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Abstract. We anticipate that future web search techniques will exploit changes in web

structure and content. As a first step in this direction, we examine the problem of

integrating observed changes in link structure into static hyperlink-based ranking com-

putations.

We present a very efficient algorithm to incrementally compute good approximations
to Google’s PageRank [Brin and Page 98], as links evolve. Our experiments reveal that

this algorithm is both fast and yields excellent approximations to PageRank, even in

light of large changes to the link structure.

Our algorithm derives intuition and partial justification from a rigorous sensitivity

analysis of Markov chains. Consider a regular Markov chain with stationary probability

π, and suppose the transition probability into a state j is increased. We prove that
this can only cause

• πj to increase–adding a link to a site can only cause the stationary probability
of the target site to increase;

• the rank of j to improve–if the states are ordered according to their stationary
probabilities, then adding a link to a site can only cause the rank of the target

site to improve.

This analysis formalizes why the intuition that drives Google never fails.

1. Introduction

With rapid advances in storage and processing technology, we anticipate a next

generation of web algorithms, where the evolution of content and link structure
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in the web plays a crucial role. Algorithms that exploit evolution will therefore

assume increasing significance.

For the present, link analysis ([Brin and Page 98, Kleinberg 99] and many vari-

ants) is recognized as the state-of-the-art tool in web search algorithm design.

However, for the purposes of a large-scale and general-purpose search engine,

such as Google, the fact that the web is an evolving object already poses seri-

ous algorithmic and engineering challenges. Computations of measures such as

PageRank are typically too massive to be performed frequently. Therefore, the

design of algorithms that lend themselves to efficient incremental implementa-

tions is already important.

The web is frequently viewed as a directed graph whose nodes are the static

pages and whose edges are the hyperlinks. Recall that the PageRank of a site

a is the stationary probability of a node corresponding to a in a Markov chain

defined by the web graph ([Brin and Page 98], details below).

The PageRank update algorithm. We obtain a fast method to provide approximate
incremental updates to PageRank. This demonstrates two phenomena: despite

the holistic nature of PageRank, it admits incremental updates to a large ex-

tent; and the fact that links evolve is therefore not necessarily an obstacle for

PageRank (it could, in fact, be an advantage). To the best of our knowledge,

this is the first effort where a large-scale web application is tailored to suit the

evolutionary nature of the web.

At a high level, the algorithm (Section 3) works in the following natural way.

Given a set of link changes, we identify a small portion of the web graph in the

vicinity of these changes, and model the rest of the web as a single node in this

small graph. We then compute a version of PageRank on this small graph and

suitably transfer these results to the original graph.

Our experiments on large crawls of the web as well as on synthetically gen-

erated graphs demonstrate that our algorithm performs exceedingly well both

in speed and quality. The algorithm also appears robust to various types of

link modifications–small or large number of changes, random or correlated link

additions–and with respect to the density of the underlying slice of the web

graph.

Though our algorithm is fairly natural, it is not a priori clear why it would

work well, given the sensitivity of eigenproblems to even small perturbations.

We present a theoretical analysis that yields intuition for the high quality of our

experimental results. We now describe the two monotonicity results for Markov

chains obtained in this context.

This paper addresses link updates only. For a discussion of node updates, see

Section 6.
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Monotonicity results for Markov chains and PageRank. Let P = {pij} be the transition
matrix of a regular Markov chain.1 Let π be the stationary probability distri-

bution, i.e., πP = π. We are interested in the question of how the stationary

probability πj of a state j changes if some pij is increased (and other transitions

are decreased) to obtain a new regular Markov chain P̃ .

The connection to PageRank and link evolution is as follows. The web, with n

nodes, defines a natural Markov chain, with each node (page) corresponding to a

unique state, and with transition matrixM = {mij}, as follows. For each node i,
let k be the number of children (that is, out-neighbors) of i. Then mix = 0 if x is

not a child of i and mix = 1/k otherwise.
2 In their seminal work, Brin and Page

[Brin and Page 98] considered a random web surfer, who starts at an arbitrary

web page and moves on to other pages according to the transition probability

matrix M . Such a surfer might wind up at a web page with no children and

so, nowhere to go. To avoid this, they tweaked the random process so that, at

every step, with some fixed probability ε (usually, set to 1/7), the surfer chooses

a random page uniformly from the set of all pages and jumps to the chosen page.

This process yields the celebrated PageRank Markov chain [Brin and Page 98],

defined by P = (1−ε)M +(ε/n)J , where J is the n×n matrix of all ones. Let π
denote the stationary distribution of P , i.e., πP = π. The stationary probability

πi of a page i is its PageRank.

Changes in link structure correspond to addition of an “error matrix” E so

that P̃ = P + E denotes the new Markov chain. Let π̃ denote the stationary

distribution of P̃ . Consider the special case in which E is all zeroes except in one

row, say, i, and in which only one entry is positive, say, eij > 0. This corresponds

to increasing the probability of a transition from state i to state j. We ask the

natural monotonicity question: can this cause the stationary probability of state

j to decrease? We show that the answer is negative, i.e., π̃j > πj . This answers an

open question posed by Moni Naor in the affirmative–PageRank is monotonic,

in that adding a link to a site cannot decrease that site’s PageRank.

The term “PageRank” is a bit confusing. The PageRank of a page is not

its position in a ranking, rather, it is just a positive real number. Of course,

pages can be ordered according to their stationary probabilities, but the fact

that a stationary probability has increased does not mean that the state has

maintained its rank ordering; there are examples to the contrary. We therefore

ask a second natural monotonicity question: in the ordering of states according

to their stationary probabilities, can the rank ordering of state j decrease? The

answer is again negative. Thus, if pages are ordered by their PageRanks, and

1A chain with transition matrix P is regular if ∃k > 0 such that P k > 0.
2We adopt the convention that if A is a matrix, then the ith row of A is denoted Ai∗, the

jth column of A is denoted A∗j , and the (i, j)th entry of A is denoted aij .
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a link is added to page j, then j’s relative popularity cannot decrease. In fact,

the rank ordering of page j will outperform that of every page it outperformed

before the link was added.

These monotonicity results are extremely intuitive, and we were startled not

to find them in the literature. Indeed, were it not for Braess’ Paradox, which

says that adding a route can cause overall traffic delays to worsen, we would not

have even suspected there was anything to prove.

Experiments. We first conducted a series of experiments based on the real web to
demonstrate that our algorithm can be successfully used in a real-world setting.

We imagine a situation in which we have PageRank accurately computed for

our current description of the web. As we discover, via web crawl, that edges

have been added and deleted, we apply our algorithm to periodically update

PageRank on the fly with the hope that its final approximation of PageRank is

close enough.

To test this, we studied two crawls of the web generated by the web crawler

Mercator [Heydon and Najork 99]. The first crawl was done in May 2000, and the

portion we used contained more than 61 million pages and more than 259 million

edges whose source and destination pages were in different domains. (Local edges

within the same domain are frequently ignored for this type of work [Broder et al.

00] since they tend to be navigational or purposely introduced to take advantage

of ranking algorithms.) The second crawl was conducted in November 2000 and

had substantial overlap with the first. We found a total of more than 17 million

edge changes between the two crawls.

