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Abstract

A key challenge for machine learning is tack-
ling the problem of mining richly structured
data sets, where the objects are linked in some
way due to either an explicit or implicit re-
lationship that exists between the objects.
Links among the objects demonstrate cer-
tain patterns, which can be helpful for many
machine learning tasks and are usually hard
to capture with traditional statistical mod-
els. Recently there has been a surge of in-
terest in this area, fueled largely by inter-
est in web and hypertext mining, but also
by interest in mining social networks, bibli-
ographic citation data, epidemiological data
and other domains best described using a
linked or graph structure. In this paper we
propose a framework for modeling link distri-
butions, a link-based model that supports dis-
criminative models describing both the link
distributions and the attributes of linked ob-
jects. We use a structured logistic regression
model, capturing both content and links. We
systematically evaluate several variants of our
link-based model on a range of data sets in-
cluding both web and citation collections. In
all cases, the use of the link distribution im-
proves classification accuracy.

1. Introduction

Traditional data mining tasks such as association rule
mining, market basket analysis and cluster analysis
commonly attempt to find patterns in a data set char-
acterized by a collection of independent instances of a
single relation. This is consistent with the classical sta-
tistical inference problem of trying to identify a model
given a random sample from a common underlying dis-
tribution.

A key challenge for machine learning is to tackle the
problem of mining more richly structured data sets,

for example multi-relational data sets in which there
are record linkages. In this case, the instances in the
data set are linked in some way, either by an explicit
link, such as a URL, or a constructed link, such as join
between tables stored in a database. Naively apply-
ing traditional statistical inference procedures, which
assume that instances are independent, can lead to in-
appropriate conclusions (Jensen, 1999). Care must be
taken that potential correlations due to links are han-
dled appropriately. Clearly, this is information that
should be exploited to improve the predictive accuracy
of the learned models.

Link mining is a newly emerging research area that is
at the intersection of the work in link analysis (Jensen
& Goldberg, 1998; Feldman, 2002), hypertext and web
mining (Chakrabarti, 2002), relational learning and in-
ductive logic programming (Dzeroski & Lavrac, 2001)
and graph mining (Cook & Holder, 2000). Link mining
is potentially useful in a wide range of application ar-
eas including bio-informatics, bibliographic citations,
financial analysis, national security, and the Internet.

In this paper we propose a statistical framework for
modeling link distributions. Rather than an ad hoc
collection of methods, the proposed framework extends
classical statistical approaches to more complex and
richly structured domains than commonly studied. It
is similar in spirit to the work in conditional random
fields (Lafferty et al., 2001), although here we focus on
non-sequence data.

The framework we propose stems from our earlier work
on link uncertainty in probabilistic relational models
(Getoor et al., 2002). However in this paper, we do
not construct explicit models for link existence. In-
stead we model link distributions, which describe the
neighborhood of links around an object, and can cap-
ture the correlations among links. With these link dis-
tributions, we propose algorithms for link-based classi-
fication. In order to capture the joint distributions of
the links, we use a logistic regression model for both the
content and the links. A key challenge is structuring
the model appropriately; simply throwing both links
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and content attributes into a 'flat’ logistic regression
model does not perform as well as a structured logistic
regression model that combines one logistic regression
model built over content with a separate logistic re-
gression model built over links.

A second challenge is classification using a learned
model. A learned link-based model specifies a joint dis-
tribution over link and content attributes and, unlike
traditional statistical models, these attributes may be
correlated. Intuitively, for linked objects, updating the
category of one object can influence our inference about
the categories of its linked neighbors. This requires a
more complex classification algorithm. Iterative clas-
sification and inference algorithms have been proposed
for hypertext categorization (Chakrabarti et al., 1998;
Oh et al., 2000) and for relational learning (Neville &
Jensen, 2000; Taskar et al., 2001; Taskar et al., 2002).
Here, we also use an iterative classification algorithm.
One novel aspect is that unlike approaches that make
assumptions about the influence of the neighbor’s cat-
egories (such as that linked objects have similar cat-
egories), we explicitly learn how the link distribution
affects the category. We also examine a range of or-
dering strategies for the inference and evaluate their
impact on overall classification accuracy.

The main contributions of our work are:

e A statistical framework is proposed for modeling
link distributions, a link-based model, which inte-
grates statistical features such as object descrip-
tions with linkage information.

e Experimental results demonstrating that the use
of link distributions clearly improves classification
accuracy.

o An evaluation of an iterative categorization al-
gorithm that makes use of a variety of inference
strategies.

