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Abstract— In this paper, we study the achievable link-layer
rate, namely, effective capacity (EC), under the per-user statis-
tical delay quality-of-service (QoS) requirements, for a downlink
non-orthogonal multiple access (NOMA) network with M users.
Specifically, the M users are assumed to be divided into multiple
NOMA pairs. Conventional orthogonal multiple access (OMA)
then is applied for inter-NOMA-pairs multiple access. Focusing
on the total link-layer rate for a downlink M -user network,
we prove that OMA outperforms NOMA when the transmit
signal-to-noise ratio (SNR) is small. On the contrary, simulation
results show that NOMA prevails over OMA at high values of
SNR. Aware of the importance of a two-user NOMA network,
we also theoretically investigate the impact of the transmit SNR
and the delay QoS requirement on the individual EC performance
and the total link-layer rate for a two-user network. Specifically,
for delay-constrained and delay-unconstrained users, we prove
that for the user with the stronger channel condition in a two-user
network, NOMA prevails over OMA when the transmit SNR
is large. On the other hand, for the user with the weaker
channel condition in a two-user network, it is proved that NOMA
outperforms OMA when the transmit SNR is small. Furthermore,
for the user with the weaker channel condition, the individual EC
in NOMA is limited to a maximum value, even if the transmit
SNR goes to infinity. To confirm these insightful conclusions,
the closed-form expressions for the individual EC in a two-user
network, by applying NOMA or OMA, are derived for both users
and then confirmed using Monte Carlo simulations.

Index Terms— NOMA, quality-of-service, delay-outage proba-
bility constraint, effective capacity, closed-form expressions.

I. INTRODUCTION

Due to the explosive growth of mobile data and the Internet

of Things (IoT) applications which exponentially accelerate

the demand for high data rates, 5G has been anticipated

to offer much higher data rate, less end-to-end latency and

a significant reduction in network energy usage [1]. When

it comes to the proposed multiple access (MA) techniques

for 5G, non-orthogonal multiple access (NOMA) has been
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attracting a lot of attention as a promising scheme, due to the

fact that it can offer improved spectral efficiency [2], higher

cell-edge throughput [3] and low transmission latency [4], over

conventional orthogonal multiple access (OMA) techniques.

Current available NOMA techniques can be broadly divided

into two categories, i.e., power-domain and code-domain

NOMA [5]. The power-domain NOMA1 allows multiple users

to simultaneously transmit using the same radio resources,

either in time, frequency, or in code [5]. At the transmitter side,

power-domain user-multiplexing can be enabled using super-

position coding [2]. At the receiver side, multiuser separation

techniques, such as successive interference cancellation (SIC),

can be utilized to decode the signal [6], [7].

Current research work in NOMA-related areas mainly

focuses on the topics such as cooperative design [8]–[10],

subcarrier assignment and power control policy [11]–[14],

physical layer security [15], fairness analysis [16], etc. For

example, a cooperative NOMA scheme was analyzed in [8],

in which the users with the stronger channel conditions were

used as relays to improve the reception reliability for users

with poorer connections. In [9], the application of simulta-

neous wireless information and power transfer (SWIPT) to

NOMA networks with randomly located users was inves-

tigated. Closed-form expressions for the outage probability

and system throughput were derived to characterize the

performance of the proposed user selection schemes. Further,

considering a downlink NOMA transmission, an energy effi-

ciency (EE) maximization problem was studied in [11],

in which both the subcarrier assignment and the power

allocation algorithms were provided for multiplexed users.

Considering a downlink single-cell space division multiple

access (SDMA) network with a multi-antenna base station

and randomly deployed users, the performance of NOMA

was investigated and optimized in [14], under a general

channel state information (CSI) limited feedback framework.

By leveraging limited feedback, a dynamic user scheduling

and grouping strategy was proposed. The physical layer

secrecy issue of NOMA was discussed in [15], in which

the secrecy sum rate of a single-input single-output (SISO)

NOMA system consisting of a transmitter, multiple legitimate

users and an eavesdropper, was maximized subject to per-

user minimum data rate requirement. Furthermore, the optimal

power allocation technique to maximize the user fairness in a

downlink NOMA network was investigated in [16], under two

1The power-domain NOMA will be simplified as NOMA, in the following
sections.
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different assumptions: 1) when all users’ data rates are adapted

to the instantaneous CSI, and 2) when all users have fixed data

rates under the average CSI.

However, all the aforementioned studies were based on

Shannon limit theory, without taking into consideration the

users’ delay requirements. For systems with delay-sensitive

applications, the physical-layer based performance analysis

and power adaptive techniques may not be efficient. Due

to the random variations experienced in wireless channel

conditions, user mobility and changing environment, the best

way to consider each user’s delay provisioning is to guarantee

the per-user delay quality-of-service (QoS) requirement in

a statistical way, i.e., to confine the delay bound violation

probability to a required range [17]–[22]. Therefore, the effec-

tive capacity (EC) theory was introduced in [17], which

specifies the maximum arrival rate that can be supported by a

wireless channel, given that a target delay-outage probability

is guaranteed.

