
Link Analysis Ranking: Algorithms, Theory,
and Experiments

ALLAN BORODIN

University of Toronto

GARETH O. ROBERTS

Lancaster University

JEFFREY S. ROSENTHAL

University of Toronto

and

PANAYIOTIS TSAPARAS

University of Helsinki

The explosive growth and the widespread accessibility of the Web has led to a surge of research ac-
tivity in the area of information retrieval on the World Wide Web. The seminal papers of Kleinberg
[1998, 1999] and Brin and Page [1998] introduced Link Analysis Ranking, where hyperlink struc-
tures are used to determine the relative authority of a Web page and produce improved algorithms
for the ranking of Web search results. In this article we work within the hubs and authorities frame-
work defined by Kleinberg and we propose new families of algorithms. Two of the algorithms we
propose use a Bayesian approach, as opposed to the usual algebraic and graph theoretic approaches.
We also introduce a theoretical framework for the study of Link Analysis Ranking algorithms. The
framework allows for the definition of specific properties of Link Analysis Ranking algorithms, as
well as for comparing different algorithms. We study the properties of the algorithms that we de-
fine, and we provide an axiomatic characterization of the INDEGREE heuristic which ranks each node
according to the number of incoming links. We conclude the article with an extensive experimental
evaluation. We study the quality of the algorithms, and we examine how different structures in the
graphs affect their performance.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Bayesian, HITS, link analysis, ranking, Web search

Authors’ addresses: A. Borodin, J. S. Rosenthal, University of Toronto, Toronto, Canada; email: bor@
cs.toronto.edu; G. O. Roberts, Lancaster University; P. Tsaparas, University of Helsinki, Helsinki,
Finland; email: tsaparas@cs.helsinki.fi.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1533-5399/05/0200-0231 $5.00

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005, Pages 231–297.

232 • A. Borodin et al.

1. INTRODUCTION

Ranking is an integral component of any information retrieval system. In the
case of Web search, because of the size of the Web and the special nature of the
Web users, the role of ranking becomes critical. It is common for Web search
queries to have thousands or millions of results. On the other hand, Web users
do not have the time and patience to go through them to find the ones they
are interested in. It has actually been documented [Broder 2002; Silverstein
et al. 1998; Jansen et al. 1998] that most Web users do not look beyond the first
page of results. Therefore, it is important for the ranking function to output
the desired results within the top few pages, otherwise the search engine is
rendered useless.

Furthermore, the needs of the users when querying the Web are different
from traditional information retrieval. For example, a user that poses the query
“microsoft” to a Web search engine is most likely looking for the home page of Mi-
crosoft Corporation, rather than the page of some random user that complains
about the Microsoft products. In a traditional information retrieval sense, the
page of the random user may be highly relevant to the query. However, Web
users are most interested in pages that are not only relevant, but also authori-

tative, that is, trusted sources of correct information that have a strong presence

in the Web. In Web search, the focus shifts from relevance to authoritativeness.
The task of the ranking function is to identify and rank highly the authoritative
documents within a collection of Web pages.

To this end, the Web offers a rich context of information which is expressed
through the hyperlinks. The hyperlinks define the “context” in which a Web
page appears. Intuitively, a link from page p to page q denotes an endorsement
for the quality of page q. We can think of the Web as a network of recommenda-
tions which contains information about the authoritativeness of the pages. The
task of the ranking function is to extract this latent information and produce
a ranking that reflects the relative authority of Web pages. Building upon this
idea, the seminal papers of Kleinberg [1998], and Brin and Page [1998] intro-
duced the area of Link Analysis Ranking, where hyperlink structures are used
to rank Web pages.

In this article, we work within the hubs and authorities framework defined
by Kleinberg [1998]. Our contributions are three-fold.

(1) We identify some potential weaknesses of the HITS algorithm, proposed
by Kleinberg [1998], and we propose new algorithms that use alternative
methods for computing hub and authority weights. Two of our new algo-
rithms are based on a Bayesian statistical approach as opposed to the more
common algebraic/graph theoretic approach.

(2) We define a theoretical framework for the study of Link Analysis Ranking
algorithms. Within this framework, we define properties that characterize
the algorithms, such as monotonicity, stability, locality, label independence.
We also define various notions of similarity between different Link Anal-
ysis Ranking algorithms. The properties we define allow us to provide an
axiomatic characterization of the INDEGREE algorithm which ranks nodes
according to the number of incoming links.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 233

(3) We perform an extensive experimental evaluation of the algorithms on mul-
tiple queries. We observe that no method is completely safe from “topic
drift”, but some methods seem to be more resistant than others. In order
to better understand the behavior of the algorithms, we study the graph
structures that they tend to favor. The study offers valuable insight into
the reasons that cause the topic drift and poses interesting questions for
future research.

The rest of the article is structured as follows. In Section 2, we review some of
the related literature and we introduce the notation we use in the article. In
Section 3, we define the new Link Analysis Ranking algorithms. In Section 4,
we define the theoretical framework for the study of Link Analysis Ranking
algorithms, and we provide some preliminary results. Section 5 presents the
experimental study of the Link Analysis Ranking algorithms, and Section 6
concludes the article.

2. BACKGROUND AND PREVIOUS WORK

In this section, we present the necessary background for the rest of the article.
We also review the literature in the area of link analysis ranking, upon which
this work builds.

2.1 Preliminaries

A link analysis ranking algorithm starts with a set of Web pages. Depending
on how this set of pages is obtained, we distinguish between query independent

algorithms, and query dependent algorithms. In the former case, the algorithm
ranks the whole Web. The PAGERANK algorithm by Brin and Page [1998] was
proposed as a query independent algorithm that produces a PageRank value
for all Web pages. In the latter case, the algorithm ranks a subset of Web pages
that is associated with the query at hand. Kleinberg [1998] describes how to
obtain such a query dependent subset. Using a text-based Web search engine,
a Root Set is retrieved consisting of a short list of Web pages relevant to a given
query. Then, the Root Set is augmented by pages which point to pages in the
Root Set, and also pages which are pointed to by pages in the Root Set, to obtain
a larger Base Set of Web pages. This is the query dependent subset of Web pages
on which the algorithm operates.

Given the set of Web pages, the next step is to construct the underlying
hyperlink graph. A node is created for every Web page, and a directed edge is
placed between two nodes if there is a hyperlink between the corresponding
Web pages. The graph is simple. Even if there are multiple links between two
pages, only a single edge is placed. No self-loops are allowed. The edges could be
weighted using, for example, content analysis of the Web pages, similar to the
spirit of the work of Bharat and Henzinger [1998]. In our work, we will assume
that no weights are associated with the edges of the graph. Usually links within
the same Web site are removed since they do not convey an endorsement; they
serve the purpose of navigation. Isolated nodes are removed from the graph.

Let P denote the resulting set of nodes, and let n be the size of the set P .
Let G = (P, E) denote the underlying graph. The input to the link analysis

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

234 • A. Borodin et al.

algorithm is the adjacency matrix W of the graph G, where W [i, j] = 1 if there
is a link from node i to node j , and zero otherwise. The output of the algorithm
is an n-dimensional vector a, where ai, the i-th coordinate of the vector a, is
the authority weight of node i in the graph. These weights are used to rank the
pages.

We also introduce the following notation. For some node i, we denote by
B(i) = { j : W [j , i] = 1} the set of nodes that point to node i (Backwards links),
and by F (i) = { j : W [i, j] = 1} the set of nodes that are pointed to by node i

(Forward links). Furthermore, we define an authority node in the graph G to be
a node with nonzero in-degree, and a hub node in the graph G to be a node with
nonzero out-degree. We use A to denote the set of authority nodes, and H to
denote the set of hub nodes. We have that P = A∪ H. We define the undirected
authority graph Ga = (A, Ea) on the set of authorities A, where we place an
edge between two authorities i and j , if B(i) ∩ B(j) �= ∅. This corresponds to
the (unweighted) graph defined by the matrix W T W .

2.2 Previous Algorithms

We now describe some of the previous link analysis ranking algorithms that we
will consider in this work.

2.2.1 The INDEGREE Algorithm. A simple heuristic that can be viewed as
the predecessor of all Link Analysis Ranking algorithms is to rank the pages
according to their popularity (also referred to as visibility [Marchiori 1997]).
The popularity of a page is measured by the number of pages that link to
this page. We refer to this algorithm as the INDEGREE algorithm, since it ranks
pages according to their in-degree in the graph G. That is, for every node i,
ai = |B(i)|. This simple heuristic was applied by several search engines in the
early days of Web search [Marchiori 1997]. Kleinberg [1998] makes a convincing
argument that the INDEGREE algorithm is not sophisticated enough to capture
the authoritativeness of a node, even when restricted to a query dependent
subset of the Web.

2.2.2 The PAGERANK Algorithm. The intuition underlying the INDEGREE al-
gorithm is that a good authority is a page that is pointed to by many nodes in
the graph G. Brin and Page [1998] extended this idea further by observing that
not all links carry the same weight. Links from pages of high quality should
confer more authority. It is not only important to know how many pages point
to a page, but also whether the quality of these pages is high or low. Therefore,
they propose a one-level weight propagation scheme, where a good authority is
one that is pointed to by many good authorities. They employ this idea in the
PAGERANK algorithm. The PAGERANK algorithm performs a random walk on the
graph G that simulates the behavior of a “random surfer”. The surfer starts
from some node chosen according to some distribution D (usually assumed to
be the uniform distribution). At each step, the surfer proceeds as follows: with
probability 1−ǫ, an outgoing link is picked uniformly at random and the surfer
moves to a new page, and with probability ǫ, the surfer jumps to a random
page chosen according to distribution D. The “jump probability” ǫ is passed

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 235

as a parameter to the algorithm. The authority weight ai of node i (called the
PageRank of node i) is the fraction of time that the surfer spends at node i, that
is, it is proportional to the number of visits to node i during the random walk.
The authority vector aoutput by the algorithm is the stationary distribution of
the Markov chain associated with the random walk.

2.2.3 The HITS Algorithm. Independent of Brin and Page [1998], Kleinberg
[1998] proposed a different definition of the importance of Web pages. Kleinberg
argued that it is not necessary that good authorities point to other good author-
ities. Instead, there are special nodes that act as hubs that contain collections
of links to good authorities. He proposed a two-level weight propagation scheme
where endorsement is conferred on authorities through hubs, rather than di-
rectly between authorities. In his framework, every page can be thought of as
having two identities. The hub identity captures the quality of the page as a
pointer to useful resources, and the authority identity captures the quality of
the page as a resource itself. If we make two copies of each page, we can vi-
sualize graph G as a bipartite graph where hubs point to authorities. There
is a mutual reinforcing relationship between the two. A good hub is a page
that points to good authorities, while a good authority is a page pointed to by
good hubs. In order to quantify the quality of a page as a hub and an authority,
Kleinberg associated with every page a hub and an authority weight. Following
the mutual reinforcing relationship between hubs and authorities, Kleinberg
defined the hub weight to be the sum of the authority weights of the nodes that
are pointed to by the hub, and the authority weight to be the sum of the hub
weights that point to this authority. Let h denote the n-dimensional vector of
the hub weights, where hi, the i-th coordinate of vector h, is the hub weight of
node i. We have that

ai =
∑

j∈B(i)

h j and h j =
∑

i∈F (j)

ai . (1)

In matrix-vector terms,

a = W T
h and h = Wa .

Kleinberg [1998] proposed the following iterative algorithm for computing
the hub and authority weights. Initially all authority and hub weights are set
to 1. At each iteration, the operations O (“out”) and I (“in”) are performed.
The O operation updates the authority weights, and the I operation updates
the hub weights, both using Equation 1. A normalization step is then applied,
so that the vectors a and h become unit vectors in some norm. The algorithm
iterates until the vectors converge. This idea was later implemented as the
HITS (Hyperlink Induced Topic Distillation) algorithm [Gibson et al. 1998]. The
algorithm is summarized in Figure 1.

Kleinberg [1998] proves that the algorithm computes the principal left and
right singular vectors of the adjacency matrix W . That is, the vectors a and h

converge to the principal right eigenvectors of the matrices MH = W T W and
M T

H = WWT , respectively. The convergence of HITS to the singular vectors of
matrix W is subject to the condition that the initial authority and hub vec-
tors are not orthogonal to the principal eigenvectors of matrices MH and M T

H ,

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

236 • A. Borodin et al.

Fig. 1. The HITS algorithm.

respectively. Since these eigenvectors have nonnegative values, it suffices to
initialize all weights to positive values greater than zero. The convergence of
the HITS algorithm does not depend on the normalization. Indeed, for different
normalization norms, the authority weights are the same, up to a constant scal-
ing factor. The relative order of the nodes in the ranking is also independent of
the normalization.

There is an interesting observation about the weights assigned by the HITS

algorithm after n steps. We first introduce the following notation. We say that
we follow a B path if we follow a link backwards, and we say we follow an F path
if we follow a link forward. We can combine these to obtain longer paths. For
example, a (BF)n path is a path that alternates between backward and forward
links n times. Now, let (BF)n(i, j) denote the set of (BF)n paths that go from i

to j , (BF)n(i) the set of (BF)n paths that leave node i, and (BF)n the set of all
possible (BF)n paths. We can define similar sets for the (FB)n paths.

By definition of the (W T W)n and (W W T)n matrices, we have that |(BF)n

(i, j)| = (W T W)n(i, j), and |(FB)n(i, j)| = (WWT)n(i, j). Also, |(BF)n(i)| =∑
j (W

T W)n(i, j), and |(FB)n(i)| =
∑

j (WWT)n(i, j). Let udenote the vector of all
ones. After the n-th operation of the HITS algorithm, the authority vector aand
hub vector h are the unit vectors in the direction of (W T W)nu and (W W T)nu,
respectively. If we take the unit vectors under the L1 norm, then we have

ai =
|(BF)n(i)|

|(BF)n|
and hi =

|(FB)n(i)|

|(FB)n|
.

Thus, the authority weight assigned by the HITS algorithm to node i after n

iterations is proportional to the number of (BF) paths of length n that leave
node i.

2.2.4 The SALSA Algorithm. An alternative algorithm, SALSA, that combines
ideas from both HITS and PAGERANK was proposed by Lempel and Moran [2000].
As in the case of HITS, visualize the graph G as a bipartite graph where hubs
point to authorities. The SALSA algorithm performs a random walk on the bi-
partite hubs and authorities graph, alternating between the hub and authority
sides. The random walk starts from some authority node selected uniformly
at random. The random walk then proceeds by alternating between backward
and forward steps. When at a node on the authority side of the bipartite graph,
the algorithm selects one of the incoming links uniformly at random and moves
to a hub node on the hub side. When at a node on the hub side, the algorithm

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 237

selects one of the outgoing links uniformly at random and moves to an author-
ity. The authority weights are defined to be the stationary distribution of this
random walk. Formally, the Markov Chain of the random walk has transition
probabilities

Pa(i, j) =
∑

k : k∈B(i)∩B(j)

1

|B(i)|

1

|F (k)|
.

Recall that Ga = (A, Ea) denotes the authority graph where there is an (undi-
rected) edge between two authorities if they share a hub. This Markov Chain
corresponds to a random walk on the authority graph Ga where we move from
authority i to authority j with probability Pa(i, j). Let Wr denote the matrix
derived from matrix W by normalizing the entries such that, for each row, the
sum of the entries is 1, and let Wc denote the matrix derived from matrix W

by normalizing the entries such that, for each column, the sum of the entries is
1. Then the stationary distribution of the SALSA algorithm is the principal left
eigenvector of the matrix MS = W T

c Wr .
If the underlying authority graph Ga consists of more than one component,

then the SALSA algorithm selects a starting point uniformly at random and per-
forms a random walk within the connected component that contains that node.
Let j be a component that contains node i, let A j denote the set of authorities
in the component j , and E j the set of links in component j . Then the weight
of authority i in component j is

ai =
|A j |

|A|

|B(i)|

|E j |
.

If the graph Ga consists of a single component (we refer to such graphs as au-

thority connected graphs), that is, the underlying Markov Chain is irreducible,
then the algorithm reduces to the INDEGREE algorithm. Furthermore, even when
the graph Ga is not connected, if the starting point of the random walk is se-
lected with probability proportional to the “popularity” (in-degree) of the node
in the graph G, then the algorithm again reduces to the INDEGREE algorithm.
This algorithm was referred to as PSALSA (popularity-SALSA) by Borodin et al.
[2001].

The SALSA algorithm can be thought of as a variation of the HITS algorithm.
In the I operation of the HITS algorithm, the hubs broadcast their weights to
the authorities and the authorities sum up the weight of the hubs that point to
them. The SALSA algorithm modifies the I operation so that, instead of broad-
casting, each hub divides its weight equally among the authorities to which
it points. Similarly, the SALSA algorithm modifies the O operation so that each
authority divides its weight equally among the hubs that point to it. Therefore,

ai =
∑

j : j∈B(i)

1

|F (j)|
h j and hi =

∑

j : j∈F (i)

1

|B(j)|
a j .

However, the SALSA algorithm does not really have the same “mutually reinforc-
ing structure” that Kleinberg’s [1998] algorithm does. Indeed, ai =

|A j |

|A|

|B(i)|
|E j |

,

the relative authority of page i within a connected component is determined
from local links, not from the structure of the component.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

238 • A. Borodin et al.

Lempel and Moran [2000] define a similar Markov Chain for the hubs and
a hub weight vector that is the stationary distribution of the corresponding
random walk. The stationary distribution h is the left eigenvector of the matrix
W T

r Wc.

2.2.5 Other Related Work. The ground-breaking work of Kleinberg [1998,
1999], and Brin and Page [1998] was followed by a number of extensions and
modifications. Bharat and Henzinger [1998] and Chakrabarti et al. [1998] con-
sider improvements on the HITS algorithm by using textual information to
weight the importance of nodes and links. [Rafiei and Mendelzon 2000; Mendel-
zon and Rafiei 2000] consider a variation of the HITS algorithm that uses ran-
dom jumps, similar to SALSA. The same algorithm is also considered by Ng et al.
[2001a, 2001b], termed Randomized HITS. Extensions of the HITS algorithm
that use multiple eigenvectors were proposed by Ng et al. [2001b] and Achliop-
tas et al. [2001]. Tomlin [2003] proposes a generalization of the PAGERANK

algorithm that computes flow values for the edges of the Web graph, and a
TrafficRank value for each page. A large body of work also exists that deals
with personalization of the PAGERANK algorithm [Page et al. 1998; Haveliwala
2002; Jen and Widom 2003; Richardson and Domingos 2002].

A different line of research exploits the application of probabilistic and sta-
tistical techniques for computing rankings. The PHITS algorithm by Cohn and
Chang [2000] assumes a probabilistic model in which a link is caused by latent
“factors” or “topics”. They use the Expectation Maximization (EM) Algorithm
of Dempster et al. [1977] to compute the authority weights of the pages. Their
work is based on the Probabilistic Latent Semantic Analysis framework intro-
duced by Hofmann [1999], who proposed a probabilistic alternative to Singular
Value Decomposition. Hofmann [2000] proposes an algorithm similar to PHITS

which also takes into account the text of the documents. These algorithms re-
quire specifying in advance the number of factors. Furthermore, it is possible
that the EM Algorithm gets “stuck” in a local maximum, without converging to
the true global maximum.

3. NEW LINK ANALYSIS RANKING ALGORITHMS

The idea underlying the HITS algorithm can be captured in the following recur-
sive definition of quality: “A good authority is one that is pointed to by many good
hubs, and a good hub is one that points to many good authorities”. Therefore,
the quality of some page p as an authority (captured by the authority weight of
page p) depends on the quality of the pages that point to p as hubs (captured
in the hub weight of the pages), and vice versa. Kleinberg [1998] proposes to
associate the hub and authority weights through the addition operation. The
authority weight of a page p is defined to be the sum of the hub weights of the
pages that point to p, and the hub weight of the page p is defined to be the sum
of the authority weights of the pages that are pointed to by p. This definition has
the following two implicit properties. First, it is symmetric in the sense that both
hub and authority weights are defined in the same way. If we reverse the orien-
tation of the edges in the graph G, then authority and hub weights are swapped.
Second, it is egalitarian in the sense that, when computing the hub weight of

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 239

Fig. 2. A bad example for HITS algorithm.

some page p, the authority weights of the pages that are pointed to by page p

are all treated equally (similarly when computing the authority weights).
These two properties may sometimes lead to nonintuitive results. Consider,

for example, the graph in Figure 2. In this graph, there are two components. The
black component consists of a single authority pointed to by a large number of
hubs. The white component consists of a single hub that points to a large number
of authorities. When the number of white authorities is larger than the number
of black hubs, the HITS algorithm will allocate all authority weight to the white
authorities, while giving zero weight to the black authority. The reason for this
is that the white hub is deemed to be the best hub, thus causing the white
authorities to receive more weight. However, intuition suggests that the black
authority is better than the white authorities and should be ranked higher.

In this example, the two implicit properties of the HITS algorithm combine
to produce the nonintuitive result. Equality means that all authority weights
of the nodes that are pointed to by a hub contribute equally to the hub weight
of the node. As a result, quantity becomes quality. The hub weight of the white
hub increases inordinately simply because it points to many weak authorities.
This leads us to question the definition of the hub weight and consequently, the
other symmetric nature of HITS. Symmetry assumes that hubs and authorities
are qualitatively the same. However, there is a difference between the two. For
example, intuition suggests that a node with high in-degree is likely to be a good
authority. On the other hand, a node with high out-degree is not necessarily a
good hub. If this was the case, then it would be easy to increase the hub quality
of a page, simply by adding links to random pages. It seems that we should
treat hubs and authorities differently.

In this section, we challenge both implicit properties of HITS. We present
different ways for breaking the symmetry and equality principles, and we study
the ranking algorithms that emerge.

3.1 The Hub-Averaging (HUBAVG) Algorithm

In the example in Figure 2, the symmetric and egalitarian nature of the HITS

algorithm produces the effect that the quality of the white hub is determined
by the quantity of authorities it points to. Thus, the white hub is rewarded
simply because it points to a large number of authorities, even though they are
of low quality. We propose a modification of the HITS algorithm to help remedy
this problem. The Hub-Averaging algorithm (HUBAVG) updates the authority
weights like the HITS algorithm, but it sets the hub weight of some node i to the

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

240 • A. Borodin et al.

Fig. 3. The HUBAVG algorithm.

average authority weight of the authorities pointed to by hub i. Thus, for some
node i, we have

ai =
∑

j∈B(i)

h j and hi =
1

|F (i)|

∑

j∈F (i)

a j . (2)

The intuition of the HUBAVG algorithm is that a good hub should point only (or at
least mainly) to good authorities, rather than to both good and bad authorities.
Note that in the example in Figure 2, HUBAVG assigns the same weight to both
black and white hubs, and it identifies the black authority as the best authority.
The HUBAVG algorithm is summarized in Figure 3.

The HUBAVG algorithm can be viewed as a “hybrid” of the HITS and SALSA

algorithms. The operation of averaging the weights of the authorities pointed
to by a hub is equivalent to dividing the weight of a hub among the authorities
it points to. Therefore, the HUBAVG algorithm performs the O operation like
the HITS algorithm (broadcasting the authority weights to the hubs), and the I

operation like the SALSA algorithm (dividing the hub weights to the authorities).
This lack of symmetry between the update of hubs and authorities is motivated
by the qualitative difference between hubs and authorities discussed previously.
The authority weights for the HUBAVG algorithm converge to the principal right
eigenvector of the matrix MHA = W T Wr .