Related work is discussed in Section 2. Section 3 de-
scribes our link-based models. In Section 4, we de-
scribe how the parameter estimation is performed for
the models, and in Section 5 how the link-based model
is used for categorization. Experimental results are
discussed in Section 6.

2. Related Work

There has been a growing interest in learning from
structured data. By structured data, we simply mean
data best described by a graph where the nodes in the
graph are objects and the edges/hyper-edges in the
graph are links or relations between objects. Tasks
include hypertext classification, segmentation, infor-
mation extraction, searching and information retrieval,
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discovery of authorities and link discovery. Domains
include the world-wide web, bibliographic citations,
criminology, bio-informatics to name just a few. Learn-
ing tasks range from predictive tasks, such as classifi-
cation, to descriptive tasks, such as the discovery of
frequently occurring sub-patterns.

Here, we describe some of the most closely related work
to ours, however because of the surge in recent inter-
est, and the wide range of venues where research is
reported (including WWW, NIPS, ICML, SIGIR, SIG-
MOD, VLDB), our list is sure to be incomplete.

Probably the most famous example of exploiting link
structure is the use of links to improve information re-
trieval results. Both the well-known page rank (Page
et al., 1998) and hubs and authority scores (Kleinberg,
1999) are based on the link-structure of the web. Dean
and Henzinger (1999) propose an algorithm based on
co-citation to find related web pages. Kubica et al.
(2002) have proposed a probabilistic model for link de-
tection and modeling groups.

One line of work closely related to link-based classifi-
cation is hypertext and web page classification. This
work has its roots in the information retrieval commu-
nity. A hypertext collection has a richer structure than
a collection of text documents. In addition to words,
hypertext has both incoming and outgoing links. Tra-
ditional bag-of-words model discard this rich structures
of hypertext and do not make full use of link structure
of hypertext. In the web page classification problem,
the web is viewed as a large directed graph, and our
objective is to label the category of a web page, based
on features of the current page and features of linked
neighbors. With the use of linkage information, anchor
text and neighboring text around each incoming link,
better categorization results can be achieved.

Chakrabarti et al. (1998) propose a probabilistic model
to utilize both text and linkage information to classify a
database of patents and a small web collection. They
showed that naively incorporating words from neigh-
boring pages reduces performance, while incorporating
category information, such has hierarchical category
prefixes, improves performance. Oh et al. (2000) re-
ported similar results on a collection of encyclopedia
articles: simply incorporating words from neighboring
documents was not helpful, while making use of the
predicted class of neighboring documents was helpful.

These results indicate that simply assuming that link
documents are on the same topic, and incorporating
the features of linked neighbors is not generally ef-
fective. Another line of works tries to construct fea-
tures from related documents. The first example is the
work of Slattery and Craven (1998). They propose a
model which beyond using words in a hypertext docu-



ment, makes use of anchor text, neighboring text, cap-
italized words and alphanumeric words. Using these
statistical features and a relational rule learner based
on FOIL (Quinlan & Cameron-Jones, 1993), they pro-
pose a combined model for text classification. Popescul
et al. (2002) also combine a relational learner with a
logistic regression model to improve accuracy for doc-
ument mining.

Another approach is to identify certain types of hyper-
text regularities such as encyclopedic regularity (linked
objects typically have the same class) and co-citation
regularity (linked objects may not share the same class,
but objects that are cited by the same object tend to
have the same class). Yang et al. (2002) gives an in-
depth investigation of the validity of these regularities
across several data sets and using a range of classifiers.
They found that the usefulness of the regularities var-
ied, depending on both the data set and the classifier
being used.

Here, we propose a method that can learn a variety
of different regularities among the categories of linked
objects. However, unlike Joachims et al. (2001) in
which the citation matrix is explicitly modeled, here
we use a much simpler model that captures the topic
distribution, rather than the identities of the particular
documents.

Others have proposed generative probabilistic models
for linked data. Cohn and Hofmann (2001) propose a
probabilistic model for hypertext content and links. In
earlier work (Getoor et al., 2002), we also proposed a
generative model for relational data, both content and
links. The model that we propose is not a generative
model for the links; in the cases we examine, the links
are always observed, so it is not required that we have
a generative model for them.

