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We provide the link between population dynamics and the dynamics of Darwinian evolution via
studying the joint population dynamics of similar populations. Similarity implies that the relative
dynamics of the populations is slow compared to, and decoupled from, their aggregated dynamics.
The relative dynamics is simple, and captured by a Taylor expansion in the difference between the
populations. The emerging evolution is directional, except at the singular points of the evolutionary state
space. Here ‘“‘evolutionary branching’’ may occur. The diversification of life forms thus is demonstrated to

be a natural consequence of the Darwinian process.
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Modeling evolution while assuming a predefined and
fixed fitness function essentially precludes understanding
biological diversity: The fittest wins and excludes all other
contestants. While the traditional “allopatric” theory of
speciation [1,2] circumvents the problem by assuming
strict spatial segregation between the old and the new
species, understanding the coexistence of species requires
unrealistic parameter fine-tuning.

The mechanism-based concept of fitness [3] allows a
more consistent and more natural picture. Interactions
between the contestants lead to a fitness function that
depends on their relative abundances, a phenomenon re-
ferred to as ‘““frequency dependence’ [4,5]. The evolu-
tionary process itself modifies the adaptive landscape. As
evolution is not a pure gradient dynamics, its path may
converge to a point where it is overtaken by a fitness
minimum [6], which it leaves by branching [7-9]. This
“evolutionary branching” was suggested to be the basis for
“adaptive speciation” [10,11].

We restrict our analysis to evolution of asexual organ-
isms via small steps in a continuous evolutionary state
space. In this context, the fixed point analysis of the
“adaptive dynamics” driven by frequency-dependent fit-
ness landscapes was developed [7-9]. The theory was
based on the concept of “invasion fitness” s, . . ()
representing the growth rate of an exceedingly rare y
invader in a background of coestablished populations of
Xy, ..., xr. To ensure that evolution is fully constrained by
invasion fitness, it was assumed that (a) mutations are
sufficiently rare that new mutants arrive only after equili-
bration of the already existing populations, i.e., at most one
mutant substitutes at a time; (b) a mutant’s fate is deter-
mined by its and its progenitor’s mutual invasion fitnesses.
Here, our goal is to remove these rather questionable
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conditions by carrying out the original Darwinian program
of stepping from population dynamics to evolutionary
dynamics using only first principles and mild assumptions.

To build a rigorous underlying theory of evolution, we
consider the joint population dynamics of similar popula-
tions. The mutation process is not explicitly represented in
our treatment: We discuss the joint population dynamics of
the mutants and their ancestors once the mutants have been
generated. We suppose that population abundance (number
of individuals) is large enough to consider it as a continu-
ous variable and to neglect demographic stochasticity.
Abundance is considered as a complete description of the
population state; i.e., we neglect population structure with
respect to age, body size, location, etc. (In many cases,
population structure can be regarded as already relaxed on
the slow time scale we consider [12].)

We collect the inherited properties of the individuals into
a continuous ‘‘strategy’ variable y (or x), which is an
element of the “strategy space” X C RX. Let v denote
the (Schwartz) distribution of the populations in the strat-
egy space X. Population dynamics is defined by the non-
linear equation

dv(y)
dt

Here, r(y, v) denotes the growth rate (difference between
the birth and death rates) of strategy y € X, conditional on
the background distribution v». r plays the role of
mechanism-based fitness. Its argument » represents fre-
quency dependence.

The “generalized competition function”

_or(y,v)
Sv(x)

=ry,vr(y) y€X. (D)

a,(y, x) = (2)
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measures the (often detrimental) effect of strategy x on

strategy y. (See the appendix for the proper definition of

the functional derivative with respect to a distribution.)
We restrict our attention to the discrete strategy

distribution

|

n;6

iYx;

3)

VR

1

for L populations present with strategies x; and abundances
n; (i =1,2,...,L). Then the following two differentiation
rules apply:

ar(y, v) Sr(y, v) av(x)
L = Y = - av(y) x)5xi(-x)dx = _ay(y) -xi)) (4)
on; Sv(x) on;
and
aor(y, or(y,v) 0
0n0) (202 300 [y, 00— 8l () =~ (), ®
0x; Sv(x) ax; i
\
Note the multiplier n; in (5): the effect of changing the L
strategy of one of the populations is proportional to the r(y, v(N, p, &)) = r(y, Noy) — 8NZpl~62a,,(y, 0)[&;]
number of individuals following this strategy. =1
For the discrete distribution the population dynamics &’ .
can be written as + 5 (quadratic in p;)+,.... (12)

4 (1am) = rlx, ). ®)
dt

We rewrite this dynamics using the aggregated abundance
N = 3,;n; and the relative frequencies p; = n;/N as new
dynamical variables:

4 1Ny = 7 7
dt
with 7 = 3, p;r(x;, v) the averaged growth rate and
d(ln&> = r(x; v) — r(x;, v). )
dt pPj

(As X;p; = 1, it is enough to specify the dynamics of the
ratios of the p;.)

