
The authors thank Robert Beil, Dawn Schaible and the NASA
 Engineering and Safety Center for supporting this work.

978-1-4244-2794-9/09/$25.00 .2009 IEEE SMC 2009

Linguistic Text Mining for Problem Reports
Jane T. Malin

Software, Robotics and Simulation Division
NASA Johnson Space Center

Houston, USA
jane.t.malin@nasa.gov

David R. Throop
The Boeing Company

Houston, USA
david.r.throop@nasa.gov

Christopher Millward, Hansen A. Schwarz and
Fernando Gomez

School of Electrical Engineering and Computer Science
University of Central Florida

Orlando, USA
cmillward@cs.ucf.edu, hschwartz@cs.ucf.edu,

gomez@eecs.ucf.edu

Carroll Thronesbery
S&K Aerospace, Incorporated

Houston, USA
carroll.g.thronesbery@nasa.gov

Abstract—This paper describes a linguistic text mining tool
for analyzing problem reports in aerospace engineering and
safety organizations. The Semantic Trend Analysis Tool (STAT)
helps analysts find and review recurrences, similarities and
trends in problem reports. The tool is being used to analyze
engineering discrepancy reports at NASA Johnson Space Center.
The tool has been augmented with a statistical natural language
parser that also resolves parsing gaps and identifies verb
arguments and adjuncts. The tool uses an aerospace ontology
augmented with features of taxonomies and thesauruses. The
ontology defines hierarchies of problem types, equipment types
and function types. STAT uses the output of the parser and the
aerospace ontology to identify words and phrases in problem
report descriptions that refer to types of hazards, equipment
damage, performance deviations or functional impairments. Tool
performance has been evaluated on 120 problem descriptions
from problem reports, with encouraging results.

Keywords—text mining, natural language understanding,
knowledge discovery, ontology

I. INTRODUCTION

Problem reports and change requests are used to document,
track and analyze problems and associated investigations,
dispositions, corrective actions and outcomes. Analysts look
for recurrences and trends in problem reports. Analyzing
groups of similar problems helps identify causes and corrective
actions with wide impacts. Identifying past problems that are
similar to a new problem can also help organizations handle the
new problem.

There are many ways that problem reports can be similar. It
can be easy to overlook recurrences and trends. For this reason,
problem reports are frequently stored as multiple-field records
in databases. The problem records include multiple codes that
are designed to help classify and group the reports. However,
the codes can be confusing or out of date, and they may not
match the problem situation being reported. Key information
about a problem is commonly embedded in free text fields

that contain short titles or text summaries. Individual keywords
can be extracted from the texts, but simple keyword approaches
are as brittle as codes. There are too many ways of conveying
an idea in natural language.

Text and data mining approaches have been developed for
natural language to overcome the difficulties with codes,
keywords and search. When successful, these mining
approaches help analysts discover new recurrences and trends.
Similar problem reports can be grouped by measuring statistics
of text co-occurrences [1]. To apply the approach, very little
needs to be known about the texts. However, it can be difficult
and frustrating for analysts to find out whether the similarity
between problem reports in a cluster is meaningful. Meaningful
clusters can be missed when syntactically equivalent words and
phrases cannot be recognized.

This paper describes the Semantic Trend Analysis Tool
(STAT), which uses a linguistic text mining approach to
overcome difficulties with both codes and statistical text
mining. This approach uses an Aerospace Ontology (AO) to
interpret categorize and tag key information in the text. AO
was developed to classify problems (hazard, damage,
impairment or discrepancy) and the things that have the
problems (objects, actions and events) [2]. The first version of
the parser extracted key information by identifying and parsing
noun phrases, stemming to convert to verb forms, and
capturing modifying style words [3]. The new version is
enhanced with a sophisticated parser.

The following sections of the paper discuss the analyst
tasks supported by STAT, the ontology and the parsing and
tagging approaches. Finally, there is an evaluation of the
performance improvements in STAT resulting from enhanced
linguistic analysis.

II. ANALYZING TAGGED PROBLEM REPORTS

STAT helps problem report analysts discover related
groups of problem reports and trends in their frequencies over

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
1624

978-1-4244-2794-9/09/$25.00 .2009 IEEE SMC 2009

time. STAT has been applied to engineering discrepancy
reports (DRs) at NASA Johnson Space Center.