In contrast to work which constructs relational fea-
tures, we use a simpler model that tries to capture
the link distribution. Other approaches such as rela-
tional Markov networks (Taskar et al., 2002) support
arbitrary dependency. Here we assume a fixed model
that combines two models built over both content and
link information. Because we are combining predic-
tions from two distinct models, there is some similarity
with co-training (Blum & Mitchell, 1998), although the
way in which we make use of unlabeled data is rather
different.

Like Joachims et al. (2001); Taskar et al. (2002);
Popescul et al. (2002), our approach is based on a
logistic regression model. The Naive Bayes model has
been used more extensively for text categorization, but
for the data sets examined here, we found the logistic
regression model consistently improved our accuracy.
Ng and Jordan (2002) gives a comparison of the two

498

models.

3. Link-based models

In our original work on link uncertainty (Getoor et al.,
2002), we proposed two simple models for link uncer-
tainty. We showed that these models improved pre-
dictive accuracy in a variety of domains, including a
web page classification problem (Craven et al., 1998)
and a scientific paper classification problem (McCallum
et al., 2000). While the models we proposed improved
performance, they were rather simplistic; similar to a
Naive Bayes model, the existence of a link is indepen-
dent of the other links-—it does depend on attributes
of related objects, however one cannot reason directly
about groups of links.

Here we propose a general notion of a link-based model
that supports much richer probabilistic models based
on the distribution of links and based on attributes of
linked objects.

3.1. Definitions

The generic link-based data we consider is essentially
a directed graph, in which the nodes are objects and
edges are links between objects.

O - The collection of objects, O = {Xi,...,Xn}
where X; is an object, or node in the graph. O is
the set of nodes in the graph.

L - The collections of links between objects. Li,;is
a link between object X; and object X;. L is the
set of edges in the graph.

G(O, L) - The directed graph defined over O by L.

Our model supports classification of objects based both
on features of the object and on properties of its links.
The object classifications are a finite set of categories
{e1,...,¢r} where ¢(X) is the category c of object X.
We will consider the neighbors of an object X; via the
following relations:

I(X;) - the set of incoming neighbors of object X;,
{X; | Lj~i € L}.

O(X;) - the set of outgoing neighbors of object Xj,
{Xj I L,'_,j € E}

Co(X;) - The set of objects co-cited with object X,
{X; | X; # X, and there is a third object X} that
links to both X; and X;}.

3.2. Object features

The attributes of an object provide a basic description
of the object. Traditional classification algorithms are



based on object attributes. In a linked-based approach,
it may also make sense to use attributes of linked ob-
jects. Furthermore, if the links themselves have at-
tributes, these may also be used. ! However, in this
paper, we simply use object attributes, and we use the
notation OA(X) for the attributes of object X. As an
example, in the scientific literature domain, the object
features might consist of a variety of text information
such as title, abstract, authorship and content. In the
domains we examined, the objects are text documents
the object features we use are word occurrences.

3.3. Link features

To capture the link patterns, we introduce the notion
of link features as a way of capturing the salient char-
acteristics of the objects’ links. We examine a variety
of simple mechanisms for doing this. All are based on
statistics computed from the linked objects rather than
the identity of the linked objects. Describing only the
limited collection of statistics computed from the links
can be significantly more compact than storing the link
incidence matrix. In addition, these models can accom-
modate the introduction of new objects, and thus are
applicable in a wider range of situations.

We use the notation LD(X) for the link features of
object X. We examine several ways of constructing
link features. All are constructed based on statistics
computed from the categories of the different sets of
linked objects.

The simplest statistic to compute is a single feature,
the mode, from each set of linked objects from the in-
links, out-links and co-citation links. We call this the
mode-link model.

We can use the frequency of the categories of the linked
objects; we refer to this as the count-link model. In
this case, while we have lost the information about the
individual entity to which the object is connected, we
maintain the frequencies of the different categories.

A middle ground between these two is a simple binary
feature vector; for each category, if a link to an object
of that category occurs at least once, the corresponding
feature is 1; the feature is 0 if there are no links to this
category. In this case, we use the term binary-link
model. 2

!Essentially this is a propositionalization (Flach &
Lavrac, 2000; Kramer et al., 2001) of the aspects of the
neighborhood of an object in the graph. This is a technique
that has been proposed in the inductive logic programming
community and is applicable here.