Beginning with the correct value of PageRank for the first crawl, we used our

algorithm to successively update PageRank on these 17 million changes. The end

result was extremely successful; the difference (in the L1 metric) between our

final approximation and the correct value was on the order of 5.9× 10−5, while
the actual change in PageRank was 0.12. The total cost of our updates was much

less than similarly frequent updates using a full-blown PageRank algorithm.

We also ran several experiments in which small numbers (≤ 10,000) of edges
were randomly added to the web graph to test how well we do in other situations.

In each case, our results were similarly accurate while the costs of our updates

were again very low.

Our second set of experiments are conducted with random graphs that are

designed to possess properties of the web graph [Kumar et al. 00]. Our goal in

experimenting with synthetic graphs is to obtain a finer understanding of the

robustness of our algorithms to graphs of different edge densities and various

edge update scenarios. Here, we observe that the difference between our approx-

imation and the true PageRank is typically of the order of 10−10, compared with
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an actual change in PageRank around 10−1. As in the previous experiment, our
algorithm is far more efficient than running the full-blown version of PageRank.

2. Sensitivity Analysis

Let P be the transition matrix of an n-state, regular, Markov chain. The sta-

tionary distribution of P is the unique vector π satisfying π = Pπ,
�n

j=1 πj = 1.

Suppose P is perturbed by an error matrix E to obtain P̃ = P + E. Letting π̃

denote the stationary distribution of P̃ , the fundamental question in sensitivity

analysis is how to express π − π̃ in terms of E; typically, ||π − π̃|| ≤ κ||E|| for a
condition number κ, for standard norms such as the L1, L2, or L∞ norms.

We are interested in the special case in which E reflects the addition of a

single edge from state i to state j in the web graph. This can be described

as a perturbation E in which eij > 0 and eik ≤ 0 for all k W= j, with all

entries not in row i being zero. Although there is an extensive literature on the

sensitivity of analysis of Markov chains and perturbation theory, the question of

how this affects the stationary distribution of πj seems not to have been explicitly

addressed.3 We remark that these questions become much simpler to answer if

the underlying Markov chain is reversible.

2.1. Basics

We assume we have a set of states {1, 2, . . . , n} and transition probabilities de-
fined by a matrix P :

P
def
=

⎛⎜⎜⎜⎝
p11 p12 · · · p1n
p21 p22 · · · p2n
...

... · · · ...

pn1 pn2 · · · pnn

⎞⎟⎟⎟⎠ .
Naturally, ∀i,�j pij = 1.

A Markov chain is regular if ∃k > 0 such that P k > 0. This means that every
state communicates with every other and that the chain is aperiodic, that is,

∀i,min d: d divides all k such that p(k)ii > 0 is 1.

The fundamental theorem for regular chains (see, for example, [Kemeny and

Snell 60, Theorem 4.1.4]) says there exists a probability distribution, called the

stationary distribution, π = (π1, . . . ,πn) such that

3Experimentally, Ng, Zheng, and Jordan [Ng et al. 01a, Ng et al. 01b] compared the stability
of PageRank and HITS [Kleinberg 99] under massive changes to a graph derived from the Cora
citation database [McCallum et al. 00].
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1. ∀i,πi ≥ 0 and
�n

i=1 πi = 1;

2. πP = π;

3. ∀i, j,πj = limk→∞(P k)[i, j].
The following elementary theorem is proved, for example, in [Kemeny and Snell

60, Theorem 1.11.1].

Theorem 2.1. If limk→∞Mk = 0, then (I −M)−1 exists and

(I −M)−1 =
∞3
i=0

M i.

Define

B
def
= lim

k→∞
P k =

⎛⎜⎝ π1 · · · πn
...

...

π1 · · · πn

⎞⎟⎠ .
Note that Bk = B for all k ≥ 1 and πB = (π1

�
i πi,π2

�
i πi, . . . ,πn

�
i πi) = π.

The following are immediate.

Lemma 2.2. BP = PB = B.

Corollary 2.3. ∀k ≥ 1, P kB = PBk = BkP = B, and (P −B)k = P k −B.

2.2. The Fundamental Matrix

The fundamental matrix Z of P is defined as

Z
def
= (I − (P −B))−1. (2.1)

Kemeny and Snell provide a beautiful treatment of the fundamental matrix [Ke-

meny and Snell 60, Section 4.3], and we will use several facts proved in their

book. Z has the following natural interpretation [Kemeny and Snell 60, page

77]. Given two states i and j, let r
(k)
ij be the expected number of times that P

will be in state j in the first k steps when started from state i (including the

initial state as one step). Then

lim
k→∞

r
(k)
ij − kπj = zij − πj .

Thus, in the limit, the number of “extra” steps that P will spend in state j when

started from state i can be described as zij − πj .
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Theorem 2.4. [Kemeny and Snell 60] The fundamental matrix of a regular Markov
chain with transition matrix P always exists, and furthermore,

Z = I +

∞3
k=1

(P −B)k. (2.2)

For states i and j of a Markov chain, let mij denote the mean first passage

time from i to j, that is, the expected number of steps before entering state j

from state i. The mean first passage time is always positive.

We will use the following important properties of Z.

Lemma 2.5.

(i) The matrix of mean first passage times can be expressed in terms of Z and

π, as follows:

M = (I − Z + JZdg)D, (2.3)

where D is diagonal with dii = 1/πi, J is all 1s, and Zdg has 0s off the

diagonal and zii in the (i, i)th position, for all 1 ≤ i ≤ n;
(ii) πZ = π;

(iii) π̃ = π̃EZ + π;

(iv) Z is diagonally dominant over columns and for all j W= i, zjj−zij = mijπj ;

(v) ∀j, zjj > 0.

Proof.
(i) is proved in [Kemeny and Snell 60, Theorem 4.4.7].

(ii) follows from Theorem 2.4 and Corollary 2.3 as

πZ = πI +

∞3
k=1

π(P −B)k = π +

∞3
k=1

π(P k −B) = π.

(iii) is a major result due to Schweitzer [Schweitzer 68].

For (iv), note that by Equation 2.3, we have M − D = (JZdg − Z)D. The
rows of JZdg are all equal to (z11, z22, . . . , znn), the rows of JZdgD are all

(z11/π1, z22/π2, . . . , znn/πn), and, for every i, the ith row of ZD is

(zi1/π1, zi2/π2, . . . , zin/πn). So for all i W= j, since dij = 0 we have mij − dij =
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mij = zjj/πj − zij/πj . Now, (iv) follows by arithmetic and the fact that mean
first passage times are strictly positive.

To see (v), notice that from (iv) we have ∀i W= j, zjj > zij . Suppose for

contradiction that zjj < 0. Then for all i, zij < 0. Also, from (ii),
�

i πizij = πj .

The zijs are all negative, and the πis are all positive, yielding the contradiction.

2.3. Monotonicity of Stationary Probability

Our first monotonicity result says that the stationary probability of j can only

increase.4

Theorem 2.6. Let P be the transition matrix of a finite-state regular Markov chain

and let i, j be arbitrary states of P (not necessarily distinct). Let E be a matrix

that is zero everywhere except in row i, eij > 0 is the only positive entry, and

such that P̃ = P + E is also the transition matrix of a regular Markov chain.