There is an interesting connection between HUBAVG and the Singular Value
Decomposition. Note that the matrix MHA can be expressed as MHA = W T F W ,
where F is a diagonal matrix with F [i, i] = 1/|F (i)|. We also have that

MHA = (F 1/2W)T (F 1/2W),

where F 1/2 is the square root of matrix F , that is, F [i, i] = 1/
√

|F (i)|. Let W (i)
denote the row vector that corresponds to the ith row of matrix W . Given that
all entries of the matrix W take 0/1 values, we have that ‖W (i)‖2 =

√
|F (i)|.

Thus, the matrix F 1/2W is the matrix W , where each row is normalized to be
a unit vector in the Euclidean norm. Let We denote this matrix. The hub and
authority vectors computed by the HUBAVG algorithm are the principal left and
right singular vectors of the matrix We.

3.2 The Authority Threshold (AT(k)) Family of Algorithms

The HUBAVG algorithm has its own shortcomings. Consider, for example, the
graph in Figure 4. In this graph, there are again two components, one black

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 241

Fig. 4. A bad example for the HUBAVG algorithm.

and one white. They are completely identical, except for the fact that some of
the hubs of the black component point to a few extra authorities. If we run the
HUBAVG algorithm on this graph, then the white authority will receive higher
authority weight than the black authority. This is due to the fact that the black
hubs are penalized for pointing to these “weaker” authorities. The HUBAVG algo-
rithm rewards hubs that point only (or mainly) to good authorities. Hubs that
have links to a few poor authorities are penalized. However, the black authority
seems to be at least as authoritative as the white authority. Although we would
like the black hubs not to be rewarded for pointing to these weak authorities,
we do not necessarily want them to be penalized either. Such situations may
arise in practice when a node is simultaneously a strong hub on one topic and a
weak hub on another topic. Such hubs are penalized by the HUBAVG algorithm.

We would like to reduce the effect of the weak authorities on the computation
of the hub weight, while at the same time retaining the positive effect of the
strong authorities. A simple solution is to apply a threshold operator that re-
tains only the highest authority weights. We propose the Authority-Threshold,
AT(k), algorithm which sets the hub weight of node i to be the sum of the k

largest authority weights1 of the authorities pointed to by node i. This is equiv-
alent to saying that a node is a good hub if it points to at least k good authorities.
The value of k is passed as a parameter to the algorithm.

Formally, given an authority weight vector a, let Fk(i) denote the subset of
F (i) that contains k nodes with the highest authority weights. That is, for any
node p ∈ F (i), such that p �∈ Fk(i), ap ≤ aq , for all q ∈ Fk(i). If |F (i)| ≤ k, then
Fk(i) = F (i). The AT(k) algorithm computes the authority and hub weights as
follows.

ai =
∑

j∈B(i)

h j and hi =
∑

j∈Fk (i)

a j .

The outline of the AT(k) algorithm is shown in Figure 5.
It is interesting to examine what happens at the extreme values of k. If dout

is the maximum out-degree of any node in the graph G, then for k ≥ dout,
the AT(dout) algorithm is the HITS algorithm. For k = 1, the threshold operator
becomes the max operator. We discuss this case in detail in the following section.

1Other types of threshold are possible. For example, the threshold may depend on the largest
difference between two weights.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

242 • A. Borodin et al.

Fig. 5. The AT(k) algorithm.

3.3 The MAX Algorithm

The MAX algorithm is a special case of the AT(k) algorithm for the threshold
value k = 1. The underlying intuition is that a hub node is as good as the best
authority that it points to. That is, a good hub is one that points to at least one
good authority.

The MAX algorithm has some interesting properties. First, it is not hard
to see that the nodes that receive the highest weight are the nodes with the
highest in-degree. We refer to these nodes as the seed nodes of the graph. Let
d be the in-degree of the seed nodes. If we normalize in the L∞ norm, then
the normalization factor for the authority weights of the MAX algorithm is d .
The seed nodes receives weight 1, the maximum weight. A detailed analysis
shows that the rest of the nodes are ranked according to their relation to the
seed nodes. The convergence and the combinatorial properties of the stationary
weights of the MAX algorithm are discussed in detail in Tsaparas [2004b]. In
the following paragraphs, we provide some of the intuition.

Let f : H → A denote a mapping between hubs and authorities, where
the hub j is mapped to authority i, if authority i is the authority with the
maximum weight among all the authorities pointed to by hub j . Define H(i) =

{ j ∈ H : f (j) = i} to be the set of hubs that are mapped to authority i.
Recall that the authority graph Ga, defined in Section 2.1, is an undirected
graph, where we place an edge between two authorities if they share a hub. We
now derive the directed weighted graph G A = (A, EA) on the authority nodes A,
from the authority graph Ga as follows. Let i and j be two nodes in A, such that
there exists an edge (i, j) in the graph Ga, and ai �= a j . Let B(i, j) = B(i) ∩ B(j)
denote the set of hubs that point to both authorities i and j . Without loss of
generality, assume that ai > a j . If H(i) ∩ B(i, j) �= ∅, that is, there exists at least
one hub in B(i, j) that is mapped to the authority i, then we place a directed
edge from i to j . The weight c(i, j) of the edge (i, j) is equal to the size of the
set H(i) ∩ B(i, j), that is, it is equal to the number of hubs in B(i, j) that are
mapped to i. The intuition of the directed edge (i, j) is that there are c(i, j) hubs
that propagate the weight of node i to node j . The graph G A captures the flow
of authority weight between authorities.

Now, let N (i) denote the set of nodes in G A that point to node i. Also, let
ci =

∑
j∈N (i) c(j , i) denote the total weight of the edges that point to i in the

graph G A. This is the number of hubs in the graph G that point to i, but are
mapped to some node with weight greater than i. The remaining di − ci hubs

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 243

(if any) are mapped to node i, or to some node with weight equal to the weight
of i. We set bi = di − ci. The number bi is also equal to the size of the set H(i),
the set of hubs that are mapped to node i when all ties are broken in favor of
node i.

The graph G A is a DAG, thus it must have at least one source. We can
prove that the sources of G A are the seed nodes of the graph G [Tsaparas
2004b]. We have already argued that the seed nodes receive maximum weight
1. Let s be some seed node, and let i denote a nonseed node. We define dist(s, i)
to be the distance of the longest path in G A, from s to i. We define the distance
of node i, dist(i) = maxs∈S dist(s, i), to be the maximum distance from a seed
node to i, over all seed nodes. We note that the distance is well defined, since
the graph G A is a DAG. The following theorem gives a recursive formula for
weight ai, given the weights of the nodes in N (i).

THEOREM 3.1. Given a graph G, let C1, C2, . . . Ck be the connected compo-

nents of the graph Ga. For every component Ci, 1 ≤ i ≤ k, if component Ci does

not contain a seed node, then ax = 0, for all x in Ci. If component Ci contains a

seed node, then the weight of the seed node is 1, and for every nonseed node x in

Ci, we can recursively compute the weight of node x at distance ℓ > 0, using the

equation

ax =
1

d − bx

∑

j∈N (x)

c(j , x)a j ,

where for all j ∈ N (i), dist(j) < ℓ.

3.4 The Breadth-First-Search (BFS) Algorithm

In this section, we introduce a Link Analysis Ranking algorithm that combines
ideas from both the INDEGREE and the HITS algorithms. The INDEGREE algorithm
computes the authority weight of a page, taking into account only the popularity
of this page within its immediate neighborhood and disregarding the rest of the
graph. On the other hand, the HITS algorithm considers the whole graph, taking
into account the structure of the graph around the node, rather than just the
popularity of that node in the graph.

We now describe the Breadth-First-Search (BFS) algorithm as a generaliza-
tion of the INDEGREE algorithm inspired by the HITS algorithm. The BFS algo-
rithm extends the idea of popularity that appears in the INDEGREE algorithm
from a one-link neighborhood to an n-link neighborhood. The construction of the
n-link neighborhood is inspired by the HITS algorithm. Recall from Section 2.2.3
that the weight assigned to node i by the HITS algorithm after n steps is pro-
portional to the number of (BF) paths of length n that leave node i. For the
BFS algorithm, instead of considering the number of (BF)n paths that leave i,
it considers the number of (BF)n neighbors of node i. Overloading the notation,
let (BF)n(i) denote the set of nodes that can be reached from i by following a
(BF)n path. The contribution of node j to the weight of node i depends on the
distance of the node j from i. We adopt an exponentially decreasing weighting

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

244 • A. Borodin et al.

scheme. Therefore, the weight of node i is determined as follows:

ai = |B(i)| +
1

2
|BF(i)| +

1

22
|BFB(i)| + . . . +

1

22n−1
|(BF)n(i)|.

The algorithm starts from node i, and visits its neighbors in BFS order,
alternating between backward and forward steps. Every time we move one link
further from the starting node i, we update the weight factors accordingly. The
algorithm stops either when n links have been traversed, or when the nodes
that can be reached from node i are exhausted.

The idea of applying an exponentially decreasing weighting scheme to paths

that originate from a node has been previously considered by Katz [1953]. In
the algorithm of Katz, for some fixed parameter α < 1, the weight of node i is
equal to

ai =

∞∑

k=1

n∑

j=1

αkW k[j , i],

where W k is the kth power of the adjacency matrix W . The entry W k[j , i] is the
number of paths in the graph G of length k from node j to node i. As we move
further away from node i, the contribution of the paths decreases exponentially.
There are two important differences between BFS and the algorithm of Katz.
First, the way the paths are constructed is different, since the BFS algorithm
alternates between backward and forward steps. More important, the BFS al-
gorithm considers the neighbors at distance k. Every node j contributes to the
weight of node i just once, and the contribution of node j is 1/2k (or αk if we
select a different scaling factor), where k is the shortest path (which alternates
between B and F steps) from j to i. In the algorithm of Katz, the same node
j may contribute multiple times, and its contribution is the number of paths
that connect j with i.

The BFS algorithm ranks the nodes according to their reachability, that is,
the number of nodes reachable from each node. This property differentiates the
BFS algorithm from the remaining algorithms, where connectivity, that is, the
number of paths that leave each node, is the most important factor in the rank-
ing of the nodes.

3.5 The BAYESIAN Algorithm

We now introduce a different type of algorithm that uses a fully Bayesian statis-
tical approach to compute authority and hub weights. Let P be the set of nodes
in the graph. We assume that each node i is associated with three parame-
ters. An (unknown) real parameter ei, corresponding to its “general tendency to
have hypertext links”, an (unknown) nonnegative parameter hi, corresponding
to its “tendency to have intelligent hypertext links to authoritative sites”, and
an (unknown) nonnegative parameter ai corresponding to its level of authority.

Our statistical model is as follows. The a priori probability of a link from
node i to node j is given by

P(i → j) =
exp(a j hi + ei)

1 + exp(a j hi + ei)
, (3)

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 245

and the probability of no link from i to j given by

P(i �→ j) =
1

1 + exp(a j hi + ei)
. (4)

This reflects the idea that a link is more likely if ei is large (in which case hub i

has a large tendency to link to any site), or if both hi and a j are large (in which
case i is an intelligent hub, and j is a high-quality authority).

To complete the specification of the statistical model from a Bayesian point of
view (see, e.g., Bernardo and Smith [1994]), we must assign prior distributions
to the 3n unknown parameters ei, hi, and ai. These priors should be general
and uninformative, and should not depend on the observed data. For large
graphs, the choice of priors should have only a small impact on the results.
We let µ = −5.0 and σ = 0.1 be fixed parameters, and let each ei have prior
distribution N (µ, σ 2), a normal distribution with mean µ and variance σ 2. We
further let each hi and a j have prior distribution Exp(1) (since they have to be
nonnegative), meaning that for x ≥ 0, P(hi ≥ x) = P(a j ≥ x) = exp(−x).

The (standard) Bayesian inference method then proceeds from this fully-
specified statistical model by conditioning on the observed data, which in this
case is the matrix W of actual observed hypertext links in the Base Set.
Specifically, when we condition on the data W we obtain a posterior density

π : R
3n → [0, ∞) for the parameters (e1, . . . , en, h1, . . . , hn, a1, . . . , an). This den-

sity is defined so that

P((e1, . . . , en, h1, . . . , hn, a1, . . . , an) ∈ S | {W [i, j]})

=
∫

S
π (e1, . . . , en, h1, . . . , hn, a1, . . . , an)de1 . . . dendh1 . . . dhnda1 . . . dan (5)

for any (measurable) subset S ⊆ R
3n, and also

E(g (e1, . . . , en, h1, . . . , hn, a1, . . . , an) | {W [i, j]})

=
∫

R3n g (e1, . . . , en, h1, . . . , hn, a1, . . . , an)π (e1, . . . , en, h1, . . . , hn, a1, . . . , an)

de1 . . . dendh1 . . . dhnda1 . . . dan

for any (measurable) function g : R
3n → R. An easy computation gives the

following.

LEMMA 3.2. For our model, the posterior density is given, up to a multiplica-

tive constant, by

π (e1, . . . , en, h1, . . . , hn, a1, . . . , an)

∝

n∏

i=1

exp(−hi) exp(−ai) exp[−(ei − µ)2/(2σ 2)]

×
∏

(i, j):W [i, j]=1

exp(a j hi + ei)

/ ∏

all i, j

(1 + exp(a j hi + ei)) .

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

246 • A. Borodin et al.

PROOF. We compute that

P(e1 ∈ de1, . . . , en ∈ den, h1 ∈ dh1, . . . , hn ∈ dhn, a1 ∈ da1, . . . , an

∈ dan, {W [i, j]}) =

n∏

i=1

[P(ei ∈ dei)P(hi ∈ dhi)P(ai ∈ dai)]

×
∏

i, j :W [i, j]=1

P(W [i, j] = 1 | ei, hi, a j)×
∏

i, j :W [i, j]=0

P(W [i, j] = 0 | ei, hi, a j)

=

n∏

i=1

[exp[−(ei − µ)2/(2σ 2)]dei exp(−hi)dhi exp(−ai)dai]

×
∏

i, j :W [i, j]=1

exp(a j hi + ei)

1 + exp(a j hi + ei)

∏

i, j :W [i, j]=0

1

1 + exp(a j hi + ei)

=

n∏

i=1

[exp[−(ei − µ)2/(2σ 2)]dei exp(−hi)dhi exp(−ai)dai]

×
∏

i, j :W [i, j]=1

exp(a j hi + ei)

/ ∏

all i, j

(1 + exp(a j hi + ei)) .

The result now follows by inspection.

Our Bayesian algorithm then reports the conditional means of the 3n para-
meters, according to the posterior density π . That is, it reports final values â j ,
ĥi, and êi, where, for example,

â j =

∫

R3n

a j π (e1, . . . , en, h1, . . . , hn, a1, . . . , an) de1 . . . dendh1 . . . dhnda1 . . . dan.

To actually compute these conditional means is nontrivial. To accomplish
this, we used a Metropolis Algorithm. The Metropolis algorithm is an example
of a Markov Chain Monte Carlo Algorithm (for background see, e.g., Smith
and Roberts [1993]; Tierney [1994]; Gilks et al. [1996]; Roberts and Rosenthal
[1998]). We denote this algorithm as BAYESIAN.

The Metropolis Algorithm proceeds by starting all the 3n parameter values at
1. It then attempts, for each parameter in turn, to add an independent N (0, ξ2)
random variable to the parameter. It then “accepts” this new value with proba-
bility min(1, π (new)/π (old)), otherwise it “rejects” it and leaves the parameter
value the way it is. If this algorithm is iterated enough times, and the observed
parameter values at each iteration are averaged, then the resulting averages
will converge (see, e.g., Tierney [1994]) to the desired conditional means.

There is, of course, some arbitrariness in the specification of the BAYESIAN al-
gorithm, for example, in the form of the prior distributions and in the precise for-
mula for the probability of a link from i to j . However, the model appears to work
well in practice as our experiments show. We note that it is possible that the
priors for a new search query could instead depend on the performance of page i

on different previous searches, though we do not pursue that direction here.
The BAYESIAN algorithm is similar in spirit to the PHITS algorithm of Cohn and

Chang [2000] in that both use statistical modeling, and both use an iterative

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 247

algorithm to converge to an answer. However, the algorithms differ sub-
stantially in their details. First, they use substantially different statistical
models. Second, the PHITS algorithm uses a non-Bayesian (i.e., “classical” or
“frequentist”) statistical framework, as opposed to the Bayesian framework
adopted here.

3.6 The Simplified Bayesian (SBAYESIAN) Algorithm

It is possible to simplify the above Bayesian model by replacing equation (3)
with

P(i → j) =
a j hi

1 + a j hi

,

and correspondingly, replace equation (4) with

P(i �→ j) =
1

1 + a j hi

.

This eliminates the parameters ei entirely so that we no longer need the prior
values µ and σ . A similar model for the generation of links was considered by
Azar et al. [2001].

This leads to a slightly modified posterior density π (·), now given by π :
R

2n → R
≥0 where

π (h1, . . . , hn, a1, . . . , an) ∝

n∏

i=1

exp(−hi) exp(−ai) ×
∏

(i, j):W [i, j]=1

a j hi

/∏

all i, j

(1+a j hi).

We denote this Simplified Bayesian algorithm as SBAYESIAN. The SBAYESIAN

algorithm was designed to be to similar to the original BAYESIAN algorithm.
Surprisingly, we observed that experimentally it performs very similarly to the
INDEGREE algorithm.

4. A THEORETICAL FRAMEWORK FOR THE STUDY OF LINK ANALYSIS
RANKING ALGORITHMS

The seminal work of Kleinberg [1998] and Brin and Page [1998] was followed by
an avalanche of Link Analysis Ranking algorithms (hereinafter denoted LAR

algorithms) [Borodin et al. 2001; Bharat and Henzinger 1998; Lempel and
Moran 2000; Rafiei and Mendelzon 2000; Azar et al. 2001; Achlioptas et al. 2001;
Ng et al. 2001b]. Faced with this wide range of choices for LAR algorithms, re-
searchers usually resort to experiments to evaluate them and determine which
one is more appropriate for the problem at hand. However, experiments are only
indicative of the behavior of the LAR algorithm. In many cases, experimental
studies are inconclusive. Furthermore, there are often cases where algorithms
exhibit similar properties and ranking behavior. For example, in our experi-
ments (Section 5), we observed a strong “similarity” between the SBAYESIAN and
INDEGREE algorithms.

It seems that experimental evaluation of the performance of an LAR al-
gorithm is not sufficient to fully understand its ranking behavior. We need a
precise way to evaluate the properties of the LAR algorithms. We would like to
be able to formally answer questions of the following type: “How similar are two

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

248 • A. Borodin et al.

LAR algorithms?”; “On what kind of graphs do two LAR algorithms return sim-
ilar rankings?”; “How does the ranking behavior of an LAR algorithm depend
on the specific class of graphs?”; “How does the ranking of an LAR algorithm
change as the underlying graph is modified?”; “Is there a set of properties that
characterize an LAR algorithm?”.

In this section we, describe a formal study of LAR algorithms. We introduce
a theoretical framework that allows us to define properties of the LAR algo-
rithms and compare their ranking behavior. We conclude with an axiomatic
characterization of the INDEGREE algorithm.

4.1 Link Analysis Ranking Algorithms

We first need to formally define a Link Analysis Ranking algorithm. Let Gn

denote the set of all possible graphs of size n. The size of the graph is the
number of nodes in the graph. Let Gn ⊆ Gn denote a collection of graphs in Gn.
We define a link analysis algorithm A as a function A : Gn → R

n that maps a
graph G ∈ Gn to an n-dimensional real vector. The vector A(G) is the authority
weight vector (or weight vector) produced by the algorithm A on graph G. We
will refer to this vector as the LAR vector, or authority vector. The value of the
entry A(G)[i] of the LAR vector A(G) denotes the authority weight assigned by
the algorithm A to the node i. We will use a (or often w) to denote the authority
weight vector of algorithm A. In this section, we will sometimes use a(i) instead
of ai to denote the authority weight of node i. All algorithms that we consider are
defined over Gn, the class of all possible graphs. We will also consider another
class of graphs, GAC

n , the class of authority connected graphs. Recall that a graph
G is authority connected, if the corresponding authority graph Ga consists of a
single component.

We will assume that the weight vectorA(G) is normalized under some chosen
norm. The choice of normalization affects the output of the algorithm, so we
distinguish between algorithms that use different norms. For any norm L, we
define an L-algorithm A to be an algorithm where the weight vector of A is
normalized under L. That is, the algorithm maps the graphs in Gn onto the unit
L-sphere. For the following, when not stated explicitly, we will assume that the
weight vectors of the algorithms are normalized under the Lp norm for some
1 ≤ p ≤ ∞.

4.2 Distance Measures Between LAR Vectors

We are interested in comparing different LAR algorithms as well as studying
the ranking behavior of a specific LAR algorithm as we modify the underlying
graph. To this end, we need to define a distance measure between the LAR vec-
tors produced by the algorithms. Recall that an LAR algorithm A is a function
that maps a graph G = (P, E) from a class of graphs Gn to an n-dimensional
authority weight vector A(G). Let a1 and a2 be two LAR vectors defined over
the same set of nodes P . We define the distance between the LAR vectors a1

and a2 as d (a1, a2), where d : R
n × R

n → R is some function that maps two real
n-dimensional vectors to a real number d (a1, a2). We now examine different
choices for the function d .

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 249

4.2.1 Geometric Distance Measures. The first distance functions we con-
sider capture the closeness of the actual weights assigned to every node. The
LAR vectors can be viewed as points in an n-dimensional space, thus we can use
common geometric measures of distance. We consider the Manhattan distance,
that is, the L1 distance of the two vectors. Let a1, a2 be two LAR vectors. We
define the d1 distance measure between a1 and a2 as follows

d1(a1, a2) = min
γ1,γ2≥1

n∑

i=1

|γ1a1(i) − γ2a2(i)|.

The constants γ1 and γ2 are meant to allow for an arbitrary scaling of the two
vectors, thus eliminating large distances that are caused solely due to normal-
ization factors. For example, let w = (1, 1, . . . , 1, 2) and v = (1, 1, . . . , 1) be
two LAR vectors before any normalization is applied. These two vectors ap-
pear to be close. Suppose that we normalize the LAR vectors in the L∞ norm,
and let w∞ and v∞ denote the normalized vectors. Then

∑n
i=1 |w∞(i) − v∞(i)| =

(n−1)/2 = �(n). The maximum L1 distance between any two L∞-unit vectors is
�(n) [Tsaparas 2004a] and therefore, these two vectors appear to be far apart.
Suppose now that we normalize in the L1 norm, and let w1 and v1 denote the
normalized vectors. Then

∑n
i=1 |w1(i) − v1(i)| = 2(n−1)

n(n+1)
= �(1/n). The maximum

L1 distance between any two L1-unit vectors is �(1); therefore, the two vectors
now appear to be close. We use the constants γ1, γ2 to avoid such discrepancies.

Instead of the L1 distance, we may use other geometric distance measures,
such as the Euclidean distance L2. In general, we define the dq distance, as the
Lq distance of the weight vectors. Formally,

dq(a1, a2) = min
γ1,γ2≥1

‖γ1a1(i) − γ2a2(i)‖q .

For the remainder of the article, we only consider the d1 distance measure.

