
________________________________ 
The authors thank Robert Beil, Dawn Schaible and the NASA 
 Engineering and Safety Center for supporting this work. 

978-1-4244-2794-9/09/$25.00 .2009 IEEE       SMC 2009 

Linguistic Text Mining for Problem Reports  
Jane T. Malin 

Software, Robotics and Simulation Division 
NASA Johnson Space Center 

Houston, USA 
jane.t.malin@nasa.gov  

David R. Throop 
The Boeing Company 

Houston, USA  
david.r.throop@nasa.gov

Christopher Millward, Hansen A. Schwarz and 
Fernando Gomez 

School of Electrical Engineering and Computer Science 
University of Central Florida 

Orlando, USA 
cmillward@cs.ucf.edu, hschwartz@cs.ucf.edu, 

gomez@eecs.ucf.edu 

Carroll Thronesbery 
S&K Aerospace, Incorporated 

Houston, USA  
carroll.g.thronesbery@nasa.gov 

Abstract—This paper describes a linguistic text mining tool 
for analyzing problem reports in aerospace engineering and 
safety organizations. The Semantic Trend Analysis Tool (STAT) 
helps analysts find and review recurrences, similarities and 
trends in problem reports. The tool is being used to analyze 
engineering discrepancy reports at NASA Johnson Space Center. 
The tool has been augmented with a statistical natural language 
parser that also resolves parsing gaps and identifies verb 
arguments and adjuncts. The tool uses an aerospace ontology 
augmented with features of taxonomies and thesauruses. The 
ontology defines hierarchies of problem types, equipment types 
and function types. STAT uses the output of the parser and the 
aerospace ontology to identify words and phrases in problem 
report descriptions that refer to types of hazards, equipment 
damage, performance deviations or functional impairments. Tool 
performance has been evaluated on 120 problem descriptions 
from problem reports, with encouraging results.  

Keywords—text mining, natural language understanding, 
knowledge discovery, ontology  

I. INTRODUCTION 

Problem reports and change requests are used to document, 
track and analyze problems and associated investigations, 
dispositions, corrective actions and outcomes. Analysts look 
for recurrences and trends in problem reports. Analyzing 
groups of similar problems helps identify causes and corrective 
actions with wide impacts. Identifying past problems that are 
similar to a new problem can also help organizations handle the 
new problem.  

There are many ways that problem reports can be similar. It 
can be easy to overlook recurrences and trends. For this reason, 
problem reports are frequently stored as multiple-field records 
in databases. The problem records include multiple codes that 
are designed to help classify and group the reports. However, 
the codes can be confusing or out of date, and they may not 
match the problem situation being reported. Key information 
about a problem is commonly embedded in free text fields 

that contain short titles or text summaries. Individual keywords 
can be extracted from the texts, but simple keyword approaches 
are as brittle as codes. There are too many ways of conveying 
an idea in natural language.  

Text and data mining approaches have been developed for 
natural language to overcome the difficulties with codes, 
keywords and search. When successful, these mining 
approaches help analysts discover new recurrences and trends. 
Similar problem reports can be grouped by measuring statistics 
of text co-occurrences [1]. To apply the approach, very little 
needs to be known about the texts. However, it can be difficult 
and frustrating for analysts to find out whether the similarity 
between problem reports in a cluster is meaningful. Meaningful 
clusters can be missed when syntactically equivalent words and 
phrases cannot be recognized. 

This paper describes the Semantic Trend Analysis Tool 
(STAT), which uses a linguistic text mining approach to 
overcome difficulties with both codes and statistical text 
mining.  This approach uses an Aerospace Ontology (AO) to 
interpret categorize and tag key information in the text. AO 
was developed to classify problems (hazard, damage, 
impairment or discrepancy) and the things that have the 
problems (objects, actions and events) [2]. The first version of 
the parser extracted key information by identifying and parsing 
noun phrases, stemming to convert to verb forms, and 
capturing modifying style words [3]. The new version is 
enhanced with a sophisticated parser.  

The following sections of the paper discuss the analyst 
tasks supported by STAT, the ontology and the parsing and 
tagging approaches. Finally, there is an evaluation of the 
performance improvements in STAT resulting from enhanced 
linguistic analysis.  

II. ANALYZING TAGGED PROBLEM REPORTS

STAT helps problem report analysts discover related 
groups of problem reports and trends in their frequencies over 
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time. STAT has been applied to engineering discrepancy 
reports (DRs) at NASA Johnson Space Center.  

