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Abstract

The HITS and the PageRank algorithms are eigen-
vector methods for identifying “authoritative” or
“influential” articles, given hyperlink or citation in-
formation. That such algorithms should give con-
sistent answers is surely a desideratum, and in this
paper, we address the question of when they can be
expected to give stable rankings under small per-
turbations to the hyperlink patterns. Using tools
from matrix perturbation theory and Markov chain
theory, we provide conditions under which these
methods are stable, and give specific examples of
instability when these conditions are violated. We
also briefly describe a modification to HITS that
improves its stability.

1 Introduction
Recent years have seen growing interest in algorithms for
identifying “authoritative” or “influential” articles from web-
page hyperlink structures or from other citation data. In par-
ticular, the HITS algorithm of Kleinberg [1998] and Google’s
PageRank algorithm [Brin and Page, 1998] have attracted the
attention of many researchers (see also [Osareh, 1996] for
earlier developments in the bibliometrics literature). Both of
these algorithms use eigenvector calculations to assign “au-
thority” weights to articles, and while originally designed in
the context of link analysis on the web, both algorithms can
be readily applied to citation patterns in academic papers and
other citation graphs.

There are several aspects to the evaluation of a link analy-
sis algorithm such as HITS or PageRank. One aspect relates
to the specific notion of “authoritativeness” embodied by an
algorithm. Thus specific users may have an understanding of
what constitutes an authoritative web page or document in a
given domain, and the output of HITS or PageRank can be
evaluated by such users. While useful, such analyses often
have a rather subjective flavor. A more objective criterion—
the focus of the current paper—concerns the stability of a link
analysis algorithm. Does an algorithm return similar results
upon a small perturbation of the link structure or the docu-
ment collection? We view stability as a desirable feature of a
link analysis algorithm, above and beyond the particular no-
tion of authoritativeness that the algorithm embodies. If an

article is truly authoritative or influential, then surely the ad-
dition of a few links or a few citations should not make us
change our minds about these sites or articles having been
very influential. Moreover, even in the context of a fixed link
structure, a dynamic, unreliable infrastructure such as the web
may give us different views of the structure on different occa-
sions. Ideally, a link analysis algorithm should be insensitive
to such perturbations.

In this paper, we use techniques from matrix perturba-
tion theory and coupled Markov chain theory to characterize
the stability of the ranks assigned by HITS and PageRank.
Some ways of improving the stability of HITS are also briefly
metioned; these algorithmic changes are studied in more de-
tail in [Ng et al., 2001].

2 An Example
Let us begin with an empirical example. The Cora
database [McCallum et al., 2000] is a collection containing
the citation information from several thousand papers in AI.

We ran the HITS and PageRank algorithms on the subset
of the Cora database consisting of all its Machine Learning
papers. To evaluate the stability of the two algorithms, we
also constructed a set of five perturbed databases in which
30% of the papers from the base set were randomly deleted.
(“Since Cora obtained its database via a web crawl, what if,
by chance or mishap, it had instead retrieved only 70% of
these papers?”) If a paper is truly authoritative, we might
hope that it would be possible to identify it as such with only
a subset of the base set.

The results from HITS are shown in the following table.
In this table, the first column reports the rank from HITS
on the full set of Machine Learning papers, whereas the five
rightmost columns report the ranks in runs on the perturbed
databases. We see substantial variation across the different
runs:
1 “Genetic algorithms in search, optimization...”, Goldberg 1 3 1 1 1
2 “Adaptation in natural and artificial systems”, Holland 2 5 3 3 2
3 “Genetic programming: On the programming of...”, Koza 3 12 6 6 3
4 “Analysis of the behavior of a class of genetic...”, De Jong 4 52 20 23 4
5 “Uniform crossover in genetic algorithms”, Syswerda 5 171 119 99 5
6 “Artificial intelligence through simulated...”, Fogel 6 135 56 40 8
7 “A survey of evolution strategies”, Back+al 10 179 159 100 7
8 “Optimization of control parameters for genetic...”, Grefenstette 8 316 141 170 6
9 “The GENITOR algorithm and selection pressure”, Whitley 9 257 107 72 9
10 “Genetic algorithms + Data Structures = ...”, Michalewicz 13 170 80 69 18
11 “Genetic programming II: Automatic discovey...”, Koza 7 - - - 10
2060 “Learning internal representations by error...”, Rumelhart+al - 1 2 2 -



2061 “Learning to predict by the method of temporal...”, Sutton - 9 4 5 -
2063 “Some studies in machine learning using checkers”, Samuel - - 10 10 -
2065 “Neuronlike elements that can solve difficult...”, Barto+Sutton - - 8 - -
2066 “Practical issues in TD learning”, Tesauro - - 9 9 -
2071 “Pattern classification and scene analysis”, Duda+Hart - 4 7 7 -
2075 “Classification and regression trees”, Breiman+al - 2 5 4 -
2117 “UCI repository of machine learning databases”, Murphy+Aha - 7 - 8 -
2174 “Irrelevant features and the subset selection...”, John+al - 8 - - -
2184 “The CN2 induction algorithm”, Clark+Niblett - 6 - - -
2222 “Probabilistic reasoning in intelligent systems”, Pearl - 10 - - -