2The distinction between binary-link and count-link
models is akin to the distinction between binary and multi-
nomial Naive Bayes (McCallum & Nigam, 1998). However,
we use a discriminative model (logistic regression) rather
than a generative model (Naive Bayes).
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4. Predictive model for object
classification

Logistic regression (Hosmer & Lemeshow, 1989) has
been used in statistical analysis for many years. Sup-
port Vector Machines (SVMs), which can be regarded
as an approximation and limiting case of a general-
ized logistic regression family, have been successfully
applied for text categorization (Joachims, 1998). Now
logistic regression is gaining considerable interest in ap-
plication for categorization. Here we present an ap-
proach to compute the conditional probability distri-
bution P(c | OA(X), LD(X)) based on the logistic re-
gression method.

A binary or dichotomous classification problem is to
determine a label (dependent variable) ¢ € {~1,+1}
given an input vector (explanatory variable) z. Lo-
gistic regression is a discriminative method for solving
this problem, which models the conditional probability
P(c =1]|w,z) with a logit transformation:

§(Pc=1]w,2) = uTs
where g(t) = In[;%;] is called a logit function.

So we have P(c | w,2) = sm—urzagi> Where ¢ €
{~1,+1}. Given a training set of labeled data (z;, c;),
where 7 = 1,2,...,n and ¢; € {—1,+1}, to compute
the conditional probability P(c | w, ) is to find the op-
timal w for the discriminative function, which is equiv-
alent to the following regularized logistic regression for-
mulation (Zhang & Oles, 2001):

n
W= arginfw-l— Zln(l + ezp(—wT z;¢;)) + Mw?
"=
where we use a zero-mean independent Gaussian prior
for the parameter w: P(w) = exp(Aw?). A penal-
ized likelihood method, which can be interpreted as
an MAP estimator with prior P(w) exp(Aw?), is used
to optimize the parameters for our regularized logistic
regression model.

For our predictive model, we compared a variety of
regularized logistic regression models. The simplest is a
Alat model, which uses a single logistic regression model
over both the object attributes and link statistics.

We also explore the use of a structured logistic regres-
sion model. Regularized logistic regression is used to
compute the posterior probability P(c | OA(X)) and
P(c | LD(X)) separately. We tuned the regularization
parameter A separately on a held-out validation set.

1
ezp(—wTOA(X)c) +1
1
ezp(—wl LD(X)c) +1

P(c| wo, OA(X)) =

P(c|wi, LD(X)) =



where w, and w; are the parameters for P(c | OA(X))
and P(c | LD(X)) respectively.

Now the MAP estimation for categorization becomes
C(X) = argmax,cP(c| OA(X))P(c| LD(X))

For multi-class categorization, we trained one-against-
others logistic regression model for each category and
during testing, picked the category with the highest
posterior probability.

5. Link-based classification

Our proposed model is learned from a fully labeled
training data set. In order to make use of it for pre-
diction, we are in a more challenging situation than
classical prediction. Here, we have an unlabeled graph
over a collection of objects. The object attributes and
the links are observed, only the categories are unob-
served. We need to be able to predict the categories
of all of the objects at once—clearly each of these pre-
dictions depends on neighboring predictions. In our
model, to predict the category for one object, we need
the categories of object’s neighbors, which will also be
unlabeled.

In the spirit of Chakrabarti et al. (1998) and Neville
and Jensen (2000), we propose an iterative classi-
fication algorithm (ICA). The general approach has
been studied in numerous fields, including relaxation-
labeling in computer vision (Hummel & Zucker, 1983),
inference in Markov random fields (Chellappa & Jain,
1993) and loopy belief propagation in Bayesian net-
works (Murphy & Weiss, 1999). Here, the challenging
aspect is the non-regular structure of the inference, and
the novelty of our approach is our attempt to make use
of this in the inference.

Our ICA has two stages: bootstrap and iteration. At
the beginning of the prediction phase, all of the objects
are unlabeled, and thus the link statistics are unknown.
A bootstrap stage is used to assign an initial category
to each object, based solely on the object attributes
(which are observed). This simplified model is used to
give an initial classification for each object. During the
iteration phase, the full version of our model is used to
update the classifications of the objects. The algorithm
terminates when it converges (there are no longer any
updates to the categories) or a maximum number of
steps has been reached.

Step 1: (Bootstrap) Using only the object attributes,
assign an initial category for each object in the
test set.