Let π̃ denote the stationary distribution of P̃ . Then π̃j > πj .

Proof. The entries in the ith row satisfy eij > 0,
�

k eik = 0, and ∀k W= j, eik ≤ 0,
corresponding to increasing transition probability from i into j, and decreasing

(some) other probabilities from i accordingly. We wish to show that π̃j > πj .

Using the fact that π̃ = π̃EZ + π by Lemma 2.5(iii), and the special form of

E, we have,

π̃ − π = (π̃1, . . . , π̃n)
⎛⎝ 0 · · · 0

Ei∗Z∗1 . . . Ei∗Z∗n
0 · · · 0

⎞⎠
= (π̃iEi∗Z∗1, . . . , π̃iEi∗Z∗n), (2.4)

whence,

π̃k − πk = π̃iEi∗Z∗k.

Since P̃ is regular, we have that π̃i > 0. Hence, to finish the proof, we need

only show that Ei∗Z∗j > 0. To see this, note that Ei∗Z∗j = eijzjj+
�
k W=j eikzkj .

By Lemma 2.5(iv) and 2.5(v), we have that zjj > 0 and zjj strictly dominates

each of the other zkj . Since eij > 0, and eij = −
�

k W=j eik, the result follows.

4A natural approach to prove this result might be to collapse the original chain to a two-

state chain and analyze the stationary probability of this collapsed chain. However, it is

unclear if this would be easy since the relationship between the perturbed original chain and

the perturbed collapsed chain is not straightforward.
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Remark 2.7. The statement of the theorem requires that both P and P̃ have

stationary distributions. We used regularity of P̃ only at the very end of the

proof, in asserting that π̃i W= 0. If π̃i = 0, then the proof shows that π̃j ≥ πj .

Remark 2.8. In Section 7, we provide four additional proofs of Theorem 2.6, pre-

sented in the order in which they became known to us. The first was our initial

proof–a more complicated version of the one presented above. The second relies

on a theorem of Ipsen and Meyer [Ipsen and Meyer 94]. The third is due to Tim

Roughgarden, and the fourth, due to an anonymous referee, relies on Lemma

2.10 below.

2.4. Monotonicity of Rank Ordering

In this section, we show that if the states are ordered according to their stationary

probabilities, then the recipient of increased transition probability can only rise

in the ordering.

We prove the theorem by showing that for any states j and k of P , if πj ≥ πk
and we increase the transition probability into j from some state i, then π̃j ≥ π̃k.

If we increase the transition probability from state i to state j, then we must

decrease the transition probability from i to some other states, w1, w2, . . . wy,

since the sum of the probabilities must be 1. We want to argue that there is no

state k whose stationary probability starts out below that of j and whose final

stationary probability exceeds that of j.

Theorem 2.9. Let P be a finite-state regular Markov chain. Let i, j be arbitrary

states of P (not necessarily distinct), and let w1, . . . , wy W= j be arbitrary. Let P̃
be the Markov chain obtained by decreasing piw1 , . . . , piwy by amounts δ1, . . . , δy

and increasing pij by
�y

f=1 δf; assume P̃ is regular. Let π and π̃ denote the

stationary distributions of P and P̃ , respectively. Then for all states k W= j, if

πj > πk, then π̃j > π̃k. Moreover, πj = πk ⇒ π̃j ≥ π̃k.

Proof. We first present the proof for the case y = 1 and then explain how to

generalize to arbitrary y.5 For simplicity, we write δ for δ1 and piw for piw1 .

For any two states a, b, let flow(a, b) be the probability that a random walk

starting at a reaches b before returning to a. For technical reasons, we define

flow(a, a) = 1. We first show the following simple, but important, lemma.

5One might expect a hybrid argument here, that is, a series of steps in which transition

probability is shifted from one ewi to ej , where one shows that at each step j cannot fall in
the ranking. However, this would require a proof that the intermediate Markov chains are all

regular.
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Lemma 2.10. ∀a, b,πa = πb · flow(b,a)flow(a,b)

Proof. Define random variables τ and σ as follows. Beginning in state a, perform

a random walk on the chain. Let τ be the first time the walk returns to a and

let σ be the first time the walk returns to a after visiting b. Clearly, τ ≤ σ and

flow(a, b) is the probability that τ = σ.

If τ < σ, then after the first τ steps, the expected number of steps needed to

get from a to b and back to a is E[σ]. Therefore, the expected difference between

σ and τ is zero times the probability that σ = τ plus E[σ] times the probability

that they are not equal. This yields the equation

E[σ − τ ] = (1− flow(a, b)) · E[σ].
Since E[σ − τ ] = E[σ] − E[τ ], we have that flow(a, b) = E[τ ]/E[σ]. Now,

E[τ ] = Maa is the mean return time for state a and Maa = 1/πa. Also, E[σ] is

the commute time between a and b–expected time to go from a to b and back

to a; it is clear that the commute time is a symmetric quantity. Piecing these

together, we have πa flow(a, b) =
1

E[σ] = πb flow(b, a), and the lemma follows.

We have the following immediate corollary.

Corollary 2.11. ∀a, b, a W= b,πa > πb if and only if flow(a, b) < flow(b, a).

Assume the conditions of the theorem. Let k W= j be arbitrary. By Corollary
2.11, πj > πk if and only if flow(j, k) < flow(k, j). To prove the theorem,

we examine how the two flows are affected by the change to P . We show that

flow(j, k) cannot increase and flow(k, j) cannot decrease. Note that the following

lemma holds independent of whether or not πj > πk.

Lemma 2.12. For all k, flowP (j, k) ≥ flowP̃ (j, k) and flowP (k, j) ≤ flowP̃ (k, j).

If k = j, then all the quantities involved are 1, by definition, and the lemma

holds.

Let e be the edge from i to w, with transition probability piw. We conceptually

“break” e into two edges, ew and e
I
w, with transition probabilities δ and piw − δ,

respectively. We will model reducing the transition probability piw by changing

the probability along ew to 0. Similarly, we “add” an edge ej from i to j, initially

with transition probability 0. We will model increasing the transition probability

from i to j by changing the probability on ej to δ and changing the probability on

ew to zero. At all times, only one of edges ej and ew will have nonzero transition

probability δ, while the other will have transition probability zero.
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Consider a random walk beginning at j and ending at the first of j and k to be

reached (not counting the initial state). Let [flow(j, k)|(ej ∨ ew)] (respectively,
[flow(j, k)|¬(ej ∨ ew)]) denote the conditional probability that such a random
walk ends at k given that the walk passes (respectively, does not pass) through

at least one of ej or ew:

flow(j, k) = [flow(j, k)|(ej∨ew)] Pr[(ej∨ew)]+[flow(j, k)|¬(ej∨ew)] Pr[¬(ej∨ew)] .
(2.5)

The second term in (2.5) does not change as a result of the modifications, since

the modifications are only to the probabilities on edges ej and ew, so we need

only consider the first term. Since ej and ew are mutually exclusive (only one is

nonzero at any time), we write

[flow(j, k)|(ej ∨ ew)] Pr[(ej ∨ ew)] = [flow(j, k)|ej ] Pr[ej ] + [flow(j, k)|ew] Pr[ew].
In the original chain, we have

[flow(j, k)|ej ] Pr[ej ] + [flow(j, k)|ew] Pr[ew] =
0 · 0 + (nonnegative) · (nonnegative) ,

while in the modified chain, we have

[flow(j, k)|ej ] Pr[ej ] + [flow(j, k)|ew] Pr[ew] =
0 · (nonnegative) + (nonnegative) · 0,

and so flow(j, k) cannot increase.