Although it might be thought that this variability is intrinsic
to the problem, this is not the case, as shown by the results
from the PageRank algorithm, which were much more stable:
1 “Genetic Algorithms in Search, Optimization and...”, Goldberg 1 1 1 1 1
2 “Learning internal representations by error...”, Rumelhart+al 2 2 2 2 2
3 “Adaptation in Natural and Artificial Systems”, Holland 3 5 6 4 5
4 “Classification and Regression Trees”, Breiman+al 4 3 5 5 4
5 “Probabilistic Reasoning in Intelligent Systems”, Pearl 5 6 3 6 3
6 “Genetic Programming: On the Programming of ...”, Koza 6 4 4 3 6
7 “Learning to Predict by the Methods of Temporal ...”, Sutton 7 7 7 7 7
8 “Pattern classification and scene analysis”, Duda+Hart 8 8 8 8 9
9 “Maximum likelihood from incomplete data via...”, Dempster+al 10 9 9 11 8
10 “UCI repository of machine learning databases”, Murphy+Aha 9 11 10 9 10
11 “Parallel Distributed Processing”, Rumelhart+McClelland - - - 10 -
12 “Introduction to the Theory of Neural Computation”, Hertz+al - 10 - - -

These results are discussed in more detail in Section 6. It
should be stated at the outset, however, that our conclusion
is not that HITS is unstable while PageRank is not. The is-
sue is more subtle than that, involving considerations such as
the relationships between multiple eigenvectors and invariant
subspaces. We do wish to suggest, however, that stability is
indeed an issue that needs attention. We now turn to a brief
description of HITS and PageRank, followed by our analysis.

3 Overview of HITS and PageRank
Given a collection of web pages or academic papers linking
to/citing each other, the HITS and PageRank algorithms each
(implicitly) construct a matrix capturing the citation patterns,
and determines authorities by computing the principal eigen-
vector of the matrix.1

3.1 HITS algorithm
The HITS algorithm [Kleinberg, 1998] posits that an article
has high “authority” weight if it is linked to by many pages
with high “hub” weight, and that a page has high hub weight
if it links to many authoritative pages. More precisely, given
a set of n web pages (say, retrieved in response to a search
query), the HITS algorithm first forms the n-by-n adjacency
matrix A, whose (i; j)-element is 1 if page i links to page j,
and 0 otherwise.2 It then iterates the following equations:

a
(t+1)
i =

X
j:j!i

h
(t)
j ; h

(t+1)
i =

X
j:i!j

a
(t+1)
j

1It is worth noting that HITS is typically described as running on
a small collection of articles (say retrieved in response to a query),
while PageRank is described in terms of the entire web. Either algo-
rithm can be run in either setting, however, and this distinction plays
no role in our analysis.

2Kleinberg [1998] discusses several other heuristics regarding is-
sues such as intra-domain references, which are ignored in this sec-
tion for simplicity (but are used in our experiments). See also Bharat
and Henzinger [1998] for other improvements to HITS. It should
be noted that none of these fundamentally change the spirit of the
eigenvector calculations underlying HITS.

(where “i ! j” means page i links to page j) to obtain the
fixed-points a� = limt!1 a(t) and h� = limt!1 h(t) (with
the vectors renormalized to unit length). The above equations
can also be written:

a(t+1) = ATh(t) = (ATA)a(t)

h(t+1) = Aa(t+1) = (AAT )h(t):

When the iterations are initialized with the vector of ones
[1; : : : ; 1]T , this is the power method of obtaining the prin-
cipal eigenvector of a matrix [Golub and Van Loan, 1996],
and so (under mild conditions) a� and h� are the principal
eigenvectors of ATA and AAT respectively. The “authori-
tativeness” of page i is then taken to be a�i , and likewise for
hubs and h�.

3.2 PageRank algorithm
Given a set of n web pages and the adjacency matrix A (de-
fined previously), PageRank [Brin and Page, 1998] first con-
structs a probability transition matrix M by renormalizing
each row of A to sum to 1. One then imagines a random web
surfer who at each time step is at some web page, and decides
which page to visit on the next step as follows: with probabil-
ity 1��, she randomly picks one of the hyperlinks on the cur-
rent page, and jumps to the page it links to; with probability �,
she “resets” by jumping to a web page picked uniformly and
at random from the collection.3 Here, � is a parameter, typi-
cally set to 0.1-0.2. This process defines a Markov chain on
the web pages, with transition matrix �U + (1� �)M , where
U is the transition matrix of uniform transition probabilities
(Uij = 1=n for all i; j). The vector of PageRank scores p is
then defined to be the stationary distribution of this Markov
chain. Equivalently, p is the principal eigenvector of the tran-
sition matrix (�U + (1 � �)M)T (see, e.g. Golub and Van
Loan, 1996), since by definition the stationary distribution
satisfies

(�U + (1� �)M)T p = p: (1)

The asymptotic chance of visiting page i, that is, p i, is then
taken to be the “quality” or authoritativeness of page i.