4.2.2 Rank Distance Measures. The next distance functions we consider
capture the similarity between the ordinal rankings induced by the two LAR
vectors. The motivation behind this definition is that the ordinal ranking is the
usual end-product seen by the user. Let abe an LAR vector defined over a set P

of n nodes. The vector a induces a ranking of the nodes in P , such that a node
i is ranked above node j if ai > a j . If all weights are distinct, the authority
weights induce a total ranking of the elements in P . If the weights are not all
distinct, then we have a partial ranking of the elements in P . We will also refer
to total rankings as permutations.

The problem of comparing permutations has been studied exten-
sively [Kendall 1970; Diaconis and Graham 1977; Dwork et al. 2001]. One pop-
ular distance measure is the Kendall’s tau distance which captures the number
of disagreements between the rankings. Let P denote the set of all pairs of
nodes. Let a1, a2 be two LAR vectors. We define the violating set, V(a1, a2) ⊆ P,
as follows

V(a1, a2) = {(i, j) inP : (a1(i) < a1(j)∧a2(i) > a2(j))∨(a1(i) > a1(j)∧a2(i) < a2(j))}.

That is, the violating set contains the set of pairs of nodes that are ranked in a
different order by the two permutations. We now define the indicator function

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

250 • A. Borodin et al.

Ia1a2
(i, j) as follows.

Ia1a2
(i, j) =

{
1 if (i, j) ∈ V(a1, a2)

0 otherwise
.

Kendall’s tau is defined as follows.

K (a1, a2) =
∑

{i, j }∈P

Ia1a2
(i, j).

Kendall’s tau is equal to the number of bubble sort swaps that are necessary
to convert one permutation to the other. The maximum value of Kendall’s tau
is n(n − 1)/2, and it occurs when one ranking is the reverse of the other.

If the two LAR vectors take distinct values for each node in the set P , then
we can compare rankings by directly applying Kendal’s tau distance. However,
it is often the case that LAR algorithms assigns equal weights to two different
nodes. Thus, the algorithm produces a partial ranking of the nodes. In this case,
there is an additional source of discrepancy between the two rankings; pairs
of nodes that receive equal weight in one vector, but different weights in the
other. We define the weakly violating set, W(a1, a2), as follows.

W(a1, a2) = {(i, j) : (a1(i) = a1(j)∧a2(i) �= a2(j))∨(a1(i) �= a1(j)∧a2(i) = a2(j))}.

In order to define a distance measure between partial rankings, we need to ad-
dress the pairs of nodes that belong to this set. Following the approach in Fagin
et al. [2003], we penalize each such pair by a value p, where p ∈ [0, 1]. We

define the indicator function I
(p)
a1a2

(i, j) as follows.

I
p
a1a2

(i, j) =

1 if (i, j) ∈ V(a1, a2)

p if (i, j) ∈ W(a1, a2).

0 otherwise

Kendall’s tau with penalty p is defined as follows.

K (p)(a1, a2) =
∑

{i, j }∈P

I
(p)
a1a2

(i, j).

The parameter p takes values in [0, 1]. The value p = 0 gives a lenient approach
where we penalize the algorithm only for pairs that are weighted so that they
force an inconsistent ranking. The value p = 1 gives a strict approach where we
penalize the algorithm for all pairs that are weighted so that they allow for an
inconsistent ranking. Values of p in (0, 1) give a combined approach. We note
that K (0)(a1, a2) ≤ K (p)(a1, a2) ≤ K (1)(a1, a2).

In this article, we only consider the extreme values of p. We define the weak

rank distance, d (0)
r , as follows.

d (0)
r (a1, a2) =

1

n(n − 1)/2
K (0)(a1a2).

We define the strict rank distance, d (1)
r , as follows.

d (1)
r (a1, a2) =

1

n(n − 1)/2
K (1)(a1a2).

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 251

A p-rank distance d (p) can be defined similarly. The rank distance measures
are normalized by n(n−1)/2, the maximum Kendal’s tau distance, so that they
takes values in [0, 1]. We will use the weak rank distance when we want to argue
about two LAR vectors being far apart, and the strict rank distance when we
want to argue about two LAR vectors being close.

The problem of comparing partial rankings is studied independently
in Tsaparas [2004a] and Fagin et al. [2004] where they discuss the properties of
Kendal tau distance on partial rankings. It is shown that the d (1)

r distance mea-
sure is a metric. Also, Fagin et al. [2004] generalize other distance measures
for the case of partial rankings.

4.3 Similarity of LAR Algorithms

We now turn to the problem of comparing two LAR algorithms. We first give the
following generic definition of similarity of two LAR algorithms for any distance
function d , and any normalization norm L = || · ||.

Definition 4.1. Two L-algorithms, A1 and A2, are similar on the class of
graph Gn under distance d , if as n → ∞

max
G∈Gn

d (A1(G), A2(G)) = o(Mn(d , L))

where Mn(d , L) = sup‖w1‖=‖w2‖=1 d (w1, w2) is the maximum distance between
any two n-dimensional vectors with unit norm L = || · ||.

In the definition of similarity, instead of taking the maximum over all G ∈ Gn,
we may use some other operator. For example, if there exists some distribution
over the graphs in Gn, we could replace max operator by the expectation of
the distance between the algorithms. In this article, we only consider the max
operator.

We now give the following definitions of similarity for the d1, d (0)
r , and d (1)

r

distance measures. For the d1 distance measure, the maximum d1 distance
between any two n-dimensional Lp unit vectors is �(n1−1/p) [Tsaparas 2004a].

Definition 4.2. Let 1 ≤ p ≤ ∞. Two Lp-algorithms, A1, and A2, are d1-

similar (or, similar) on the class of graphs Gn, if as n → ∞,

max
G∈Gn

d1(A1(G), A2(G)) = o(n1−1/p).

Definition 4.3. Two algorithms, A1 and A2, are weakly rank similar on the
class of graphs Gn, if as n → ∞,

max
G∈Gn

d (0)
r (A1(G), A2(G)) = o(1).

Definition 4.4. Two algorithms, A1 and A2, are strictly rank similar on the
class of graphs Gn, if as n → ∞,

max
G∈Gn

d (1)
r (A1(G), A2(G)) = o(1).

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

252 • A. Borodin et al.

Definition 4.5. Two algorithms, A1 and A2, are rank consistent on the class
of graphs Gn, if for every graph G ∈ Gn,

d (0)
r (A1(G), A2(G)) = 0.

Definition 4.6. Two algorithms, A1 and A2, are rank equivalent on the class
of graphs Gn, if for every graph G ∈ Gn,

d (1)
r (A1(G), A2(G)) = 0.

We note that, according to the above definition, every algorithm is rank con-
sistent with the trivial algorithm that gives the same weight to all authorities.
Although this may seem somewhat bizarre, it does have an intuitive justifica-
tion. For an algorithm whose goal is to produce an ordinal ranking, the weight
vector with all weights equal conveys no information; therefore, it lends itself
to all possible ordinal rankings. The weak rank distance counts only the pairs
that are weighted inconsistently, and in this case there are none. If a stronger
notion of similarity is needed, the d (1)

r distance measure can be used where all
such pairs contribute to the distance.

From the definitions in Section 4.2.2, it is obvious that if two algorithms are

strictly rank similar, then they are similar under p-rank distance d
(p)
r for every

p < 1. Equivalently, if two algorithms are not weakly rank similar, then they
are not similar under p-rank distance for every p > 0.

The definition of similarity depends on the normalization of the algorithms.
In the following, we show that, for the d1 distance, similarity in the Lp norm
implies similarity in the Lq norm, for any q > p.

THEOREM 4.7. Let A1 and A2 be two algorithms, and let 1 ≤ p ≤ q ≤ ∞. If

the Lp-algorithmA1 and the Lp-algorithmA2 are similar, then the Lq-algorithm

A1 and the Lq-algorithm A2 are also similar.

PROOF. Let G be a graph of size n, and let u = A1(G), and v = A2(G)
be the weight vectors of the two algorithms. Let vp and up denote the weight
vectors, normalized in the Lp norm, and let vq and uq denote the weight vectors,
normalized in the Lq norm. Since the Lp-algorithm A1 and the Lp-algorithm
A2 are similar, there exist γ1, γ2 ≥ 1 such that

d1(vp, up) =

n∑

i=1

|γ1vp(i) − γ2up(i)| = o(n1−1/p).

Now, vq = vp/‖vp‖q , and uq = up/‖up‖q . Therefore,
∑n

i=1 |γ1‖vp‖qvq(i) −

γ2‖up‖quq(i)| = o(n1−1/p). Without loss of generality, assume that ‖up‖q ≥ ‖vp‖q .
Then

‖vp‖q

n∑

i=1

∣∣∣∣γ1vq(i) − γ2
‖up‖q

‖vp‖q

uq(i)

∣∣∣∣ = o(n1−1/p).

We set γ ′
1 = γ1 and γ ′

2 = γ2
‖up‖q

‖vp‖q
. Then we have that

d1(vq , uq) ≤

n∑

i=1

|γ ′
1vq(i) − γ ′

2uq(i)| = o

(
n1−1/p

‖vp‖q

)
.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 253

Fig. 6. Dissimilarity of HITS and INDEGREE. The graph G for r = 2.

It is known [Tsaparas 2004a] that ‖vp‖q ≥ ‖vp‖pn1/q−1/p = n1/q−1/p. Hence,
n1−1/p

‖vp‖q
≤ n1−1/p

n1/q−1/p = n1−1/q . Therefore, d1(vq , uq) = o(n1−1/q), and thus Lq-algorithm

A1, and Lq-algorithm A2 are similar.

Theorem 4.7 implies that if two L1-algorithms are similar, then the corre-
sponding Lp-algorithms are also similar, for any 1 ≤ p ≤ ∞. Consequently, if
two L∞-algorithms are dissimilar, then the corresponding Lp-algorithms are
also dissimilar, for any 1 ≤ p ≤ ∞. Therefore, all dissimilarity results proven
for the L∞ norm hold for any Lp norm, for 1 ≤ p ≤ ∞.

4.3.1 Similarity Results. We now consider the similarity of the HITS, IN-
DEGREE, SALSA, HUBAVG, and MAX algorithms. We will show that no pair of algo-
rithms are similar, or rank similar, in the class Gn of all possible graphs of size
n. For the dissimilarity results under the d1 distance measure, we will assume
that the weight vectors are normalized under the L∞ norm. Dissimilarity be-
tween two L∞-algorithms implies dissimilarity in Lp norm, for p < ∞. Also,
for rank similarity, we will use the strict rank distance, d (1)

r , while for rank
dissimilarity we will use the weak rank distance, d (0)

r .

4.3.1.1 The HITS and the INDEGREE Algorithms.

PROPOSITION 4.8. The HITS and the INDEGREE algorithms are neither similar,

nor weakly rank similar on Gn.

PROOF. Consider a graph G on n = 7r − 2 nodes that consists of two dis-
connected components. The first component C1 consists of a complete bipartite
graph with 2r−1 hubs and 2r−1 authorities. The second component C2 consists
of a bipartite graph with 2r hubs and r authorities. The graph G for r = 2 is
shown in Figure 6.

Let aand wdenote the weight vectors of the HITS and the INDEGREE algorithm,
respectively, on graph G. The HITS algorithm allocates all the weight to the
nodes in C1. After normalization, for all i ∈ C1, ai = 1, while for all j ∈ C2, a j =

0. On the other hand, the INDEGREE algorithm distributes the weight to both
components, allocating more weight to the nodes in C2. After the normalization
step, for all j ∈ C2, w j = 1, while for all i ∈ C1, wi = 2r−1

2r
.

There are r nodes in C2 for which wi = 1 and ai = 0. For all γ1, γ2 ≥ 1,∑
i∈C2

|γ1wi − γ2ai| ≥ r. Therefore, d1(w, a) = 	(r) = 	(n), which proves that
the algorithms are not similar.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

254 • A. Borodin et al.

Fig. 7. Dissimilarity of HUBAVG and HITS. The graph G for r = 3.

The proof for weak rank dissimilarity follows immediately from the above.
For every pair of nodes {i, j } such that i ∈ C1 and j ∈ C2, ai > a j and wi < w j .
There are �(n2) such pairs, therefore, d (0)

r (a, w) = �(1). Thus, the two algo-
rithms are not weakly rank similar.

4.3.1.2 The HUBAVG and HITS Algorithms.

PROPOSITION 4.9. The HUBAVG and HITS algorithms are neither similar, nor

weakly rank similar on Gn.

PROOF. Consider a graph G on n = 5r nodes that consists of two disconnected
components. The first component C1 consists of a complete bipartite graph with
r hub and r authority nodes. The second component C2 consists of a complete
bipartite graph C with r hub and r authority nodes, and a set of r “external”
authority nodes E, such that each hub node in C points to a node in E, and
no two hub nodes in C point to the same “external” node. Figure 7 shows the
graph G for r = 3.

Let aand w denote the weight vectors of the HITS and the HUBAVG algorithm,
respectively, on graph G. It is not hard to see that the HITS algorithm allocates
all the weight to the authority nodes in C2. After normalization, for all authority
nodes i ∈ C, ai = 1, for all j ∈ E, a j = 1

r−1
, and for all k ∈ C1, ak = 0. On the

other hand, the HUBAVG algorithm allocates all the weight to the nodes in C1.
After normalization, for all authority nodes k ∈ C1, wk = 1, and for all j ∈ C2,
w j = 0.

Let U = C1 ∪ C. The set U contains 2r authority nodes. For every authority
i ∈ U , either ai = 1 and wi = 0, or ai = 0 and wi = 1. Therefore, for all γ1, γ2 ≥ 1,∑

i∈U |γ1ai − γ2wi| ≥ 2r. Thus, d1(a, w) = 	(r) = 	(n), which proves that the
algorithms are not similar.

The proof for weak rank dissimilarity follows immediately from the above.
For every pair of authority nodes (i, j) such that i ∈ C1 and j ∈ C2, ai < w j ,
and ai > w j . There are �(n2) such pairs, therefore, d (0)

r (a, w) = �(1). Thus, the
two algorithms are not weakly rank similar.

4.3.1.3 The HUBAVG and INDEGREE Algorithms.

PROPOSITION 4.10. The HUBAVG algorithm and the INDEGREE algorithm are

neither similar, nor weakly rank similar on Gn.

PROOF. Consider a graph G with n = 15r nodes. The graph G consists of r

copies of a subgraph Gs on 15 nodes. The subgraph Gs contains two components,

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 255

Fig. 8. Dissimilarity of HUBAVG and INDEGREE. The Gs graph.

Fig. 9. Dissimilarity of SALSA with HITS,INDEGREE and HUBAVG. The graph G for r = 3.

C1 and C2. The component C1 is a complete bipartite graph with 3 hubs and 3
authorities. The component C2 consists of 4 hubs that all point to an authority
node p. Furthermore, each hub points to one more authority, a different one for
each hub. The graph Gs is shown in Figure 8.

Let a denote the authority weight vector of HUBAVG algorithm, and let w

denote the authority weight of the INDEGREE algorithm on graph G. It is not
hard to see that for every copy of the subgraph Gs, the HUBAVG algorithm assigns
weight 1 to the authorities in component C1 and zero weight to component C2.
On the other hand, the INDEGREE algorithm assigns weight 1 to all nodes with
in-degree 4, and weight 3/4 to the authorities in the C1 components of the
copies of the Gs subgraph. Since the graph G contains r copies of the graph Gs,
it follows that there are r = �(n) nodes for which ai = 0 and wi = 1. Therefore,
dr (a, w) = �(1). Furthermore, for all γ1, γ ≥ 1, ‖γ1a − γ2w‖1 = �(n). Thus,
HUBAVG and INDEGREE are neither similar, nor weakly rank similar.

4.3.1.4 The SALSA Algorithm.

PROPOSITION 4.11. The SALSA algorithm is neither similar, nor weakly rank

similar, to the INDEGREE, HUBAVG, or HITS algorithms.

PROOF. Consider a graph G on n = 6r nodes that consists of two components,
C1 and C2. The component C1 is a complete bipartite graph with 2r hubs and 2r

authorities. The component C2 is a complete bipartite graph with r hubs and r

authorities, with one link (q, p) removed. Figure 9 shows the graph G for r = 3.
Let u, a, v, and w denote the normalized weight vectors for SALSA, HITS,

HUBAVG, and INDEGREE algorithms, respectively. Also, let u1 denote the SALSA

weight vector normalized in the L1 norm (i.e., as it is computed by the random

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

256 • A. Borodin et al.

walk of the SALSA algorithm). The SALSA algorithm allocates weight u1(i) = 1/3r

for all authority nodes i ∈ C1, and weight u1(j) = (r − 1)/3(r2 − 1) for all
authority node j ∈ C2 \ {p}. Hub nodes receive weight zero for all algorithms. It
is interesting to note that the removal of the link (q, p) increases the weight of
the rest of the nodes in C2. Since (r −1)/3(r2 −1) > 1/3r, after normalization in
the L∞ norm, we have that ui = 1− 1

r2 for all i ∈ C1, and u j = 1 for all j ∈ C2\{p}.
On the other hand, both the HITS and HUBAVG algorithms distribute all the
weight equally to the authorities in the C1 component and allocate zero weight
to the nodes in the C2 component. Therefore, after normalization, ai = vi = 1 for
all nodes i ∈ C1, and a j = v j = 0 for all nodes j ∈ C2. The INDEGREE algorithm
allocates weight proportionally to the in-degree of the nodes, therefore, after
normalization, wi = 1 for all nodes in C1, while w j = 1

2
for all nodes j ∈ C2 \{p}.

Let ‖ · ‖ denote the L1 norm. For the HITS and HUBAVG algorithm, there are
r entries in C2 \ {p}, for which ai = vi = 0 and ui = 1. Therefore, for all of
γ1, γ2 ≥ 1, ‖γ1u− γ2a‖ = 	(r) = 	(n), and ‖γ1u− γ2a‖ = 	(r) = 	(n). From this,
we have that d (0)

r (u, a) = �(1), and d (0)
r (u, v) = �(1).

The proof for the INDEGREE algorithm, is a little more involved. Let

S1 =
∑

i∈C1

|γ1wi − γ2ui| = 2r
∣∣∣γ1 − γ2 −

γ2

r2

∣∣∣

S2 =
∑

i∈C2\{p}

|γ1wi − γ2ui| = r

∣∣∣∣γ1
1

2
− γ2

∣∣∣∣ .

We have that ‖γ1w − γ2u‖ ≥ S1 + S2, unless 1
2
γ1 − γ2 = o(1), then S2 = �(r) =

�(n). If γ1 = 2γ2 + o(1), since γ1, γ2 ≥ 1, we have that S1 = �(r) = �(n).
Therefore, d1(w, u) = 	(n). From this, d (0)

r (w, u) = �(1).
Thus, SALSA is neither similar, nor weakly rank similar, to HITS, INDEGREE,

and HUBAVG.

4.3.2 Other Results. On the positive side, the following Lemma follows
immediately from the definition of the SALSA algorithm and the definition of the
authority-connected class of graphs.

LEMMA 4.12. The SALSA algorithm is rank equivalent and similar to the

INDEGREE algorithm on the class of authority connected graphs GAC
n .

In a recent work, Lempel and Moran [2003] showed that the HITS, INDEGREE

(SALSA), and PAGERANK algorithms are not weakly rank similar on the class of
authority connected graphs, GAC

n . The similarity of the MAX algorithm with the
rest of the algorithms is studied in Tsaparas [2004a]. It is shown that the MAX

algorithm is neither similar, nor weakly rank similar, with the HITS, HUBAVG,
INDEGREE, and SALSA algorithms.

4.4 Stability

In the previous section, we examined the similarity of two different algorithms
on the same graph G. In this section, we are interested in how the output of
a fixed algorithm changes as we alter the graph. We would like small changes
in the graph to have a small effect on the weight vector of the algorithm. We

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 257

capture this requirement by the definition of stability. The notion of stability
has been independently considered (but not explicitly defined) in a number of
different papers [Ng et al. 2001a, 2001b; Azar et al. 2001; Achlioptas et al. 2001].
For the definition of stability, we will use some of the terminology employed by
Lempel and Moran [2001].

Let Gn be a class of graphs, and let G = (P, E) and G ′ = (P, E ′) be two graphs
in Gn. We define the link distance dℓ between graphs G and G ′ as follows.

dℓ

(
G, G ′

)
=

∣∣(E ∪ E ′) \ (E ∩ E ′)
∣∣ .

That is, dℓ(G, G ′) is the minimum number of links that we need to add and/or re-
move so as to change one graph into the other. Generalizations and alternatives
to dℓ are considered in Tsaparas [2004a].

Given a class of graphs Gn, we define a change, ∂, within class Gn as a pair ∂ =

{G, G ′}, where G, G ′ ∈ Gn. The size of the change is defined as |∂| = dℓ(G, G ′).
We say that a change ∂ affects node i if the links that point to node i are altered.
In algebraic terms, the ith column vectors of the adjacency matrices W and W ′

are different. We define the impact set of a change ∂, {∂}, to be the set of nodes
affected by the change ∂.

For a graph G ∈ Gn, we define the set Ck(G) = {G ′ ∈ Gn : dℓ(G, G ′) ≤ k}. The
set Ck(G) contains all graphs that have a link distance of at most k from graph
G, that is, all graphs G ′ that can be produced from G, with a change of size of
at most k.

We are now ready to define stability. The definition of stability depends upon
the normalization norm and the distance measure.

Definition 4.13. An L-algorithm A is stable on the class of graphs Gn under
distance d , if for every fixed positive integer k, we have as n → ∞

max
G∈Gn,G ′∈Ck (G)

d (A(G), A(G ′)) = o(Mn(d , L)),

where Mn(d , L) = sup‖w1‖=‖w2‖=1 d (w1, w2) is the maximum distance between
any two n-dimensional vectors with unit norm L = || · ||.

We now give definitions for stability for the specific distance measures we
consider.

Definition 4.14. An Lp-algorithm A is d1-stable (or, stable) on the class of

graphs Gn, if for every fixed positive integer k, we have as n → ∞

max
G∈Gn,G ′∈Ck (Gn)

d1(A(G), A(G ′)) = o(n1−1/p).

Definition 4.15. An algorithmA is weakly rank stable on the class of graphs
Gn, if for every fixed positive integer k, we have as n → ∞

max
G∈Gn,G ′∈Ck (G)

d (0)
r (A(G), A(G ′)) = o(1).

Definition 4.16. An algorithmA is strictly rank stable on the class of graphs
Gn, if for every fixed positive integer k, we have as n → ∞

max
G∈Gn,G ′∈Ck (G)

d (1)
r (A(G), A(G ′)) = o(1).

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

258 • A. Borodin et al.

As in the case of similarity, strict rank stability implies stability for all p-rank

distance measures d
(p)
r , while weak rank instability implies instability for all

p-rank distance measures.
Stability seems to be a desirable property. If an algorithm is not stable, then

slight changes in the link structure of the Base Set may lead to large changes in
the rankings produced by the algorithm. Given the rapid evolution of the Web,
stability is necessary to guarantee consistent behavior of the algorithm. Fur-
thermore, stability may provide some “protection” against malicious spammers.

The following theorem is the analogue of Theorem 4.7 for stability.

THEOREM 4.17. Let A be an algorithm, and let 1 ≤ p ≤ q ≤ ∞. If the Lp-

algorithm A is stable on class Gn, then the Lq-algorithm A is also stable on

Gn.

PROOF. Let ∂ = {G, G ′} be a change within Gn of 3 size of at most k, for a
fixed constant k. Set v = A(G), and u= A(G ′), and then the rest of the proof is
identical to the proof of Theorem 4.7.