The analyst is responsible for discovering problem groups 
and trends so that corrective actions can be formulated. For 
example, if a single battery has expired, there is probably no 
corrective action beyond replacing the battery. However, if 
there is a growing trend of expired batteries, then practices for 
ordering and storing them may need to be changed.  

STAT downloads DR records from a database repository. It 
is typical to download a year of reports, grouped by quarter, to 
assess the development of trends.  STAT performs linguistic 
analysis on the problem description field in each report record. 
It tags the records according to equipment types and problem 
types mentioned in the text. The results of these automated 
analyses are presented in an integrated collection of Web 
pages. The analyst uses the Web site to gain an overview of the 
collection of problem reports, to discover groups of problem 
reports, and to identify trends for problem types and equipment 
types. This helps the analyst focus the investigation on 
interesting groups of problems. 

A. Web Site for Analysts  
The overview Web page contains summary charts and 

graphs. They show the number of problem reports for each 
quarter, broken out by a number of variables important to DR 
analysts. For example, there are summaries for the number of 
reports assigned to each analysis team, for each responsible 
organization, for equipment types, and for problem types. 
These summary views allow the analyst to gain familiarity with 
where the most frequent problems have occurred and whether 
they have increased over the course of the year. The problem 
types and equipment types correspond to the tags assigned to 
the problem reports by STAT. Fig. 1 shows an example 
summary graph for problem types by quarter.   

These summaries and trend reports help the analyst to vet 
the quality of the problem report batch and to gain confidence 
that problems are being adequately analyzed by STAT. 

Figure 1. A summary of top problem types by quarter. 

B. Discovery: Hierarchically Grouped Problem Reports 
Having gained an overview of the last year of DRs, the 

analyst can discover prevalent problem groups. For example, 
the analyst might be interested in sharp edges, especially those 
that could threaten the integrity of astronaut gloves. A link 
from the overview page leads to a hierarchical table display of 
AO problem types, as shown in Fig. 2. The table indicates 
frequencies of numerous problem reports that use “sharpness” 
problem words, including 47 problem reports that mention 
sharp edges. The table also allows the analyst to navigate to 
specialized Web pages with more information on each of these 
problem groups.  

C. Trends for Problem Types and Equipment Types 
Fig. 3 illustrates a graph on the Web page for sharpness 

problems. This graph shows types of hardware by quarter, 
using a hardware type code from the database records. The 
analyst is concerned about sharp edges on flight hardware. It 
appears that almost all of the DRs about sharpness concerned 
flight hardware (blue portion of each bar). Sharpness problems 
decrease after the third quarter. This suggests that measures 
taken in the third quarter are beginning to be effective. 

To form a complete interpretation of these numbers, the 
analyst compares these summaries to knowledge of 
discrepancies submitted during the last year and to knowledge 
of related events. For example, if the analyst had external 
evidence that there was a flurry of sharpness problems in the 
last quarter, the difference between external evidence and this 
report would be investigated.  

Figure 2. A hierarchical grouping of problem reports. 

Figure 3. A closer look at sharpness for flight hardware. 
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D. Additional Support for Analysts 
The Web site links to individual DRs in the database, as 

shown in Fig. 4. Each record contains a number of Trend 
Codes (T2-T10), which were designed to aid trend analysis. 
These codes were not successful until combined with the tags 
produced by STAT. Individual records help the analyst gain 
more knowledge of the reports that compose a particular 
grouping. With this information, the analyst can construct 
accurate descriptions of problem groups, trends and possible 
corrective actions. 

After gaining an understanding of where most of the 
problems have occurred, analysts can further study the problem 
reports in the group to determine possible underlying causes 
and corrective actions. 

III. AEROSPACE ONTOLOGY FOR TAGGING  

Linguistic parsers can handle many difficulties with 
interpreting and tagging text in problem reports. However, 
there are some serious remaining problems that result from 
using nonstandard or specialized terminology that is common 
in technical descriptions. It is important to handle synonyms, 
uncommon spellings, acronyms and terms that are not 
synonymous but are closely related. The classification 
hierarchies and mapping words and phrases in the AO are 
designed to directly address these semantic problems.   