Step 2: (Iteration) Iteratively apply the full model to
classify each object until the termination criterion
have been satisfied. For each object,
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1. Compute the link statistics, based on the cur-
rent assignments to linked objects

2. Compute the posterior probability for the cat-
egory of this object.

3. The category with the largest posterior prob-
ability is chosen as a new category for current
object.

In the iterative step there are many possible order-
ings for objects. One approach is based simply on
the number of links; Oh et al. (2000) report no sig-
nificant improvement using this method. Neville and
Jensen (2000) propose an iterative classification algo-
rithm where the ordering is based on the inference
posterior probability of the categories. They report
an improvement in classification accuracy. We explore
several alternate orderings based on the estimated link
statistics. We propose a range of link-based adaptive
strategies which we call Link Diversity. Link diversity
measures the number of different categories to which
an object is linked. The idea is that, in some domains
at least, we may be more confident of categorizations
of objects with low link-diversity, in essence, the ob-
ject’s neighbors are all in agreement. So we may wish
to make these assignments first, and then move on to
the rest of the pages. In our experiments, we evaluate
the effectiveness of different ordering schemes based on
link diversity.

6. Experimental Results

We evaluated our link-based classification algorithm on
two standard data sets Cora (McCallum et al., 2000)
and WebKB (Craven et al., 1998) and a data set that
we constructed from citeseer entries (Giles et al., 1998),
which we call CiteSeer. In all three domains, document
frequency (DF) is used to prune the word dictionary.
Words with DF values less than 10 are discarded.

The Cora data set contains 4187 machine learning pa-
pers, each of which is categorized into one of seven pos-
sible topics. We consider only the 3181 papers which
are cited by or cite other papers. There are 6185 ci-
tations in the data set. After stemming and remov-
ing stop words and rare words, the dictionary contains
1400 words. We split the data set into three separate
equally sized parts.

The CiteSeer data set has approximately 3600 pa-
pers from six categories: Agents, Artificial Intelli-
gence, Database, Human Computer Interaction, Ma-
chine Learning and Information Retrieval. There are
7522 citations in the data set. After stemming and re-
moving stop words and rare words, the dictionary for
CiteSeer contains 3000 words. Similar to the Cora data
set, we split the data set into three splits with roughly
equal size.
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Table 1. Summary of average accuracy, precision, recall and F1 measure using different link-based models on Cora, CiteSeer
and WebKB. The random iteration ordering strategy is used.

Cora
Content-Only | Flat-Mode | Flat-Binary | Flat-Count | Mode-Link | Binary-Link | Count-Link
Avg. Accuracy 0.674 0.649 0.74 0.728 0.717 0.754 0.758
Avg. Precision 0.662 0.704 0.755 0.73 0.717 0.747 0.759
Avg. Recall 0.626 0.59 0.689 0.672 0.679 0.716 0.725
Avg. F1 Measure 0.643 0.641 0.72 0.7 0.697 0.731 0.741
CiteSeer
Content-Only | Flat-Mode | Flat-Binary | Flat-Count | Mode-Link | Binary-Link | Count-Link
Avg. Accuracy 0.607 0.618 0.634 0.644 0.658 0.664 0.679
Avg. Precision 0.551 0.55 0.58 0.579 0.606 0.597 0.604
Avg. Recall 0.552 0.547 0.572 0.573 0.601 0.597 0.608
Avg. F1 Measure 0.551 0.552 0.575 0.575 0.594 0.597 0.606
WebKB
Content-Only | Flat-Mode | Flat-Binary | Flat-Count | Mode-Link | Binary-Link | Count-Link
Avg. Accuracy 0.862 0.848 0.832 0.863 0.851 0.871 0.877
Avg. Precision 0.876 0.86 0.864 0.876 0.878 0.879 0.878
Avg. Recall 0.795 0.79 0.882 0.81 0.772 0.811 0.83
Avg. F1 Measure 0.832 0.821 0.836 0.84 0.82 0.847 0.858

The WebKB data set contains web pages from four
computer science departments, categorized into topics
such as faculty, student, project, course and a catch-all
category, other. In our experiments we discard pages
in "other” category, which generates a data set with
700 pages. After stemming and removing stop words,
the dictionary contains 2338 words. For WebKB, we
use the standard split along different schools.