Theorem 4.17 implies that, if an L1-algorithm A is stable then the Lp-
algorithmA is also stable for any 1 ≤ p ≤ ∞. Consequently, if the L∞-algorithm
A is unstable then the Lp-algorithm A is also unstable for any 1 ≤ p ≤ ∞.
Therefore, instability results, proven for the L∞ norm, hold for any Lp norm
for 1 ≤ p ≤ ∞.

4.4.1 Stability and Similarity. We now prove an interesting connection
between stability and similarity.

THEOREM 4.18. Let d be a distance function that is a metric, or a near metric2

If two L-algorithms, A1 and A2, are similar under d on the class Gn, and the

algorithm A1 is stable under d on the lass Gn, then A2 is also stable under d on

the class Gn.

PROOF. Let ∂ = {G, G ′} be a change in Gn of size k, where k is some fixed
constant independent of n. Now let w1 = A1(G), w2 = A2(G), w′

1 = A(G ′), and
w′

2 = A(G ′). Since A1 and A2 are similar, we have that d (w1, w2) = o(Mn(d , L)),
and d (w′

1, w′
2) = o(Mn(d , L)). Since A1 is stable, we have that d (w1, w′

1) =

o(Mn(d , L)). Since the distance measure d is a metric, or a near metric, we
have that

d (w2, w
′
2) = O(d (w1, w2) + d (w′

1, w
′
2) + d (w1, w

′
1)) = o(Mn(d , L)).

Therefore, A2 is stable on Gn.

4.4.2 Stability Results

PROPOSITION 4.19. The HITS and HUBAVG algorithms are neither stable, nor

weakly rank stable, on class Gn.

2A near metric [Fagin et al. 2003] is a distance function that is reflexive and symmetric, and satisfies
the following relaxed polygonal inequality. There is a constant c, independent of n, such that for
all k > 0, and all vectors u, w1, w2, . . . , wk , v, d (u, v) ≤ c(d (u, w1) + d (w1, w2) + · · · + d (wk , v)).

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 259

PROOF. Consider the graph G of size n = 2r + 1 that consists of two disjoint
components, C1 and C2, each a complete graph on r nodes. There is also an extra
hub node h that points to some node in C1. For both HITS and HUBAVG, in the
corresponding matrices MH and MHA, the singular value of the component C1

is (slightly) larger than that of C2. Therefore, both algorithms will allocate all
the weight to the nodes of C1 and zero weight to C2. Now, construct the graph
G ′ by removing the link from h to C1 and adding a link to some node in C2.
In G ′, the singular value of C2 becomes larger than that of C1, causing all the
weight to shift from C1 to C2, and leaving the nodes in C1 with zero weight. It
follows that the two algorithms are neither stable, nor weakly rank stable.

PROPOSITION 4.20. The SALSA algorithm, is neither stable, nor weakly rank

stable, on the class Gn.

PROOF. We first establish the rank instability of the SALSA algorithm. The
example is similar to that used in the previous proof. Consider a graph G of
size n = 2r + 1 which consists of two disjoint components. The first component
consists of a complete graph C1 on r nodes and an extra authority p that is
pointed to by a single node of the complete graph C1. The second component
consists of a complete graph C2 on r nodes.

Let a denote the weight vector of the SALSA algorithm on the graph G. Then
for every node i ∈ C1, ai = r+1

2r+1
r−1

r(r−1)+1
. For every node j ∈ C2, a j = 1

2r+1
. If

r > 2, then the SALSA algorithm ranks the r authorities in C1 higher than those
in C2. We now remove the link from the node in C1 to node p, and we add a link
from a node in C2 to p. Now, the nodes in C2 are ranked higher than the nodes
in C1. There are �(n2) pairs of nodes whose relative order is changed; therefore,
SALSA is weakly rank unstable.

The proof of instability is a little more involved. Consider again the graph G

that consists of two complete graphs, C1 and C2, of size n1 and n2, respectively,
such that n2 = cn1, where c < 1 is a fixed constant. There exists also an extra
hub h that points to two authorities p and q from the components, C1 and C2,
respectively. The graph has n = n1 +n2 +1 nodes, and na = n1 +n2 authorities.

The authority Markov chain defined by the SALSA algorithm is irreducible;
therefore, the weight of authority i is proportional to the in-degree of node i.
Let a be the weight vector of the SALSA algorithm. Node p is the node with the
highest in-degree, B(p) = n1, and therefore, after normalizing in the L∞ norm,
ap = 1, ai = 1 − 1/n1 for all i ∈ C1 \ {p}, aq = c, and a j = c − 1/n1 for all
j ∈ C2\{q}.

Now let G ′ be the graph G after we remove the two links from hub h to
authorities p and q. Let a′ denote the weight vector of the SALSA algorithm on
graph G ′. It is not hard to see that all authorities receive the same weight 1/na

by the SALSA algorithm. After normalization, a′
i = 1 for all authorities i in G ′.

Consider now the difference ‖γ1a− γ2a′‖1. Let

S1 =
∑

C1\{p}

|γ1ai − γ2a′
i| = (n1 − 1)

∣∣∣∣γ1 − γ2 −
γ1

n1

∣∣∣∣

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

260 • A. Borodin et al.

S2 =
∑

C2\{q}

|γ1ai − γ2a′
i| = (n2 − 1)

∣∣∣∣cγ1 − γ2 −
γ1

n1

∣∣∣∣ .

It holds that ‖γ1a − γ2a′‖1 ≥ S1 + S2. It is not hard to see that unless γ1 =
1
c
γ2 + o(1), then S2 = �(n2) = �(n). If γ1 = 1

c
γ2 + o(1), then S1 = �(n1) = �(n).

Therefore, d1(a, a′) = 	(n). Thus, the SALSA algorithm is unstable.

On the positive side, we can prove that the INDEGREE algorithm is stable.

THEOREM 4.21. The INDEGREE algorithm is stable on the class Gn.

PROOF. Let ∂ = {G, G ′} be a change within Gn of size k. Let m be the size of
the impact set {∂} where m ≤ k. Without loss of generality, assume that {∂} =

{1, 2, . . . , m}. Let u be the weight vector that assigns to node i weight equal to
|B(i)|, the in-degree of i. Let wbe the weight of the L1-INDEGREE algorithm. Then
w = u/‖u‖ where ‖ · ‖ is the L1 norm. Let u′ and w ′ denote the corresponding
weight vectors for the graph G ′. For all i �∈ {1, 2, . . . , m} u′

i = ui. Furthermore,∑m
i=1 |ui − u′

i| ≤ k. Set γ1 = 1 and γ2 =
‖u′‖

‖u‖
. Then

‖γ1w− γ2w
′‖1 =

1

‖u‖

n∑

i=1

|ui − u′
i| ≤

k

‖u‖
.

We note that ‖u‖ is equal to the sum of the links in the graph; therefore, ‖u‖ =

	(1). Thus, d1(w, w ′) = o(1) which proves that, L1-INDEGREE, and consequently,
INDEGREE is stable.

We examine the rank stability of INDEGREE in Section 4.5 where we discuss
locality.

4.4.3 Other Results. Following the work of Borodin et al. [2001],
Lempel and Moran [2003] proved that the HITS and PAGERANK algorithms are
not weakly rank stable on the class GAC

n of authority connected graphs. Recently,
Lee and Borodin [2003] considered a different definition of stability where, given
a change ∂ = {G, G ′}, the distance between the weight vectors of an LAR algo-
rithm on graphs G and G ′ may depend on the weights of the nodes whose in
and out links were affected. The intuition is that, if a change is performed on a
highly authoritative node, then we expect a large change in the weights. They
prove that, under their definition, the PAGERANK algorithm is stable. They also
prove the stability of a randomized version of SALSA where, similar to PAGERANK,
at each iteration a random jump may be performed. On the negative side, they
prove that HITS and SALSA remain unstable. The stability of the MAX algorithm
is studied in Tsaparas [2004a] where it is shown that the MAX algorithm is nei-
ther stable nor weakly rank stable, even when restricted to authority connected
graphs.

4.5 Locality

The properties we have considered so far are either of practical interest
(similarity) or desirable (stability). In the following, we consider properties

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 261

that, although of no immediate practical use, help to characterize an LAR al-
gorithm. The importance of these properties will become clear in Section 4.8
where we use them to provide an axiomatic characterization of the INDEGREE

algorithm.
We now introduce the concept of “locality”. The idea behind locality is that

for a local algorithm, a change should not affect the relative order of the nodes
that are not affected by the change.

Definition 4.22. An algorithm A is local if for every change ∂ = {G, G ′},
there exists λ > 0 such that A(G ′)[i] = λA(G)[i] for all i �∈ {∂}.

Definition 4.23. An algorithm A is weakly rank local if for every change
∂ = {G, G ′}, if a = A(G) and a′ = A(G ′), then for all i, j �∈ {∂}, ai > a j ⇒ a′

i ≥ a′
j ,

or ai < a j ⇒ a′
i ≤ a′

j . (equivalently, I (0)
aa′ (i, j) = 0). The algorithm is strictly rank

local if for all i, j �∈ {∂}, ai > a j ⇔ a′
i > a′

j (equivalently, I (1)
aa′ (i, j) = 0).

We note that locality and rank locality do not depend upon the normalization
used by the algorithm. From the definitions, one can observe that if an algorithm
is local, then it is also strictly rank local. If it is strictly rank local, then it is
obviously weakly rank local.

We have the following.

THEOREM 4.24. If an algorithm A is weakly rank local on the class Gn, then

it is weakly rank stable on the class Gn. If A is strictly rank local on Gn, then it

is strictly rank stable on Gn.

PROOF. Let ∂ = {G, G ′} be a change within the class Gn of ∂ size of at most
k. Let A be an algorithm defined on Gn, let abe the weight vector of A on graph
G, and a′ be the weight vector of A on graph G ′. Let T = {∂} be the impact set
of change ∂, and let m be the size of the set T , where m ≤ k. If the algorithm A

is weakly rank local, then I
(0)
aa′ (i, j) = 0 for all i, j �∈ T . Therefore,

d (0)
r (a, a

′) =
1

n(n − 1)/2

n∑

i=1

∑

j∈T

I
(0)
aa′ (i, j)

≤
nm

n(n − 1)/2
≤ 2k/(n − 1)

= o(1).

Similarly, if the algorithmA is strictly rank local, I (1)
aa′ (i, j) = 0 for all i, j �∈ T ,

and

d (1)
r (a, a

′) =
1

n(n − 1)/2

n∑

i=1

∑

j∈T

I
(1)
aa′ (i, j)

≤ 2k/(n − 1) = o(1)

which concludes the proof of the theorem.

Therefore, locality implies rank stability. It is not necessarily the case that it
also implies stability. For example, consider the algorithm A, which for a graph
G on n nodes assigns weight n|B(i)| to node i. This algorithm is local, but it is

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

262 • A. Borodin et al.

not stable. Consider, for example, a graph where every node has in-degree 1.
Adding one extra link to one of the nodes causes a large amount of weight to be
transfered to the node pointed to by the new link, thus causing instability.

THEOREM 4.25. The INDEGREE algorithm is local and consequently, strictly

rank local and rank local.

PROOF. Given a graph G, let u be the weight vector that assigns to node
i weight equal to |B(i)|, the in-degree of i. Let w be the weight vector of the
INDEGREE algorithm; then wi = ui/‖u‖ = |B(i)|/‖u‖, where ‖ · ‖ is any norm.

Let ∂ = {G, G ′} be a change within Gn, and let u′ and w ′ denote the corre-
sponding weight vectors on graph G ′. For every i �∈ {∂}, the number of links
to i remains unaffected by the change ∂; therefore u′

i = ui. For the INDEGREE

algorithm, w′
i = u′

i/‖u′‖ = ui/‖u′‖. For λ =
‖u‖

‖u′‖
, it holds that w′

i = λwi) for all

i �∈ {∂}. Thus, INDEGREE is local, and consequently strictly rank local and rank
local.

The following is a direct corollary of the locality of the INDEGREE algorithm.

COROLLARY 4.26. The INDEGREE algorithm is strictly rank stable.

The following corollary follows from the fact that the SALSA and INDEGREE

algorithms are equivalent on the class GAC
n of authority connected graphs.

COROLLARY 4.27. The SALSA algorithm is stable and strictly rank stable on

GAC
n .

We originally thought that the BAYESIAN and SBAYESIAN algorithms were also
local. However, it turns out that they are neither local, nor rank local. Indeed, it
is true that conditional on the values of hi, ei, and a j , the conditional distribu-
tion of ak for k �= j is unchanged upon removing a link from i to j . However, the
unconditional marginal distribution of ak , and hence also its posterior mean âk

(or even ratios âk /̂aq for q �= j), may still be changed upon removing a link
from i to j . Indeed, we have computed experimentally that, even for a simple
example with just four nodes, the ratio of the authority weights may change
upon removing a single link. In the next section, we show that the BAYESIAN and
the SBAYESIAN algorithms cannot be rank local, since (as shown experimentally)
they are not rank-matching with the INDEGREE algorithm.

4.6 Monotonicity

We now define the property of monotonicity. Monotonicity requires that, if all
hubs that point to node j also point to node k, then node k should receive author-
ity weight at least as high as that of node j . Formally, we define monotonicity
as follows.

Definition 4.28. An LAR algorithm A is monotone on the class of graphs
Gn if it has the following property. For every graph G ∈ Gn, and for every pair
of nodes j and k in the graph G, if B(j) ⊆ B(k), then A(G)[j] ≤ A(G)[k].

Monotonicity appears to be a “reasonable” property but one can define
“reasonable” algorithms that are not monotone. For example, consider the

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 263

Fig. 10. The nonmonotonicity of AUTHORITYAVG.

AUTHORITYAVG algorithm, the authority analogue of the HUBAVG algorithm,
where the authority weight of a node is defined to be the average of the
hub weights of the nodes that point to this node. Consider now the graph in
Figure 10. In this graph, we have that B(x) ⊂ B(z) and B(y) ⊂ B(z), but
AUTHORITYAVG assigns higher weight to nodes x and y than to z. An idea similar
to that of the AUTHORITYAVG algorithm is suggested by Bharat and Henzinger
[1998]. When computing the authority weight of node i, they average the
weights of hubs that belong to the same domain. Another example of a nonmono-
tone algorithm is the HUBTHESHOLD algorithm defined by Borodin et al. [2001].

THEOREM 4.29. The algorithms INDEGREE, HITS, PAGERANK, SALSA, HUBAVG,

AT(k), and BFS are all monotone.

PROOF. Let j and k be two nodes in a graph G, such that B(j) ⊆ B(k). For
the INDEGREE algorithm, monotonicity is obvious since the authority weights
are proportional to the in-degrees of the nodes, and the in-degree of j is less
than, or equal to, the in-degree of k. The same holds for the SALSA algorithm
within each authority connected component which is sufficient to prove the
monotonicity of the algorithm.

For the PAGERANK algorithm, if a j and ak are the weights of nodes j and k,
then we have that

a j =

n∑

i=1

MPR[i, j]ai and ak =

n∑

i=1

MPR[i, k]ai,

where MPR is the matrix for the PAGERANK algorithm [Brin and Page 1998]. For
all i, MPR[i, j] ≤ MPR[i, k]. Therefore, a j ≤ ak .

For the HITS, HUBAVG, and AT(k) algorithms, it suffices to observe that, at
every iteration t,

at
j =

∑

i∈B(j)

hi ≤
∑

i∈B(k)

hi = at
k ,

where at
j and at

k are the weights of nodes j and k at iteration t before applying
the normalization step. Normalization may result in both weights converging
to zero, as t → ∞, but it cannot be the case that in the limit a j > ak .

For the BFS algorithm, it suffices to observe that, since B(j) ⊆ B(k), every
node that is reachable from node j is also reachable from node k. Thus a j ≤

ak .

We also define the following stronger notion of monotonicity.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

264 • A. Borodin et al.

Definition 4.30. An LAR algorithm A is strictly monotone on the class of
graphs Gn if it has the following property. For every graph G ∈ Gn, and for every
pair of nodes j and k in the graph G, B(j) ⊂ B(k), if and only if A(G)[j] <

A(G)[k].

We can now prove the following theorem.

THEOREM 4.31. The algorithms INDEGREE, PAGERANK, SALSA, and BFS are

strictly monotone on the class Gn, while the algorithms HITS, HUBAVG, and

MAX are not strictly monotone on the class Gn. The algorithms INDEGREE, HITS,

PAGERANK, SALSA, HUBAVG, AT(k), and BFS are all strictly monotone on the class

of authority connected graphs GAC
n .

PROOF. The strict monotonicity on the class of the authority connected
graphs GAC

n follows directly from the proof of Theorem 4.29 for the monotonicity
of the algorithms. Similarly, for the strict monotonicity of INDEGREE, PAGERANK,
SALSA, and BFS on the class Gn.

For the HITS and HUBAVG algorithms, consider a graph G ∈ Gn consisting of
two disconnected components. If the components are chosen appropriately, the
HITS and HUBAVG algorithms will allocate all the weight to one of the compo-
nents, and zero weight to the nodes of the other component. Furthermore, if one
of the two components does not contain a seed node, then the MAX algorithm will
allocate zero weight to the nodes of that component. If chosen appropriately, the
nodes in the component that receive zero weight violate the strict monotonicity
property.

A different notion of monotonicity is considered by Chien et al. [2002]. In
their paper, they study how the weight of a node changes as new links are
added to the node. In this setting, an algorithm is monotone if the weight of a
node increases as its in-degree increases.

4.7 Label-Independence

We now introduce the property of label-independence. This property is needed
in the axiomatic characterization of the INDEGREE algorithm.

Definition 4.32. Let G ∈ Gn be a graph of size n, and let {1, 2, . . . , n} denote
a labeling of the nodes of G. Let A be a LAR algorithm, and let a = A(G)
denote the weight vector of A on a graph G ∈ Gn. Let π denote a permutation
of the labels of the nodes of G, and let a′ denote the weight vector of A on
the graph with the permuted labels. The algorithm A is label-independent if
a′(π (i)) = a(i).

All the algorithms we considered in this article (INDEGREE, PAGERANK, HITS,
SALSA, HUBAVG, AT(k), BAYESIAN, SBAYESIAN BFS) are clearly label-independent.
Label-independence is a reasonable property, but one can define reasonable al-
gorithms that are not label-independent. For example, an algorithm may choose
to give more weight to a link from a node with a specific label. The algorithm de-
fined by Bharat and Henzinger [1998], when computing the authority weight of
a node i, averages the hub weights of the nodes that belong to the same domain.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 265

This algorithm is not label-independent since it takes into account the “label”
of the node when computing the authority weights.

4.8 An Axiomatic Characterization of the INDEGREE Algorithm

We will now prove that there is a set of properties that characterize the INDEGREE

algorithm.

THEOREM 4.33. An algorithm A that is strictly rank local, monotone, and

label-independent is rank consistent with the INDEGREE algorithm on the class Gn

for any n ≥ 3. IfA is strictly rank local, strictly monotone, and label-independent,

then it is rank equivalent to the INDEGREE algorithm on the class Gn for any n ≥ 3.

PROOF. Let G be a graph of size n ≥ 3, and let a = A(G) be the LAR vector of
algorithm A on graph G, and w be the LAR vector of INDEGREE. We will modify
G to form graphs G1, and G2, and we use a1, and a2 to denote (respectively) the
weight vector of algorithm A on these graphs.

Let i and j be two nodes in G. First, we consider the case that at least one
of i, j has zero in-degree. If wi = w j = 0, that is B(i) = B(j) = ∅, then from

the monotonicity of A, we have that ai = a j . Therefore, I (0)
aw(i, j) = 0, and

I
(1)
aw(i, j) = 0. If wi > w j = 0, that is, B(i) = ∅, and B(j) �= ∅, then B(i) ⊂ B(j).

If A is monotone, ai ≤ a j , thus I
(0)
aw(i, j) = 0. If A is strictly monotone, ai < a j ,

thus I
(1)
aw(i, j) = 0.

Consider now the case that both i, j have nonzero in-degree. Without loss of
generality, assume that wi ≥ w j > 0, or equivalently that node i has at least
as many in-links as node j . The set B(i) ∪ B(j) of nodes that point to i or j is
decomposed as follows.

—The set C = B(i) ∩ B(j) contains the nodes that point to both i and j .

—The set L = B(j)\C contains the nodes that point to node j , but not to node i.

—The set V = B(i) \ C contains the nodes that point to node i, but not to node
j . The set V is further decomposed into the sets R and E. The set R is an
arbitrary subset of the set V with cardinality equal to that of L. Since the
in-degree of node i is at least as large as that of node j , the set R is well
defined. We also have that, E = V \ R.

Note that some of these sets may be empty, but not all of them can be empty.
Specifically, V ∪ C �= ∅, and L ∪ C �= ∅. The set E is empty if and only if
nodes i and j have equal in-degrees. The decomposition of the set B(i) ∪ B(j)
is shown in Figure 11(a). The elliptic shapes denote sets of nodes, while the
arrows represent the links from a set of nodes to a single node.

Let k �= i, j be an arbitrary node in the graph. We now perform the following
change to graph G. We remove all links that do not point to i or j , and add links
from the nodes in R and C to node k. Let G1 denote the resulting graph. The
graph G1 is shown in Figure 11(b). Since A is strictly rank local, and the links
to nodes i and j were not affected by the change, we have that

a(i) < a(j) ⇔ a1(i) < a1(j). (6)

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

266 • A. Borodin et al.

Fig. 11. Axiomatic characterization of INDEGREE.

We will now prove that a1(k) = a1(j). Assume that a1(k) < a1(j). Let G2

denote the graph that we obtain by removing all the links from set R to node i,
and adding links from set L to node i. The graph G2 is shown in Figure 11(c).
We observe that the graphs G1 and G2 are the same up to a label permutation
that swaps the labels of nodes j and k, and the labels of the nodes in L with
the labels of the nodes in R. Thus, a2(j) = a1(k), and a2(k) = a1(j). Therefore,
from our assumption that a1(k) < a1(j), we have a2(j) < a2(k). However, graph
G2 was obtained from graph G1 by performing a local change to node i. Given
the strict locality assumption, the relative order of the weights of nodes j and k

should remain unaffected, that is, a2(j) > a2(k), thus reaching a contradiction.
We reach the same contradiction if we assume that a1(k) > a1(j). Therefore, it
must be that a1(k) = a1(j).

In the graph G1, we have that B(k) ⊆ B(i). We distinguish two cases. If
B(k) = B(i), then the set E is empty. Therefore, wi = w j since i and j have
the same number of in-links. Furthermore, from the monotonicity property
(weak or strict) of the algorithm A, we have that a1(i) = a1(k) = a1(j). From
Equation (6), it follows that a(i) = a(j).