Each AO class is situated in a classification hierarchy that 
can be used to identify related classes—super-classes, 
subclasses and sibling classes. Each AO class includes a list of 
“mapping” words and phrases that help identify terminology 
that is typically used to describe that type of thing. These can 
include synonyms, common misspellings and acronyms from 
the problem report text corpus. These mapping words and 
phrases give AO some thesaurus features. For example, several 
mapping words for sharpness are shown in Fig. 2.  

STAT finds matches between AO mapping words or 
phrases and the parsed nouns, verbs and associated modifiers. 
These matches are used to identify the types of problems and 
types of objects in the text. One or more problem classes and 
one or more object classes can be associated with each problem 
report text field. These identified classes are added to the 
problem report record as tags.  

Generally, problems can be described as objects or 
occurrences that have some bad property. Thus, AO uses 
hierarchies of types of properties and values (types of 
influence, expense, goodness, authorization, effectiveness, 
definiteness and soundness). 

Figure 4. A view of the individual discrepancy report record. 

These properties are combined with objects (types of 
energy, life forms, devices, structures, substances, collections) 
and occurrences (types of events, processes, actions, 
operations), to define problem types and mapping phrases for 
types of problems.  

AO includes a wide variety of types of problems described 
in natural language, including hardware problems, human and 
organizational problems and software problems [cf. 2]. 
Problems, failures, mishaps and accidents can be classified as 
types of damage and impairments, hazardous sources of 
damage or impairment, and performance deviations or errors. 
There are currently approximately 350 classes in the Problem 
Hierarchy. Fig. 5 shows an example of a small part of AO, 
showing hierarchical class structure. The figure shows the 
mapping words for the sharpness problem type. 

The AO hierarchies do not form a strict taxonomy. 
Combinations of distinctions or facets can be used to form a 
class, and a class can have multiple parent classes. Assignment 
to classes is not mutually exclusive since many words have 
multiple meanings. Thus, mapping words can be associated 
with multiple classes. This flexibility is needed so that multiple 
groupings of problem reports can be derived for multifaceted 
problem descriptions. 

IV. LINGUISTIC TEXT MINING FOR PROBLEM REPORTS

The first successful STAT implementation was based on 
the Reconciler parser and tagger. The parser breaks each 
sentence into clauses (subject, verb, object, prepositional-
phrase…). To tag a phrase, the tagger searches for concepts 
(ALIGN, CLEARANCE) and style words. In English, many phrases 
that connote problems consist of (1) a desirable quantity, along 
with (2) a negation or violation of that quantity (e.g., not 
sufficient clearance, badly aligned, none available). The 
negation or violation words are called “styles.”  

Mapping phrases from the ontology are stored as 
combinations of styles and concepts. If a concept is modified 
by a style, and if the style-concept pair is indexed as a problem 
type, then the phrase is tagged. Some words in the ontology are 
problem types without any style. These should not be tagged if 
they are styled – not corroded should not be tagged as 
CORRODED.

Figure 5. Small hierarchy of Mechanical Burden problem types. 

Mechanical Burden 
• Stress or Load 

• Friction Burden 
• Abrasion  
• Vibration Burden (mechanical) 

o Spasms 
• Sharpness: cutting, sharp, pointed, keen, sharp edge, 

sharp corner, snag, jagged, protruding 
• Acceleration 

o Falling 
o Erratic Motion 

Stumbling 
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When the tagger finds a style word and a concept, it must 
decide the style scope—whether the style word modifies the 
concept. Scope is determined heuristically. If style words and 
concepts co-occur in a clause, the style is judged to modify the 
concept. This heuristic does a very good job of tagging when 
the styles are prefixes (misalignment) or when words and the 
concepts are adjacent (the most common case). The heuristic 
breaks down when: 1) styles and concepts are not adjacent; 2) 
there are conjuncts (e.g., the door had inadequate paint and 
good clearance); or 3) a noun-concept is not the head of a 
noun-phrase (e.g., it passed the insufficient-clearance test).

Mistakes in determining the scope of style words can result 
in false positives or false negatives in the tagging. While the 
first STAT parser produced better results for analysts than 
using Trend codes, a new parsing algorithm could solve the 
scope problems. The next two sections describe the new parser 
and a before-after evaluation of STAT tagging performance.  