The analyst is responsible for discovering problem groups
and trends so that corrective actions can be formulated. For
example, if a single battery has expired, there is probably no
corrective action beyond replacing the battery. However, if
there is a growing trend of expired batteries, then practices for
ordering and storing them may need to be changed.

STAT downloads DR records from a database repository. It
is typical to download a year of reports, grouped by quarter, to
assess the development of trends. STAT performs linguistic
analysis on the problem description field in each report record.
It tags the records according to equipment types and problem
types mentioned in the text. The results of these automated
analyses are presented in an integrated collection of Web
pages. The analyst uses the Web site to gain an overview of the
collection of problem reports, to discover groups of problem
reports, and to identify trends for problem types and equipment
types. This helps the analyst focus the investigation on
interesting groups of problems.

A. Web Site for Analysts
The overview Web page contains summary charts and

graphs. They show the number of problem reports for each
quarter, broken out by a number of variables important to DR
analysts. For example, there are summaries for the number of
reports assigned to each analysis team, for each responsible
organization, for equipment types, and for problem types.
These summary views allow the analyst to gain familiarity with
where the most frequent problems have occurred and whether
they have increased over the course of the year. The problem
types and equipment types correspond to the tags assigned to
the problem reports by STAT. Fig. 1 shows an example
summary graph for problem types by quarter.

These summaries and trend reports help the analyst to vet
the quality of the problem report batch and to gain confidence
that problems are being adequately analyzed by STAT.

Figure 1. A summary of top problem types by quarter.

B. Discovery: Hierarchically Grouped Problem Reports
Having gained an overview of the last year of DRs, the

analyst can discover prevalent problem groups. For example,
the analyst might be interested in sharp edges, especially those
that could threaten the integrity of astronaut gloves. A link
from the overview page leads to a hierarchical table display of
AO problem types, as shown in Fig. 2. The table indicates
frequencies of numerous problem reports that use “sharpness”
problem words, including 47 problem reports that mention
sharp edges. The table also allows the analyst to navigate to
specialized Web pages with more information on each of these
problem groups.

C. Trends for Problem Types and Equipment Types
Fig. 3 illustrates a graph on the Web page for sharpness

problems. This graph shows types of hardware by quarter,
using a hardware type code from the database records. The
analyst is concerned about sharp edges on flight hardware. It
appears that almost all of the DRs about sharpness concerned
flight hardware (blue portion of each bar). Sharpness problems
decrease after the third quarter. This suggests that measures
taken in the third quarter are beginning to be effective.

To form a complete interpretation of these numbers, the
analyst compares these summaries to knowledge of
discrepancies submitted during the last year and to knowledge
of related events. For example, if the analyst had external
evidence that there was a flurry of sharpness problems in the
last quarter, the difference between external evidence and this
report would be investigated.

Figure 2. A hierarchical grouping of problem reports.

Figure 3. A closer look at sharpness for flight hardware.

1625

978-1-4244-2794-9/09/$25.00 .2009 IEEE SMC 2009

D. Additional Support for Analysts
The Web site links to individual DRs in the database, as

shown in Fig. 4. Each record contains a number of Trend
Codes (T2-T10), which were designed to aid trend analysis.
These codes were not successful until combined with the tags
produced by STAT. Individual records help the analyst gain
more knowledge of the reports that compose a particular
grouping. With this information, the analyst can construct
accurate descriptions of problem groups, trends and possible
corrective actions.

After gaining an understanding of where most of the
problems have occurred, analysts can further study the problem
reports in the group to determine possible underlying causes
and corrective actions.

III. AEROSPACE ONTOLOGY FOR TAGGING

Linguistic parsers can handle many difficulties with
interpreting and tagging text in problem reports. However,
there are some serious remaining problems that result from
using nonstandard or specialized terminology that is common
in technical descriptions. It is important to handle synonyms,
uncommon spellings, acronyms and terms that are not
synonymous but are closely related. The classification
hierarchies and mapping words and phrases in the AO are
designed to directly address these semantic problems.

Each AO class is situated in a classification hierarchy that
can be used to identify related classes—super-classes,
subclasses and sibling classes. Each AO class includes a list of
“mapping” words and phrases that help identify terminology
that is typically used to describe that type of thing. These can
include synonyms, common misspellings and acronyms from
the problem report text corpus. These mapping words and
phrases give AO some thesaurus features. For example, several
mapping words for sharpness are shown in Fig. 2.