4 Analysis of Algorithms
We begin with a simple example showing how a small addi-
tion to a collection of web pages can result in a large change
to the eigenvectors returned. Suppose we have a collec-
tion of web pages that contains 100 web pages linking to
http://www.algore.com, and another 103 web pages

3There are various ways to treat the case of pages with no out-
links (leaf nodes). In this paper we utilize a particularly simple
approach—upon reaching such a page, the web surfer picks the next
page uniformly at random. This means that if a row of A has all zero
entries, then the corresponding row of M is constructed to have all
entries equal to 1=n. The PageRank algorithm described in [Page
et al., 1998] utilizes a different reset distribution upon arriving at a
leaf node. It is possible to show, however, that every instantiation of
our variant of the algorithm is equivalent to an instantiation of the
original algorithm on the same graph with a different value of the
reset probability.
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Figure 1: Jittered scatterplot of hyperlink graph.

linking to http://www.georgewbush.com. The ad-
jacency matrix A has all zeros except for the two columns
corresponding to these two web pages, therefore the princi-
pal eigenvector a� will have non-zero values only for al-
gore.com and georgewbush.com. Figure 1(a) presents
a jittered scatterplot of links to these two web pages, along
with the first two eigenvectors. (Only the non-zero por-
tions of the eigenvectors are shown.) Now, suppose five
new web pages trickle into our collection, which happen to
link to both algore.com and georgewbush.com. Fig-
ure 1(b) shows the new plot, and we see that the eigenvec-
tors have changed dramatically, with the principal eigenvector
now near the 45Æ line. Thus, a relatively small perturbation to
our collection has caused a large change to the eigenvectors. 4

If this phenomenon is pervasive, then it needs to be addressed
by any algorithm that uses eigenvectors to determine author-
ity. In the next two sections, we give characterizations of
whether and when algorithms can be expected to suffer from
these problems.

4.1 Analysis of HITS
HITS uses the principal eigenvector of S = ATA to deter-
mine authorities. In this section, we show that the stability
of this eigenvector under small perturbations is determined
by the eigengap of S, which is defined to be the difference
between the largest and the second largest eigenvalues.

Here is an example that may shed light on the importance
of the eigengap. Figure 2 plots the contours associated with
two matrices S1 and S2 before (with solid lines) and after
(with dashed lines) the same additive perturbation have been
made to them.5 The eigenvalues of the matrices are indicated
by the directions of the principal axes of the ellipses. The ma-
trix S1 shown in Figure 2a has eigengap Æ1 � 0, and a small
perturbation to S1 (and hence the ellipse) results in eigenvec-
tors 45Æ away from the original eigenvectors; the matrix S2

shown in Figure 2b has eigengap Æ2 = 2, and the perturbed
eigenvectors are nearly the same as the original eigenvectors.
So, we see how, in this example, the size of the eigengap
directly affects the stability of the eigenvectors. (Readers fa-

4There is nothing special about the number 5 here; a smaller
number also results in relatively large swings of the eigenvectors.
Replacing 5 with 1, 2, 3, and 4 causes the principal eigenvector to
lie at 73, 63, 58 and 55 degrees, respectively.

5More precisely, these are contours of the quadratic form xTSix.
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Figure 2: Contours of two matrices with different eigengaps.

miliar with plots of multivariate Gaussians can also think of
these as the contours of a Gaussian with small perturbations
imposed on the (inverse) covariance matrix.)

In the sequel, we use a tilde to denote perturbed quantities.
(For instance, ~S denotes a perturbed version of S.) We now
give our first, positive result, that so long as the eigengap Æ is
large, then HITS is insensitive to small perturbations.6

Theorem 1. Let S = ATA be given. Let a� be the princi-
pal eigenvector and Æ the eigengap of S. Assume the max-
imum out-degree of every web page is bounded by d. For
any " > 0, suppose we perturb the web/citation graph by
adding or deleting at most k links from one page, where
k < (

p
d+ � �p

d)2, where � = "Æ=(4 +
p
2"). Then the

perturbed principal eigenvector ~a� of the perturbed matrix ~S
satisfies:

jja� � ~a�jj2 � " (2)

So, if the eigengap is big, HITS will be insensitive to small
perturbations. This result is proved by showing i) the direc-
tion of the principal eigenvector does not change too much,
and ii) the magnitudes of the relevant eigenvalues do not
change too much, so the second eigenvector does not “over-
take” the first and become the new principal eigenvector.