If B(k) ⊂ B(i), then the set E is not empty, and wi > w j since i has more links
than j . If A is monotone, then a1(i) ≥ a1(k) = a1(j). From Equation (6), we have
that a(i) ≥ a(j). Therefore, for all i, j wi > w j ⇒ ai ≥ a j . Thus, d (0)

r (w, a) = 0,
and A and INDEGREE are rank consistent. If A is strictly monotone, then a1(i) >

a1(k) = a1(j). From Equation (6), we have that a(i) > a(j). Therefore, for all
i, j wi > w j ⇔ ai > a j . Thus, d (1)

r (w, a) = 0, and A and INDEGREE are rank
equivalent.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 267

The conditions of Theorem 4.33 characterize INDEGREE. All three conditions,
label-independence, (strict) monotonicity, and strict rank locality are necessary
for the proof of the theorem. Assume that we discard the label-independence
condition. Now, define algorithm A that assigns to each link a weight that de-
pends on the label of the node from which the link originates. The algorithm sets
the authority weight of each node to be the sum of the link weights that point
to this node. This algorithm is clearly monotone and local, however, if the link
weights are chosen appropriately, it will not be rank consistent with INDEGREE.
Assume now that we discard the monotonicity condition. Define an algorithm
A, that assigns weight 1 to each node with odd in-degree, and weight 0 to
each node with even in-degree. This algorithm is local and label-independent,
but it is clearly not rank consistent with INDEGREE. Monotonicity and label-
independence are clearly not sufficient for proving the theorem; we have pro-
vided examples of algorithms that are monotone and label-independent, but not
rank consistent with the INDEGREE (e.g., the HITS algorithm). Strict monotonic-
ity is necessary for proving rank equivalence. The algorithm that assigns equal
weight to all nodes is monotone, label-independent, and strictly rank local. It
is rank consistent with INDEGREE, but not rank equivalent.

5. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of the algorithms that we
consider in this article. We study the rankings they produce, and how they relate
to each other. The goal of this experimental study is to assess the quality of the
algorithms and, more importantly, to understand how theoretically predicted
properties manifest themselves in a practical setting.

5.1 The Experimental Set-Up

5.1.1 The Queries. We experiment with our algorithms on the following 34
different queries.

abortion, affirmative action, alcohol, amusement parks,

architecture, armstrong, automobile industries, basketball,

blues, cheese, classical guitar, complexity, computational

complexity, computational geometry, death penalty,

genetic, geometry, globalization, gun control, iraq war,

jaguar, jordan, moon landing, movies, national parks, net

censorship, randomized algorithms, recipes, roswell, search

engines, shakespeare, table tennis, weather, vintage cars

Many of these queries have already appeared in previous works [Dwork et al.
2001; Lempel and Moran 2000; Kleinberg 1998]. For the remaining queries, we
selected queries that correspond to topics for which there are opposing com-
munities, such as, “death penalty”, “gun control”, “iraq war”, “globalization”,
“moon landing”, or queries that are of interest to different communities, de-
pending on the interpretation of the word (for example, “jordan”, “complexity”,
“armstrong”). Our objective is to observe how the different algorithms represent
these different (usually unrelated, and sometimes opposing) communities in the

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

268 • A. Borodin et al.

top positions of the ranking. We are also interested in observing the behavior of
the algorithms when we move from a broad topic (“geometry”, “complexity”) to
a more specific subset of this topic (“computational complexity”, “computational
geometry”). We also selected some queries for which we expect the most rele-
vant results not to contain the query words. For example, most search engines
do not contain the words “search engine”. The same for the query “automobile
industries” which is a variation of the query “automobile manufacturers” that
appears in the work of Kleinberg [1998]. The remaining queries were selected
as interesting queries on broad topics.

The Base Sets for these queries are constructed in the fashion described
by Kleinberg [1998]. We start with a Root Set of pages related to the query.
This Root Set is obtained by querying the Google3 search engine. The Root Set
consists of the first 200 pages returned by the search engine. This set is then
expanded to the Base Set by including nodes that point to, or are pointed to,
by the pages in the Root Set. Following the guidelines of Kleinberg [1998], for
every page in the Root Set, we include only the first 50 pages that point to
this page in the order that they are returned by the Google search engine. We
then extract the links between the pages of the Base Set, and we construct the
hyperlink graph.

The next step is to eliminate the navigational links. These are links that
solely serve the purpose of navigating within a Web site, and they do not convey
an endorsement for the contents of the target page. Finding navigational links is
a nontrivial problem that has received some attention in the literature [Davison
2000; Bharat and Mihaila 2001]. We adopt the following heuristics for identi-
fying navigational links. First, we compare the IP addresses of the two links. If
the first three bytes are the same, then we label the link as navigational. If not,
we look at the actual URL. This is of the form “http://string1/string2/ · · ·”.
The domain identifier is string1. This is of the form “ x1.x2. · · · .xk”. If k ≥ 3,
then we use x2. · · · .xk−1 as the domain identifier. If k = 2, we use x1. If the do-
main identifiers are the same for the source and target pages of the link, then
the link is labeled as navigational, and it is discarded. After the navigational
links are removed, we remove any isolated nodes, and we produce the Base Set
P and the graph G = (P, E). Unfortunately, our heuristics do not eliminate all
possible navigational links which in some cases results in introducing clusters
of pages from the same domain.

Table I presents statistics for our graphs. The “med out” is the median out-
degree, the “avg-out” is the average out-degree, where median and average are
taken over all hub nodes. The “ACC size” is the size of the largest authority
connected component, that is, the size of the largest connected component in
the authority graph Ga. Recall that the graph Ga is a graph defined on the
authority nodes where there exists an edge between two authorities if they
have a hub in common.

Matrix Plots: For the purpose of exhibition, we will often present the graph for
a query as a matrix plot. A matrix plot, is a bitmap picture of the (transposed)

3http://www.google.com.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 269

Table I. Query Statistics

Query Nodes Hubs Authorities Links Med out Avg out ACC size Users

abortion 3340 2299 1666 22287 3 9.69 1583 22
affirmative

action
2523 1954 4657 866 1 2.38 752 7

alcohol 4594 3918 1183 16671 2 4.25 1124 8
amusement
parks

3410 1893 1925 10580 2 5.58 1756 8

architecture 7399 5302 3035 36121 3 6.81 3003 8
armstrong 3225 2684 889 8159 2 9.17 806 8
automobile

industries
1196 785 561 3057 2 3.89 443 7

basketball 6049 5033 1989 24409 3 4.84 1941 12
blues 5354 4241 1891 24389 2 5.75 1838 8
cheese 3266 2700 1164 11660 2 4.31 1113 5
classical

guitar
3150 2318 1350 12044 3 5.19 1309 8

complexity 3564 2306 1951 13481 2 5.84 1860 4
computational

complexity
1075 674 591 2181 2 3.23 497 4

computational
geometry

2292 1500 1294 8189 3 5.45 1246 3

death penalty 4298 2659 2401 21956 3 8.25 2330 9
genetic 5298 4293 1732 19261 2 4.48 1696 7
geometry 4326 3164 1815 13363 2 4.22 1742 7
globalization 4334 2809 2135 17424 2 8.16 1965 5
gun control 2955 2011 1455 11738 3 5.83 1334 7
iraq war 3782 2604 1860 15373 3 5.90 1738 8
jaguar 2820 2268 936 8392 2 3.70 846 5
jordan 4009 3355 1061 10937 2 3.25 991 4
moon landing 2188 1316 1179 5597 2 4.25 623 8
movies 7967 6624 2573 28814 2 4.34 2409 10
national parks 4757 3968 1260 14156 2 3.56 1112 6
net censorship 2598 1618 1474 7888 2 4.87 1375 4
randomized

algorithms
742 502 341 1205 1 2.40 259 5

recipes 5243 4375 1508 18152 2 4.14 1412 10
roswell 2790 1973 1303 8487 2 4.30 1186 4
search engines 11659 7577 6209 292236 5 38.56 6157 5
shakespeare 4383 3660 1247 13575 2 3.70 1199 6
table tennis 1948 1489 803 5465 2 3.67 745 6
weather 8011 6464 2852 34672 3 5.36 2775 9
vintage cars 3460 2044 1920 12796 3 6.26 1580 5

adjacency matrix of the graph where every nonzero entry of the matrix is repre-
sented by a dot. Figure 12(a) shows the matrix plot for the query “abortion”. In
this plot, the rows of the matrix correspond to the authority nodes in the graph,
and the columns to the hub nodes. Every point on the matrix plot corresponds
to an edge in the graph. That is, there exists a dot in the matrix plot in the po-
sition (i, j) if the hub that corresponds to the column j points to the authority
that corresponds to the row i. The points in the ith row can be thought of as a
representation of the corresponding authority node. The ith row of the plot is
the plot of the vector of hub nodes that point to the correspnding authority node.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

270 • A. Borodin et al.

Fig. 12. Matrix plots for the query “abortion”.

In order to reveal some of the structure of the graph, the rows and columns
are permuted so that similar nodes are brought together. For this, we used
LIMBO, an agglomerative hierarchical clustering algorithm [Andritsos et al.
2003], which is based on the Information Bottleneck method [Tishby et al.
1999; Slonim and Tishby 1999]. The distance between two vectors is mea-
sured by normalizing the vectors so that the sum of their entries is 1, and
then taking the Jensen-Shannon divergence [Lin 1991] of the two normzalized
vectors. Any other hierarchical algorithm for clustering binary vectors would
also be applicable. Executing the algorithm on the rows of the matrix produces
a tree where each node in the tree corresponds to the merge of two clusters.
The leaves of this tree are the rows of the matrix (the authority nodes). If
we perform a depth-first traversal of this tree and we output the leaves in
the order in which we visit them, then we expect this permutation to bring
similar rows together. We perform the same operation for the columns of the
graph. We do not claim that these permutations of rows and columns are op-
timal in any sense. The purpose of the permutations is to enhance the vi-
sualization of the graph by grouping together some of the similar rows and
columns.

The matrix plot representation of the graph is helpful in identifying the
parts of the graph on which the various algorithms focus in the top 10 results
by highlighting the corresponding rows. For example, Figure 12(b) shows again
the plot of the matrix for the “abortion” dataset. The rows in darker color cor-
respond to the top 10 authority nodes of the HITS algorithm. These matrix plots
allow us to inspect how the top 10 results of the different LAR algorithms are
interconnected with each other and with the rest of the graph, and they yield
significant insight in the behavior of the algorithms.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 271

5.1.2 Algorithms. We implemented the new algorithms we introduced in
Section 3, namely HUBAVG, AT(k), MAX, BFS, BAYESIAN, and SBAYESIAN. For the
AT(k) family of algorithms, given a graph G, we compute the distribution of
the out-degrees in the graph and we experiment with k being the median, and
the average out-degree where median and average are taken over all the hub
nodes. We denote these algorithms as AT-MED and AT-AVG, respectively.

We also implemented the HITS, PAGERANK, INDEGREE, and SALSA algorithms.
For the PAGERANK algorithm, the jump probability ǫ usually takes values
in the interval [0.1, 0.2] [Brin and Page 1998; Ng et al. 2001a]. We observed
that the performance of the PAGERANK algorithm usually improves as we in-
crease the value of ǫ. We set the jump probability ǫ to be 0.2, a value that is
sufficiently low and produces satisfactory results.

For all algorithms, we iterate until the L1 difference of the authority weight
vectors in two successive iterations becomes less than δ = 10−7, or until 1000
iterations have been completed. Although there are more sophisticated methods
for testing for convergence, we chose this one for the sake of simplicity. In most
cases, the algorithms converge in no more than a hundred iterations.

5.1.3 Measures. The measure that we will use for the evaluation of the
quality rankings is precision over top 10. This is the fraction of documents in
the top 10 positions of the ranking that are relevant to the query. Given the
impatient nature of the Web users, we believe that this is an appropriate mea-
sure for the evaluation of Web searching and ranking algorithms. Indeed, a
search engine is often judged by the first page of results it returns. We will
also refer to this fraction as the relevance ratio of the algorithm. Similar qual-
ity measures are used in the TREC conferences for evaluating Web search
algorithms.4

We also use a more refined notion of relevance. Given a query, we classify a
document as nonrelevant, relevant, or highly relevant to the topic of the query.
High relevance is meant to capture the notion of authoritativeness. A highly
relevant document is one that should definitely be in the few first page of the
results of a search engine. For example, for the query “movies”, the official
site for the movie “A Beautiful Mind”5 is relevant to the topic of movies, but
it cannot be thought of as highly relevant. However, the Internet Movie Data
Base (IMDB) site6 that contains movie information and reviews is a page that
is highly relevant to the topic. This is a result that a Web user would most
likely want to retrieve when posing the query. The notion of high relevance is
also employed in the TREC conference for topic distillation queries where the
objective is to find the most authoritative pages for a specific topic. For each
algorithm, we want to estimate the high relevance ratio, the fraction of the top
10 results that are highly relevant. Note that every highly relevant page is,
of course, relevant so the high relevance ratio is always less or equal to the
relevance ratio.

4For TREC data, relevance and high relevance is usually predefined by a set of experts.
5http://abeautifulmind.com/.
6http://www.imdb.com.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

272 • A. Borodin et al.

We are also interested in studying how the algorithms relate to each other.
For the comparison of two rankings, we will use the geometric distance mea-
sure, d1, defined in Section 4.2.1, and the strict rank distance, d (1)

r , defined
in Section 4.2.2. For brevity, we will refer to the strict rank distance as rank
distance, and we will denote it by dr . When computing the d1 distance, the
vectors are normalized so that the entries sum to 1. Thus, the maximum d1

distance is 2. We will also consider the following two similarity measures for
comparing the top-k results of two algorithms.

—Intersection over top k, I (k): The number of documents that the two rankings
have in common in the top k results.

—Weighted Intersection over top k, W I (k): This is the average intersection over
the top k results, where the average is taken over the intersection over the
top 1, top 2, up to top k. The weighted intersection is given by the following
formula.

W I (k) =
1

k

k∑

i=1

I (i).

In our study, we measure the similarity over the top 10 results.

5.1.4 User Study. In order to assess the relevance of the documents, we
performed a user study. The study was performed online.7 The introductory
page contained the queries with links to the results, together with some instruc-
tions. By clicking on a query, the union of the top 10 results of all algorithms
was presented to the user. The results were permuted so that they appeared
in a random order and no information was revealed about the algorithm(s)
that introduced each result in the collection. The users were then asked to rate
each document as “Highly Relevant”, “Relevant”, or “NonRelevant”. They were
instructed to mark a page as “Highly Relevant” if they would definitely like
to see if within the top positions of a search engine. An option “Don’t Know”
(chosen as default) was also given in the case that the user could not assess
the relevance of the result. When pressing the submit button, their feedback
was stored into a file. No information was recorded about the users, respect-
ing their anonymity. No queries were assigned to any users, they were free to
do whichever ones, and however many they wanted. On average seven users
rated each query. The maximum was twenty two, for the query “abortion”, and
the minimum three, for the query “computational geometry”. The number of
users per query are shown in Table I. The study was conducted mostly among
friends and fellow grad students. Although they are not all experts on all of the
topics, we believe that their feedback gives a useful indication about the actual
relevance of the documents.8

We utilize the user’s feedback in the following way. Given the users’ feedback
for a specific document, we rate the document as “Relevant” if the “Relevant”
and “Highly Relevant” votes are more than the “Non-Relevant” votes (ties are
resolved in favor of “Non-Relevant”). Among the documents that are deemed as

7The URL for the study is http://www.cs.toronto.edu/∼tsap/cgi-bin/entry.cgi.
8The results of the study may be slightly biased towards the opinion of people of Greek origin.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 273

“Relevant”, we rate as “Highly Relevant” the ones for which the “Highly Rele-
vant” votes are more than the “Relevant” ones. We can now compute the rele-
vance ratios for the algorithms by using the relevance ratings of the documents.

5.2 Evaluation of the LAR Algorithms

In this section, we study the aggregate behavior of the algorithms. The results
for all queries are posted on the Web9 in a format that is easy to understand
and navigate. We strongly encourage the reader to browse through the results
while reading this part of the article. Appendix A contains tables with the top 10
results for three sample queries (“abortion”, “amusement parks”, “classical gui-
tar”) that are referenced often in the next sections. In these Tables, the results
that are labeled highly relevant appear in boldface, the relevant ones appear in
italics, and the nonrelevant appear in regular font. Due to space constraints, we
omit the results of the SALSA and SBAYESIAN algorithms. In almost all queries,
they are identical to those of INDEGREE. Tables II, III report the quality ratios
of each algorithm for each query. In each row, the highlighted value is the best
ratio for this query. For each algorithm, we also compute the average, the stan-
dard deviation, the minimum, and the maximum values for all quality ratios.
Recall, that for the relevance ratio, we consider documents that are marked
either “Relevant” or “Highly Relevant”, so the relevance ratio is always greater
or equal to the high relevance ratio. For the purpose of comparing algorithms,
we also report the average values of all our similarity and distance measures
in Appendix A.

The qualitative evaluation reveals that all algorithms fall, to some extent,
victim to topic drift. That is, they promote pages that are not related to the
topic of the query. In terms of average high relevance, more than half (and as
many as 8 out of 10 for the case of HITS) of the results in the top 10 are not
highly relevant. This is significant for the quality of the algorithms since the
highly relevant documents represent the ones that the users would actually
want to see in the top positions of the ranking, as opposed to the ones that they
found just relevant to the topic. The performance improves when we consider
relevance instead of high relevance. Still, the average relevance ratio is never
more than 78%, that is, even for the best algorithm, on average 2 out of the
top 10 documents are irrelevant to the query. Furthermore, there exist queries
such as “armstrong” and “jaguar” for which no algorithm was able to produce
satisfactory results.

The algorithm that emerges as the “best” is the BFS algorithm. It exhibits
the best high relevance and relevance ratio on average, and it is the algorithm
that most often achieves the maximum relevance ratio (for the high relevance
ratio the record is held by the MAX algorithm). Furthermore, as the low standard
deviation indicates, and the study of the results reveals, it exhibits a robust and
consistent behavior across queries.

At the other end of the spectrum, the HITS and the PAGERANK algorithms
emerge as the “worst” algorithms, exhibiting the lowest ratios, with HITS be-
ing slightly worse. However, although they have similar (poor) performance on

9http://www.cs.toronto.edu/∼tsap/experiments/journal/.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

274 • A. Borodin et al.

Table II. High Relevance Ratio

Query HITS PAGERANK INDEGREE SALSA HUBAVG MAX AT-MED AT-AVG BFS BAYESIAN SBAYESIAN

abortion 30% 10% 40% 40% 30% 40% 30% 30% 30% 30% 40%

affirmative

action

30% 0% 40% 40% 0% 0% 0% 0% 60% 30% 40%

alcohol 60% 30% 60% 60% 60% 50% 50% 50% 70% 50% 60%

amusement

parks

50% 10% 30% 40% 0% 70% 10% 0% 40% 90% 30%

architecture 0% 30% 70% 70% 0% 60% 60% 0% 50% 0% 70%

armstrong 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

automobile

industries

0% 10% 10% 20% 0% 0% 0% 0% 40% 0% 10%

basketball 0% 60% 20% 20% 0% 10% 10% 10% 60% 10% 20%

blues 60% 40% 40% 40% 50% 50% 50% 50% 20% 40% 40%

cheese 0% 0% 0% 0% 0% 0% 0% 0% 10% 0% 0%

classical

guitar

40% 30% 30% 30% 0% 40% 0% 0% 40% 30% 30%

complexity 0% 30% 20% 20% 0% 70% 50% 0% 50% 0% 20%

computational

complexity

30% 30% 30% 30% 40% 30% 30% 30% 20% 30% 30%

computational

geometry

40% 20% 40% 40% 40% 40% 50% 40% 40% 30% 40%

death penalty 70% 30% 70% 70% 50% 80% 80% 80% 80% 80% 60%

genetic 80% 20% 70% 70% 60% 70% 70% 70% 60% 80% 70%

geometry 60% 10% 50% 50% 40% 70% 70% 60% 60% 60% 50%

globalization 0% 30% 20% 20% 0% 0% 0% 0% 30% 0% 20%

gun control 0% 50% 70% 70% 60% 60% 60% 60% 60% 50% 70%

iraq war 0% 10% 10% 10% 0% 10% 0% 0% 40% 10% 10%

jaguar 0% 20% 0% 0% 0% 0% 0% 0% 10% 0% 0%

jordan 0% 10% 20% 20% 20% 40% 40% 40% 30% 20% 20%

moon landing 0% 20% 10% 10% 0% 0% 0% 0% 80% 0% 10%

movies 10% 10% 30% 30% 40% 70% 70% 70% 40% 50% 30%

national parks 0% 50% 10% 10% 60% 60% 60% 0% 50% 0% 10%

net censorship 0% 20% 80% 80% 60% 80% 80% 80% 80% 70% 80%

randomized

algorithms

0% 40% 10% 10% 0% 0% 0% 0% 10% 10% 10%

recipes 0% 10% 60% 60% 10% 60% 60% 70% 50% 50% 60%

roswell 0% 0% 0% 0% 0% 10% 10% 0% 10% 0% 0%

search engines 60% 70% 100% 100% 100% 100% 100% 100% 90% 50% 100%

shakespeare 0% 20% 50% 50% 50% 70% 70% 70% 60% 50% 50%

table tennis 50% 20% 50% 50% 50% 50% 50% 50% 40% 40% 50%

weather 60% 20% 60% 60% 30% 60% 50% 50% 70% 60% 60%

vintage cars 0% 0% 40% 40% 0% 40% 40% 0% 30% 10% 40%

avg 21% 22% 36% 37% 25% 41% 37% 30% 44% 30% 36%

max 80% 70% 100% 100% 100% 100% 100% 100% 90% 90% 100%

min 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

stdev 27% 17% 26% 26% 28% 30% 31% 32% 23% 28% 26%

average, the two algorithms exhibit completely different behaviors. The behav-
ior of the HITS algorithm is erratic. As the standard deviation indicates and the
query results reveal, the performance of HITS exhibits large variance. There are
queries (such as “amusement parks”, “genetic”, “classical guitar”, “table tennis”)
for which the HITS algorithm exhibits good relevance and high relevance ratios
but, at the same time, there are many queries (such as, “basketball”, “gun con-
trol”, “moon landing”,“recipes”) for which HITS has a 0% relevance ratio. This
is related to the Tightly Knit Community(TKC) effect. HITS is known to favor
nodes that belong to the most tightly interconnected component in the graph.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 275

Table III. Relevance Ratio

Query HITS PAGERANK INDEGREE SALSA HUBAVG MAX AT-MED AT-AVG BFS BAYESIAN SBAYESIAN

abortion 90% 70% 100% 100% 100% 100% 100% 100% 100% 90% 100%

affirmative

action

70% 50% 50% 50% 10% 10% 10% 10% 80% 40% 50%

alcohol 90% 60% 90% 90% 90% 80% 80% 80% 90% 80% 90%

amusement

parks

100% 30% 30% 50% 0% 90% 10% 0% 80% 100% 30%

architecture 10% 70% 70% 70% 10% 60% 70% 10% 60% 10% 70%

armstrong 20% 50% 20% 20% 20% 20% 20% 20% 50% 20% 20%

automobile

industries

10% 10% 20% 30% 10% 10% 10% 10% 60% 20% 20%

basketball 0% 70% 20% 20% 0% 10% 10% 10% 100% 10% 20%

blues 60% 80% 60% 60% 70% 60% 70% 70% 50% 60% 60%

cheese 0% 20% 30% 30% 10% 0% 0% 10% 50% 0% 30%

classical

guitar

90% 50% 70% 70% 50% 80% 50% 50% 90% 70% 70%

complexity 0% 50% 50% 50% 0% 90% 90% 0% 80% 0% 50%

computational

complexity

90% 70% 90% 90% 90% 90% 90% 90% 90% 100% 90%

computational

geometry

100% 40% 70% 70% 70% 100% 70% 70% 100% 80% 70%

death penalty 100% 70% 90% 90% 70% 100% 100% 100% 100% 100% 90%

genetic 100% 70% 100% 100% 100% 100% 100% 100% 90% 100% 100%

geometry 90% 20% 90% 90% 90% 90% 90% 80% 90% 80% 90%

globalization 100% 70% 90% 90% 100% 100% 100% 100% 90% 100% 90%

gun control 0% 50% 100% 100% 100% 100% 100% 100% 100% 80% 100%

iraq war 40% 30% 30% 30% 10% 20% 20% 10% 90% 40% 30%

jaguar 0% 30% 0% 0% 0% 0% 0% 0% 10% 0% 0%

jordan 0% 30% 30% 30% 40% 100% 100% 100% 40% 30% 30%

moon landing 0% 30% 20% 20% 0% 0% 0% 0% 100% 0% 20%

movies 10% 20% 50% 40% 50% 70% 70% 70% 60% 60% 50%

national parks 0% 50% 10% 10% 80% 80% 80% 0% 70% 0% 10%

net censorship 0% 30% 80% 80% 60% 90% 90% 90% 80% 70% 80%

randomized

algorithms

70% 80% 80% 80% 40% 50% 50% 50% 60% 80% 70%

recipes 0% 20% 70% 70% 30% 90% 90% 100% 80% 80% 70%

roswell 0% 20% 40% 40% 70% 70% 60% 0% 60% 10% 40%

search

engines

80% 90% 100% 100% 100% 100% 100% 100% 90% 80% 100%

shakespeare 100% 70% 100% 100% 100% 100% 100% 100% 100% 100% 100%

table tennis 90% 60% 100% 100% 90% 90% 90% 90% 90% 90% 100%

weather 80% 50% 80% 80% 60% 80% 80% 80% 90% 80% 80%

vintage cars 20% 10% 60% 60% 20% 60% 60% 20% 70% 40% 60%

avg 47% 48% 61% 62% 51% 67% 64% 54% 78% 56% 61%

max 100% 90% 100% 100% 100% 100% 100% 100% 100% 100% 100%

min 0% 10% 0% 0% 0% 0% 0% 0% 10% 0% 0%

stdev 43% 23% 31% 31% 38% 36% 36% 42% 21% 37% 31%

The performance of the algorithm depends on how relevant this component is
to the query. We discuss the TKC effect further in Section 5.3.