STAT finds matches between AO mapping words or
phrases and the parsed nouns, verbs and associated modifiers.
These matches are used to identify the types of problems and
types of objects in the text. One or more problem classes and
one or more object classes can be associated with each problem
report text field. These identified classes are added to the
problem report record as tags.

Generally, problems can be described as objects or
occurrences that have some bad property. Thus, AO uses
hierarchies of types of properties and values (types of
influence, expense, goodness, authorization, effectiveness,
definiteness and soundness).

Figure 4. A view of the individual discrepancy report record.

These properties are combined with objects (types of
energy, life forms, devices, structures, substances, collections)
and occurrences (types of events, processes, actions,
operations), to define problem types and mapping phrases for
types of problems.

AO includes a wide variety of types of problems described
in natural language, including hardware problems, human and
organizational problems and software problems [cf. 2].
Problems, failures, mishaps and accidents can be classified as
types of damage and impairments, hazardous sources of
damage or impairment, and performance deviations or errors.
There are currently approximately 350 classes in the Problem
Hierarchy. Fig. 5 shows an example of a small part of AO,
showing hierarchical class structure. The figure shows the
mapping words for the sharpness problem type.

The AO hierarchies do not form a strict taxonomy.
Combinations of distinctions or facets can be used to form a
class, and a class can have multiple parent classes. Assignment
to classes is not mutually exclusive since many words have
multiple meanings. Thus, mapping words can be associated
with multiple classes. This flexibility is needed so that multiple
groupings of problem reports can be derived for multifaceted
problem descriptions.

IV. LINGUISTIC TEXT MINING FOR PROBLEM REPORTS

The first successful STAT implementation was based on
the Reconciler parser and tagger. The parser breaks each
sentence into clauses (subject, verb, object, prepositional-
phrase…). To tag a phrase, the tagger searches for concepts
(ALIGN, CLEARANCE) and style words. In English, many phrases
that connote problems consist of (1) a desirable quantity, along
with (2) a negation or violation of that quantity (e.g., not
sufficient clearance, badly aligned, none available). The
negation or violation words are called “styles.”

Mapping phrases from the ontology are stored as
combinations of styles and concepts. If a concept is modified
by a style, and if the style-concept pair is indexed as a problem
type, then the phrase is tagged. Some words in the ontology are
problem types without any style. These should not be tagged if
they are styled – not corroded should not be tagged as
CORRODED.

Figure 5. Small hierarchy of Mechanical Burden problem types.

Mechanical Burden
• Stress or Load

• Friction Burden
• Abrasion
• Vibration Burden (mechanical)

o Spasms
• Sharpness: cutting, sharp, pointed, keen, sharp edge,

sharp corner, snag, jagged, protruding
• Acceleration

o Falling
o Erratic Motion

Stumbling

1626

978-1-4244-2794-9/09/$25.00 .2009 IEEE SMC 2009

When the tagger finds a style word and a concept, it must
decide the style scope—whether the style word modifies the
concept. Scope is determined heuristically. If style words and
concepts co-occur in a clause, the style is judged to modify the
concept. This heuristic does a very good job of tagging when
the styles are prefixes (misalignment) or when words and the
concepts are adjacent (the most common case). The heuristic
breaks down when: 1) styles and concepts are not adjacent; 2)
there are conjuncts (e.g., the door had inadequate paint and
good clearance); or 3) a noun-concept is not the head of a
noun-phrase (e.g., it passed the insufficient-clearance test).

Mistakes in determining the scope of style words can result
in false positives or false negatives in the tagging. While the
first STAT parser produced better results for analysts than
using Trend codes, a new parsing algorithm could solve the
scope problems. The next two sections describe the new parser
and a before-after evaluation of STAT tagging performance.

V. NEW PARSING ALGORITHM

At the heart of the parsing system is a syntax-based
algorithm for identifying the arguments and adjuncts of the
verbs from constituent parse trees. The term “verb scope” is
used to refer to both the arguments and the adjuncts of a verb
[4]. However, the scope of a verb does not indicate which
constituents are adjuncts and which are arguments. The
algorithm is based on the output of the Charniak parser [5],
which is a state-of-the-art constituent parser.

The algorithm focuses on recovering gaps and resolving
empty nodes. In a typical constituent parse tree, each phrase in
a sentence occurs only once in the parse tree, even though in
the argument structure it may occur in multiple places.
Consider the sentence, “After being scrutinized by the
newspaper the politicians demanded an apology.” While “the
politicians” occurs only once in the sentence, it is both an
object of “scrutinized” and the subject of “demanded.” In Fig.
6, the Charniak parse tree of this sentence has only one
occurrence of the “the politicians” whereas in the transformed
parse tree an empty node referring to “the politicians” has been
inserted before “scrutinized” to resolve the understood structure
of the sentence. By resolving these constructions, the algorithm
is able identify the arguments and adjuncts of the main verbs
from such parse trees.