Proof. Let jj � jjF denote the Frobenius norm.7 We apply The-
orem V.2.8 from matrix perturbation theory [Stewart and Sun,
1990]: Suppose S 2 R

n�n is a symmetric matrix with prin-
cipal eigenvalue �� and eigenvector a�, and eigengap Æ > 0.
Let E be a symmetric perturbation to S. Then the following
inequalities hold for the old principal eigenpair (��; a�) and
some new eigenpair (~�; ~a).

jja� � ~ajj2 � 4jjEjjF
Æ �p

2jjEjjF
(3)

j�� � ~�j �
p
2jjEjjF (4)

(assuming that the denominator in (3) is positive). Let
the complementary eigenspace to (��; a�) be represented by
(L2; X2), i.e. X2 is orthonormal, and its columns contain all
the eigenvectors of S except a�; L2 is diagonal and contains
the corresponding eigenvalues, all of which are at least Æ less

6Our analyses also apply directly to hub-weight calculations,
simply by reversing link directions and interchanging A and AT .

7The Frobenius norm is defined by
jjXjjF = (

P
i

P
j(Xij)

2)1=2.



than ��; and SX2 = X2L2. A bound similar to Equation (4)
holds for L2:

jjL2 � ~L2jjF �
p
2jjEjjF (5)

Let ~�2 be the largest eigenvalue of ~L2. Using Corollary
IV.3.6 from Stewart and Sun [1990], one can show that Equa-
tion (5) implies

~�2 � �2 +
p
2jjEjjF (6)

If in turn
p
2jjEjjF < Æ=2, then Equations (4) and (6) to-

gether will ensure that ~� > ~�2, i.e. (~�; ~a) is the principal
eigenpair of ~S.

Since we are adding or deleting links from only one page,
let F denote the perturbation to one row of A, so that ~S =
(A+F )T (A+F ). It is straightforward to show jjF TF jjF �
k and jjATF jjF = jjF TAjjF �

p
dk. We can thus bound the

norm of the perturbation to S:

jjEjjF = jj ~S � SjjF � k + 2
p
dk (7)

Using Equations (3) and (7) to determine when we may guar-
antee Equation (2) to hold, we arrive at the bound k <

(
p
d+ ��

p
d)2, where � = "Æ=(4 +

p
2"). One can easily

verify that the same bound on k also ensures
p
2jjEjjF < Æ=2

(which also guarantees that the denominator in (3) is posi-
tive), hence ~a� = ~a as previously stated.

Next we give the converse of this result, that if the eigengap
is small, then eigenvectors can be sensitive to perturbations.

Theorem 2. Suppose S is a symmetric matrix with eigengap
Æ. Then there exists a O(Æ) perturbation8 to S that causes a
large (
(1)) change in the principal eigenvector.

Proof. Since S = ST , it can be diagonalized:

S = U

 
�1 0 0
0 �2 0
0 0 �

!
UT

whereU is orthogonal, and whose columns are the S’s eigen-
vectors. Let ui denote the i-th column of U . We pick
~S = S + 2Æu2u

T
2 . Since jju2jj2 = 1, the norm of the pertur-

bation is only jj2Æu2uT2 jjF = 2Æ. Moreover,

~S = U

 
�1 0 0
0 �2 + 2Æ 0
0 0 �

!
UT

As ~�2 = �2 + 2Æ > �1, (~�2; u2) is the new principal eigen-
pair. But u2 is orthogonal to u1, so jju2 � u1jj2 = 
(1).

To ground these results and illustrate why Theorem 1 re-
quires a bound d on out-degrees, we give another example of
where a small perturbation—adding a single link—can have a
large effect. In this example we use the fact that if a graph has
multiple connected components, then the principal eigenvalue
will have non-zero entries in nodes only from the “largest”

8More formally, there exists a perturbed version of S, denoted ~S,
so that jjS � ~SjjF = O(Æ).
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Figure 3: Picture of a web community.

connected component (more formally the component with the
largest eigenvalue).9

Consider the web/citation-graph shown in Figure 3, which
we imagine to be a small subset of a much larger graph. Solid
arrows denote the original set of hyperlinks; the dashed ar-
row represents the link we will add. The original principal
eigenvalue for each of the two connected components shown
is � = 20; with the addition of a single link, it is easy to
verify that this jumps to ~� = 25. Suppose that the commu-
nity shown is part of a larger web/citation graph with multiple
subcommunities, and that originally the biggest subcommu-
nity had eigenvalue 20 < �1 < 25. By adding one link, the
graph shown in Figure 3 becomes the biggest subcommunity,
and the principal eigenvector now has positive values only for
nodes shown in this figure, and zeros elsewhere.

4.2 Analysis of PageRank
We now analyze the sensitivity of PageRank’s authority
scores p to perturbations of the web/citation-graph.