We suppose that the strategies xi, ..
1.e., let

., X; are similar;

X :.X0+ 8(;‘:,',

()]

where € — 0. Without loss of generality we set x, = 0. As
the difference on the right-hand side of (8) is proportional
to &, the (relative) dynamics of the p;’s is slow compared to
the (aggregated) dynamics of N. That is, on the slow time
scale, (8) can be approximated as
d <ln%> = (r(x; v) — r(x;, v)), (10)
j

dt

where (- - -) denotes the ergodic average over the fast time
scale.

After writing the distribution v as a function of the
aggregated and the relative abundances

L
V(N,P; S)ZNZpi5£§i7 (]1)
i=1

we Taylor expand the fitness function in the small parame-
ter €:

(Expressions like d,a,(y, 0)[£¢;] mean that the derivative
d,a(y, 0), as a linear operator, is applied to the vector &;.)
The nontrivial feature of this expansion is that in each term
the order of € equals the order of p. This is a consequence
of the differentiation rule (5).

The linear term of expansion (12) can be rearranged as

r(y, (N, p, €)) = r(y, N&;) — eNd,a,(y, 0)[£] + h.o.t,

(13)
where £ = 3L p,€; is the “average” of the &;’s.
Consequently,
r(y, (N, p, &)) = r(y, N8 ,z) + o(e), (14)

where &£ is the average of the L strategies, weighted by the
abundances. That is, up to order ¢ the L-morphic strategy
distribution »(¢) is equivalent to the monomorpic popula-
tion with the same aggregated abundance and averaged
Strategy.

At a fixed value of the slow variable p, the fast aggre-
gated dynamics (7) can be written as

L
%anm = pyret v, p. o)
Jj=1

= r(e£, No ;) + o(e). (15)

Here we used (14) and applied a similar trick in the first
variable.

We conclude that, up to order ¢, the aggregated dynam-
ics of the L populations is equivalent to the dynamics of a
single population with the strategy e&. We assume that the
ergodic averages inherit this equivalence; i.e., the averages
over attractors are the same for the two kinds of fast
dynamics up to & order. This assumption certainly holds
for simple attractors, [like point attractors, (quasi)cyclic
attractors] away from bifurcation points.
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In our context the invasion fitness function is defined as

&mmﬁw=<<xim&J> (16)

This is the long-term growth rate of a rare newcomer y in
the ergodic environment created by the long-term coex-
istence of the “‘resident” strategies xy, ..., Xz.

The approximation of L similar strategies with a single
population with an averaged strategy immediately extends‘

d( pi\_ 0s0), _ & [9%s,(y)
G(mr) = e 5 - 6+ T e

(All partials are evaluated at x = y = 0.) The linear and
the first two quadratic terms come from Taylor expanding
(17) in the y variable. The last quadratic term is a conse-
quence of displacing the averaged strategy from 0 to g&.
Note that this term depends on p linearly through £.

Observe the simplicity of this expression: The relative
dynamics is decoupled from the possible complicatedness
of the fast dynamics and fully constrained by the deriva-
tives of the single-resident invasion fitness.

As only the second order terms depends on the p;,
frequency dependence becomes relevant only when the
fitness gradient ds,(y)/dy vanishes in all (¢; — &) direc-
tions. Generically, this happens at the ‘“‘singular” points
characterized by ds,(y)/dy = 0. As under the dominance
of the linear term the fittest wins, generically the coexis-
tence of similar strategies (i.e., a stable internal fixed point
of the relative dynamics) is possible only in the vicinity of
the singular points.

Frequency dependence is linear even at the singular
points. As the nonboundary (p; # 0) fixed point of the
relative dynamics is determined by a linear set of equations
[the bracketed terms of (18) equated to zero], it generically
exists and is unique. This fixed point represents a biolog-
ically realistic coexistence state if it corresponds to positive
p;s and is stable.

As frequency dependence is restricted to the neighbor-
hood of the singular points, so is the possibility of evolu-
tionary branching. With mutation generation, away from
the singular points lack of frequency dependence would
lead to Eigen’s quasispecies picture [13]: a cloud of mu-
tants evolves into the direction jointly determined by the
fitness gradient and the mutation distribution. At a singular
point, the possibly coexisting subpopulations evolve either
towards or away from each other, depending on the second
order terms.

If the dynamics of a single population has multiple at-
tractors, this analysis is valid for each attractor separately.
That is, coexistence of L similar populations, if possible, is
unique for each monomorphic attractor. Evolutionary re-
placements, which are matters of the relative dynamics, do
not lead to a switch between the population dynamical
attractors until a bifurcation point is reached (cf. [14]).

The evolutionary implications of our results are demon-
strated for a 1D strategy space in Fig. 1 with the simple

_9%5,(y)

to the s functions. For small e, the L-resident invasion
fitness can be approximated by the s function correspond-
ing to a single resident:

St ) = (1, VN, p, 8))) = (r(, N&,2)) + o(e)
= 5.60) + ole). (17)

Then the slow dynamics (10) can be expanded as

9s5.(y)
dydx

[€,],] +2 & - f,-][é]} fhot  (18)

ay?