The scoping algorithm runs on a parse of a sentence, from
which it produces a list of scopes for each of the main verbs in
the sentence. The scoping algorithm is done in two parts. The
first part is a cascade of transformations on the parse tree itself
to annotate complex constructions and resolve gaps. The
second part then operates on the modified parse tree and builds
the scopes, attempting to resolve the gaps left unresolved from
the first step. Fig. 6 shows an example of a modified parse tree
and the scopes of its verbs. The use of patterns allows us to
deal with parse trees at a sufficient level of abstraction. These
patterns are a form of regular tree expression and can include
the distinctive features of constituents, which are tag,
annotation, word (if applicable) and positional information.

A. Tree Transformations
The tree transformation algorithm works by applying

general rules to the parse tree. The rules recognize known

syntax patterns and either annotate nodes to recognize complex
constructions or resolve empty nodes that reference other nodes
in the parse tree. The tree transformations first walk pre-order
through the tree and apply each transformation to every node of
the tree before moving to the next transformation. This assures
us that look-ahead matching will not fail because a construct
wasn't identified despite being present in the tree. The tree
transformation algorithm first annotates constructions such as
reduced clausal modifiers, verb coordination and relative
clauses. Then, the algorithm inserts empty nodes into the parse
tree to resolve gaps for known resolvable constructions.

B. Scope-building Algorithm
Once the parse tree has been modified and tagged, the

annotated tree is then processed and a set of scopes is
constructed for the tree. The algorithm determines the voice of
the verb, arguments and adjuncts using syntactic patterns and
rules. In cases where the subject cannot be determined without
semantic analysis, multiple subjects are supplied to allow for
differentiation later by a semantic interpreter [6].

Charniak parse tree
(S1
 (S
 (PP (IN After)
 (S
 (VP (AUXG being)
 (VP (VBN scrutinized)
 (PP (IN by) (NP (DT the) (NN newspaper)))))))
 (NP (DT the) (NNS politicians))
 (VP (VBD demanded) (NP (DT an) (NN apology)))
 (...)))

Transformed parse tree
(S1
 (S
 (PP (IN After)
 (S
 (NP-GAP (DT the) (NNS politicians))
 (VP (AUXG being)
 (VP (VBN scrutinized)
 (PP (IN by) (NP (DT the) (NN newspaper)))))))
 (NP (DT the) (NNS politicians))
 (VP (VBD demanded) (NP (DT an) (NN apology)))
 (...)))

Scopes for the verbs
: v1
VERB: (VBN scrutinized)
SUBJECT: (NP the politicians)
MODIFIERS: (AUXG being)
PREP-PHRASES: (PP by the newspaper)
VOICE: PASSIVE
POTENTIAL-SUBJECT: (NP the newspaper)

: v2
VERB: (VBD demanded)
SUBJECT: (NP the politicians)
OBJECTS: (NP an apology)
PREP-PHRASES: (PP After (clause: v1))
VOICE: ACTIVE

Figure 6. Transformed parse tree and verb scopes for the sentence, “After
being scrutinized by the newspaper the politicians demanded an apology.”

1627

978-1-4244-2794-9/09/$25.00 .2009 IEEE SMC 2009

When the scoping algorithm fails, it fails gracefully by
providing enough information for the next step without having
to re-examine the parse tree. In Fig. 7 the initial prepositional
phrase “DURING THE FABRICATION OF ONE OF EIGHT
PALLET ASSY…” is recovered as being attached to the verb
“found.” Further, the voice of the clause headed by “found”
was determined to be passive, so the algorithm knows that “it,”
the constituent in the subject position, will be the direct object
of the verb, not the subject.

VI. APPLICATION OF ALGORITHM

The scoping algorithm is general and can be applied to any
English language domain. Around this system is a design that
uses the scoping algorithm as a base. The overall system is
tuned to the corpus of DRs to produce the type of information
required by the STAT tagger.

