tion of A  by  the structuring element (SE) B , written as 

 ,D A B , is the set of points x U  such that xB  has non 

empty intersection with A  [2]: 

    , / xD A B x U B A    (1) 
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where  /xB b x b B    is called the traslation of B . 

Dilating an image A  by the structuring element B  

consists on the removal, from the background, of all the 

points x  for which 
xB  is not included in A. It is equiva-

lent to define the dilated image as the set of points x  such 

that 
xB  intersects the image A.  

Let A and B be two subsets of 2
U  . The binary ero-

sion of A  by the structuring element B , written as 

 ,E A B , is the set of points x U  such that 
xB  is includ-

ed in A  [2]: 

    , / xE A B x U B A    (2) 

To erode the image A  by the structuring element B  

consists on reducing the set A  via a process of removal of 

points. 

2.2. Fuzzy Mathematical Morphology 

Several methodologies have been developed to extend 

binary MM to grayscale images. One of these extensions, 

based on fuzzy set theory, is the Fuzzy Mathematical 

Morphology (FMM) [4]. The FMM has proven to be a 

solid theory and has been applied successfully in biomed-

ical image segmentation [15-18]. 

Operations between fuzzy sets are defined based on the 

conjunction and disjunction operators, applied to the 

membership values of these sets [19]. The values of the 

membership functions are numbers in the interval  0,1 . 

In most cases the images in gray levels are defined so that 

the gray level intensity at each pixel is an integer value 

belonging to the natural range 0,255 . Therefore, to be 

able to apply the FMM operators, gray level images must 

be modeled as fuzzy sets, with a change of scale to the 

range  0,1 . This process of scaling is called 

"fuzzification", while the reverse process is called 

"defuzzification". Usually the fuzzification function used, 

   : 0,1,2,...,255 0,1g  , is defined by:  

  
255

x
g x   (3) 

The reverse process by which the intensities of the gray 

levels of an image, belonging to the interval  0,1 , are 

brought back to the set  0,1,2,...,255  is defined by the 

function    : 0,1 0,1,2,...,255h   defined by:  

    255h x x  (4) 

where   :   represents the integer part function, de-

fined by: 

    sup /a k k a    (5) 

In the following sections   and   will denote two 

fuzzy sets, with membership functions  2: 0,1U    

and  2: 0,1U   , where the first one corresponds to 

a grayscale image and the second one determines the 

structuring element. Membership functions are obtained 

by applying fuzzification function over the gray scale im-

ages. 

The literature that studies the extension of basic opera-

tors in binary images to gray levels image using the fuzzy 

set theory presents several approaches. Di Gesú, De 

Baets, Kerre, Bloch, Maître y Nachtegael are some of the 

authors which have developed several theories and have 

defined different formulas of the basic operators of the 

FMM [4-8,10,11,15]. Bloch and Maître have achieved the 

unification of all the models proposed by the authors 

mentioned previously, by the use of t-norms and s-norms. 

The following are the definitions of the basic operators of 

the FMM given by these authors. 

Fuzzy dilation of the image   by the SE   [4]: 

       , sup ,
y U

x t y y x    

     (6) 

where  ,t a b  is a t-norm [19]. 

Fuzzy erosion of the image   by the EE   [4]: 

        , inf ,
y U

x s y c y x    

     (7) 

where  ,s a b  is a s-norm and  c a  is the fuzzy comple-

ment operator [20]. 

2.3. Compensatory Fuzzy Mathematical Morphology  

Compensatory Fuzzy Mathematical Morphology (CMM) 

is a particular case of the FMM, based on the replacement 

of t-norms and s-norms by conjunctions and disjunctions 

of compensatory fuzzy logic (CFL) [13]. This is possible 

by relaxing the constraints imposed by t-norms and s-

norms, which are by themselves also conjunctions and 

disjunctions. 

By replacing t-norm and s-norm by conjunction and 

disjunction, respectively, we obtain the dilation and ero-

sion operators for the CMM: 

       , sup ,
y U

x C y y x    


     (8) 

        , inf ,
y U

x D y c y x    

     (9) 

These operators are called compensatory dilation and 

compensatory erosion, respectively.  

2.4. New Operators of the CMM 

In this work we propose a new linguistic representation of 

CMM dilation and erosion operators, in a way that they 

can be associated to colloquial language, offering the fol-

lowing advantages: 

 A colloquial expression for the operators, which gives 

clearer understanding of the effects of transformations, 

and the operations carried out in the process. 