On Cora and CiteSeer, for each experiment, we take
one split as a test set, and the remaining two splits
are used to train our model: one for training and the
other for a validation set used to find the appropriate
regularization parameter A. On WebKB, we learned
models for a variety of A; here we show the best result.

6.1. Experiments

In our first set of experiments, we compared sev-
eral baseline models—content-only, flat-mode, flat-
binary and flat-count—with our models—mode-
link, binary-link and count-link. In a second set of
experiments, we examined the individual effects of the
different categories of links: in-links, out-links and co-
links (short for co-citation links). In a third set of ex-
periments, we compared a variety of ordering schemes
for the iterative categorization algorithm.

6.2. Results

Table 1 shows a summary of our results using four dif-
ferent metrics (accuracy, precision, recall and F1 mea-
sure) on three different data sets. Significance results
are reported for paired t-test on the F1 measure. In
this first set of experiments, all of the links (in-links,
out-links and co-links) are used and we use a random
ordering for the iterative classification algorithm.

In all three domains, binary-link and count-link
outperform content-only at the 95% significance level.
Mode-link outperforms content-only at the 95% sig-
nificance level on Cora and CiteSeer, while the differ-
ence on WebKB is not statistically significant.

We also compare the structured logistic regression
model with the corresponding flat models. The differ-
ence between the two is that for the flat models, all the
features are used is a single regression model, while for
our link-based models separate logistic regression mod-
els, with different As, are learned for object attributes
and link features. We found the following: mode-link
outperforms flat-mode at the 95% significance level
on Cora and CiteSeer; binary-link outperforms flat-
binary at the 90% significance level for Cora, CiteSeer
and WebKB; and count-link also outperforms flat-
count at the 95% significance level on all three data
sets.

The conclusions about the best link-based model are
mixed. On all of the data sets, count-link and
binary-link outperform mode-link, however the im-
provements are statistically significant at the 95% sig-
nificance level for only Cora and CiteSeer. So mak-
ing use of link statistics beyond the mode is clearly
effective. However, the choice between the two mod-
els, binary-link versus count-link is less clear; while
count-link gives better F1 measures than binary-
link, the difference is not statistically significant.

In the next set of experiments, we investigated which
type of link features are more predictive: in-links, out-
links or co-links. Table 2 shows the results on three
data sets. For binary-link and count-link, using all
the links(in+out+co) always gives better results than
using any in-links, out-links or co-links separately and
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Figure 1. The convergence rates of different iteration meth-
ods on the CiteSeer data set.

out-links seems to contribute greatest to the improved
performance.

In the last set of experiments, we examined various ICA
ordering strategies. Our experiments indicate that fi-
nal test errors with different ordering strategy have a
standard deviation around 0.001. There is no signifi-
cant difference with various link diversity to order the
predictions. We also compared with an ordering based
on the posterior probability of the categories as done in
Neville and Jensen (2000), denoted PP. On Cora and
WebKB, the random ordering outperforms PP and all
other orderings with various link diversity, while PP
gives the best result on CiteSeer. However, the differ-
ences between the results were not statistically signifi-
cant.

While the different iteration schemes converge to about
the same accuracy, their convergence rate varies. To
understand the effect of the ordering scheme at a bit
finer level of detail, Figure 1 shows an example of the
test errors of the different iteration schemes for the
CiteSeer data set (to make the graph readable, we
show only ordering by increasing diversity of out-links
(INC-Out) and decreasing diversity of out-links (DEC-
Out); the results for in-links and co-links are similar).
Our experiments indicate that order by increasing link
diversity converges faster than ordering by decreasing
link diversity, and the RAND ordering converges the
most quickly at the start. Results on the Cora data
set are consistent.

7. Conclusions

Many real-world data sets have rich structures, where
the objects are linked in some way. Link mining targets
data mining tasks on this richly-structured data. One
major task of link mining is to model and exploit the
link distributions among objects. Here we focus on
using the link structure to help improve classification
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accuracy.

In this paper we have proposed a simple framework
for modeling link distributions, based on link statistics.
We have seen that for the domains we examined, a com-
bined logistic classifier built over the object attributes
and link statistics outperforms 1) a simple content-only
classifier and 2) a single flat classifier over both the con-
tent and link attributes. More surprisingly, the mode
of the link statistics is not enough to capture the de-
pendence. Actually modeling the distribution of the
link categories at a finer grain is useful.
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