A. Corpus Pre-processing
The corpus of DRs is very different in content and style

from the Wall Street Journal (WSJ) corpus on which the
Charniak parser is trained. The approach to acquiring the best
parses from the corpus is to pre-process the text, using the
Charniak parser as is, without retraining on a different corpus.
Thus, the pre-processing can be tuned for different corpora,
based on a semantic analysis, without needing an extensive
corpus to retrain the Charniak parser. Despite the large
differences between the application corpus and the WSJ
corpus, the Charniak parser works remarkably well.
Modified Charniak parse tree
(S1
 (S
 (PP (IN DURING)
 (NP (NP (DT THE) (NN FABRICATION))
 (PP (IN OF)
 (NP (NP (CD ONE))
 (PP (IN OF)
 (NP (CD EIGHT) (NN PALLET) (NN ASSY)))))))
 (NP (PRP IT))
 (VP (AUX WAS)
 (VP (VBN FOUND)
 (SBAR (IN THAT)
 (S (NP (DT THE) (NN COVER) (NN MATERIAL))
 (VP (AUXVB HAS)
 (NP (CD 3) (JJ MINOR)
 (NN OIL) (NNS STAINS)))))))
 (PERIOD .)))

Scopes for the verbs
:v1
VERB: (VBN FOUND)
SUBJECT: (NP IT)
MODIFIERS: (AUX WAS)
OBJECTS: (SBAR (clause :v2))
PREP-PHRASES: (PP DURING THE FABRICATION OF
 ONE OF EIGHT PALLET ASSY)
VOICE: PASSIVE

:v2
VERB: (AUXVB HAS)
SUBJECT: (NP THE COVER MATERIAL)
OBJECTS: (NP 3 MINOR OIL STAINS)
VOICE: ACTIVE

Figure 7. Transformed parse tree and verb scopes for the sentence, “DURING
THE FABRICATION OF ONE OF EIGHT PALLET ASSY IT WAS
FOUND THAT THE COVER MATERIAL HAS 3 MINOR OIL STAINS.”

The corpus of reports is all in uppercase. The sentences are
often incomplete. Some have typos, many lists, part numbers,
poor punctuation and aerospace domain jargon. The wording is
often terse. Personal pronouns are omitted. The corpus also has
a high frequency of sentence fragments. However, most of the
sentences are not overly complex. The majority have one or
two clauses. Through corpus specific pre-processing of the text,
the Charniak parser can be used with good results.

Each problem description is passed to the system as a single
string of text that the system must split into sentences before it
proceeds. A set of regular expressions is used to split at the
sentence boundaries naively. The stream of “sentences” and
punctuation are then algorithmically analyzed to determine the
actual boundaries. Common sentence fragments and meta-
statements, like “REQUESTED BY...” and due dates are
pruned from the sentences that are sent to the parser.

Besides these meta-statements, another problematic pattern
is a long list of labels and numbers. Instances like the following
cause the parser to incorrectly parse the sentence, or even fail
entirely:

ZONE D7 , .506 +/- .004 , ZONE B7 .378 + .006 - .000 ,
ZONE D7 2X .876 , ZONE D7 2X .748 , ZONE B7 .145+
.007 - .000 ZONE B7 .200 + .005 - .000 ...

Processing is done to identify long lists by first replacing
these with a marker item, then substituting the list fragment
back into the parse tree so that the parseable part of the
sentence can be handled. The pre-processing is fully
programmatic; there is no human intervention.

Despite the irregularities in the DR corpus, the Charniak
parser performs well, overall. The parser does worse as
sentence complexity increases. Even though the sentences may
have odd lists and other fragments, the pruned sentence
structure is rather plain. The scoping algorithm is robust, and it
works well as long as the Charniak parser produces good parse
trees. The scoping algorithm used in conjunction with the
analysis and pre-processing of the text from DRs provides
accurate verb scopes for STAT tagging.

VII. EVALUATING PARSING IMPROVEMENTS

Two test sets were prepared to compare STAT performance
before and after integrating the augmented parser. The first set
of 60 sentences was constructed to target difficulties for the
tagging heuristic. All sentences contained variations on the
concept insufficient clearance, but with different complicating
features—conjunctions, intervening adverbs, odd word order,
intervening parenthetical expressions and more. The second
test set of 60 representative problem description sentences was
selected systematically from the Fiscal Year 2006 set of NASA
DRs. Every 60th problem report was selected, while discarding
those with problem descriptions that (nearly) duplicated others,
were not well formed, were over 150 characters long or in
which the analyst could find no problem described. An analyst
hand-tagged the problems mentioned in each description.