 A new paradigm for the morphological operators. 

 A broader range of functions for the logical connec-

tives, providing more implementation alternatives. 

 

The proposal consists on replacing the definitions of the 

dilation and erosion operators, replacing the supremum 
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and infimum by logic operations that model linguistically 

their meaning. Specifically, supremum is replaced by the 

“existential” quantifier and infimum is replaced by the 
“for all” quantifier. The whole process is described in the 
next section. 

2.4.1. New Dilation Operator 

Binary morphological dilation is defined by equation (1): 

   , / xD A B x U B A    

In this equation, the non-empty intersection between B 

and A, 
xB A  , can be expressed linguistically as “the 

intensity of a pixel in the output image is high when, after 

placing the SE over the original image, centered on such 

pixel, at least in one pixel of the region covered by the SE, 

the intensity of such pixel is high for both the original im-

age and the translated SE.”.  

Let   and   functions valued between 0 and 1, which 

indicate the truth value that a pixel has a high intensity, in 

the image and the SE respectively. They can be expressed 

with the following predicates: ( )y = “the intensity is 

high in pixel y of the image to be processed” and ( )y = 

“the intensity is high in the pixel y of the SE”. If the image 

is a gray level image between 0 and 1, the relationship 

between the gray level and the predicate “the intensity is 
high in the pixel” is straightforward. For example, if the 
pixel has intensity 0.45, the truth value for the predicate 

would be also 0.45. 

Let the translation 
x  of the fuzzy set   by the ele-

ment n
x  be given by: 

     n

x y y x y      (10) 

From the previous definition, the linguistic expression 

can be written in the following ways: 

   : xy U y y     

   :y U y y x      

    : ,y U C y y x     

As a consequence, the new dilation operator is defined 

as: 

        , : ,
y U

x y C y y x    


    (11) 

2.4.2. New Erosion Operator 

In the same way we can develop the binary erosion, as 

defined in equation (2), resulting in: 

   , / xE A B x U B A    

The inclusion operator xB A , can be expressed lin-

guistically in the following way: “the intensity of a pixel 

in the output image is high when, after placing the SE 

over the original image, centered on such pixel, for all the 

pixels of the region covered by the SE ,if the intensity of 

such pixels is high for the translated SE, the it should be 

high for the original image.”  

Considering the functions   and 
x  described previ-

ously, this last linguistic expression can be written as: 

   : xy U y y     

   :y U y x y      

   :y U c y x y         

     : ,y U D y c y x     

As a consequence, the new erosion operator is defined 

as: 

         , : ,
y U

x y D y c y x    


   (12) 

2.4.3. Quantifiers 

Equations 11 and 12 present the existential and universal 

operators. Such operators are defined from the disjunction 

and conjunction in the following way [21]: 

     :
x U

p x D p x x U

    (13) 

     :
x U

p x C p x x U

    (14) 

Several implementations of these quantifiers can be ob-

tained by using different conjunctions and disjunctions. In 

this work we use operators from Compensatory Logic, 

obtaining new morphological operators, not previously 

defined in literature. 

It is important to note that, in the case of dilation, 

where the existential quantifier is defined by a disjunc-

tion, if such disjunction were the maximum, then this new 

definition is equivalent to the model proposed by Bloch 

and Maître [4]. The case is similar for erosion if the con-

junction is the minimum operator. 

Because of the previous analysis, this new definition 

generalizes the previous definition of fuzzy operators 

proposed by Bloch and Maître [4]. 

3. Experimental Design 

This section presents the experimental results of the ro-

bustness comparisons. The operators compared are ero-

sion and dilation, for the new definition against the classi-

cal ones: mathematical morphology and compensatory 

morphology. There are no performance evaluation, like in 

noise removal or other tasks, but an analysis of how much 

noise in the original images affects the results of the oper-

ators, compared to not noisy ones. 