V. NEW PARSING ALGORITHM

At the heart of the parsing system is a syntax-based 
algorithm for identifying the arguments and adjuncts of the 
verbs from constituent parse trees. The term “verb scope” is 
used to refer to both the arguments and the adjuncts of a verb 
[4]. However, the scope of a verb does not indicate which 
constituents are adjuncts and which are arguments. The 
algorithm is based on the output of the Charniak parser [5], 
which is a state-of-the-art constituent parser. 

The algorithm focuses on recovering gaps and resolving 
empty nodes. In a typical constituent parse tree, each phrase in 
a sentence occurs only once in the parse tree, even though in 
the argument structure it may occur in multiple places. 
Consider the sentence, “After being scrutinized by the 
newspaper the politicians demanded an apology.” While “the 
politicians” occurs only once in the sentence, it is both an 
object of “scrutinized” and the subject of “demanded.” In Fig. 
6, the Charniak parse tree of this sentence has only one 
occurrence of the “the politicians” whereas in the transformed 
parse tree an empty node referring to “the politicians” has been 
inserted before “scrutinized” to resolve the understood structure 
of the sentence. By resolving these constructions, the algorithm 
is able identify the arguments and adjuncts of the main verbs 
from such parse trees. 

The scoping algorithm runs on a parse of a sentence, from 
which it produces a list of scopes for each of the main verbs in 
the sentence. The scoping algorithm is done in two parts. The 
first part is a cascade of transformations on the parse tree itself 
to annotate complex constructions and resolve gaps. The 
second part then operates on the modified parse tree and builds 
the scopes, attempting to resolve the gaps left unresolved from 
the first step. Fig. 6 shows an example of a modified parse tree 
and the scopes of its verbs. The use of patterns allows us to 
deal with parse trees at a sufficient level of abstraction. These 
patterns are a form of regular tree expression and can include 
the distinctive features of constituents, which are tag, 
annotation, word (if applicable) and positional information. 

A. Tree Transformations 
The tree transformation algorithm works by applying 

general rules to the parse tree. The rules recognize known 

syntax patterns and either annotate nodes to recognize complex 
constructions or resolve empty nodes that reference other nodes 
in the parse tree. The tree transformations first walk pre-order 
through the tree and apply each transformation to every node of 
the tree before moving to the next transformation. This assures 
us that look-ahead matching will not fail because a construct 
wasn't identified despite being present in the tree. The tree 
transformation algorithm first annotates constructions such as 
reduced clausal modifiers, verb coordination and relative 
clauses. Then, the algorithm inserts empty nodes into the parse 
tree to resolve gaps for known resolvable constructions. 

B. Scope-building Algorithm 
Once the parse tree has been modified and tagged, the 

annotated tree is then processed and a set of scopes is 
constructed for the tree. The algorithm determines the voice of 
the verb, arguments and adjuncts using syntactic patterns and 
rules. In cases where the subject cannot be determined without 
semantic analysis, multiple subjects are supplied to allow for 
differentiation later by a semantic interpreter [6].  

Charniak parse tree  
(S1
 (S
  (PP (IN After)
   (S
    (VP (AUXG being)
     (VP (VBN scrutinized)
      (PP (IN by) (NP (DT the) (NN newspaper)))))))
  (NP (DT the) (NNS politicians))
  (VP (VBD demanded) (NP (DT an) (NN apology)))
  (...)))

Transformed parse tree
(S1
 (S
  (PP (IN After)
   (S
    (NP-GAP (DT the) (NNS politicians))
    (VP (AUXG being)
     (VP (VBN scrutinized)
      (PP (IN by) (NP (DT the) (NN newspaper)))))))
  (NP (DT the) (NNS politicians))
  (VP (VBD demanded) (NP (DT an) (NN apology)))
  (...)))

Scopes for the verbs
: v1  
VERB: (VBN scrutinized)  
SUBJECT: (NP the politicians)  
MODIFIERS: (AUXG being)  
PREP-PHRASES: (PP by the newspaper)  
VOICE: PASSIVE  
POTENTIAL-SUBJECT: (NP the newspaper)  

: v2  
VERB: (VBD demanded)  
SUBJECT: (NP the politicians)  
OBJECTS: (NP an apology)  
PREP-PHRASES: (PP After (clause: v1))  
VOICE: ACTIVE  

Figure 6. Transformed parse tree and verb scopes for the sentence, “After 
being scrutinized by the newspaper the politicians demanded an apology.”  
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When the scoping algorithm fails, it fails gracefully by 
providing enough information for the next step without having 
to re-examine the parse tree. In Fig. 7 the initial prepositional 
phrase “DURING THE FABRICATION OF ONE OF EIGHT 
PALLET ASSY…” is recovered as being attached to the verb 
“found.” Further, the voice of the clause headed by “found” 
was determined to be passive, so the algorithm knows that “it,” 
the constituent in the subject position, will be the direct object 
of the verb, not the subject. 