On the other hand, PAGERANK exhibits consistent, albeit poor, perfor-
mance. It is the only algorithm that never achieves 100% relevance on any
query, always producing at least one nonrelevant result. Furthermore, the
PAGERANK algorithm is qualitatively different from the rest. It is the algorithm
that most often promotes documents (relevant, or not) not considered by the
remaining algorithms. The strong individuality of PAGERANK becomes obvious

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

276 • A. Borodin et al.

when examining the average distance of PAGERANK to the remaining algorithms
(Tables IV, V, VI, VII in Appendix A), especially for the I and W I measures.
This is something to be expected since the philosophy of the algorithm is differ-
ent. Furthermore, the Base Set for each query is constructed in a way that is
meant to take advantage of the mutual reinforcing relation between hubs and
authorities, a property that does not affect the PAGERANK algorithm. We discuss
this more in Section 5.3.

The MAX algorithm emerges as the second best option after BFS, and it ac-
tually achieves the best high relevance score. The quality of the MAX algorithm
usually depends on the quality of the seed node and the nodes with the highest
in-degree. We actually observed that, in most cases, the top 10 nodes returned
by MAX are a subset of the ten nodes with the highest in-degree, and the ten
nodes that are most co-cited with the seed node. The ratios of MAX indicate that
the seed node is usually relevant to the query.

This observation agrees with the relatively high quality of the results of the
INDEGREE algorithm. On average, 3 out of 10 of the most popular documents are
highly relevant, and 6 out 10 are relevant. Because of its simplicity, one would
expect the quality of the INDEGREE algorithm to set the bar for the remaining
algorithms. Surprisingly, in many queries, the INDEGREE algorithm outperforms
some of the more sophisticated algorithms. We should note though that, due to
the simplicity of the algorithm, the INDEGREE algorithm is the one that is most
affected by the choice of the search engine that is used for generating the Base
Set of Web pages. Therefore, the performance of the INDEGREE algorithm reflects,
in part, the quality of the Google search engine which uses, to some extent, link
analysis techniques. It would be most interesting if one could generate a Base
Set using a search engine that does not make use of any link analysis.

In our experiments, in most queries, the SALSA algorithm produces the same
top 10 pages as the INDEGREE algorithm. The similarity of the two algorithms
becomes obvious in the average values of all similarity measures in the tables of
Appendix A, and especially in the I and W I measures. As can be seen in Table I,
the graphs in our experiments contain a giant authority connected component
which attracts most of the authority weight of the SALSA algorithm. As a result,
the algorithm reduces to the INDEGREE algorithm.

For the other variants of HITS, the HUBAVG is the one that performs the worst,
only slightly better than HITS. HUBAVG suffers from its own TKC effect that we
describe in Section 5.3. For the AT-MED and AT-AVG, close examination of the
results reveals that they usually have the same ratios as either the HITS or the
MAX algorithm. In most cases, the top 10 results of these algorithms are a subset
of the union of the top 10 results of HITS and MAX. Thus, it is not surprising
that the average performance ratios of AT-MED and AT-AVG take values between
the ratios of MAX and HITS. We also note that all derivatives of HITS (including
MAX) exhibit similar erratic behavior to that of HITS. This is due to the various
TKC phenomena that we describe in the next section.

The study of the performance of the Bayesian algorithms provides the most
intriguing observation of the experimental evaluation. The performance of the
SBAYESIAN algorithm is almost identical to that of the INDEGREE algorithm.
This is corroborated by the average similarity measures in Appendix A. For

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 277

all similarity measures, the two algorithms appear to be very close. It remains
an interesting open problem to justify and, if possible, to formally prove the
similarity of the two algorithms.

On the other hand, the BAYESIAN algorithm is less similar to the INDEGREE

algorithm and more similar to the HITS algorithm and the derivatives of the
HITS algorithm. As a result, the performance ratios of the BAYESIAN algorithm
drop in comparison to the SBAYESIAN algorithm. Still it performs better than
the HITS algorithm. There are queries such as “amusement parks” and “com-
putational complexity” for which the algorithm achieves the best performance
ratios. The difference in behavior between BAYESIAN and SBAYESIAN is obviously
an effect of the “link tendency” parameters which “absorb” some of the weight
of a link between two nodes, thus making the algorithm less dependent on the
in-degree. It is interesting to note that the two algorithms are still close, espe-
cially when considering similarity measures that take into account the whole
ranking (such as the d1, or dr distance). This is something that we expected
since the underlying philosophy is similar.

5.3 Community Effects

A Link Analysis Ranking algorithm is defined as a function that maps a graph
G to a real vector of weights. The function allocates the weight among the
nodes depending on the graph theoretic properties of the nodes and the over-
all structure of the graph G. An intriguing question is to understand how the
structure of the graph affects the ranking behavior of the algorithm. For ex-
ample, it is well known that the HITS algorithm tends to favor the nodes that
belong to the most dense component of the bipartite hubs and authorities graph.
Lempel and Moran [2000] observed that the side-effect of this property of HITS

is that, in a graph that contains multiple communities, the HITS algorithm will
only focus on one of them in the top positions of the ranking, the one that
contains the hubs and authorities that are most tightly interconnected. They
termed this phenomenon the Tightly Knit Community (TKC) effect, and they
compared the focused behavior of the HITS algorithm against the mixing behav-
ior of the SALSA algorithm which tends to represent different communities in the
top positions of the ranking. In this section, we study such community effects

for all the algorithms that we consider. Our objective is to understand the kind
of structures that the algorithms favor and the effects on the rankings they
produce.

The HITS algorithm. It has been well documented that the HITS algorithm
tends to favor the most “tightly interconnected component” of hubs and author-
ities in the graph G. This was first stated by Kleinberg [1998] in his original
paper, and Drineas et al. [1999] provide some theoretical analysis to support
this observation. The TKC effect is a byproduct of the properties of the Singular
Value Decomposition. The hub and authority vectors, h and a, (normalized in
the Euclidean norm) are chosen so that the product hWa is maximized. As a
result, the nodes that belong to the most dense bipartite community of hubs
and authorities receive the maximum weight. Another intuitive interpretation
of the TKC effect comes from the analysis in Section 2.2.3, where we showed

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

278 • A. Borodin et al.

Fig. 13. The TKC effect for the HITS algorithm for the query “gun control”.

that the weight on node i, after n iterations, is proportional to the number of
(BF)n paths that leave node i.

The TKC effect is prominent in our experiments with the HITS algorithm,
most of the time leading to a severe topic drift. Consider, for example, the query
“gun control”. Figure 13 shows the matrix plot of the graph and the top 10 results
for HITS. In this query, HITS gets trapped in a tightly interconnected component
of 69 nodes (63 hubs and 37 authorities) which is completely disconnected from
the rest of the graph, and obviously unrelated to the query. Similar phenomena
appear in many of the queries that we have tested (examples include, “vintage
cars”, “recipes”, “movies”, “complexity”).

Consider now the query “abortion”. Figure 14(a) shows the plot of the graph
for this query. The graph contains two separated, but not completely discon-
nected, communities of Web pages: the pro-choice community, and the pro-life
community. The pro-life community contains a set X of 37 hubs from a religious
group10 which form a complete bipartite graph with a set Y of 288 authority
nodes. These appear as a vertical strip in the top-right part of the plot. This
tightly interconnected set of nodes attracts the HITS algorithm to that commu-
nity, and it ranks these 37 nodes as the best hubs. Among the 288 authori-
ties, HITS ranks in the top 10, the authorities that are better interconnected
with the remaining hubs in the community. The plot for the top 10 results for
HITS is shown in Figure 14(b). The points in darker color correspond to the
top 10 results of the HITS algorithm. The results can be found in Table VIII in
Appendix A.

10http://www.abortion-and-bible.com/.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 279

Fig. 14. The query “abortion”.

The HUBAVG Algorithm. In Section 3.1, we showed that the HUBAVG algo-
rithm computes the Singular Value Decomposition of the normalized matrix
We. Therefore, we expect the HUBAVG algorithm to exhibit similar TKC effects
in the normalized authority space defined by the matrix We. This is indeed
the case, and it accounts for the poor behavior of the HUBAVG algorithm. How-
ever, the normalization causes the HUBAVG algorithm to differ significantly from
HITS. The HUBAVG algorithm favors tightly-knit communities, but it also poses
the additional requirement of exclusiveness. That is, it requires that the hubs
are exclusive to the community to which they belong. As a result, the HUBAVG

algorithm tends to favor tightly-knit, isolated components in the graph that con-
tain nodes of high in-degree. These correspond to long, thin horizontal strips in
our plots. If such a strip exists, that is, if there exists a large set of hubs that all

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

280 • A. Borodin et al.

Fig. 15. HITS and HUBAVG for the query “recipes”.

point to just a few authorities in the graph, then this community receives most
of the weight of the HUBAVG algorithm. Unfortunately, this occurs often in our
experiments, resulting in topic drift for HUBAVG.

Figure 15 shows the plot of the graph for the query “recipes”. The communi-
ties that attract the top 10 results of HITS and HUBAVG are marked on the plot.
The tables contain the top 10 tuples for each algorithm. The community on news
and advertising that attracts HITS contains a set of hubs that point to nodes

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 281

outside the community. This corresponds to the vertical strip above the marked
rows for HITS. HUBAVG escapes this community, but it assigns almost all weight
to a community of just three nodes that are interconnected by 45 hubs. Only
two out of these 45 hubs point to nodes other than these three nodes. Note that,
in order for such a structure to attract HUBAVG, the authorities (or at least some
of the authorities) must have sufficiently large in-degree. In this case, the top
three nodes for for HUBAVG correspond to the nodes with the 10th, 11th and 13th
highest in-degree in the graph. This is a typical example of the behavior of the
HUBAVG algorithm. Although the HUBAVG algorithm manages to escape the com-
munities that pull HITS into topic drift, it still falls victim to its own TKC effect.

Consider the HUBAVG algorithm on the query “abortion”. The authority nodes
in the set Y are not all of equal strength. Some of them are well interconnected
with other hubs in the pro-life community (the ones ranked high by HITS), but
the large majority of them are pointed to only by the hubs in the set X . Recall
that the HUBAVG algorithm requires that the hubs point only (or at least mainly)
to good authorities. Most of the authorities in Y are poor. As a result, the hubs
in X are penalized. The HUBAVG algorithm avoids the pro-life community and
focuses on the pro-choice one. Note that this is the community that contains the
node with the maximum in-degree. The top 10 results of HUBAVG are plotted in
Figure 14(c).

The MAX algorithm. The influence of the various communities on the rank-
ing of the MAX algorithm is primarily exerted through the seed node. The
community that contains the seed node and the co-citation of the seed node
with the remaining nodes in the community determine the focus of the MAX al-
gorithm. For example, in the “movies” query, the seed node is the Internet Movie
Database11 (IMDB), and the algorithm converges to a set of movie databases
and movie reviews sites. Similarly for the “net censorship” query, where the
seed node is the Electronic Frontier Foundation12 (EFF), the algorithm outputs
highly relevant results. In both these cases, the MAX algorithm manages best
to distill the relevant pages from the community to which it converges. On the
other hand, in the case of the “affirmative action” query, the seed node is a
copyright page from the University of Pennsylvania and, as a result, the MAX

algorithm outputs a community of university home pages.
There are cases where the seed node may belong to more than one commu-

nity. For example, for the query “basketball”, the seed node is the NBA official
Web page.13 This page belongs to the basketball community, but it has the
highest overlap with a community of nodes from MSN,14 which causes the MAX

algorithm to converge to this community. It may also be the case that there
are multiple seed nodes in the graph. For example, for the “randomized algo-
rithms” query, there are two seeds in the graph, one on algorithms, and one
on computational geometry. As a result, the algorithm mixes pages of both
communities.

11http://www.imdb.com.
12http://www.eff.org.
13http://www.nba.com.
14http://www.msn.com.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

282 • A. Borodin et al.

Fig. 16. The AT-MED and AT-AVG algorithms.

It is also interesting to observe the behavior of MAX on the query “abortion”.
The seed node in the graph is the “NARAL Pro-Choice” home page. Given that
there is only light co-citation between the pro-choice and pro-life communities,
one would expect that the algorithm would converge to pro-choice pages. How-
ever, the MAX algorithm mixes pages from both communities. The third page
in the ranking of MAX is the “National Right To Life” (NRTL) home page, and
there are two more in the fifth and seventh positions of the ranking. After ex-
amination of the data, we observed that the NRTL page has the second highest
in-degree in the graph. Furthermore, its in-degree (189) is very close to that of
the seed node (192), and, as we observed before, it belongs to a tightly intercon-
nected community. In this case, the NRTL page acts as a secondary seed node
for the algorithm, pulling pages from the pro-life community to the top 10. As
a result, the algorithm mixes pages from both communities.

The AT(k) algorithm. For the AT-MED and AT-AVG algorithms, we observed
that in most cases their rankings are the same as either that of HITS or
that of MAX. The cases that deviate from these two reveal some interesting
properties of the algorithms. Consider the query “classical guitar”. The plot of
the graph and the top 10 results of the algorithms are shown in Figure 16(a).
The top 10 results for all algorithms appear in Table X in Appendix A. For this
graph k = 3 for AT-MED, and k = 5 for AT-AVG. In this query, the AT-MED and
AT-AVG algorithms allocate most of the weight to just four nodes, which are
ranked lower by HITS and MAX. We discovered that these four nodes belong
to a complete bipartite graph pointed to by approximately 120 hubs. The HITS

algorithm favors a community of nodes drawn together by a set of strong hubs.
As we decrease k, the effect of the strong hubs decreases and other structures
emerge as the most tightly connected ones. Surprisingly, the MAX algorithm,
which corresponds to the other extreme value of k, produces a set of top 10
results that are more similar to that of HITS than to that of AT-MED and AT-AVG.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 283

We observed the similar phenomena for the queries “cheese” and “amusement
parks”.

In order to better understand the mechanics of the threshold algorithms, we
consider the “roswell” query. In this case, the AT-AVG produces the same top 4
authorities as HITS, but the lower part of the ranking is completely different.
In this graph, k = 4 for the AT-AVG algorithm. Figure 16(b) shows the plot for
the top 10 authorities of both algorithms. The middle part corresponds to the
common authorities, the bottom rows are the authorities of HITS, and the upper
rows are the authorities of AT-AVG. Note that the authorities of HITS are more
tightly interconnected. However, given that k = 4, all hubs receive the same
weight, since they all point to the middle authorities which are the strongest.
These four authorities play a role similar to that of the seed in the MAX

algorithm. Therefore, the authorities of AT-AVG are ranked higher because they
have higher co-citation with the “seed” nodes despite the fact that they are not
as well interconnected. It seems that as we decrease the value of k, the effect
of the in-degree increases.

The INDEGREE and SALSA algorithms. The effect of different communities to
the INDEGREE algorithm is straightforward. Communities that contain nodes
with high in-degree will be promoted, while communities that do not contain
“popular” nodes are not represented regardless of how tightly interconnected
they are. As a result, INDEGREE usually mixes the results of various communities
in the top 10 results. One characteristic example is the “genetic” query where
the INDEGREE algorithm is the only one to introduce a page from the Genetic
Algorithms community. The simplistic approach of the INDEGREE algorithm ap-
pears to work relatively well in practice. However, it has no defense mechanism
against spurious authorities, that is, nodes with high in-degree that are not re-
lated to the query, as in the case of the “amusement parks” query. Another such
example is the “basketball” query, where the algorithm is drawn to the set of
spurious authorities from the MSN community.

As we have already discussed, in most cases, the SALSA algorithm outputs
the same top 10 results as INDEGREE. The “amusement parks” query is one
of the rare cases where the rankings of the two algorithms differ. For this query,
the node with the highest in-degree is a completely isolated node. SALSA is de-
signed to handle such situations (i.e., nodes that are very popular, but belong to
weak communities), so the high in-degree isolated node does not appear in the
top 10 of the SALSA algorithm. The top 10 results for both SALSA and INDEGREE

algorithms are shown in Figure 17. The premise of SALSA is interesting. It sets
the weight of a node as a combination of the popularity of the community it be-
longs to as well as its popularity within the community. However, a community,
in this case, is defined as an authority connected component (ACC) of the graph.
This is a very strong definition since, if a node shares even just one hub with the
ACC, it immediately becomes part of the community. It would be interesting
to experiment with SALSA on graphs that contain multiple ACCs of comparable
size, and observe how the algorithm mixes between the different communities.
In our experiments, all graphs contain a giant ACC and many small ACCs that
do not contribute to the ranking. Thus, the SALSA algorithm reduces to INDEGREE

with the additional benefit of avoiding the occasional isolated high in-degree

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

284 • A. Borodin et al.

Fig. 17. The query “amusement parks”.

node for the queries “amusement parks”, “automobile industries”, “moon land-
ing”, “movies”, and “national parks”.

The “amusement parks” query is particularly interesting since it reveals
the behavior of the algorithms in extreme settings. The top 10 results for all
algorithms appear in Table IX in Appendix A. The plot of the graph for this
query is shown in Figure 17. Both MAX and HUBAVG allocate all their weight
to the isolated node with the maximum in-degree, and zero to the rest of the
nodes. The HITS algorithm escapes this component easily, and converges to the
most relevant community. The AT-MED, AT-AVG algorithms converge again to a
small tight bipartite graph different from that of HITS.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 285

Fig. 18. Topic drift for PAGERANK.

The BFS algorithm. The BFS algorithm exhibits the best performance among
the LAR algorithms. This can be attributed to the fact that the BFS algorithm
is not as sensitive to tightly-knit communities. The weight of a node in the
BFS algorithm depends on the number of neighbors that are reachable from
that node, and not on the number of paths that lead to them. Highly inter-
connected components (i.e., components with high reachability) influence the
ranking, but tightly interconnected components (components with large num-
ber of paths between nodes) do not have a significant effect on BFS. As a result,
the BFS algorithm avoids strong TKC effects and strong topic drift. The exper-
imental results suggest that reachability is a better measure of quality than
connectivity.

Furthermore, the BFS algorithm is not strongly affected by the existence of
spurious authorities since it considers the popularity of a node in a neighbor-
hood of larger radius. For example, in the “basketball” query, the BFS algorithm
does not output any page from the MSN15 community which contains many
nodes within the top 10 results of the INDEGREE algorithm.

The PAGERANK algorithm. The existence of dense communities of hubs and
authorities does not have a significant effect on the PAGERANK algorithm since it
does not rely on mutual reinforcement for computing authority weights. How-
ever, we observed that there are certain structures to which the PAGERANK algo-
rithm is sensitive. For example, in the query “amusement parks”, the PAGERANK

algorithm assigns a large weight to the isolated node with the maximum in-
degree. We observed that, in general, PAGERANK tends to favor isolated nodes of
high in-degree. In this case, the hubs that point to the isolated node transfer
all their weight directly to that node since they do not point anywhere else,
thus increasing its weight. Furthermore, the PAGERANK algorithm favors struc-
tures like the one shown in Figure 18. There exists a node p that is pointed
to exclusively by a set of hubs (not necessarily many of them), and it creates
a two link cycle with one or more nodes. In this case, the node p reinforces
itself since the random walk will iterate within this cycle until it performs
a random jump. This explains the fact that in certain cases the performance

15http://www.msn.com.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

286 • A. Borodin et al.

of the algorithm improves when we increase the jump probability. Note that
such structures are very common in the Web where p may be the entry point
to some Web site and all pages within this site point back home. They ap-
peared very often in our experiments (even with pages that are not in the same
site), and they account for most of the topic drift of the PAGERANK algorithm.
The effect of such structures has also been investigated by Bianchini et al.
[2002].

Overall, the PAGERANK algorithm appears to be mixing between different
communities. This should probably be attributed to the random jumps that the
algorithm performs. The random jumps are probably also responsible for the
fact that the algorithm performs better than the rest of the algorithms on very
sparse graphs (like in the “jaguar” and “randomized algorithms” queries).

The BAYESIAN and SBAYESIAN algorithms. As indicated by all similarity mea-
sures, the SBAYESIAN algorithm exhibits behavior very similar to that of the IN-
DEGREE algorithm. Thus, the effect of communities on SBAYESIAN is very similar
to that of the INDEGREE algorithm. It favors the communities that contain pop-
ular nodes, regardless of density or the size of the communities. We note that
SBAYESIAN agrees with the INDEGREE, even in the special case of the “amuse-
ment parks” query where the node with the maximum in-degree consists of an
isolated node.

On the other hand, the BAYESIAN algorithm is far less dependent upon the
in-degree of the nodes. In the “amusement parks” query, the algorithm dis-
regards completely the isolated node with the highest in-degree, and focuses
on the same community as the HITS algorithm, producing the best set of
top 10 results. One possible explanation is that the effect of many nodes point-
ing to a single node is absorbed by the parameters ei, and thus the weight
of the pointed node does not increase inordinately. That is, the extra param-
eters ei can be “used” to explain high in-degrees, so in-degree does not overly
affect the resulting authority weights. This also implies that the BAYESIAN al-
gorithm favors communities that contain hubs with relatively high out-degree.
For example, in the case of the “abortion” query, the algorithm converges to
the pro-life community which contains a set of strong hubs. This could also
explain the high dissimilarity between the BAYESIAN and the HUBAVG algo-
rithms since HUBAVG tends to promote isolated components with high in-degree
nodes.