We say that an operator is robust against noise if the re-

sult of applying it to a noisy image is similar to the result 

of applying it to the original image. The degree of similar-

ity determines the robustness. The closer are the results 

from the noisy image to the results from the noiseless im-

age, the more robust is the operator against noise. In this 

work, the operators of the different approaches (MM, 

CMM, new CMM) are compared with respect to their ro-

bustness. 
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For the analysis we used magnetic resonance imaging 

(MRI). Medical imaging has become an important appli-

cation field of image processing. These kind of images, 

and in particular MRI have two remarkable features: they 

include noise and distortion inherent to the acquisition 

equipment and they present high variability between 

equipment settings. Considering these features, fuzzy op-

erators have been proved being more robust than other 

approaches. Because of these properties, we selected the 

MRI for this study. 

Mechanisms of generation of this kind of images, MR, 

TAC, etc, produce images with high level of imprecision 

in the boundaries between the tissues and structures. 

 

 
Fig. 1: Scheme of the experiments design. 

 

In each experiment we computed the difference be-

tween the results of the operator applied on the original 

(noiseless) image and the noisy image. Operators applied 

were erosion and dilation. Implementations under com-

parison were classic MM, CMM (using both geometric 

and algebraic mean) and the new CMM (also using both 

geometric and algebraic mean). 

We compared results for 7 levels of noise, over 100 

replicates to average the results on random application of 

noise. Error measure used was the mean square error 

(MSE) on the pixel values (between results on noisy and 

noiseless images). This process was repeated on 10 dif-

ferent images. 

The following list provides a detailed description of the 

experimental setup: 

• Images: we used 10 magnetic resonance images, ac-

quired with a Tesla 1.5 equipment  The protocol included 

coronal and axial images, weighted in T2 (TR/TE!/TE = 

3,500/32/96 ms). As explained before, we used this kind 

of images because of the noisy nature of them. Figure 2 

shows some examples of the images used for the analysis. 

• Conjunction and disjunction operators: Operations 

were implemented presented in tables 1 and 2 [12,21]. 

• Noise: we use independent Gaussian noise with dis-

tribution  20,N  . The 6 values of variance used were: 
2 50  , 2 100  , 2 150  , 2 200  , 2 250   y 
2 300  .   

• Iterations: the analysis was repeated 100 times to av-

erage over random generation of random noise. 

In first place we studied the dilation operator. We first 

dilated the original noiseless images with the different 

implementations. Then we added Gaussian noise and ap-

plied again the dilation operator. Finally we computed the 

MSE on the two results. 

For dilation the processing was similar, using the dis-

junctions of tables 1 and 2. 

To analyze the results under different conditions, we 

changed the dimension of the SE. We designed five ex-

periments, including five SE. For the MM flat structuring 

elements (SE) of size 3 3 , 5 5 , 7 7 , 11 11  and 

15 15  were used. For the FMM symmetric SE of the 

same size were used. They were the fuzzification of the 

flat SE of the MM, using a Gaussian function to give 

them the bell shape, as seen in figure 3. Such SE should 

help to discriminate some structures present in the origi-

nal image. 

 

 
Fig. 2: Examples of brain MRI used for the analysis of basic 

morphological operators. 
 

Table 1: Conjunction and disjunction of Geometric Mean Based 

Compensatory Fuzzy Logic (GMBCFL). 
 CFL (Geometric Mean) 

Conjunction 

 1 2, , ,
n

C x x x   
1

1 2. . . n
nx x x  

Disjunction 

 1 2, , ,
n

D x x x  
     

1

1 21 1 . 1 . . 1 n
n

x x x       

 

Table 2: Conjunction and disjunction of Arithmetic Mean Based 

Compensatory Logic (AMBCFL). 
 CFL (Arithmetic Mean) 

Conjunction 

 1 2, , ,
n

C x x x  
 

1

2

1
1 2min , , , .

n

i

i
n

x

x x x
n



 
 
 
 
  

  

Disjunction 

 1 2, , ,
n

D x x x  
 

 
1

2

1
1 2

1

1 min 1 ,1 , ,1 .

n

i

i
n

x

x x x
n



 
 

    
 
  


 

 

   
(a) (b) (c) 

  
(d) (e) 

Fig. 3: 3D view of the 5 structuring elements used for the FMM. 

(a) 3 3 . (b) 5 5 . (c) 7 7 . (d) 11 11 . (e) 15 15 . 

4. Results 

This section shows the results from performance analysis. 

As an example, figure 4 shows a MR image and the same 

image with random noise added (variance = 300). Figure 
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5 shows some image results of the dilation with a 7x7 SE. 

The left column shows the dilation of the original noise-

less image, for the different implementations of MM, 

while the right column shows the same results over the 

noisy image. Figure 7 shows a similar example for the 

erosion operator, with same level of noise and implemen-

tations. 