We now carry out a similar argument for flow(k, j), showing that it cannot

decrease:

flow(k, j) = [flow(k, j)|(ej ∨ ew)] Pr[(ej ∨ ew)]
+[flow(k, j)|¬(ej ∨ ew)] Pr[¬(ej ∨ ew)] .

Again, the second term is unchanged by the modifications, so we focus on the

first term:

[flow(k, j)|(ej ∨ ew)] Pr[(ej ∨ ew)] = [flow(k, j)|ej ] Pr[ej ] + [flow(k, j)|ew] Pr[ew].
In the original chain, we have

[flow(k, j)|ej ] Pr[ej ] + [flow(k, j)|ew] Pr[ew] = 1 · 0 + (nonnegative) · PrP [ew],
where PrP [ew] is the probability in the original chain (P ) that edge ew is taken

at least once in the random walk starting at k and ending at the first of j and k

to be reached. In the modified chain, we have

[flow(k, j)|ej ] Pr[ej ] + [flow(k, j)|ew] Pr[ew] = 1 · PrP̃ [ej ] + (nonnegative) · 0,
where PrP̃ [ej ] is the probability in the modified chain (P̃ ) that edge ej is taken

at least once in the random walk starting at k and ending at the first of j or k
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to be reached. We have defined ej and ew so that ρ = PrP̃ [ej ] = PrP [ew], and so

flow(k, j) cannot decrease: the quantity ρ has coefficient 1 in the modified chain,

but only some nonnegative coefficient bounded by 1 in the original chain. This

completes the proof for the case y = 1.

To extend the proof to the case of arbitrary y, we make the following changes.

Letting ef be the edge from i to wf, f = 1, . . . , y, we conceptually break each

ef into two edges ew and eIw with transition probabilities δf and piw − δf,

respectively. The “added” edge ej from i to j again initially has transition

probability 0. We will model increasing the transition probability from i to j by

changing the probability on ej to
�y

f=1 δf and changing the probabilities on the

ew to zero. We let ew = ew1 ∨ · · ·∨ ewy denote both the set of edges w1, . . . , wy
and, when used in a conditional probability, the condition that at least one

of those edges is taken. The “transition probability” of ew is the sum of the

transition probabilities on the edges ew . As in the proof for the case y = 1,

at all times, only one of ej and ew will have nonzero transition probability δ,

while the other will have transition probability zero. That is, either ej will have

nonzero transition probability or each of the ew will have nonzero transition

probability, but not both.

These changes imply the following interpretation of [flow(j, k)|(ej ∨ ew)]: this
expression now denotes the conditional probability that a random walk, start-

ing at j and ending at the first of j and k to be reached, ends at k, given

that the walk passes through at least one of ej , ew1 , . . . , ewy . We reinterpret

[flow(j, k)|¬(ej ∨ ew)] analogously. The rest of the proof follows, mutatis mu-
tandi, interpreting PrP [ew] as the probability in the original chain (P ) that one

of the edges ew1 , . . . , ewy is taken at least once in the random walk starting at k

and ending at the first of j and k to be reached.

3. The Algorithm

In this section, we first describe our incremental PageRank algorithm. First,

we describe a special case of the algorithm for the case where a single edge

has been added to the web graph–this algorithm derives motivation from our

monotonicity results. This is followed by a description of how the algorithm

generalizes to the case of multiple edge changes. We conclude with an analysis

of several implementation issues as well as some theoretical analysis as to why

the algorithm should be effective.

Consider the addition of an edge (i, j) to the web graph W . Again, let P and

P̃ be the respective PageRank Markov chains associated withW before and after

the new edge is added. We will construct a small subgraph G of the web graph
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that contains a small neighborhood around i and j; loosely speaking, this is the

area of the web graph affected by the change. We will model the rest of the web

graphW \G by a single “supernode” Ω; this defines a new, much smaller Markov
chain T whose states are the pages of G and the supernode Ω. Our algorithm will

compute the stationary distribution of T to find the new PageRank of the pages

in G, while the pages in Ω will be assumed to keep their original PageRank.

Our algorithm thus implicitly assumes that the stationary distribution of nodes

in the supernode is relatively unperturbed by the addition of the edge (i, j). The

intuition for this is that while the stationary distribution of a Markov chain can

be very sensitive to even small changes, the “random reset step” in PageRank

ensures that any substantive changes in this distribution will indeed be relatively

local to i and j. (Recall that random reset refers to the fact that at each step,

the PageRank Markov chain will make a transition to a random node with a

fixed probability 6.) If this intuition is correct, then the old and new stationary

distributions π and π̃ will differ almost entirely on the nodes in G, and will be

very close on the nodes in the supernode. Moreover, P and P̃ are identical on

the rows corresponding to nodes in the supernode (indeed, they are identical on

all rows except row i). Thus, modeling the supernode using π for the nodes in Ω

should give a good approximation of the real behavior of the rest of the graph.

3.1. Details of the Single Edge Insertion Algorithm

As outlined above, we will construct a small subgraph G and a supernode Ω that

models W \G. We first outline how to proceed with the approximate PageRank
algorithm after G has been constructed; we will then return to the construction

of G. Where it is clear from context, we will denote by Ω both a single node in

the new graph, and a set of nodes in the large graph W .

The transition matrix T for the new, smaller, Markov chain is defined as

follows:

1. For two pages k and f within G, we keep the transition probability from

P̃ by setting tkf = p̃kf.

2. The transition probabilities from Ω and the pages in G are computed using

π and P . For any k ∈ G, we set tΩk =
�

s∈Ω
πs
Q
psk, where Q =

�
s∈Ω πs.

Ω’s self-loop probability is the complement of the sum of these probabilities.

3. The transition probabilities from the pages in G to Ω are computed simi-

larly. For any k ∈ G, we have tkΩ =
�

s∈Ω p̃ks.

We then compute the stationary distribution τ of T . For all s ∈ Ω, our

“approximate PageRank” π̂ will be defined to be π(s), and for all k ∈ G, it
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will be τ (k). These quantities are suitably normalized to obtain a probability

distribution.

We now turn to the construction of the graph G, given (i, j). Our basic idea

is to explore the web graph W around the nodes i and j, and collect a small set

of nodes whose PageRank are likely to be most affected by the insertion of (i, j).