\
“Lotka-Volterra” choice

oy, v) = K(1 — y?) — f exp[— %}V(x)dx. (19)

The first term is the frequency-independent part of the fit-
ness. An easy analysis shows that its maximum at y = 0 is
the only singular strategy of the model. The second term
represents a simple kind of frequency dependence: it is
advantageous to be different from the other individuals.
Note that the exponential expression corresponds to the
competition function a(y, x), which in this case is indepen-
dent of ».

Away from the singular point, the essentially frequency-
independent selection promotes directional evolution to-
wards y = 0. There, frequency dependence expresses itself
in the counterintuitive phenomenon that uphill evolution

110 t7/ 0 t=/I0 t= }0
Jiﬂ t= Sy/ t=40 t=50
%}
£ ] =60 =70 =80
ff t=90 t= 100 t=110
0 strategy
FIG. 1. Course of evolution in the Lotka-Volterra model (19).

Horizontal axes represent the strategy interval [—1, 1]. Left
pane: time dependence. Small panes: Instantaneous fitness func-
tion (curve, horizontal line represents zero) superimposed on the
population distribution (gray). Each small pane corresponds to
an instant of time represented by a horizontal line on the left
pane. Observe that uphill evolution ends up in arriving at the
minimum of the fitness function, where evolutionary branching
occurs. After the branching, the two subpopulations evolve
away. K = 10000, o = 0.5; mutation probability: 0.002. See
[18] for the details of the stochastic modeling of the mutations,
which are not rare, and for the multidimensional results.
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ends up in a minimum of the fitness function. [The second
term of (19) makes the singular strategy y = 0 pessimal
when all individuals have a strategy around 0.] As a
consequence, evolutionary branching occurs: two sub-
populations evolve away following their respective fitness
gradients.

Note that the advantage of being different from the rest
of the population diminishes with increasing o. When o >
1/+/2, y = 0 remains a fitness maximum when the popu-
lation converges there. No branching occurs in this case.

The complete classification of the possible local con-
figurations of the s,(y) function was provided earlier for a
1D strategy space [8,9]. With assumptions (a) and (b) this
analysis showed that the directional evolution and the
possible branching at the singularities exhaust the possi-
bilities. Our results establish the same picture without these
restrictions. Assumption (a) is superfluous because the
evolution of an arbitrary cloud of mutants is controlled
by the one-resident invasion fitness s,(x). Assumption
(b) becomes a consequence of the small fitness difference
between the strategies, a conclusion reached also in [15].

We conclude that the only important assumption, lead-
ing to the adaptive dynamics picture, is that evolution
proceeds in small steps.

The picture of the small-step evolution in a continuous
state space is an approximation of the real process taking
place in an underlying high-dimensional discrete sequence
space (cf.[16]). Mutations with a large effect on the phe-
notype of a higher organism are generally expected to be
detrimental, as they destroy the consistency of the genetic
plan. Evolution via small modifications is an integral part
of the Darwinian picture. We developed the consistent and
parsimonious mathematical theory of this picture and dem-
onstrated that it leads to a diverse life in a natural way, in
accordance with Darwin’s own views, without needing to
relegate speciation to extraneous mechanisms, as has been
the custom since the neo-Darwinian synthesis of the
middle 1900s.

The entertaining aspect of this study is the deep connec-
tion between essential biological and mathematical issues.
The simple evolutionary picture emerges from an arbi-
trarily complicated population dynamics because of the
coupling between the order of € and the order of p in the
€ expansion. In turn, this coupling is a consequence of the
differentiation rule (5), which was derived from a func-
tional analytic underpinning. To unify the population dy-
namical and the evolutionary state spaces in a properly
continuous manner, we had to work in the space of distri-
butions and invent a chain-rule-preserving definition of the
functional derivative in this space (see the appendix).

We thank Michel Durinx and Stefan Geritz for discus-
sions, as well as Odo Diekmann and Eva Kisdi for com-
menting on the first version of the manuscript. This work
was financed from OTKA Grants No. T049689 and
No. TS049885, and NWO-OTKA Grant No. 048.011.039.

Appendix.—As there is no norm in the space of distri-
butions, the functional derivative (2) cannot be defined in

the Banach-space manner. Instead, the derivative of the
map f:€+— F (where £ and F are topological vector
spaces) is defined as a linear operator L:£ — F such
that, for any curve c:R +— &, the derivative of f o cis L o
¢'. This definition ensures validity of the chain rule, which
was used in deriving the rules (4) and (5). In our case, £ is
the space of distributions, so the derivative L is an element
of the dual of this space, i.e., of the “test function” space
D of infinitely many times differentiable functions with
compact support [17]. Consequently, for any y, a,(y,.) €
D. So, the differentiability of the generalized competition
function in its second argument is guaranteed by the here-
defined differentiability of r(y, ») with respect to ».
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