In this paper, we focus on a downlink NOMA network with

M users, and theoretically prove the advantage of NOMA over

OMA, in terms of either the individual EC or the total link-

layer achievable rate. Specifically, we analyze the performance

of a two-user downlink NOMA network first. Considering

heterogeneous statistical delay QoS constraints for users,

we first derive the closed-form expressions for the individual

EC in a two-user NOMA network. The impact of the transmit

SNR and the delay QoS requirement on the individual link-

layer rate and the total EC for the two-user network are then

investigated and analyzed. Based on the theoretical analysis

for a two-user NOMA network, the advantage of NOMA over

OMA, for the whole network with M users is then proposed.

To the best of our knowledge, the closed-form expressions

for the link-layer rates in NOMA networks, the analytical

conclusions regarding to the EC performance in NOMA, and

also the comparison of the total EC between NOMA and OMA

networks, are not yet studied in the existing literature.

In more detail, this paper has the following contributions:
• Focusing on a downlink M -user network, the individual

EC and the total achievable link-layer rate are formulated

and investigated. Assuming that M users are divided

into multiple NOMA pairs, we prove that OMA achieves

higher total EC than NOMA, at small SNRs. Further,

simulation results show that NOMA outperforms OMA,

at high SNRs.

• Focusing on a downlink M -user network, the total EC

difference between NOMA and OMA becomes stable,

when the transmit SNR is extremely high.

• Focusing on a two-user network, the closed-form expres-

sions for the link-layer rates for both users, in NOMA

and OMA, are derived in Section IV-A.1. The accuracy

is then confirmed by comparing with the Monte Carlo

simulation results in Section V.

• Focusing on a two-user network, the impact of the

transmit SNR2 and the delay QoS exponent on the

individual and the total EC is analyzed in two cases.

2The transmit SNR is defined as the ratio of the transmission power to the
noise power, in which the noise is assumed to be the additive white Gaussian
noise. Further details will be provided in the next section.

Case 1: consider delay-constrained users; Case 2:

consider delay-unconstrained users.

• In Case 1 and Case 2, we characterize the region of

the transmit SNR, in which NOMA outperforms OMA,

in terms of the individual and the total EC for the

two-user system.

The remainder of this paper is organized as follows. The

system model is given in Section II. In Section III, the theory

of effective capacity is introduced. Then, we start to analyze

and investigate the individual EC and the total link-layer

rate for a downlink NOMA network in Section IV, which

includes the closed-form expressions for the link-layer rates

in a two-user network, in NOMA and OMA scenarios, and

the theoretical analysis for a two-user network and a down-

link NOMA network with multiple NOMA pairs. Simula-

tion results are given in Section V, followed by conclusions

in Section VI.

II. SYSTEM MODEL

We consider a cellular downlink transmission with one base

station (BS) and M single-antenna users. At the BS, the upper

layer packets are organized into frames, which are then stored

at the transmit buffer,3 in the link layer. After split into bit

streams, these frames will be transmitted through the allocated

channel. According to the NOMA principle, the BS will send
M∑

k=1

√
αkPsm to the destinations, where sk is the message for

the kth user, P is the total transmission power, and αk denotes

the power allocation coefficient for the kth user.

As for each wireless channel from the BS to an individual

user, we assume that it is block fading with a bandwidth

of B, i.e., the channel gain is invariant during each fading-

block, but independently varies from one fading-block to

another. The length of each fading-block, denoted by Tf ,

is assumed to be an integer multiple of the symbol duration

Ts. Meanwhile, the duration of one frame size is assumed to

be equal to the length of the fading-block, i.e., Tf . The channel

gain between the BS and the kth user is denoted by hk,4

which is modeled according to Rayleigh fading distribution.

Without loss of generality, we assume that the users’ channels

have been sorted so that |h1|2 ≤ |h2|2 ≤ · · · ≤ |hM |2,

which indicates that the kth user always holds the kth weakest

channel. Henceforth, based on the NOMA protocol, we note

that the power coefficients can be ordered as α1 ≥ · · · ≥ αM ,

and
M∑

k=1

αk = 1 [8].

The received signal at the kth user is given by yk =

hk

M∑

l=1

√
αlPsl + nk, where nk denotes the additive white

Gaussian noise. By applying the SIC technique, the kth user

will detect the ith user’s message, when i < k, and then

remove the ith user’s message from its received signal, in a

successive manner [8]. The message for the jth user, for

3Here, we assume that the BS offers one virtual buffer for every served
user.

4The time index t is omitted because the channel gains are assumed to be
stationary and ergodic random processes.



YU et al.: LINK-LAYER CAPACITY OF NOMA UNDER STATISTICAL DELAY QoS GUARANTEES 4909

j > k, however, will be treated as noise at the kth user. Note

that the condition under which the kth user can successfully

decode the ith user’s message is to satisfy Ri→k ≥ R̃i [23].