To do this, we assign the node i a weight of 1, and then allow this weight to

“dissipate” according to the PageRank dampening factor. Thus after one step,

all its children (including j) will have weight (1 − 6)/di, where di is the (new)

out-degree of i. A node is chosen to be in the subgraph if its total weight (over

all time-steps considered) exceeds a threshold δ. Note that there are two sources

of approximation here: if we do not place any bound on the number of time-

steps and if we take δ = 0, we recover a truthful recomputation of PageRank

for the entire graph W . Our idea is that a reasonable bound placed on these

two quantities should still give a graph G so that the resulting approximation is

sufficiently good, and G isn’t too large.

3.2. Generalization and Implementation Issues

We will use the basic method outlined above extended in the following way.

Suppose we have a collection of t edges (i1, j1), . . . , (it, jt) that are being added/

deleted. We perform a BFS around these nodes, again applying the weighting

method using the PageRank dampening factors. The small graph G will then be

the union of all nodes discovered in this process (carried out to a certain number

of time steps and using a threshold δ); the supernode will contain all nodes not

in G.

In our implementations, we use the following variant of PageRank (concerning

the random reset step). If a node has out-degree zero, then its self-loop prob-

ability is (6/n) + 1 − 6 and its other transitions have mass 6/n, where n is the

number of nodes.

Because the web graph is so large, the only feasible method for computing

PageRank is power iteration, which corresponds to simulating the Markov chain

step by step. An initial starting probability distribution x is chosen, and we

iterate by repeatedly multiplying x← xP . A straightforward PageRank update

algorithm would start with π, the stationary distribution for P , and perform

power iteration with P̃ until convergence to the new stationary distribution π̃.

The cost of doing this can be very expensive. Since the edges are numerous

but relatively sparse, they are usually stored in a compressed, sparse form such

as in the Connectivity Server built at Compaq [Randall et al. 01]. In this

model, each vector-matrix multiplication requires O(n) calls to the connectivity

server to retrieve a specific page’s neighbors and O(m) floating-point multipli-



Chien et al.: Link Evolution: Analysis and Algorithms 291

cations, where n is the number of pages and m the number of edges in the web

graph.

By comparison, our algorithm will perform power iteration on the much smaller

Markov chain T , using as its starting point the stationary distribution π for P ,

projected onto T in the natural way. Now each iteration requires only O(nT )

calls to the connectivity server and O(mT ) multiplications for each iteration,

where nT and mT are the number of pages and edges in the new Markov chain,

respectively. Typically these will be much smaller than n and m. In addition,

we must pay a one-time cost to compute the transition probabilities from and to

the supernode. Each of these preprocessing computations requires O(nT ) calls

to the connectivity server and a number of floating-point operations proportional

to the number of edges entering or leaving G. Each preprocessing computation

therefore requires at most the same cost as one full PageRank iteration, but typ-

ically far less than that. Thus, the total cost of running our algorithm is only a

fraction of that of running full power iteration. Furthermore, among eigenvector

techniques, power iteration converges rather slowly. In our case, however, if G

is small enough, we might conceivably use other methods.

3.3. Analysis of the Single Edge Insertion Algorithm

We analyze how well the supernode created in our algorithm models the behavior

of the nodes in W \G. If, in creating the supernode, we were to use the (not yet
known) values π̃(x) for x in the supernode, then the modeling would be perfect,

so the problem is to estimate the difference between the new values and the old.

Now, inserting an edge (i, j) into the web graph corresponds to increasing the

transition probability pij from ε/n to something depending on the degree of the

source. Let di denote the out-degree of node i in the (original) web graph. For

each child k of i in the original graph,

pik =
1− ε
di

+
ε

n
,

while for each nonchild x of i, including x = j, pix = ε/n. After the edge

insertion, we have

p̃ij =
1− ε
1 + di

+
ε

n
and for child k of i, p̃ik =

1− ε
1 + di

+
ε

n
,

while for each nonchild x of i, now excluding x = j, pix = ε/n. Thus,

eij =
1− ε
1 + di

.
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For each child k of i in the original graph,

eik = − 1− ε
di(di + 1)

and for each x not a child of i in the new graph, eix = 0.

Now fix a page s in the supernode. We now bound the change in PageRank

of s as follows, where we use (2.4) in the first line below and Lemma 2.5(i) in

the second line (recall that Z is the fundamental matrix and M is the matrix of

mean first passage times associated with P ):

π̃(s)− π(s) = π̃(i)
3
k

eikzks

= π̃(i)
3
k

eik (zss −mksπ(s))

= π̃(i)

X3
k

eikzss −
3
k

eikmksπ(s)

~

= π̃(i)

X
−
3
k

eikmksπ(s)

~
.

The last line holds because
�

k eik = 0 (because both P and P̃ are stochastic).

Since eik W= 0 only for children of i, this result states that π̃(s)− π(s) depends
on the difference between the mean first passage times to s from the different

children of i.

Intuitively, if there is no short “natural” path in P from i to s–that is, a

path using only web links and not random jumps–then the mean first passage

times to s from any two of is children should not differ by much, since the

chain is likely to experience a random jump before any long natural path can be

explored. Thus, if the graph G contains all nodes reachable from i by relatively

short (compared to 1/ε) natural paths, then if s is not among them, the mean

first passage times to s from any child of i will be close and hence π̃(s) − π(s)

will be very close to 0.

4. Experiments on the Real Web

The experiments in this section are meant to illustrate the performance of our

algorithm in a real-world setting. En route, we also study our algorithm when

there is a very small number of edge additions. Section 5 contains experiments

on synthetically generated graphs.
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Data. We used a web crawl produced at Compaq Systems Research Center. The
crawl we used ran in May 2000 and produced a graph containing 61,272,004 pages

and 259,411,961 edges. (Of these pages, 55,764,359 were explicitly crawled; the

rest were assumed to exist because they were pointed to by the crawled pages.)

We used this as our starting graph and computed its PageRank, π, by running

power iteration for 50 iterations starting from the uniform distribution.

Small changes. We first tested our algorithm’s basic competence on the cases jus-
tified by our theoretical analysis, namely small numbers of edge additions. We

find that our algorithm performs as well as predicted.

We ran a series of experiments in which we added 1, 100, 1000, and 10000 edges

to our graph. The cases of 100, 1000, and 10000 added edges used randomly

chosen edges; the case of the single edge added an edge from www.yahoo.com to

www.cs.berkeley.edu. In these experiments, we used π as our starting PageRank

and our threshold δ while constructing the subgraph was 10−6.
The results are described in Table 1. The first column indicates the number of

edges added. The “Change in PageRank” column is the effect of the added edges

on PageRank, as measured in the L1 distance, or ,π̃ − π,. Subgraph coverage
is the amount of this change that occurs in the constructed subgraph G, and

subgraph size is the number of nodes in the subgraph G. Finally, “Our error” is

the L1 distance from the correct PageRank π̃ to our algorithm’s approximation

π̂, or ,π̂ − π̃,, and the last column is a measure of how much of the change

in PageRank is “corrected” by our algorithm, or 1 − ,π̂−π̃,,π̃−π, , expressed as a
percentage.

We see that after building relatively small subgraphs, our algorithm gives

excellent approximations to the correct PageRanks in each case. The pages

in the subgraphs that are built are responsible for nearly all of the change in

PageRank, and this change is accounted for very effectively.