Tables 3 to 6 show the highest and lowest error, first 

for dilation and then for erosion, as a function of the 

amount of noise (variance) and the implementation: C1 

and C2 for the CMM, NC1 and NC2 for the new opera-

tors, and MM for classic MM. These matrices were com-

puted in the following way: 

 For each image, variance and operator, the arithmetic 

mean of the errors was computed from the 100 itera-

tions. 

 For each variance and operator, the arithmetic mean of 

the errors was computed over all images. 

 The table displays the average errors, with noise vari-

ance in the columns and operators in the rows. 

 

Results are displayed graphically in figures 6 and 8. 

Vertical segments over the error lines indicate the errors 

average and dispersion. 

Figure 9 shows graphically the box-plot of error rates 

comparing the classic mathematical morphology (MM) 

and the new compensatory morphology (New CMM) 

based on the GMBCFL, for both dilation and erosion, and 

for the largest amount of noise ( 2 300  ), across all the 

structuring element sizes. We choose this last operator 

because they have the minimum error. Here we can see a 

significant decrease on error rates, or differences between 

the original and noisy images after application of the 

morphological operators. 

 

  
(a) (b) 

Fig. 4: Images that are used to display the results. (a) Original 

Image. (b) Image with noise using a variance equal to 300. 
 

 
Tabla 3: Lowest error for dilation. The name of the operators that 

reached the minimum is denoted between parenthesis next to the error. 

SE 2 

 50 100 150 

33 (NC1) 0.00034 (NC1) 0.00064 (NC1) 0.00093 

55 (NC1) 0.00033 (NC1) 0.0005 (NC1) 0.00066 

77 (NC1) 0.00068 (NC1) 0.0009 (NC1) 0.0011 

1111 (NC2) 0.00312 (NC2) 0.00281 (NC1) 0.00331 

1515 (NC2) 0.00157 (NC2) 0.00334 (NC2) 0.00529 

 

SE 2 

 200 250 300 

33 (NC1) 0.00122 (NC1) 0.00152 (NC1) 0.00182 

55 (NC1) 0.00081 (NC1) 0.00097 (NC1) 0.00113 

77 (NC1) 0.00128 (NC1) 0.00146 (NC1) 0.00166 

1111 (NC1) 0.00373 (NC1) 0.00412 (NC1) 0.00452 

1515 (NC1) 0.00733 (NC1) 0.00802 (NC1) 0.0087 

 

 

Tabla 4: Highest error for dilation. The name of the operators that 

reached the maximum is denoted between parenthesis next to the error. 

No name is indicated when the maximum was reached by MM. 

SE 2 

 50 100 150 

33 0.00382 0.00825 0.01305 

55 0.00396 0.00884 0.01439 

77 0.00388 0.00876 0.01438 

1111 0.00364 0.00828 0.01359 

1515 0.00477 0.00795 0.01321 

 

SE 2 

 200 250 300 

33 0.01810 0.02344 0.02888 

55 0.02035 0.02660 0.03319 

77 0.02042 0.02697 0.03376 

1111 0.01958 0.02600 0.03272 

1515 (NC1) 0.01899 0.02518 0.03153 

 

 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 

Fig. 5: Visualization of the dilation results using a SE of size 

7 7  and variance equal to 300 to generate the noise. (a)-(b) 
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Morphological dilation. (c)-(d) Compensatory dilation using the 

conjunction of the GMBCFL. (e)-(f) Compensatory dilation us-

ing the conjunction of the AMBCFL. (g)-(h) New compensatory 

dilation using the conjunction of the GMBCFL. (i)-(j) New 

compensatory dilation using the conjunction of the AMBCFL. 

 

 

 

 

 

 

 

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

Figure 6: Error graphs for dilation. a) 3x3 SE; b) 5x5 SE; c) 7x7 

SE; d) 11x11 SE; e) 15x15 SE 

 

 
Table 5: Lowest error for erosion. The name of the operators that 

reached the minimum is denoted between parenthesis next to the error. 