VI. APPLICATION OF ALGORITHM

The scoping algorithm is general and can be applied to any 
English language domain. Around this system is a design that 
uses the scoping algorithm as a base. The overall system is 
tuned to the corpus of DRs to produce the type of information 
required by the STAT tagger. 

A. Corpus Pre-processing 
The corpus of DRs is very different in content and style 

from the Wall Street Journal (WSJ) corpus on which the 
Charniak parser is trained. The approach to acquiring the best 
parses from the corpus is to pre-process the text, using the 
Charniak parser as is, without retraining on a different corpus. 
Thus, the pre-processing can be tuned for different corpora, 
based on a semantic analysis, without needing an extensive 
corpus to retrain the Charniak parser. Despite the large 
differences between the application corpus and the WSJ 
corpus, the Charniak parser works remarkably well. 
Modified Charniak parse tree
(S1
 (S
  (PP (IN DURING)
   (NP (NP (DT THE) (NN FABRICATION))
    (PP (IN OF)
     (NP (NP (CD ONE))
      (PP (IN OF)
       (NP (CD EIGHT) (NN PALLET) (NN ASSY)))))))
  (NP (PRP IT))
  (VP (AUX WAS)
   (VP (VBN FOUND)
    (SBAR (IN THAT)
     (S (NP (DT THE) (NN COVER) (NN MATERIAL))
      (VP (AUXVB HAS)
       (NP (CD 3) (JJ MINOR)
           (NN OIL) (NNS STAINS)))))))
  (PERIOD .)))

Scopes for the verbs
:v1  
VERB: (VBN FOUND)  
SUBJECT: (NP IT)  
MODIFIERS: (AUX WAS)  
OBJECTS: (SBAR (clause :v2))  
PREP-PHRASES: (PP DURING THE FABRICATION OF  
                                     ONE OF EIGHT PALLET ASSY)  
VOICE: PASSIVE  

:v2  
VERB: (AUXVB HAS)  
SUBJECT: (NP THE COVER MATERIAL)  
OBJECTS: (NP 3 MINOR OIL STAINS)  
VOICE: ACTIVE  

Figure 7. Transformed parse tree and verb scopes for the sentence, “DURING 
THE FABRICATION OF ONE OF EIGHT PALLET ASSY IT WAS 
FOUND THAT THE COVER MATERIAL HAS 3 MINOR OIL STAINS.”  

The corpus of reports is all in uppercase. The sentences are 
often incomplete. Some have typos, many lists, part numbers, 
poor punctuation and aerospace domain jargon. The wording is 
often terse. Personal pronouns are omitted. The corpus also has 
a high frequency of sentence fragments. However, most of the 
sentences are not overly complex. The majority have one or 
two clauses. Through corpus specific pre-processing of the text, 
the Charniak parser can be used with good results. 

Each problem description is passed to the system as a single 
string of text that the system must split into sentences before it 
proceeds. A set of regular expressions is used to split at the 
sentence boundaries naively. The stream of “sentences” and 
punctuation are then algorithmically analyzed to determine the 
actual boundaries. Common sentence fragments and meta-
statements, like “REQUESTED BY...” and due dates are 
pruned from the sentences that are sent to the parser.  

Besides these meta-statements, another problematic pattern 
is a long list of labels and numbers. Instances like the following 
cause the parser to incorrectly parse the sentence, or even fail 
entirely: 

ZONE D7 , .506 +/- .004 , ZONE B7 .378 + .006 - .000 , 
ZONE D7 2X .876 , ZONE D7 2X .748 , ZONE B7 .145+ 
.007 - .000 ZONE B7 .200 + .005 - .000 ... 

Processing is done to identify long lists by first replacing 
these with a marker item, then substituting the list fragment 
back into the parse tree so that the parseable part of the 
sentence can be handled. The pre-processing is fully 
programmatic; there is no human intervention. 