Edges Change in PageRank Subgraph coverage Subgraph size Our error Correction

1 8.184× 10−4 99.94% 8,119 4.781× 10−7 99.94%

100 4.586× 10−6 96.99% 428,090 1.447× 10−7 97.85%

1000 4.446× 10−5 99.80% 1,311,395 1.050× 10−7 99.86%

10000 4.959× 10−4 99.99% 3,077,152 4.331× 10−8 99.99%

Table 1. Performance of our algorithm on a real web graph for small number of

changes.

Large changes. Our theoretical analysis shows that our algorithm should work well
on individual edge changes, and the above results indicate that we can also handle

a small number of additions. Here we demonstrate empirically that our algorithm
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Partition Page changes Edge additions Edge deletions

1 127,415 443,015 423,250

10 90,701 295,063 285,197

20 40,560 122,287 114,493

30 29,924 78,743 63,274

40 22,929 66,617 56,836

50 19,569 53,866 45,552

Table 2. The number of changes in some sample partitions. The number of page
changes is the number of pages whose set of outgoing edges changed.

also works well even on a sequence of successive updates, each containing tens

or hundreds of thousands of edge changes.

In our model, we are a search engine that maintains a graph of the web and its

associated PageRank. As we crawl the web and discover changes to our graph,

we will use our algorithm to repeatedly update our computed PageRank to reflect

the new changes. The following experiment shows that this works very well, and

that the cumulative error from our updates is very small. In fact, we were able

to account for 99.95% of the change in PageRank.

The set of edge changes was found by comparing the 61-million-page graph

described at the beginning of this section to the graph produced by a second

crawl conducted in November 2000. This second crawl did not completely cover

the pages in the first, but the intersection was sufficient to discover a total of

8,930,307 edge additions and 8,433,037 edge deletions.

We then needed to simulate discovering these edge changes by a web crawl.

To do this, we sequenced the 55 million crawled pages in our graph in the order

they were crawled in May 2000, and sequenced the edges accordingly: the edge

change e1 is discovered before the edge change e2 if e1’s source page was crawled

before e2’s source page in the original crawl.

To simulate periodic updates, we partitioned the ordered list of more than 55

million crawled pages into 56 partitions, each containing 1,000,000 pages (except

the last one, naturally). For each of these partitions, we ran our algorithm on

the edge updates whose source pages were in that partition. In each case, we

used a threshold value of 10−6 in building our subgraph. To compute PageRank
within the subgraph, we ran power iteration for 30 steps.

Table 2 gives some indication as to the scale of the changes in each partition.

We see that in the heaviest case, our algorithm is being asked to handle more

than 800,000 changes to more than 100,000 source pages. Table 3 reports the

sizes of the subgraphs built for each partition, and the number of internal edges

they contain. These numbers should be compared with 61 million pages and
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Partition Pages in subgraph Edges in subgraph Change in PageRank

1 5,590,123 29,229,732 0.01752

10 5,302,006 26,848,170 0.00125

20 4,081,733 20,530,431 0.00065

30 3,520,523 17,751,694 0.00049

40 3,308,829 17,146,822 0.00030

50 3,089,939 15,545,991 0.00020

Table 3. The size of the subgraphs built for some sample partitions.

Actual change in PageRank Our error Correction

0.12056 5.9552× 10−5 99.95%

Table 4. Our results for real web graph.

259 million edges in the original graph. The last column indicates the change in

PageRank for this partition in the L1 metric as computed by our algorithm. We

can see that each update requires far fewer computations than would be needed

for the full 61 million pages and 259 million edges.

At the end of all the updates, we have the results described in Table 4. If

we let π be the original PageRank, π̃ be the new correct PageRank, and π̂ the

approximation given by our algorithm, we have that ,π − π̃, = 0.12056 while

,π̂ − π̃, = 5.9552× 10−5, meaning that our algorithm has corrected for 99.95%

of the change in PageRank. In fact, there is a good chance our results are better

than this, as the new PageRank was computed by running 50 additional steps of

power iteration from the original PageRank. At the last step, the change in L1
distance was still 7.04× 10−6, meaning that much of our error may result from
inaccuracy of the new PageRank. This suggests that our algorithm performs

well not only on small numbers of changes, but over a sequence of very large

updates as well.

5. Experiments on Synthetic Graphs

We present the results of our experiments on random graphs designed to model

the structure of the web graph. For generating synthetic graphs, we use variants

of the stochastic model proposed by [Kumar et al. 00].

Before we present the model, we’ll say a few words about why this experi-

ment is interesting. With a synthetic graph, we have an opportunity to study

variations in the parameters of interest. Specifically, we wish to obtain insights
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into the behavior of our approximation algorithm when we consider very large

changes, e.g., when the number of edge changes is about 5% of all edges. Simi-

larly, we could understand the way in which our algorithm performs at various

densities of web-like graphs. This is important because there is evidence [Dill et

al. 02] that parameters of the web graph at various scales (corporate intranets,

topic-specific web page collections, etc.) are similar up to suitable scaling. In

particular, different topic-specific collections tend to exhibit different densities

of graphs. Therefore, we would like to know if the quality of approximation we

produce is sensitive to the density parameter. Finally, we would like to under-

stand the dependence of the quality of approximation on the nature of these

changes–how random or correlated these changes are. Again, there is model-

based evidence that the web evolves via mechanisms that tend to be a mixture

of correlated and random changes, and the degree of the correlation depends

on the slice of the web (and its scale) one considers. To the extent that these

hypotheses hold true, we wish to gain an understanding of their influence on our

algorithm.

We now proceed to the details. The copying model of [Kumar et al. 00]

suggests the following evolution mechanism. For simplicity, we consider the

model with one parameter β. At each time-step, with probability β, a new node

is created, and with probability 1−β, a new edge (i, j) is created among existing
nodes (we choose β = 0.3, 0.5, 0.7 in our experiments). Note that β controls the

density of the graph. For an edge addition, j is chosen to be uniform among

existing nodes with probability 0.15 and chosen proportional to the current in-

degree of existing nodes with probability 0.85. A similar procedure is applied

to choose i–it is chosen to be uniform among existing nodes with probability

0.23 and chosen proportional to the current out-degree of existing nodes with

probability 0.77. For a node addition, we choose a node among existing nodes

and copy each of its links with probability 0.9. (The particular numerical values

were chosen so that the in- and out-degree distribution implied by these values

match those empirically observed (for instance, [Broder et al. 00]).)

We generated several synthetic graphs and the results from these experiments

are in Table 5 and Table 6. We use the following convention in the tables.

The first column (R) indicates the ratio of the number of added edges to the

total number of edges of the original graph, expressed as a percentage. The

second column (|G|/|W |) shows the number of nodes in the graph G constructed
by our algorithm as a fraction of the number of nodes in the original graph.