In general, the BAYESIAN algorithm exhibits high similarity with the HITS al-
gorithm and its variants (especially AT-AVG). In all queries, the top 10 results of
BAYESIAN contain at least one node of the principal community favored by HITS.
This suggests that the BAYESIAN algorithm is affected by densely interconnected
components. However, there are many cases, such as the queries “gun control”,
“movies”, “net censorship”, “randomized algorithms”, where the BAYESIAN algo-
rithm deviates from the HITS algorithm. In most such cases, HITS converges
to small isolated dense communities. These are represented in the top 10 re-
sults of BAYESIAN, and the remaining positions are filled with pages promoted
by SBAYESIAN or MAX. It is very common that the top 10 results of BAYESIAN are
some combination of results of HITS and SBAYESIAN or MAX. It is an interesting
puzzle to understand the behavior of the BAYESIAN algorithm. Furthermore, it

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 287

would be interesting to study how changing the distribution parameters for the
ei random variables affects the properties of the algorithm.

5.4 Concluding Remarks for the Experimental Study

We performed an experimental analysis of Link Analysis Ranking. Using user
feedback, we evaluated the ability of each algorithm to rank highly documents
relevant to the queries. Also, in order to better understand the performance
of the algorithms, we studied how the existence of various communities in
the graphs affect the behavior of the algorithms. The experimental analysis
revealed several limitations and weaknesses of Link Analysis Ranking. Over-
all, LAR algorithms were not effective in retrieving the most relevant pages in
the dataset within the top few positions of the ranking. The main reason for
the shortcomings of the LAR algorithms appears to be the various community
effects that we described in Section 5.3. The structures that are promoted by the
various algorithms are usually not relevant to the query at hand. We observed
that the algorithms that exhibit a “mixing” behavior, that is, they allocate the
weight across different communities in the graph, tend to perform better than
more “focused” algorithms that tend to allocate all weight to the nodes of a
single community. In our experiments, the graphs were often fragmented. As a
result, focused algorithms often produced a lopsided weighting scheme where
almost all weight was allocated to just a few nodes. This suggests that in the
future we should consider relaxations of the existing algorithms so that they
employ more moderate approaches.

Alternatively, we could consider improving the input graph so that it does not
include structures that cause topic drift. Our experimental study indicates that
the properties of the graph that are given as input to the LAR algorithm are
critical to the quality of the output of the LAR algorithm. Little research [Gibson
et al. 1998; Bharat and Henzinger 1998] has been devoted to the problem of
improving the algorithm that generates the input graph. During the expansion
of the Root Set, many nonrelevant pages are introduced into the Base Set. Con-
tent analysis could be applied to filter some of the noise introduced in the graph
and steer the algorithm towards the relevant community of nodes. This could be
achieved either by pruning some of the nonrelevant pages, or by downweighting
their effect by adding weights to the links. Other approaches include grouping
similar nodes together to avoid extreme TKC phenomena, as described in the
work of Roberts and Rosenthal [2003]. The problem of understanding the input
graph is of fundamental importance for the study of Link Analysis Ranking.

Furthermore, the analysis of Section 5.3 indicates that, in order to evaluate
an LAR algorithm, we need to understand the interplay between the graph
and the algorithm, as well as the connection between graph structures and
topical relevance. An LAR algorithm is a mapping from a graph to a set of
weights. Thus, we need to understand how the structural properties of the graph
affect the ranking of the algorithm. Then, we need to study how the relevance
of the Web pages relates to these structural properties. For example, assume
that we observe that the graphs are likely to contain cycles. Then, we need
to understand which algorithms are affected by the existence of cycles in the

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

288 • A. Borodin et al.

graph, and how likely it is for the nodes that belong to the cycles to be relevant
to the query. Alternatively, if we know that an algorithm favors cycles, then we
need to estimate how often cycles appear in the graphs, and, again, how likely it
is to be relevant to the query. Performing such analysis will enable us to predict
the combinations of graphs and algorithms that we expect to perform well and
work towards improving the algorithms, or the construction of the input graph.
Ideally, we would like to be able to characterize the structures that an LAR
algorithm favors within the theoretical framework we introduced in Section 4.
Then, we would be able to argue formally about the performance of the LAR
algorithms on specific families of graphs.

In our datasets, we observed that tightly-knit communities, cycles, and iso-
lated components are usually off topic. Such structures appear often, and the
algorithms that promote them (HITS, HUBAVG, PAGERANK) perform poorly. On
the other hand, reachability and high in-degree are good indications of rele-
vance, and the algorithms that rely on them (BFS, INDEGREE) perform better.
Furthermore, the fact that the INDEGREE algorithm performs relatively well al-
lows us to predict that the MAX algorithm will perform well since it is strongly
influenced by the quality of the node with the highest in-degree. In a similar
fashion, the knowledge that the graphs contain a giant component allows us
to predict that the properties of the SALSA algorithm are immaterial, and the
algorithm reduces to the INDEGREE algorithm.

Finally, although it appears that the LAR algorithms cannot always capture
the true quality of the documents, it was interesting to observe that the LAR
algorithms were very successful in discovering the “greater picture” behind
the topic of the query. For example, for the query “computational geometry”,
the algorithms returned pages on math. For the query “armstrong”, we got
many pages on jazz music, even if they did not contain any reference to Louis
Armstrong. For the query “globalization”, the algorithms returned independent
media sites, anti-Bush sites, and workers’ movements sites. It is questionable
whether the users would like such a wide perspective of the query (and our user
study proved that they usually do not); however, it is important to have a tool
that can provide the “Web context” of a query. The algorithms for finding related
pages to a query page build upon exactly this property of Link Analysis. Pre-
liminary experiments indicate that LAR algorithms are successful in handling
such queries. Furthermore, as a result of this generalization property of Link
Analysis, LAR algorithms proved successful in finding highly related pages that
do not contain the actual query words. This was the case in the “search engines”
query, the “automobile industries” query, and the “globalization” query where
the algorithms discover and rank highly pages like the World Trade Organiza-
tion site. Despite its limitations, Link Analysis is a useful tool for mining and
understanding the Web.

6. CONCLUSIONS

In this article, we studied the problem of Link Analysis Ranking. We ap-
proached the problem from three different perspectives. First, we extended
the existing techniques to produce new LAR algorithms. Working within the

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 289

the hubs and authorities paradigm defined by Kleinberg [1999], we proposed
new ways of computing hub and authority weights, namely the HUBAVG and
BFS algorithms, the AT(k) family of algorithms, and two algorithms based on
a statistical Bayesian approach.

Second, we developed a formal framework for analyzing LAR algorithms that
allows us to define specific properties of LAR algorithms such as monotonicity,
distance, similarity, stability, and locality. Within this framework, we were able
to provide an axiomatic characterization of the INDEGREE algorithm. We proved
that any algorithm that is monotone, label-independent, and local produces
the same ranking as the INDEGREE algorithm. This result indicates that our
framework and the properties we defined are both meaningful and useful.

Last, we experimented with the algorithms that we proposed, as well as some
of the existing ones. We performed an extensive experimental study on multiple
queries, using user feedback, where we studied the quality of the algorithms, as
well as the effect of graph structures on the behavior of the ranking algorithms.
We observed that some of the theoretically predicted properties (for example,
the TKC effect for the HITS algorithm) were indeed prominent in our experi-
ments. We were surprised to discover that some of the “simpler” algorithms,
such as INDEGREE and BFS, appear to perform better than more sophisticated
algorithms, such as PAGERANK and HITS.

Our work opens a number of interesting questions for future work. First, it
would be interesting to consider other variations of the hubs and authorities def-
initions that combine ideas from the HITS and PAGERANK algorithm or make use
of other machine learning techniques. Furthermore, we consider our theoretical
framework as a first step towards the formal analysis of LAR algorithms. There
are plenty of research questions that emerge within this framework. The sta-
bility and similarity of the Bayesian algorithms remains undetermined. Also,
although most of the stability and similarity results are negative, it is possible
that, if we restrict ourselves to smaller classes of graphs, we can obtain positive
results. We are currently examining the conditions for the stability of the HITS

algorithm as well as the similarity between HITS and INDEGREE on a specific
family of random graphs.

Another possible research direction for obtaining some positive results for
rank similarity between LAR algorithms is to consider weaker notions of simi-
larity. Rather than classifying two algorithms as rank similar, or rank dissim-
ilar, we could instead try to characterize the degree of (dis)similarity of the
two algorithms. This rank similarity coefficient would be defined as the maxi-
mum fraction of pairs of nodes that are ranked in a different order by the two
algorithms. The maximum value for the coefficient is 1, in which case the two
algorithms produce two completely reversed rankings. A similar rank stability

coefficient can be defined for the study of rank stability.

APPENDIX

A. DISTANCE MEASURES AND SAMPLE QUERY RESULTS

In this appendix, we present the average values for all the similarity measures
that we consider. We also present tables with the results of three sample queries.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

290 • A. Borodin et al.

Table IV. Average I (10) Measure

HITS PAGERANK INDEGREE SALSA HUBAVG MAX AT-MED AT-AVG BFS BAYESIAN SBAYESIAN

HITS 10.0 1.1 4.1 4.1 3.4 4.3 3.9 5.2 2.8 6.6 4.0

PAGERANK 1.1 10.0 3.2 3.1 2.2 2.1 2.1 1.8 2.2 1.8 3.2

INDEGREE 4.1 3.2 10.0 9.8 5.1 6.3 6.2 6.0 5.6 6.3 9.5

SALSA 4.1 3.1 9.8 10.0 5.1 6.3 6.2 5.9 5.6 6.3 9.4

HUBAVG 3.4 2.2 5.1 5.1 10.0 5.5 6.2 6.6 3.3 4.4 5.1

MAX 4.3 2.1 6.3 6.3 5.5 10.0 8.7 6.7 5.5 6.0 6.2

AT-MED 3.9 2.1 6.2 6.2 6.2 8.7 10.0 7.5 5.0 5.6 6.1

AT-AVG 5.2 1.8 6.0 5.9 6.6 6.7 7.5 10.0 4.1 6.7 5.9

BFS 2.8 2.2 5.6 5.6 3.3 5.5 5.0 4.1 10.0 4.5 5.5

BAYESIAN 6.6 1.8 6.3 6.3 4.4 6.0 5.6 6.7 4.5 10.0 6.2

SBAYESIAN 4.0 3.2 9.5 9.4 5.1 6.2 6.1 5.9 5.5 6.2 10.0

Table V. Average W I (10) Measure

HITS PAGERANK INDEGREE SALSA HUBAVG MAX AT-MED AT-AVG BFS BAYESIAN SBAYESIAN

HITS 10.0 1.0 3.7 3.6 3.3 4.2 3.7 5.2 2.9 6.3 3.6

PAGERANK 1.0 10.0 2.8 2.7 2.1 2.1 2.0 1.5 1.6 1.4 2.8

INDEGREE 3.7 2.8 10.0 9.7 5.0 7.2 6.8 5.9 5.6 5.9 9.6

SALSA 3.6 2.7 9.7 10.0 5.0 7.1 6.9 5.8 5.6 5.9 9.4

HUBAVG 3.3 2.1 5.0 5.0 10.0 5.1 6.0 6.3 2.7 4.2 4.9

MAX 4.2 2.1 7.2 7.1 5.1 10.0 8.8 6.6 5.1 6.3 7.1

AT-MED 3.7 2.0 6.8 6.9 6.0 8.8 10.0 7.4 4.7 5.7 6.8

AT-AVG 5.2 1.5 5.9 5.8 6.3 6.6 7.4 10.0 4.0 6.9 5.7

BFS 2.9 1.6 5.6 5.6 2.7 5.1 4.7 4.0 10.0 4.5 5.6

BAYESIAN 6.3 1.4 5.9 5.9 4.2 6.3 5.7 6.9 4.5 10.0 5.8

SBAYESIAN 3.6 2.8 9.6 9.4 4.9 7.1 6.8 5.7 5.6 5.8 10.0

Table VI. Average dr Distance

HITS PAGERANK INDEGREE SALSA HUBAVG MAX AT-MED AT-AVG BFS BAYESIAN SBAYESIAN

HITS 0.00 0.53 0.42 0.45 0.31 0.24 0.20 0.16 0.24 0.35 0.41

PAGERANK 0.53 0.00 0.32 0.30 0.47 0.45 0.44 0.46 0.46 0.38 0.27

INDEGREE 0.42 0.32 0.00 0.08 0.40 0.36 0.36 0.37 0.39 0.33 0.21

SALSA 0.45 0.30 0.08 0.00 0.44 0.40 0.40 0.41 0.42 0.34 0.23

HUBAVG 0.31 0.47 0.40 0.44 0.00 0.28 0.25 0.22 0.36 0.41 0.42

MAX 0.24 0.45 0.36 0.40 0.28 0.00 0.07 0.13 0.19 0.30 0.33

AT-MED 0.20 0.44 0.36 0.40 0.25 0.07 0.00 0.08 0.16 0.28 0.32

AT-AVG 0.16 0.46 0.37 0.41 0.22 0.13 0.08 0.00 0.19 0.30 0.35

BFS 0.24 0.46 0.39 0.42 0.36 0.19 0.16 0.19 0.00 0.27 0.33

BAYESIAN 0.35 0.38 0.33 0.34 0.41 0.30 0.28 0.30 0.27 0.00 0.24

SBAYESIAN 0.41 0.27 0.21 0.23 0.42 0.33 0.32 0.35 0.33 0.24 0.00

Table VII. Average d1 Distance

HITS PAGERANK INDEGREE SALSA HUBAVG MAX AT-MED AT-AVG BFS BAYESIAN SBAYESIAN

HITS 0.00 1.64 1.22 1.25 1.32 1.11 1.12 0.84 1.46 1.33 1.33

PAGERANK 1.64 0.00 0.94 0.93 1.64 1.38 1.38 1.49 1.13 0.63 0.65

INDEGREE 1.22 0.94 0.00 0.11 1.41 0.86 0.87 1.01 0.96 0.84 0.38

SALSA 1.25 0.93 0.11 0.00 1.42 0.89 0.89 1.03 0.96 0.86 0.41

HUBAVG 1.32 1.64 1.41 1.42 0.00 1.12 1.01 0.91 1.67 1.61 1.48

MAX 1.11 1.38 0.86 0.89 1.12 0.00 0.21 0.57 1.19 1.16 1.01

AT-MED 1.12 1.38 0.87 0.89 1.01 0.21 0.00 0.42 1.20 1.17 1.01

AT-AVG 0.84 1.49 1.01 1.03 0.91 0.57 0.42 0.00 1.35 1.24 1.14

BFS 1.46 1.13 0.96 0.96 1.67 1.19 1.20 1.35 0.00 1.06 0.99

BAYESIAN 1.33 0.63 0.84 0.86 1.61 1.16 1.17 1.24 1.06 0.00 0.56

SBAYESIAN 1.33 0.65 0.38 0.41 1.48 1.01 1.01 1.14 0.99 0.56 0.00

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 291

Table VIII. Query “Abortion”

HITS PAGERANK INDEGREE

1. (1.000) Priests for Life Index

URL:www.priestsforlife.org

1. (1.000) WCLA Feedback URL:

www.janeylee.com/wcla

1. (1.000) prochoiceamerica.org :

NARAL URL:www.naral.org

2. (0.997) National Right to Life

URL:www.nrlc.org

2. (0.911) Planned Parenthood

Action Ne URL:www.ppaction.

org/ppaction/prof

2. (0.984) National Right to Life

URL:www.nrlc.org

3. (0.994) After Abortion:

Information URL:www.

afterabortion.org

3. (0.837) Welcome to the

Westchester C URL:www.wcla.org

3. (0.969) Planned Parenthood

Federatio URL:www.

plannedparenthood.org

4. (0.994) ProLifeInfo.org

URL:www.prolifeinfo.org

4. (0.714) Planned Parenthood

Federatio URL:www.

plannedparenthood.org

4. (0.865) NAF—The Voice of

Abortion URL:www.prochoice.

org

5. (0.990) Pregnancy Centers

Online URL:www.

pregnancycenters.org

5. (0.633) GeneTree.com Page Not

Found www.qksrv.net/click-

1248625-91

5. (0.823) Priests for Life Index

URL:www.priestsforlife.org

6. (0.989) Human Life

International URL:www.hli.org

6. (0.630) Bible.com Prayer Room

www.bibleprayerroom.com

6. (0.807) Pregnancy Centers

Online URL:www.

pregnancycenters.org

7. (0.987) Abortion—Breast Cancer

Lin URL:www.abortioncancer.com

7. (0.609) United States

Department of URL:www.dhhs.gov

7. (0.740) ProLifeInfo.org

URL:www.prolifeinfo.org

8. (0.985) Abortion facts and

informati URL:www.

abortionfacts.com

8. (0.538) Pregnancy Centers

Online URL:www.

pregnancycenters.org

8. (0.734) After Abortion:

Information URL:www.

afterabortion.org

9. (0.981) Campaign Life Coalition

Brit URL:www.clcbc.org

9. (0.517) Bible.com Online World

bible.com

9. (0.672) Abortion Clinics

OnLineURL:www.gynpages.com

10. (0.975) Empty title field

www.heritagehouse76.com

10. (0.516) National Organization

for Wo URL:www.now.org

10. (0.625) Abortion—Breast

Cancer Lin URL:www.

abortioncancer.com

HUBAVG MAX AT-MED

1. (1.000) prochoiceamerica.org :

NARAL URL:www.naral.org

1. (1.000) prochoiceamerica.org :

NARAL URL:www.naral.org

1. (1.000) prochoiceamerica.org :

NARAL URL:www.naral.org

2. (0.935) Planned Parenthood

Federatio URL:www.

plannedparenthood.org

2. (0.946) Planned Parenthood

Federatio URL:www.

plannedparenthood.org

2. (0.933) Planned Parenthood

Federatio URL:www.

plannedparenthood.org

3. (0.921) NAF—The Voice of

Abortion URL:www.prochoice.

org

3. (0.918) National Right to Life

URL:www.nrlc.org

3. (0.837) NAF—The Voice of

Abortion URL:www.prochoice.

org

4. (0.625) Abortion Clinics

OnLine URL:www.gynpages.

com

4. (0.819) NAF—The Voice of

Abortion URL:www.prochoice.

org

4. (0.717) National Right to Life

URL:www.nrlc.org

5. (0.516) FEMINIST MAJORITY

FOUNDATION URL:www.

feminist.org

5. (0.676) Priests for Life Index

URL:www.priestsforlife.org

5. (0.552) FEMINIST MAJORITY

FOUNDATION URL:www.

feminist.org

6. (0.484) The Alan Guttmacher

Institut URL:www.guttmacher.org

6. (0.624) Pregnancy Centers

OnlineURL:www.

pregnancycenters.org

6. (0.545) Abortion Clinics

OnLineURL:www.gynpages.com

7. (0.439) center for

reproductive righ URL:www.

crlp.org

7. (0.602) ProLifeInfo.org

URL:www.prolifeinfo.org

7. (0.538) The Alan Guttmacher

Institut URL:www.guttmacher.org

8. (0.416) The Religious Coalition

for URL:www.rcrc.org

8. (0.557) Abortion Clinics

OnLine URL:www.gynpages.

com

8. (0.523) center for

reproductive righ URL:www.

crlp.org

9. (0.415) National Organization

for Wo URL:www.now.org

9. (0.551) After Abortion:

Information URL:www.

afterabortion.org

9. (0.518) Priests for Life Index

URL:www.priestsforlife.org

10. (0.408) Medical Students for

Choice: URL:www.ms4c.org

10. (0.533) FEMINIST MAJORITY

FOUNDATION

URL:www.feminist.org

10. (0.478) The Religious Coalition

for URL:www.rcrc.org

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

292 • A. Borodin et al.

Table VIII. Continue

AT-AVG BFS BAYESIAN

1. (1.000) National Right to Life

URL:www.nrlc.org

1. (1.000) National Right to Life

URL:www.nrlc.org

1. (7.04) National Right to Life

URL:www.nrlc.org

2. (0.905) Priests for Life Index

URL:www.priestsforlife.org

2. (0.930) Priests for Life Index

URL:www.priestsforlife.org

2. (6.79) Priests for Life Index

URL:www.priestsforlife.org

3. (0.844) ProLifeInfo.org

URL:www.prolifeinfo.org

3. (0.928) After Abortion:

Information URL:www.

afterabortion.org

3. (6.31) ProLifeInfo.org

URL:www.prolifeinfo.org

4. (0.785) Pregnancy Centers

Online URL:www.

pregnancycenters.org

4. (0.905) Pro-life news and

informatio URL:www.all.org

4. (6.23) Pregnancy Centers

Online URL:www.

pregnancycenters.org

5. (0.778) After Abortion:

Information URL:www.

afterabortion.org

5. (0.893) ProLifeInfo.org

URL:www.prolifeinfo.org

5. (6.09) After Abortion:

Information URL:www.

afterabortion.org

6. (0.777) prochoiceamerica.org :

NARAL URL:www.naral.org

6. (0.869) Pregnancy Centers

Online URL:www.

pregnancycenters.org

6. (5.67) Human Life International

URL:www.hli.org

7. (0.741) Human Life

International URL:www.hli.org

7. (0.860) Human Life

International URL:www.hli.org

7. (5.40) Abortion—Breast Cancer

Lin URL:www.abortioncancer.com

8. (0.704) Planned Parenthood

Federatio URL:www.

plannedparenthood.org

8. (0.852) Abortion facts and

informati URL:www.

abortionfacts.com

8. (5.35) Abortion facts and

informati URL:www.

abortionfacts.com

9. (0.683) Abortion facts and

informati URL:www.

abortionfacts.com

9. (0.847) prochoiceamerica.org :

NARAL URL:www.naral.org

9. (5.08) Campaign Life Coalition

Brit URL:www.clcbc.org

10. (0.677) Abortion—Breast

Cancer Lin URL:www.

abortioncancer.com

10. (0.839) Planned Parenthood

Federatio URL:www.

plannedparenthood.org

10. (4.36) Empty title field

www.heritagehouse76.com

Table IX. Query “Amusement Parks”

HITS PAGERANK INDEGREE

1. (1.000) Welcome to RENOLDI

rides am URL:www.renoldi.com

1. (1.000) HONcode: Principles

www.hon.ch/HONcode/Conduct.htm

1. (1.000) HONcode: Principles

www.hon.ch/HONcode/Conduct.htm

2. (0.933) IAAPA URL:www.

iaapa.org

2. (0.495) abc,Inflatable,tmoonwalk,

moon www.adventure- bounce.com

2. (0.645) Empty title field

URL:www.sixflags.com

3. (0.834) Knott’s URL:www.

knotts.com

3. (0.335) Local Business Listings

Beac business.beachcomberii.com

3. (0.589) Busch Gardens

Adventure Park URL:www.

buschgardens.com

4. (0.799) Traditional Amusement

parks URL:www.tradition.cjb.net

4. (0.332) NAARSO National

Association URL:www.naarso.com

4. (0.567) IAAPA URL:www.

iaapa.org

5. (0.788) HUSS URL:www.

hussrides.com

5. (0.332) AttorneyPages Helps You

Find attorneypages.com

5. (0.560) Free Legal Advice in 100+

La freeadvice.com

6. (0.779) Empty title field

URL:www.aimsintl.org

6. (0.332) Do It Yourself Home

Improvem doityourself.com

6. (0.560) AttorneyPages Helps You

Find attorneypages.com

7. (0.772) Screamscape

URL:www.screamscape.com

7. (0.321) Theme Parks Classifieds

URL:adlistings.themeparks.about.co

7. (0.560) Do It Yourself Home

Improvem doityourself.com

8. (0.770) REVERCHON : HOME

PAGE URL:www.reverchon.

com

8. (0.317) FreeFind Site Search

search.freefind.com/find.html?