Theorem 3. Let M be given, and let p be the principal
right eigenvector of (�U + (1 � �)M)T . Let articles/pages
i1; i2; : : : ; ik be changed in any way, and ~M be the corre-
sponding (new) transition matrix. Then the new PageRank
scores ~p satisfies:

jj~p� pjj1 �
2
Pk

j=1 pij

�
(8)

Thus, assuming � is not too close to 0, this shows that so
long as the perturbed/modified web pages did not have high
overall PageRank scores (as measured with respect to the un-
perturbed PageRank scores p), then the perturbed PageRank
scores ~p will not be far from the original.
Proof. We construct a coupled Markov chain f(X t; Yt) : t �
0g over pairs of web pages/documents as follows. X0 = Y0
is drawn according to the probability vector p, that is, from
the stationary distribution of the PageRank “random surfer”
model. The state transitions work as follows: On step t, we
decide with probability � to “reset” both chains, in which
case we set Xt and Yt to the same page chosen uniformly
at random from the collection. If no “reset” occurs, and if
Xt�1 = Yt�1 andXt�1 is one of the unperturbed pages, then
Xt = Yt is chosen to be a random page linked to by the page
Xt�1. In all other cases, Xt is chosen to be a random page
linked to by page Xt�1, and independently of it, Yt is chosen
to be a random page linked to by page Y t�1.

9See, e.g. Chung [1994]. A connected component of a graph is
a subset whose elements are connected via length � 1 paths to each
other, but not to the rest of the graph. The eigenvalue of a connected
component C is the largest eigenvalue of AT

CAC (cf. ATA used by
HITS), where AC , a submatrix of A, is the adjacency matrix of C.



Thus, we now have two “coupled” Markov chains X t and
Yt, the former using the transition probabilities (�U + (1 �
�)M)T , and latter (�U + (1 � �) ~M)T , but so that their tran-
sitions are “correlated.” For instance, the “resets” to both
chains always occur in lock-step. But since each chain is
following its own state transition distribution, the asymptotic
distributions of Xt and Yt must respectively be p and ~p. Now,
let dt = P (Xt 6= Yt). Note d0 = 0, since X0 = Y0 always.
Letting P denote the set of perturbed pages, we have:

dt+1 = P (Xt+1 6= Yt+1)

= P (Xt+1 6= Yt+1jreset at t+ 1)P (reset)

+P (Xt+1 6= Yt+1jno reset at t+ 1)P (no reset)

= 0 � � + (1 � �)P (Xt+1 6= Yt+1jno reset at t+ 1)

= (1 � �)[P (Xt+1 6= Yt+1; Xt 6= Ytjno reset at t+ 1)

+P (Xt+1 6= Yt+1; Xt = Ytjno reset at t+ 1)]

� (1 � �)[P (Xt 6= Ytjno reset at t+ 1)

+ P (Xt+1 6= Yt+1; Xt = Yt; Xt 2 Pjno reset at t+ 1)]

� (1 � �)(P (Xt 6= Yt) + P (Xt 2 Pjno reset at t+ 1))

� (1 � �)(dt +
P

i2P pi)

where to derive the first inequality, we used the fact that by
construction, the event “Xt+1 6= Yt+1; Xt = Yt” is possible
only if Xt is one of the perturbed pages. Using the fact that
d0 = 0 and by iterating this bound on dt+1 in terms of dt,
we obtain an asymptotic upper-bound: d1 � (

P
i2P pi)=�.

Thus, if (X1; Y1) is drawn from the stationary distribu-
tion of the correlated chains—so the marginal distributions
of X1 and Y1 are respectively given by p and ~p—then
P (X1 6= Y1) = d1 � (

P
i2P pi)=�. But if two random

variables have only a small d1 chance of taking different val-
ues, then their distributions must be similar. More precisely,
by the Coupling Lemma (e.g., see Aldous, 1983) the varia-
tional distance (1=2)

P
i jpi � ~pij between the distributions

must also be bounded by the same quantity d1. This shows
jjp� ~pjj1 � 2d1, which concludes the proof.

5 LSI and HITS
In this section we present an interesting connection between
HITS and Latent Semantic Indexing [Deerwester et al., 1990]
(LSI) that provides additional insight into our stability results
(see also Cohn and Chang, 2000). In LSI a collection of doc-
uments is represented as a matrix A, where Aij is 1 if docu-
ment j contains the i-th word of the vocabulary, and 0 other-
wise. LSI computes the left and right singular vectors of A
(equivalently, the eigenvectors ofAAT andATA). For exam-
ple, the principal left singular vector, which we denote x, has
dimension equal to the vocabulary size, and x j measures the
“strength” of word j’s membership along the x-dimension.
The informal hope is that synonyms will be grouped into the
same singular vectors, so that when a document (represented
by a column of A) is projected onto the subspace spanned by
the singular vectors, it will automatically be “expanded” to
include synonyms of words in the document, leading to im-
proved information retrieval.

Now consider constructing the following citation graph
from a set of documents. Let there be a node for each doc-
ument and for each word. The node of a word links to the
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Figure 4: Results on random corpora.

document nodes it appears in. Let Â be the adjacency matrix
of this graph. If we apply HITS to this graph, we find only
the word-nodes have non-zero hub weights (since none of
the document-nodes link to anything) and only the document-
nodes have non-zero authority weights. Moreover, the vector
of HITS hub weights of the word-nodes is exactly x, the first
left singular vector found by LSI.