The third column (PR diff.) shows the true L1 distance between the original

PageRank π and the correct new PageRank π̃. The fourth column (Our error)

shows the L1 distance between the output π̂ of our algorithm and the correct

PageRank π̃.
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R |G| PR Our |G| PR Our |G| PR Our

(%) |W | diff. error |W | diff. error |W | diff. error

β = 0.3

60,421 nodes; 300,013 nodes; 750,063 nodes;

1,051,245 edges 5,782,599 edges 15,199,330 edges

0.1 0.28 0.001 1× 10−9 0.28 0.001 3× 10−09 0.28 0.002 2× 10−9
0.2 0.34 0.002 6× 10−10 0.35 0.003 7× 10−10 0.35 0.004 1× 10−9
0.5 0.46 0.005 1× 10−10 0.47 0.009 3× 10−10 0.48 0.010 5× 10−10
1.0 0.59 0.013 5× 10−11 0.61 0.015 2× 10−11 0.62 0.021 3× 10−10
2.0 0.74 0.029 3× 10−11 0.76 0.049 5× 10−12 0.77 0.049 3× 10−12
5.0 0.92 0.102 4× 10−14 0.93 0.104 6× 10−13 0.94 0.091 3× 10−13

β = 0.5

99,930 nodes; 499,924 nodes; 1,250,850 nodes;

1,224,637 edges 6,635,776 edges 17,264,650 edges

0.1 0.18 0.001 1× 10−9 0.18 0.004 4 ×10−9 0.18 0.001 1 ×10−9
0.2 0.23 0.002 5× 10−10 0.24 0.008 7 ×10−10 0.24 0.003 1 ×10−9
0.5 0.34 0.004 1× 10−10 0.35 0.018 4 ×10−10 0.36 0.026 5 ×10−10
1.0 0.47 0.018 4× 10−11 0.48 0.056 8 ×10−11 0.49 0.049 6 ×10−11
2.0 0.63 0.064 2× 10−11 0.64 0.073 5 ×10−12 0.65 0.064 1 ×10−11
5.0 0.84 0.121 1× 10−13 0.86 0.140 1 ×10−12 0.87 0.130 7 ×10−13

β = 0.7

139,971 nodes; 699,401 nodes; 1,749,248 nodes;

1,300,133 edges 6,997,618 edges 18,143,039 edges

0.1 0.11 0.006 1× 10−9 0.11 0.002 8× 10−10 0.12 0.005 9× 10−10
0.2 0.16 0.008 7× 10−10 0.17 0.003 4× 10−10 0.17 0.007 4× 10−10
0.5 0.26 0.017 2× 10−10 0.27 0.012 2× 10−10 0.28 0.015 2× 10−10
1.0 0.38 0.020 1× 10−10 0.39 0.048 1× 10−10 0.40 0.027 1× 10−10
2.0 0.54 0.047 1× 10−10 0.55 0.095 1× 10−10 0.56 0.158 9× 10−11
5.0 0.77 0.097 9× 10−11 0.79 0.179 9× 10−11 0.80 0.223 9× 10−11
Table 5. Performance of our algorithm on three synthetic graphs of different sizes
for β = 0.3, 0.5, 0.7 with δ = 1× 10−6.
From the tables, we see that our algorithm performs extremely well on the

synthetic graphs and is robust to the various choices of β, the density of the

graph. To give an idea, even when 1% more edges are added, the number of

nodes in the graph created by the algorithm is only 40% of the original graph,

while the error in PageRank is only of the order of 10−10. Moreover, the error
in the algorithm is only of the order of 10−4 even with δ as high as 10−2; recall
that a higher choice of δ means that the graph constructed by the algorithm is

smaller, rendering our algorithm more efficient.

6. Conclusions and Future Work
We have developed a method for computing PageRank incrementally when given

a collection of link changes. Our method appears to be robust, fast, and accurate.
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R |G| PR Our |G| PR Our |G| PR Our

(%) |W | diff. error |W | diff. error |W | diff. error

99,930 nodes; 499,924 nodes; 1,250,850 nodes;

1,224,637 edges 6,635,776 edges 17,264,650 edges

δ = 1× 10−4
0.1 0.15 0.001 6× 10−7 0.16 0.004 5× 10−7 0.16 0.001 2× 10−7
0.2 0.22 0.002 3× 10−7 0.22 0.008 3× 10−7 0.22 0.003 2× 10−7
0.5 0.34 0.004 2× 10−7 0.35 0.018 1× 10−7 0.35 0.026 1× 10−7
1.0 0.47 0.018 9× 10−8 0.48 0.056 6× 10−8 0.49 0.049 4× 10−8
2.0 0.62 0.064 3× 10−8 0.64 0.073 1× 10−8 0.65 0.064 1× 10−8
5.0 0.84 0.122 8× 10−10 0.86 0.140 9× 10−10 0.87 0.130 9× 10−10

δ = 1× 10−2
0.1 0.08 0.001 2× 10−4 0.08 0.004 5× 10−4 0.08 0.001 1× 10−4
0.2 0.14 0.002 2× 10−4 0.14 0.008 6× 10−4 0.14 0.003 1× 10−4
0.5 0.26 0.004 2× 10−4 0.26 0.018 5× 10−4 0.27 0.026 2× 10−4
1.0 0.40 0.018 2× 10−4 0.41 0.056 2× 10−4 0.42 0.049 2× 10−4
2.0 0.58 0.064 2× 10−4 0.59 0.073 2× 10−4 0.60 0.064 2× 10−4
5.0 0.83 0.122 5× 10−5 0.85 0.140 4× 10−5 0.85 0.130 5× 10−5

Table 6. Performance of our algorithm on three synthetic graphs of different sizes
for δ = 1× 10−4, 1× 10−2 with β = 0.5.

In fact, it is significantly faster than näıve recomputation. Further work includes

developing better heuristics to create the small graph G. We believe that better

heuristics for this will substantially improve the running time and the quality of

approximation. Another direction will be to study the effect of node additions

and deletions. Recently, Langville and Meyer [Langville and Meyer 02] have ob-

tained a PageRank update algorithm that can handle node additions/deletions;

their algorithm is based on the well-known Iterative Aggregation/Disaggregation

(IAD) method for nearly completely decomposable Markov chains [Stewart 94].

7. Appendix: Four Additional Proofs of Theorem 2.6

7.1. A Proof Based on Group Inverse

Let I be the n× n identity matrix and let A = I − P . The group inverse A2 of
A is the matrix satisfying

AA2A = A, A2AA2 = A2, AA2 = A2A.

Let W = I −AA2.

Fact 7.1. [Meyer 75, Theorem 2.3] If P is regular, then W is the n× n matrix in
which every row is πT .
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Fact 7.2. [Meyer 75, Theorem 2.4] If P is the transition matrix of a regular Markov
chain, then

A2 =

∞3
k=0

(P k −W ). (7.1)

Note the connection to the fundamental matrix–for the chains under consid-

eration here, W = B and A2 = Z −B.

Proposition 7.3.

1. [Cho and Meyer 00] A2 is diagonally dominant over the columns. In par-

ticular, for all i, j,

a
2
ji = a

2
ii −mjiπi, (7.2)

where mji is the mean first passage time from j to i in P . Since the mean

first passage times and the stationary probabilities cannot be negative, no

entry in a column can exceed the diagonal element.

2. [Cho and Meyer 01] ∀i, a2ii > 0.