Despite the irregularities in the DR corpus, the Charniak 
parser performs well, overall. The parser does worse as 
sentence complexity increases. Even though the sentences may 
have odd lists and other fragments, the pruned sentence 
structure is rather plain. The scoping algorithm is robust, and it 
works well as long as the Charniak parser produces good parse 
trees. The scoping algorithm used in conjunction with the 
analysis and pre-processing of the text from DRs provides 
accurate verb scopes for STAT tagging. 

VII. EVALUATING PARSING IMPROVEMENTS

Two test sets were prepared to compare STAT performance 
before and after integrating the augmented parser.  The first set 
of 60 sentences was constructed to target difficulties for the 
tagging heuristic. All sentences contained variations on the 
concept insufficient clearance, but with different complicating 
features—conjunctions, intervening adverbs, odd word order, 
intervening parenthetical expressions and more. The second 
test set of 60 representative problem description sentences was 
selected systematically from the Fiscal Year 2006 set of NASA 
DRs. Every 60th problem report was selected, while discarding 
those with problem descriptions that (nearly) duplicated others, 
were not well formed, were over 150 characters long or in 
which the analyst could find no problem described. An analyst 
hand-tagged the problems mentioned in each description. 

Both sets of sentences were tagged twice by STAT, using 
each parser. The STAT-generated tags were compared to the 
manual tags and scored as true-positive (tp), false-positive (fp)
and false-negative (fn). Performance accuracy was measured 
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for precision (proportion of tags that are good) as in (1) and 
recall (proportion of good cases that are tagged properly) as in 
(2). Performance by the two parser versions was compared on 
each of the two test data sets.  

Precision =            (1)

                             

      Recall =                                     (2) 

VIII. EVALUATION RESULTS

For both data sets, using the new parsing algorithm 
substantially improved both precision and recall, as shown in 
Table 1. Scores can be improved either by correctly tagging 
occurrences that were missed (increasing tp and decreasing fn)
or by avoiding incorrect tagging (decreasing fp). In the 
Insufficient Clearance data set, the improvement was split 
about evenly between these ways. In the representative sample 
of DRs, the improvement came largely from decreases in fp. In 
this data set, the most common improvements were in places 
where the Reconciler parser scoped a negation term too broadly 
and the new parsing algorithm constrained it. The lower recall 
scores in the Insufficient Clearance data set were due to the 
focus on difficult-to-scope sentences, regardless of their 
prevalence in natural text.  

IX. DISCUSSION AND CONCLUSIONS

This paper describes the initial integration and evaluation of 
the new parsing algorithm for STAT. These performance 
improvements will help clean up the problem groups so that 
there are fewer false alarms and more hits. STAT performance 
with the old parser was sufficient to substantially reduce 
analyst effort. These improvements will increase STAT 
credibility and reduce analyst work needed to remove false 
alarms (problem reports that do not belong in a group). 

Opportunities for improvement remain. The DRs contain 
many snippets of difficult text like part numbers and document 
numbers that pre-processing could remove. Aerospace domain 
jargon causes problems for the parser. An example of this is the 
word “safe,” which in common usage can act as either a noun 
or an adjective. However, in the aerospace domain, safe is 
commonly used as verb, meaning “to make safe.” The 
Charniak parser will consistently fail to tag safe as a verb, thus 
causing errors for the scoping algorithm, which cannot recover 
the scope if safe is not identified as a verb.  

TABLE I. PRECISION AND RECALL, TWO DATA SETS

Parser tp fp fn Precision Recall 
Insufficient Clearance Data Set 

Old Parser 18 22 39 0.450 0.316 
New Parser 31 11 26 0.738 0.544 

2006 Discrepancy Reports Data Set 
Old Parser 64 39 18 0.621 0.780 
New Parser 69 19 13 0.784 0.841 

Note: Frequencies and frequency totals greater than 60 are 
due to records with multiple analyst tags.  

Further scoping improvements from the new parsing 
algorithm will produce more information for STAT tagging. 
Examination of some failed tags showed new types of 
problems that need to be covered in the ontology. Other 
ontology entries are tagged too broadly and need further 
specialization. 

The improved STAT parsing can apply to mining other 
types of text. Promising targets include requirements, hazard 
analyses and Failure Mode and Effects Analysis worksheets. 
Extracted failure information and architecture information can 
be used to construct fault-propagation models. Work is in 
progress on this extraction and model construction. 
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