This connection allows us to transfer insight from exper-
iments on LSI to our understanding of HITS. In this vein,
we conducted an experiment in which random corpora were
generated by sampling from a set of English, French, and
Italian documents.10 Given that these random corpora are
combinations of three distinct languages, the solution to In-
formation Retrieval problems such as clustering or synonym-
identification are exceedingly simple. The issue that we are
interested in, however, is stability. To study stability, we gen-
erated 15 such collections and examined the direction of the
principal eigenvectors found by HITS.

The principal eigenvector lies in the high dimensional
joint-vocabulary space of the three languages. To display our
results, we therefore defined English, French, and Italian “di-
rections,” and measured the degree to which the eigenvector
lies in each these directions.11 Fifteen independent repetitions
of this process were carried out, and the results plotted in Fig-
ure 4a. As we see, despite the presence of clear clusters in the
corpora, the eigenvectors are highly variable. Moreover, this
variability persists in the second and third eigenvectors (Fig-
ures 4b,c).

10The corpora were generated by taking paragraphs from novels
in the three languages. Typical “documents” had 25–150 words,
and the vocabulary consisted of the most common 1500 words per
language. The collection was also manually “balanced” to equally
represent each language.

11This was done by picking a vector xe of unit-norm and whose
i-th element is proportional to the frequency of word i in the English
collection—thus, xe should be thought of as the “canonical” English
direction—and taking the amount that h� lies in the English direc-
tion to be the absolute magnitude of the dot-product between xe and
h�, and similarly for French and Italian.



Note that the variability is not an inherent feature of the
problem. In Figure 4d, we display a run of a different algo-
rithm (a variant of the HITS algorithm that we briefly describe
in Section 7, and is studied in more detail in [Ng et al., 2001]).
Here the results are significantly less variable.

6 Further Experiments
In this section we report further results of perturbation exper-
iments on the Cora database. We also describe an experiment
using web pages.

Recall our methodology in the experiments with the Cora
database: We choose a subset of papers from the database
and generate a set of perturbations to this subset by randomly
deleting 30% of the papers. Our first experiment used all of
the AI papers in Cora as the base set. Our results largely repli-
cated those of Cohn and Chang [2000]—HITS returned sev-
eral Genetics Algorithms (GA) papers as the top-ranked ones.
With the database perturbed as described, however, these re-
sults were very variable, and HITS often returned seminal
papers from broader AI areas as its top-ranked documents.
Repeating the experiment excluding all the GA papers, HITS
did slightly better; the results on five independent trials are
shown below:
1 “Classification and Regression Trees”, Brieman+al 1 1 1 1 1
2 “Pattern classification and scene analysis”, Duda+Hart 2 2 3 2 2
3 “UCI repository of machine learning databases”, Murphy+Aha 4 3 7 3 3
4 “Learning internal representations by error...”, Rumelhart+al 3 13 2 28 20
5 “Irrelevant Features and the Subset Selection Problem”, John+al 7 4 12 4 4
6 “Very simple classification rules perform well on...”, Holte 8 5 15 5 5
7 “C4.5: Programs for Machine Learning”, Quinlan 11 10 14 10 6
8 “Probabilistic Reasoning in Intelligent Systems”, Pearl 6 459 4 462 461
9 “The CN2 induction algorithm”, Clark+Niblett 9 54 11 78 105
10 “Learning Boolean Concepts in the ...”, Almuallim+Dietterich 14 11 34 9 13
11 “The MONK’s problems: A performance comparison...”, Thrun - 9 - 6 7
12 “Inferring decision trees using the MDL Principle”, Quinlan - 8 - 7 8
13 “Multi-interval discretization of continuous...”, Fayyad+Irani - - - - 10
14 “Learning Relations by Pathfinding”, Richards+Moon - 6 - - -
15 “A conservation law for generalization performance”, Schaffer - 7 - 8 -
20 “The Feature Selection Problem: Traditional...” Kira+Randall - - - - 9
21 “Maximum likelihood from incomplete data via...” Dempster+al 10 - 5 - -
23 “Learning to Predict by the Method of Temporal...”, Sutton 5 - 6 - -
36 “Introduction to the Theory of Neural Computation”, Hertz+al - - 8 - -
49 “Explanation-based generalization: a unifying view”, Mitchell - - 10 - -
282“A robust layered control system for a mobile robot”, Brooks - - 9 - -