Cho and Meyer [Cho and Meyer 00, Proposition 2.1] show that for irreducible

P and P̃ = P + E,

π̃ − π = π̃EA2. (7.3)

Note that since both P and P̃ are transition matrices, the entries in Ei∗ sum
to zero. So if the transition probability from i to j increases, other transition

probabilities out of i must decrease. Thus, by definition of E, we have
�
a eia =

0, eij > 0, and for all k W= j eik ≤ 0, and
�

k W=j eik = −eij .
We now analyze Equation 7.3 to prove monotonicity. We do this by determin-

ing the signs of the expressions. We have that

π̃ − π = (π̃1, . . . , π̃n)

⎛⎝ 0 · · · 0

Ei∗A
2
∗1 . . . Ei∗A

2
∗n

0 · · · 0

⎞⎠
= (π̃iEi∗A

2
∗1, . . . , π̃iEi∗A

2
∗n),

and hence for all k,

π̃k − πk = π̃iEi∗A
2
∗k.
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As in the proof of Theorem 2.6, since P̃ is regular, we can conclude that π̃i > 0.

Hence we need only to show that Ei∗A
2
∗j > 0. To see this, note that

Ei∗A
2
∗j = eija

2
jj +
3
k W=j

eika
2
kj .

By Proposition 7.3, a
2
jj is positive and strictly dominates each other a

2
kj . Re-

calling that eij > 0, and eij = −
�

k W=j eik finishes the proof.

7.2. A Proof Based on a Theorem of Ipsen and Meyer

An M-matrix is any matrix of the form A = sI − B, where s > 0, B ≥ 0, and
s ≥ ρ(B) (ρ(B) is the spectral radius of B, ρ(B) = max{|λ| : xTB = λx, x W=
0}).
We will use the following lemma about nonnegative matrices in Rn×n.

Lemma 7.4. [Berman and Plemmons 94, Lemma 6.2.1] Nonnegative matrix T ∈
Rn×n is convergent; that is, ρ(T ) < 1, if and only if (I − T )−1 exists and

(I − T )−1 =
∞3
i=1

T i.

Let P be the transition matrix of a regular n-state Markov chain, and define

A = I − P . A is a singular M-matrix of rank at most n − 1 (all the rows are
orthogonal to the all ones vector). Let Aj (respectively, Pj) be the principal

submatrix of A (respectively, P ) obtained by deleting the jth row and column

from A (respectively P ) so that Aj = I − Pj . Pj is convergent6 and so, by
Lemma 7.4, A−1j exists. Thus, Aj is a nonsingular M-matrix (as noted in [Ipsen

and Meyer 94, page 1064]. By [Berman and Plemmons 94, page 137, statement

N38], Aj is inverse positive, i.e., A
−1
j exists and A−1j > 0 (also noted in [Ipsen

and Meyer 94]).

Ipsen and Meyer show [Ipsen and Meyer 94, Theorem 4.1]

πj − π̃j
πj

= π̃TE(j)A−1j e, (7.4)

where E(j) denotes the matrix obtained by deleting the jth column of E and e is

the column vector of all 1s. Now, E(j) contains no positive entries, while it does

6See, for instance, [Berman and Plemmons 94, Lemma 8.3.20] for a proof. This is intuitive,

however, since Pj represents transitions to all states but j (think of a chain with a single ab-
sorbing state, otherwise completely connected); every walk eventually ends up in the absorbing

state, so limk(Pj)
k = 0.
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contain some negative entries (transition probability from i to some state(s) k

must have been reduced in order for the transition probability from i to j to

have been increased). Everything else on the right-hand side of Equation 7.4 is

nonnegative, so the entire right-hand side is nonpositive. Thus the expression

on the left is nonpositive, whence πj , the old steady state probability of state j,

cannot exceed π̃j , that is, π̃j ≥ πj . Moreover, if P̃ is regular, so that ∀k, π̃k W= 0,
then the right-hand side is strictly negative, so π̃j > πj .

7.3. Roughgarden’s Proof

This proof was communicated to us by Tim Roughgarden.

Write πj = 1/E[T
P
jj ], where T

P
jj is the return time of a random walk started

at node j of the chain with transition matrix P . Write

E[TPjj ] =
3
k≥1

k · Pr
P
[first return in exactly k steps]

=
3
k≥1

Pr
P
[first return in ≥ k steps]

=
3
k≥1

Pr
P
[fail to return in first k − 1 steps]. (7.5)

Similarly,

E[T P̃jj ] =
3
k≥1

Pr
P̃

[fail to return in first k − 1 steps]. (7.6)

The claim is that πj ≤ π̃j , which is equivalent to E[T
P
jj ] ≥ E[T P̃jj ]. The

derivation above shows that to prove this it suffices to show that the probability

of failing to return to j in a random walk in P in the first k − 1 steps is at least
as great as the probability of failing in a random walk in P̃ to return in the first

k − 1 steps, for each k.
Let S (respectively, S̃) denote the walks in P (respectively, P̃ ) that start at

j, go exactly k − 1 steps, and fail to return to j. Let us conceptually view the
increase in probability of the (i, j) transition as the addition of a new edge with

the extra transition probability. The key observation is that S and S̃ are the

same set, and contain no walks that include the new (i, j) edge (any walk that

uses the new edge in P̃ necessarily returns to j, and so cannot be in S̃).

The probabilities in Equations 7.5 and 7.6 are just sums over the walks in S

and S̃, respectively, of the probability of walking a given walk. For example, the

probability of failing to return to j in a random walk in P in the first k−1 steps
is the sum over all walks w ∈ S of the probability of taking walk w. Note that for
any w ∈ S (equivalently, w ∈ S̃, since the sets are the same), PrS [w] ≥ PrS̃ [w]:
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adding the new edge (i, j) decreases the probability of other edges out of i and

leaves other relevant probabilities unaffected. Since the sums in the expressions

for E[TPjj ] and E[T
P̃
jj ] are over the same index set of ws, and for each such w,

PrS [w] ≥ PrS̃ [w], the proof is complete.

7.4. A Proof Based on Lemma 2.10

This proof was sent to us by an anonymous referee.

Recall that by Lemma 2.10, ∀a, b,

πa = πb
flow(b, a)

flow(a, b)
,

and by Lemma 2.12, ∀b, flowP (j, b) ≥ flowP̃ (j, b) and flowP (b, j) ≤ flowP̃ (b, j),
so

flowP̃ (b, j)

flowP̃ (j, b)
≥ flowP (b, j)
flowP (j, b)

.

Since
�
b π̃b = 1, we have

πj =
3
b

π̃bπj =
3
b

π̃b

w
πb
flowP (b, j)

flowP (j, b)

W
,

and since
�
b πb = 1, we have

π̃j =
3
b

πbπ̃b
flowP̃ (b, j)

flowP̃ (j, b)
=
3
b

π̃bπb
flowP̃ (b, j)

flowP̃ (j, b)
.

Thus,

π̃j =
3
b

π̃bπb

w
flowP̃ (b, j)

flowP̃ (j, b)

W
≥
3
b

π̃bπb

w
flowP (b, j)

flowP (j, b)

W
= πj ,

which proves the theorem.
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