8. (0.532) ExpertPages.com—Books,

Tap expert-pages.com/books.htm

9. (0.769) Empty title field

URL:www.zierer.com

9. (0.315) Free Legal Advice in

100+ La freeadvice.com

9. (0.489) Empty title field

imgserv.adbutler.com/go2/;ID=1

10. (0.767) DE

URL:www.drewexpo.com

10. (0.303) IAAPA

URL:www.iaapa.org

10. (0.489) Empty title field

imgserv.adbutler.com/go2/;ID=1

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 293

Table IX. Continue

HUBAVG MAX AT-MED

1. (1.000) HONcode: Principles

www.hon.ch/HONcode/Conduct.htm

1. (1.000) HONcode: Principles

www.hon.ch/HONcode/Conduct.htm

1. (1.000) AttorneyPages Helps You

Find attorneypages.com

2. (0.000) AttorneyPages Helps You

Find attorneypages.com

2. (0.000) Empty title field

URL:www.sixflags.com

2. (1.000) Do It Yourself Home

Improvem doityourself.com

3. (0.000) Do It Yourself Home

Improvem doityourself.com

3. (0.000) Busch Gardens

Adventure Park URL:www.

buschgardens.com

3. (0.987) Free Legal Advice in 100+

La freeadvice.com

4. (0.000) Free Legal Advice in 100+

La freeadvice.com

4. (0.000) Cedar Point

Amusement Park, URL:www.

cedarpoint.com

4. (0.949) ExpertPages.com—Books,

Tap expert-pages.com/books.htm

5. (0.000) ExpertPages.com—Books,

Tap expert-pages.com/books.htm

5. (0.000) IAAPA URL:www.

iaapa.org

5. (0.866) Accidents Happen-Why

are L law.freeadvice.com/resources/c

6. (0.000) Accidents Happen-Why

are L law.freeadvice.com/resources/c

6. (0.000) Knott’s URL:www.

knotts.com

6. (0.032) Expert Witness Directory|

−F expertpages.com

7. (0.000) Empty title field imgserv.

adbutler.com/go2/;ID=1

7. (0.000) Universal Studios

URL:www.usf.com

7. (0.017) Get Your Discount Card

Today www.usaphonetime.com

8. (0.000) Empty title field imgserv.

adbutler.com/go2/;ID=1

8. (0.000) Welcome to RENOLDI

rides am URL:www.renoldi.com

8. (0.016) MapQuest: Home

www.mapquest.com

9. (0.000) Site Meter—Counter and

Sta s10.sitemeter.com/stats.asp?si

9. (0.000) Kennywood :

America’s Finest URL:www.

kennywood.com

9. (0.014) Adventure travel outdoor

r www.outsidemag.com

10. (0.000) Empty title field

imgserv.adbutler.com/go2/;ID=1

10. (0.000) Exhibits Collection –

Amuse URL:www.learner.org/

exhibits/parkp

10. (0.013) Disneyland

Resort—The offi URL:www.

disneyland.com

AT-AVG BFS BAYESIAN

1. (1.000) AttorneyPages Helps You

Find attorneypages.com

1. (1.000) Knott’s URL:www.

knotts.com

1. (1.88) Empty title field

URL:www.sixflags.com

2. (1.000) Do It Yourself Home

Improvem doityourself.com

2. (0.910) Welcome to Gillette Shows

URL:www.gilletteshows.biz

2. (1.71) Welcome to RENOLDI

rides am URL:www.renoldi.com

3. (0.995) Free Legal Advice in 100+

La freeadvice.com

3. (0.885) Welcome to RENOLDI

rides am URL:www.renoldi.com

3. (1.62) Busch Gardens

Adventure Park URL:www.

buschgardens.com

4. (0.973) ExpertPages.com—Books,

Tap expert-pages.com/books.htm

4. (0.884) IAAPA URL:www.

iaapa.org

4. (1.60) Knott’s URL:www.

knotts.com

AT-AVG BFS BAYESIAN

5. (0.900) Accidents Happen—Why

are L law.freeadvice.com/resources/c

5. (0.881) e-musementparkstore.

com—Am URL:www.e-

musementparkstore.com

5. (1.59) Cedar Point Amusement

Park, URL:www.cedarpoint.

com

6. (0.016) Expert Witness Directory|

−F expertpages.com

6. (0.879) Great Adventure Source

URL:greatadventure.8m.com

6. (1.52) Kennywood : America’s

Finest URL:www.kennywood.

com

7. (0.012) Get Your Discount Card

Today www.usaphonetime.com

7. (0.868) Web Page Under

Construction www.carousel.org

7. (1.52) IAAPA URL:www.iaapa.

org

8. (0.008) The Expert Pages—About

Adv expertpages.com/about.htm

8. (0.854) amutech

amutech.homestead.com

8. (1.46) Universal Studios

URL:www.usf.com

9. (0.008) Terms amp; Conditions at

Ex expertpages.com/conditions.htm

9. (0.850) Joyrides—Amusement

Park an URL:www.joyrides.com

9. (1.44) Beachboardwalk.com:

Californ URL:www.

beachboardwalk.com

10. (0.008) Expert Pages Privacy

Policy expertpages.com/privacy.htm

10. (0.849) Pharaohs Lost

Kingdom Advent URL:www.

pharaohslostkingdom.com

10. (1.35) LEGO.com Plug-in

Download URL:www.

legolandca.com

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

294 • A. Borodin et al.

Table X. Query “Classical Guitar”

HITS PAGERANK INDEGREE

1. (1.000) earlyromanticguitar.

com URL:www.

earlyromanticguitar.com

1. (1.000) Take Note Publishing

Limited www.takenote.co.uk

1. (1.000) Guitar Alive-

GuitarAlive—www.guitaralive.com

2. (0.927) Empty title field URL:

classicalguitar.freehosting.ne

2. (0.724) Guitar music, guitar

books a URL:www.booksforguitar.

com

2. (0.895) earlyromanticguitar.

com URL:www.

earlyromanticguitar.com

3. (0.889) Adirondack Spruce.com

URL:adirondackspruce.com

3. (0.588) Registry of Guitar

Tutors URL:www.

registryofguitartutors.com

3. (0.889) Empty title field

URL:www.guitarfoundation.org

4. (0.766) The Classical Guitar

Homepag URL:www.ak-c.demon.nl

4. (0.528) Guitar Alive-

GuitarAlive—www.guitaralive.com

4. (0.882) Hitsquad.com-Musicians

Web URL:www.hitsquad.com

5. (0.732) Guitar Alive-

GuitarAlive—www.guitaralive.com

5. (0.416) Hitsquad.com-Musicians

Web URL:www.hitsquad.com

5. (0.850) Hitsquad Privacy Policy

www.hitsquad.com/privacy.shtml

6. (0.681) Empty title field

URL:www.guitarfoundation.org

6. (0.413) Hitsquad Privacy Policy

www.hitsquad.com/privacy.shtml

6. (0.850) Advertising on Hitsquad

Musi www.hitsquad.com/

advertising.s

7. (0.676) GUITAR REVIEW

URL:www.guitarreview.com

7. (0.413) Advertising on Hitsquad

Musi www.hitsquad.com/

advertising.s

7. (0.784) Adirondack Spruce.com

URL:adirondackspruce.com

8. (0.644) Avi Afriat—Classical

guita URL:afriat.tripod.com

8. (0.387) Empty title field URL:

www.guitarfoundation.org

8. (0.778) Empty title field URL:

classicalguitar.freehosting.ne

9. (0.605) The Classical Guitar

Home Pa URL:www.guitarist.

com/cg/cg.htm

9. (0.343) Guitar Foundation of

America URL:64.78.54.231

9. (0.765) Empty title field URL:

www.vicnet.net.au/simieasyjamn

10. (0.586) Empty title field

URL:www.duolenz.com

10. (0.322) Vivendi Universal

www.vivendiuniversal.com

10. (0.739) The Classical Guitar

Homepag URL:www.ak-c.demon.nl

HUBAVG MAX AT-MED

1. (1.000) Hitsquad.com-Musicians

Web URL:www.hitsquad.com

1. (1.000) Guitar Alive-

GuitarAlive—www.guitaralive.com

1. (1.000) Hitsquad.com-Musicians

Web URL:www.hitsquad.com

2. (0.995) Hitsquad Privacy Policy

www.hitsquad.com/privacy.shtml

2. (0.619) earlyromanticguitar.

com URL:www.

earlyromanticguitar.com

2. (0.983) Hitsquad Privacy Policy

www.hitsquad.com/privacy.shtml

3. (0.995) Advertising on Hitsquad

Musi www.hitsquad.com/

advertising.s

3. (0.506) Empty title field

URL:www.guitarfoundation.org

3. (0.983) Advertising on Hitsquad

Musi www.hitsquad.com/

advertising.s

4. (0.856) Empty title field URL:

www.vicnet.net.au/simieasyjamn

4. (0.451) Adirondack Spruce.com

URL:adirondackspruce.com

4. (0.880) Empty title field URL:

www.vicnet.net.au/simieasyjamn

5. (0.135) AMG All Music Guide

URL:www.allmusic.com

5. (0.441) Empty title field URL:

classicalguitar.freehosting.ne

5. (0.205) AMG All Music Guide

URL:www.allmusic.com

6. (0.132) Free Music Download,

MP3 Mus ubl.com

6. (0.378) GUITAR REVIEW

URL:www.guitarreview.com

6. (0.193) Free Music Download,

MP3 Mus ubl.com

7. (0.130) 2000 Guitars Database

URL:dargo.vicnet.net.au/guitar/lis

7. (0.377) The Classical Guitar

Homepag URL:www.ak-c.demon.nl

7. (0.169) 2000 Guitars Database

URL:dargo.vicnet.net.au/guitar/lis

8. (0.115) Guitar Alive-

GuitarAlive—www.guitaralive.com

8. (0.371) The Classical Guitar

Home Pa URL:www.guitarist.

com/cg/cg.htm

8. (0.132) Guitar Alive-

GuitarAlive—www.guitaralive.com

9. (0.096) CDNOW www.cdnow.

com/from=sr-767167

9. (0.336) Hitsquad.com-Musicians

Web URL:www.hitsquad.com

9. (0.129) CDNOW www.cdnow.

com/from=sr-767167

10. (0.056) OLGA—The On-Line

Guitar Ar URL:www.olga.net

10. (0.312) Hitsquad Privacy Policy

www.hitsquad.com/privacy.shtml

10. (0.082) OLGA—The On-Line

Guitar Ar URL:www.olga.net

AT-AVG BFS BAYESIAN

1. (1.000) Hitsquad.com-Musicians

Web URL:www.hitsquad.com

1. (1.000) Empty title field URL:

classicalguitar.freehosting.ne

1. (3.66) earlyromanticguitar.

com URL:www.

earlyromanticguitar.com

2. (0.986) Hitsquad Privacy Policy

www.hitsquad.com/privacy.shtml

2. (0.991) earlyromanticguitar.

com URL: www.

earlyromanticguitar.com

2. (3.54) Empty title field URL:

classicalguitar.freehosting.ne

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 295

Table X. Continue

3. (0.986) Advertising on Hitsquad

Musi www.hitsquad.com/

advertising.s

3. (0.974) Adirondack Spruce.com

URL:adirondackspruce.com

3. (3.53) Adirondack Spruce.com

URL:adirondackspruce.com

4. (0.906) Empty title field URL:

www.vicnet.net.au/simieasyjamn

4. (0.962) Empty title field

URL:www.guitarfoundation.org

4. (3.42) Hitsquad.com—Musicians

Web URL:www.hitsquad.com

5. (0.210) AMG All Music Guide

URL:www.allmusic.com

5. (0.945) Guitar Alive-

GuitarAlive—www.guitaralive.com

5. (3.38) Guitar Alive-

GuitarAlive—www.guitaralive.com

6. (0.199) Free Music Download,

MP3 Mus ubl.com

6. (0.933) The Classical Guitar

Homepag URL:www.ak-c.demon.nl

6. (3.33) Empty title field

URL:www.guitarfoundation.org

7. (0.179) 2000 Guitars Database

URL:dargo.vicnet.net.au/guitar/lis

7. (0.917) The Classical Guitar

Home Pa URL:www.guitarist.

com/cg/cg.htm

7. (3.33) Hitsquad Privacy Policy

www.hitsquad.com/privacy.shtml

8. (0.135) CDNOW www.cdnow.

com/from=sr-767167

8. (0.898) Avi Afriat—Classical

guita URL:afriat.tripod.com

8. (3.33) Advertising on Hitsquad

Musi www.hitsquad.com/

advertising.s

9. (0.122) Guitar Alive-

GuitarAlive—www.guitaralive.com

9. (0.889) GUITAR REVIEW

URL:www.guitarreview.com

9. (3.27) The Classical Guitar

Homepag URL:www.ak-c.demon.nl

10. (0.080) OLGA—The On-Line

Guitar Ar URL:www.olga.net

10. (0.881) Empty title field

URL:www.duolenz.com

10. (3.25) GUITAR REVIEW

URL:www.guitarreview.com

ACKNOWLEDGMENTS

We would like to thank Alberto Mendelzon, Renee Miller, Ken Sevcik, Ken
Jackson, Jon Kleinberg, Sam Roweis, Ronald Fagin, Ronny Lempel, Shlomo
Moran, and the anonymous reviewers for valuable comments and corrections.
We would also like to thank all the people who participated in the online survey
for determining the relevance of the search results.

REFERENCES

ACHLIOPTAS, D., FIAT, A., KARLIN, A., AND MCSHERRY, F. 2001. Web search through hub synthesis.
In Proceedings of the 42nd Foundation of Computer Science (FOCS 2001). Las Vegas, NY.

ANDRITSOS, P., TSAPARAS, P., MILLER, R., AND SEVCIK, K. 2003. LIMBO: Scalable clustering of cate-
gorical data. Submitted for publication.

AZAR, Y., FIAT, A., KARLIN, A., MCSHERRY, F., AND SAIA, J. 2001. Spectral analysis of data. In Proceed-

ings of the 33rd Symposium on Theory of Computing (STOC 2001). Hersonissos, Crete, Greece.
BERNARDO, J. AND SMITH, A. 1994. Bayesian Theory. John Wiley & Sons, Chichester, England.
BHARAT, K. AND HENZINGER, M. R. 1998. Improved algorithms for topic distillation in a hyperlinked

environment. In Research and Development in Information Retrieval. 104–111.
BHARAT, K. AND MIHAILA, G. A. 2001. When experts agree: Using non-affiliated experts to rank

popular topics. In Proceedings of the 10th International World Wide Web Conference.
BIANCHINI, M., GORI, M., AND SCARSELLI, F. 2002. PageRank: A circuital analysis. In Proceedings

of the 11th International Word Wide Web Conference (WWW 2002). Poster Session. Hawai.
BORODIN, A., ROBERTS, G. O., ROSENTHAL, J. S., AND TSAPARAS, P. 2001. Finding authorities and hubs

from link structures on the World Wide Web. In Proceedings of the 10th International World Wide

Web Conference. Hong Kong.
BRIN, S. AND PAGE, L. 1998. The anatomy of a large-scale hypertextual Web search engine. In

Proceedings of the 7th International World Wide Web Conference. Brisbane, Australia.
BRODER, A. 2002. Web searching technology overview. In Advanced School and Workshop on

Models and Algorithms for the World Wide Web. Udine, Italy.
CHAKRABARTI, S., DOM, B., GIBSON, D., KLEINBERG, J., RAGHAVAN, P., AND RAJAGOPALAN, S. 1998. Auto-

matic resource compilation by analysing hyperlink structure and associated text. In Proceedings

of the 7th International World Wide Web Conference.
CHIEN, S., DWORK, C., KUMAR, R., SIMON, D., AND SIVAKUMAR, D. 2002. Towards exploiting link

evolution. In Workshop on Algorithms for the Web. Vancuver, Canada.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

296 • A. Borodin et al.

COHN, D. AND CHANG, H. 2000. Learning to probabilistically identify authoritative documents.
In Proceedings of the 17th International Conference on Machine Learning. Stanford University,
167–174.

DAVISON, B. 2000. Recognizing nepotistic links on the web. In AAAI-2000 Workshop on Artificial

Intelligence for Web Search. AAAI Press, Austin, TX.
DEMPSTER, A., LAIRD, N., AND RUBIN, D. 1977. Maximum likelihood from incomplete data via the

EM algorithm. J. Roy. Statist. Soc., Series B, 39, 1–38.
DIACONIS, P. AND GRAHAM, R. 1977. Spearman’s footrule as a measure of disarray. J. Roy. Statist.

Soc. 39, 2, 262–268.
DRINEAS, P., FRIEZE, A., KANNAN, R., VEMPALA, S., AND VINAY, V. 1999. Clustering in large graphs

and matrices. In ACM-SIAM Symposium on Discrete Algorithms (SODA).
DWORK, C., KUMAR, R., NAOR, M., AND SIVAKUMAR, D. 2001. Rank aggregation methods for the Web.

In Proceedings of the 10th International World Wide Web Conference. Hong Kong.
FAGIN, R., KUMAR, R., MAHDIAN, M., SIVAKUMAR, D., AND VEE, E. 2004. Comparing and aggregating

rankings with ties. In Symposium on Principles of Database Systems (PODS).
FAGIN, R., KUMAR, R., AND SIVAKUMAR, D. 2003. Comparing top k lists. In Proceedings of the ACM-

SIAM Symposium on Discrete Algorithms (SODA).
GIBSON, D., KLEINBERG, J., AND RAGHAVAN, P. 1998. Inferring Web communities from link topology.

In Proceedings of 9th ACM Conference on Hypertext and Hypermedia.
GILKS, W., RICHARDSON, S., AND SPIEGELHALTER, D. 1996. Markov Chain Monte Carlo in practice.

Chapman and Hall, London.
HAVELIWALA, T. H. 2002. Topic sensitive Page Rank. In Proceedings of the 11th International Word

Wide Web Conference (WWW 2002). Hawai.
HOFMANN, T. 1999. Probabilistic latent semantic analysis. In Proceedings of Uncertainty in Arti-

ficial Intelligence, UAI’99. Stockholm, Sweden.
HOFMANN, T. 2000. Learning probabilistic models of the Web. In Proceedings of the 23rd Interna-

tional Conference on Research and Development in Information Retrieval (ACM SIGIR’00).
JANSEN, B. J., SPINK, A., BATEMAN, J., AND SARACEVIC, T. 1998. Real Life Information Retrieval: A

Study of User Queries on the Web. ACM SIGIR Forum 32, 5–17.
JEN, G. AND WIDOM, J. 2003. Scaling personalized Web search. In Proceedings of the 12th Inter-

national World Wide Wed Conference(WWW2003). Budapest, Hungary.
KATZ, L. 1953. A new status index derived from sociometric analysis. Psychometrika 18, 39–43.
KENDALL, M. G. 1970. Rank Correlation Methods. Griffin, London, UK.
KLEINBERG, J. 1998. Authoritative sources in a hyperlinked environment. In Proceedings of the

Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. 668–677.
KLEINBERG, J. 1999. Authoritative sources in a hyperlinked environment. J. ACM 46.
LEE, H. C. AND BORODIN, A. 2003. Perturbation of the hyperlinked environment. In Proceedings

of the 9th International Computing and Combinatorics Conference.
LEMPEL, R. AND MORAN, S. 2000. The stochastic approach for link-structure analysis (SALSA) and

the TKC effect. In Proceedings of the 9th International World Wide Web Conference.
LEMPEL, R. AND MORAN, S. 2001. Rank stability and rank similarity of Web link-based ranking

algorithms. Tech. Rep. CS-2001-22. Technion—Israel Institute of Technology.
LEMPEL, R. AND MORAN, S. 2003. Rank stability and rank similarity of Web link-based ranking al-

gorithms. In 2nd Workshop on Algorithms and Models for the Web-Graph (WAW2003). Budapest,
Hungary.

LIN, J. 1991. Divergence measures based on the Shannon entropy. Mach. Learn. 37, 1, 145–151.
MARCHIORI, M. 1997. The quest for correct information on Web: Hyper search engines. In Pro-

ceedings of the 6th International World Wide Web Conference.
MENDELZON, A. AND RAFIEI, D. 2000. What do the neighbours think? Computing Web page repu-

tations. IEEE Data Eng. Bull. 23, 3, 9–16.
NG, A. Y., ZHENG, A. X., AND JORDAN, M. I. 2001a. Link analysis, eigenvectors, and stability.

In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). Seattle,
Washington.

NG, A. Y., ZHENG, A. X., AND JORDAN, M. I. 2001b. Stable algorithms for link analysis. In Proceed-

ings of the 24th International Conference on Research and Development in Information Retrieval

(SIGIR 2001). New York, NY.

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

Link Analysis Ranking: Algorithms, Theory and Experiments • 297

PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T. 1998. The PageRank citation ranking: Bringing
order to the web. Tech. rep. Stanford Digital Library Technologies Project.

RAFIEI, D. AND MENDELZON, A. 2000. What is this page known for? Computing Web page rep-
utations. In Proceedings of the 9th International World Wide Web Conference. Amsterdam,
Netherlands.

RICHARDSON, M. AND DOMINGOS, P. 2002. The intelligent surfer: Probabilistic combination of link
and content information in PageRank. In Advances in Neural Information Processing Systems

(NIPS) 14.
ROBERTS, G. AND ROSENTHAL, J. 1998. Markov chain Monte Carlo: Some practical implications of

theoretical results (with discussion). Canadian J. Statist. 26, 5–31.
ROBERTS, G. O. AND ROSENTHAL, J. S. 2003. Downweighting tightly knit communities in World

Wide Web rankings. Adv. Appl. Statist. 3, 199–216.
SILVERSTEIN, C., HENZINGER, M., MARAIS, H., AND MORICZ, M. 1998. Analysis of a very large AltaVista

query log. Tech. Rep. 1998-014. Digital SRC.
SLONIM, N. AND TISHBY, N. 1999. Agglomerative Information Bottleneck. In Advances in Neural

Information Processing Systems (NIPS). Breckenridge, CO.
SMITH, A. AND ROBERTS, G. 1993. Bayesian computation via the Gibbs sampler and related Markov

chain Monte Carlo methods (with discussion). J. Roy. Statist. Soc., Series B, 55, 3–24.
TIERNEY, L. 1994. Markov chains for exploring posterior distributions (with discussion). Ann.

Statist. 22, 1701–1762.
TISHBY, N., PEREIRA, F. C., AND BIALEK, W. 1999. The Information Bottleneck method. In 37th

Annual Allerton Conference on Communication, Control and Computing. Urban-Champaign, IL.
TOMLIN, J. A. 2003. A new paradigm for ranking pages on the World Wide Web. In Proceedings

of the 12th International World Wide Wed Conference (WWW2003). Budapest, Hungary.
TSAPARAS, P. 2004a. Link analysis ranking. Ph.D. thesis, University of Toronto.
TSAPARAS, P. 2004b. Using non-linear dynamical systems for Web searching and ranking. In

Symposium on Principles of Database Systems (PODS). Paris, France.

Received November 2001; revised March 2004; accepted April 2004

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.