We see that, apart from the top 2-3 ranked papers, the re-
maining results are still rather unstable. For example, Pearl’s
book was originally ranked 8th; on the second trial, it dropped
to rank 459. Similarly, Brooks’ paper was rank 282, and
jumped up to rank 9 on trial 3. However, this variability is
not intrinsic to the problem, as shown by our PageRank re-
sults (all PageRank results in this section were generated with
� = 0:2):
1 “Classification and Regression Trees”, Breiman+al 1 1 1 1 2
2 “Probabilistic Reasoning in Intelligent Systems”, Pearl 3 2 2 2 1
3 “Learning internal representations by error...”, Rumelhart+al 2 3 3 3 3
4 “Pattern classification and scene analysis”, Duda+Hart 4 4 4 4 4
5 “A robust layered control system for a mobile robot”, Brooks 5 6 7 5 5
6 “Maximum likelihood from incomplete data via...’ Dempster+al 6 7 6 6 6
7 “Learning to Predict by the Method of Temporal...”, Sutton 7 5 5 7 7
8 “UCI repository of machine learning databases”, Murphy+Aha 8 9 9 9 11
9 “Numerical Recipes in C”, Press+al 10 12 8 11 8
10 “Parallel Distributed Processing”, Rumelhart+al 9 14 13 10 9
12 “An implementation of a theory of activity”, Agre+Chapmanre - 8 10 8 -
13 “Introduction to the Theory of Neural Computation”, Hertz+al - 10 - - -
22 “A Representation and Library for Objectives in...”, Valente+al - - - - 10

The largest change in a document’s rank was a drop from
10 to 12—these results are much more stable than for HITS.

Closer examination of the HITS authority weights reviews
that its jumps in rankings are indeed due to large changes
in authority weights, whereas the PageRank scores tended to
remain fairly stable.12

We also carried out experiments on web pages. Given a
query, Kleinberg [1998] describes a method for obtaining a
collection of web pages on which to run HITS. We use ex-
actly the method described there, and perturbed it in a natural
way.13 For the sake of brevity, we only give the results of two
experiments here. On the query “mp3 players”, HITS’ results
were as follows (long URLs are truncated):
1 http://www.freecode.com/ 82 1 1 1 82
2 http://www.htmlworks.com/ 85 2 2 2 83
3 http://www.internettrafficreport.com/ 86 3 4 3 85
4 http://slashdot.org/ 88 4 5 5 86
5 http://windows.davecentral.com/ 87 5 3 4 84
6 http://www.gifworks.com/ 84 6 6 6 87
7 http://www.thinkgeek.com/ 91 7 7 7 88
8 http://www.animfactory.com/ 89 9 8 8 89
9 http://freshmeat.net/ 90 8 9 9 90
10 http://subscribe.andover.net/membership.htm 92 10 10 10 91
1385 http://ourstory.about.com/index.htm 1 - - - 1
1386 http://home.about.com/index.htm 2 - - - 2
1387 http://home.about.com/musicperform/index.htm 3 - - - 3
1388 http://home.about.com/teens/index.htm 4 - - - 4
1389 http://home.about.com/sports/index.htm 5 - - - 5
1390 http://home.about.com/autos/index.htm 6 - - - 6
1391 http://home.about.com/style/index.htm 7 - - - 7
1392 http://home.about.com/careers/index.htm 8 - - - 8
1393 http://home.about.com/citiestowns/index.htm 9 - - - 9
1394 http://home.about.com/travel/index.htm 10 - - - 10

In contrast, PageRank returned:
1 http://www.team-mp3.com/ * 1 1 1 1
2 http://click.linksynergy.com/fs-bin/click 1 3 2 4 9
3 http://www.elizandra.com/ 2 2 3 2 2
4 http://stores.yahoo.com/help.html 4 14 5 10 11
5 http://shopping.yahoo.com/ 3 10 4 12 13
6 http://www.netins.net/showcase/phdss/ * 8 6 3 3
7 http://www.thecounter.com/ 13 6 9 8 7
8 http://ourstory.about.com/index.htm 5 4 7 5 4
9 http://a-zlist.about.com/index.htm 6 5 10 6 6
10 http://www.netins.net/showcase/phdss/getm * 9 8 7 5
11 http://software.mp3.com/software/ 7 7 - - 8
12 http://www.winamp.com/ 8 - - - -
13 http://www.nullsoft.com/ 10 - - - -
14 http://www.consumerspot.com/redirect/1cac 9 - - 9 10

While PageRank’s rankings undergo small changes, HITS’
rankings display a mass “flipping” behavior. Similar pertur-
bation patterns to this (and the example below) for PageRank
and HITS are observed in fourteen out of nineteen queries.
Furthermore, HITS’ results displayed such mass “flips” in
roughly 20% of the trials, which is in accordance with the
20% removal rate.

Here is another typical web result, this time on the query
“italian recipes.” Note that “*” means that the page was re-
moved by that trial’s perturbation, and therefore has no rank.
HITS’ results were:

12Examination of the second and higher eigenvectors in HITS
shows that they, too, can vary substantially from trial to trial.

13Kleinberg [1998] first uses a web search engine
(www.altavista.com in our case) to retrieve 200 documents to
form a “root set,” which is then expanded (and further processed) to
define the web-graph on which HITS operates. Our perturbations
were arrived at by randomly deleting 20% of the root set (i.e.
imagining that the web search engine had only returned 80% of the
pages it actually did), and then following Kleinberg’s procedure.