SE 2 

 50 100 150 

33 (NC1) 0.00030 (NC1) 0.00057 (NC1) 0.00083 

55 (NC1) 0.00012 (NC1) 0.00024 (NC1) 0.00035 

77 (NC1) 0.00010 (NC1) 0.00021 (NC1) 0.00031 

1111 (NC1) 0.00018 (NC1) 0.00042 (NC1) 0.00063 

1515 (NC1) 0.00032 (NC1) 0.00079 (NC1) 0.00120 

 

SE 2 

 200 250 300 

33 (NC1) 0.00109 (NC1) 0.00135 (NC1) 0.00162 

55 (NC1) 0.00046 (NC1) 0.00057 (NC1) 0.00068 

77 (NC1) 0.00041 (NC1) 0.00050 (NC1) 0.00060 

1111 (NC1) 0.00082 (NC1) 0.00099 (NC1) 0.00115 

1515 (NC1) 0.00153 (NC1) 0.00184 (NC1) 0.00215 

 

Tabla 6: Highest error for erosion. The name of the operators that 

reached the maximum is denoted between parenthesis next to the error. 

No name is indicated when the maximum was reached by MM. 

SE 2 

 50 100 150 

33 0.00396 0.00872 0.01388 

55 0.00467 0.01092 0.01796 

77 0.00512 0.01234 0.02061 

1111 0.00546 0.01357 0.0228 

1515 0.00534 0.01363 0.02302 

 

SE 2 

 200 250 300 

33 0.01933 0.02498 0.03085 

55 0.02547 0.03336 0.04156 

77 0.02942 0.03880 0.0485 

1111 0.03302 0.04383 0.05516 

1515 0.03348 0.04459 0.05604 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 

Fig. 7: Visualization of the erosion results using a SE of size 

7 7  and variance equal to 300 to generate the noise. (a)-(b) 

Morphological erosion. (c)-(d) Compensatory erosion using the 

conjunction of the GMBCFL. (e)-(f) Compensatory erosion us-

ing the conjunction of the AMBCFL. (g)-(h) New compensatory 

erosion using the conjunction of the GMBCFL. (i)-(j) New 

compensatory erosion using the conjunction of the AMBCFL. 

 
 

 

 

 

(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 8: Graphs with errors for erosion. a) 3x3 SE; b) 5x5 SE; 

c) 7x7 SE; d) 11x11 SE; e) 15x15 SE 
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Fig. 9: Error rates box-plot comparing the classic mathematical 

morphology (MM) and the new compensatory mathematical 

morphology (New CMM) using LDCMG, for both dilation and 

erosion, and for the largest amount of noise ( 2 300  ), across 

all the structuring element sizes. 

5. Discussion 

From the results obtained in the experimental section, de-

veloped to analyze the robustness of the dilation opera-

tors, we can observe that in most cases MM implementa-

tion displays larger error than CMM and the new CMM 

implementation, with this contrast increasing with in-

creasing variance (used to generate the noise). This means 

that results of the dilation operator, when applied to noisy 

images, are closer to the result on noiseless image for the 

CMM and new CMM implementations, than for the clas-

sic MM (this happens in the 96.67% of the cases). In the 

other 3.33% of the cases the worst performance was ob-

tained by the new CMM based on geometric mean. 

Implementations with lowest error, for dilation, are the 

new CMM with both conjunctions. 83% corresponds to 

LDCMG and 17% corresponds to LDCMA. 

For erosion, classic MM has the worst performance for 

all cases. The best operator is the new CMM based on 

LDCMG. 

It is important to note that operators defined in the new 

CMM, using the LDCMA disjunction, show always low-

est error than classic MM. 

In the graphs we can also observe that average error 

and its dispersion increase for increasing variance in noise 

generation. 

From the previous discussion, we can conclude that for 

the two operators under analysis, erosion and dilation, the 

new CMM shows more robustness against noise than the 

MM and CMM implementations, on the images and noise 

models used for this study.  

Therefore, the presence of noise in the images should 

have less effect on compensatory operators than in classic 

and Fuzzy ones. 

6. Conclusions 

In this work we defined new compensatory morpho-

logical operators of erosion and dilation, based on the 

substitution of the supreme and infimum by the existential 

and universal quantifiers, which added a linguistic repre-

sentation for such operators. 

The results obtained on robustness, for erosion and di-

lation, relative to additive Gaussian noise, shows an im-

portant improvement relative to classic operators. This 

evidence supports the importance of using fuzzy operators 

for situations with noise and incertitude.  

Future work will include the analysis of performance of 

this paradigm relative to other operators, images and 

noise.  
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