Both sets of sentences were tagged twice by STAT, using
each parser. The STAT-generated tags were compared to the
manual tags and scored as true-positive (tp), false-positive (fp)
and false-negative (fn). Performance accuracy was measured

1628

978-1-4244-2794-9/09/$25.00 .2009 IEEE SMC 2009

for precision (proportion of tags that are good) as in (1) and
recall (proportion of good cases that are tagged properly) as in
(2). Performance by the two parser versions was compared on
each of the two test data sets.

Precision = (1)

 Recall = (2)

VIII. EVALUATION RESULTS

For both data sets, using the new parsing algorithm
substantially improved both precision and recall, as shown in
Table 1. Scores can be improved either by correctly tagging
occurrences that were missed (increasing tp and decreasing fn)
or by avoiding incorrect tagging (decreasing fp). In the
Insufficient Clearance data set, the improvement was split
about evenly between these ways. In the representative sample
of DRs, the improvement came largely from decreases in fp. In
this data set, the most common improvements were in places
where the Reconciler parser scoped a negation term too broadly
and the new parsing algorithm constrained it. The lower recall
scores in the Insufficient Clearance data set were due to the
focus on difficult-to-scope sentences, regardless of their
prevalence in natural text.

IX. DISCUSSION AND CONCLUSIONS

This paper describes the initial integration and evaluation of
the new parsing algorithm for STAT. These performance
improvements will help clean up the problem groups so that
there are fewer false alarms and more hits. STAT performance
with the old parser was sufficient to substantially reduce
analyst effort. These improvements will increase STAT
credibility and reduce analyst work needed to remove false
alarms (problem reports that do not belong in a group).

Opportunities for improvement remain. The DRs contain
many snippets of difficult text like part numbers and document
numbers that pre-processing could remove. Aerospace domain
jargon causes problems for the parser. An example of this is the
word “safe,” which in common usage can act as either a noun
or an adjective. However, in the aerospace domain, safe is
commonly used as verb, meaning “to make safe.” The
Charniak parser will consistently fail to tag safe as a verb, thus
causing errors for the scoping algorithm, which cannot recover
the scope if safe is not identified as a verb.

TABLE I. PRECISION AND RECALL, TWO DATA SETS

Parser tp fp fn Precision Recall
Insufficient Clearance Data Set

Old Parser 18 22 39 0.450 0.316
New Parser 31 11 26 0.738 0.544

2006 Discrepancy Reports Data Set
Old Parser 64 39 18 0.621 0.780
New Parser 69 19 13 0.784 0.841

Note: Frequencies and frequency totals greater than 60 are
due to records with multiple analyst tags.

Further scoping improvements from the new parsing
algorithm will produce more information for STAT tagging.
Examination of some failed tags showed new types of
problems that need to be covered in the ontology. Other
ontology entries are tagged too broadly and need further
specialization.

The improved STAT parsing can apply to mining other
types of text. Promising targets include requirements, hazard
analyses and Failure Mode and Effects Analysis worksheets.
Extracted failure information and architecture information can
be used to construct fault-propagation models. Work is in
progress on this extraction and model construction.

ACKNOWLEDGMENT

The authors thank Roger Schwarz, Linda Bromley, Ken
Jenks and other members of the NASA Johnson Space Center
DR Trend Analysis and Integration Team for their support of
the prototyping that has led to these results.

REFERENCES

[1] A. N. Srivastava and B. Zane-Ulman, “Discovering recurring anomalies
in text reports regarding complex space systems,” in 2005 IEEE
Aerospace Conf. Proc., Big Sky, MT, USA, March 2005.

[2] J. Malin and D. Throop, “Basic concepts and distinctions for an
aerospace ontology of functions, entities and problems,” in 2007 IEEE
Aerospace Conf. Proc., Big Sky, MT, USA, March 2007.

[3] D. Throop, “Reconciler: Matching terse English phrases,” in Proc. 2004
Virtual Iron Bird Workshop, NASA Ames Research Center, April, 2004.

[4] J. Grimshaw, Argument Structure. Cambridge, Mass.: MIT Press, 1990.
[5] E. Charniak, “A maximum-entropy-inspired parser,” in Proc. NAACL-

00, 2000.
[6] F. Gomez, “Building verb predicates: a computational view,” in Proc.

42nd Annual Meeting Assoc. Computational Linguistics. Assoc.
Computational Linguistics, Morristown, NJ, USA, 2004.

1629