1 http://ourstory.about.com/index.htm * 1 1 1 1
2 http://home.about.com/culture/index.htm * 2 2 2 17
3 http://home.about.com/index.htm * 3 3 3 25
4 http://home.about.com/food/index.htm * 4 4 4 2
5 http://home.about.com/science/index.htm * 5 5 5 3
6 http://home.about.com/shopping/index.htm * 6 6 6 4
7 http://home.about.com/smallbusiness/index * 7 7 7 5
8 http://home.about.com/sports/index.htm * 8 8 8 6
9 http://home.about.com/arts/index.htm * 9 9 9 7
10 http://home.about.com/style/index.htm * 10 10 10 8
11 http://home.about.com/autos/index.htm - - - - 9
12 http://home.about.com/teens/index.htm - - - - 10
479 http://bestbrandrecipe.com/default.asp 1 - - - -
480 http://myrecipe.com/help/shopping.asp 2 - - - -
481 http://vegetarianrecipe.com/default.asp 3 - - - -
482 http://holidayrecipe.com/default.asp 5 - - - -
483 http://beefrecipe.com/default.asp 4 - - - -
484 http://beveragerecipe.com/default.asp 7 - - - -
485 http://appetizerrecipe.com/default.asp 6 - - - -
486 http://pierecipe.com/default.asp 8 - - - -
487 http://seafoodrecipe.com/default.asp 9 - - - -
488 http://barbequerecipe.com/default.asp 10 - - - -

PageRank, on the other hand, returned:
1 http://ourstory.about.com/index.htm * 1 1 1 1
2 http://a-zlist.about.com/index.htm * 2 2 2 2
3 http://www.apple.com/ 1 3 3 3 3
4 http://www.tznet.com/isenberg/ 2 4 4 13 9
5 http://frontier.userland.com/ 3 5 5 4 7
6 http://www.mikrostore.com/ 4 6 6 5 *
7 http://www.amazinggiftsonline.com/ 5 7 7 6 *
8 http://www.peck.it/peckshop/home.asp?prov * 8 8 7 4
9 http://geocities.yahoo.com/addons/interac 6 9 9 8 29
10 http://dvs.dolcevita.com/index.html 7 10 * 10 5
11 http://www.dossier.net/ - - 10 9 6
12 http://www.dolcevita.com/ 8 - - - 8
14 http://www.q-d.com/ 9 - - - 10
15 http://www.silesky.com/ 10 - - - -

7 Discussion
It is well known in the numerical linear algebra community
that a subspace spanned by several (e.g. the first k) eigenvec-
tors may be stable under perturbation, while individual eigen-
vectors may not [Stewart and Sun, 1990]. Our results—both
theoretical and empirical—reflect this general fact.

If the output of an algorithm is a subspace, then the stability
considerations that we have discussed may not be a matter of
primary concern. Such is the case, for example, for the LSI
algorithm, where the goal is generally to project a data set
onto a lower-dimensional subspace.

If we wish to interpret specific eigenvectors, however, then
the stability issue becomes a matter of more serious concern.
This is the situation for the basic HITS algorithm, where pri-
mary eigenvectors have been interpreted in terms of a set of
“hubs” and “authorities.” As we have seen, there are theoreti-
cal and empirical reasons for exercising considerable caution
in making such interpretations.

Given that the principal eigenvector may not have a reliable
interpretation, one can consider variations of the HITS ap-
proach that utilize multiple eigenvectors. Indeed, Kleinberg
[1998] suggested examining multiple eigenvectors as a way
of obtaining authorities within multiple communities. Again,
however, it may be problematic to interpret individual eigen-
vectors, and in fact in our experiments we found significant
variability in second and third eigenvectors. An alternative
approach may be to automatically combine multiple eigen-
vectors in a way that explicitly identifies subspaces within
the HITS framework. This is explored in [Ng et al., 2001]

The fact that the PageRank algorithm appears to be rel-
atively immune to stability concerns is a matter of consid-
erable interest. It is our belief that the “reset-to-uniform-
distribution” aspect of PageRank is a critical feature in this
regard. Indeed, one can explore a variation of the HITS al-
gorithm which incorporates such a feature. Suppose that we
construct a Markov chain on the web in which, with proba-
bility 1� �, we randomly follow a hyperlink from the current
page in the forward direction (on odd time steps), and we
randomly follow a hyperlink in the backwards direction (on
even time steps). With probability �, we reset to a uniformly
chosen page. The asymptotic web-page visitation distribu-
tion on odd steps is defined to be the authority weights, and
on even steps the hub weights. As in Theorem 3, we can
show this algorithm is insensitive to small perturbations (but
unlike PageRank, we obtain hub as well as authority scores).
The results of running this algorithm on the “three languages”
problem are shown in Figure 4d, where we see that it is in-
deed significantly more stable than the basic HITS algorithm.
This algorithm is also explored in more detail in [Ng et al.,
2001].
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