Here, R̃i is the ith user’s target data rate, and Ri→k denotes

the kth user’s data rate to detect the ith user’s message,

i.e., Ri→k = log2

(

1 +
ρ|hk|2αi

ρ|hk|2
∑M

l=i+1 αl + 1

)

, where ρ

denotes the transmit SNR, i.e., ρ =
P

N0 B
, with N0 B

indicating the noise power. Assume that R̃i is determined

opportunistically by the ith user’s channel condition [23],

i.e., R̃i = Ri = log2

(

1 +
ρ|hi|2αi

ρ|hi|2
∑M

l=i+1 αl + 1

)

, which

means that its target rate equals to the data rate achieved when

it decodes its own message. Hence, it is easy to verify that the

condition Ri→k ≥ R̃i always holds since |hk|2 ≥ |hi|2, for

k > i.
Consequently, the achievable data rate,5 in b/s/Hz, for the

kth user in a downlink NOMA network, can be formulated as

Rk = log2

(

1 +
ρ|hk|2αk

ρ|hk|2
∑M

l=k+1 αl + 1

)

. (1)

III. THE THEORY OF EFFECTIVE CAPACITY

In this section, the theory of EC is introduced to incorporate

system throughput with the link-layer delay QoS metrics,

such as the queue overflow probability, and the delay-outage

probability. We take the kth user as an example. At the BS,

considering the dynamic queueing system for the kth user,

we assume that the buffer size is infinite and the link can serve

Rk(t) packets per unit of time, which means that the capacity

of the link at time t is Rk(t). Let ak(t) and qk(t) be the

number of arrivals at time t and the number of packets in the

queue at time t, respectively. Further, we assume that ak(t) and

Rk(t) are stationary and ergodic, and E[ak(t)] < E[Rk(t)],
so that qk(t) converges to a steady rate qk(∞) [24], [25].

Let us consider the queue overflow probability first, i.e., the

probability of the steady-state queue length exceeding a certain

threshold x. From large deviation theory, we note that the

buffer overflow probability yields to [25]

− lim
x→∞

ln (Pr{qk (∞) > x})
x

= θk, (2)

where Pr{a > b} shows the probability that a > b holds, and

θk is the called delay QoS exponent. To satisfy a target buffer

overflow probability in (2), it is required that

Λak
(θk) + ΛRk

(−θk) = 0, (3)

where Λak
(θk) and ΛRk

(θk) are the Gärtner-Ellis limits

of the arrival process and the service process, respectively,

i.e., Λak
(θk) = lim

T→∞

1

T
ln
(

E
[

eθk

�
T

t=1
ak(t)

])

, and ΛRk
(θk)

equals to lim
T→∞

1

T
ln
(

E
[

eθk

�
T

t=1
Rk(t)

])

[25], [26]. When

we assume that the arrival rate is a constant, i.e., ak(t) = ak,

5We assume that the distance-based path-loss is uniform for each user.

and insert it into (3), we get that −ΛRk
(−θk)

θk
= ak, where θk

is the unique delay QoS exponent which satisfies the required

queue overflow probability in (2). Hence, −ΛRk
(−θk)

θk
is

called as the effective capacity, denoted by Ek
c , which repre-

sents the maximum arrival rate that a link can support,6 on

the condition that a required delay QoS is satisfied [17].

When the focus is on the delay experienced by a source

packet arriving at time t, defined by Dk(t), the expression

analogous to (2) can be estimated as [17]

P out
delay =Pr{Dk(t)>Dk

max}≈Pr{qk(t) > 0}e−θkµkDk

max , (4)

where P out
delay presents the delay-outage probability for the kth

user, Dk
max is in the unit of a symbol period, and Pr{qk(t) >

0} denotes the probability of a non-empty buffer at time

t. According to [17], we note that µk = Ek
c . Therefore,

in order to satisfy a required value of P out
delay, a source needs

to limit its maximum arrival rate to the value of µk, where

µk equals to the EC satisfying the statistical delay QoS

metrics. Furthermore, from (4), we notice that the parameter

θk (θk > 0) denotes the exponential decay rate of the delay-

outage probability, for the kth user. A smaller θk represents a

slower decay rate, which indicates that the user can tolerate

a loose delay QoS guarantee, while a larger θk means that

a more stringent delay QoS guarantee is required [17], [18].

Specifically, when θk → 0, it indicates that the kth user has

no delay requirement. When θk → ∞, it means that the kth

user has an extremely stringent delay requirement [21].

By recalling that the wireless channel from the BS to the

kth user follows a block fading distribution, hence, the EC of

the kth user can be formulated as [17], [18]

Ek
c = − 1

θkTfB
ln
(
E
[
e−θkTfBRk

])
, (b/s/Hz) , (5)

by assuming that the Gärtner-Ellis limit exists. Here, E [·]
indicates the expectation over the probability density func-

tion (PDF) of the allocated channel. Then, by inserting (1)

into (5), we can get the achievable link-layer rate for the kth

user in a downlink NOMA network, yielding

Ek
c =− 1

θkTfB
ln

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

E

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎝

1+
ρ|hk|2αk

ρ|hk|2
M∑

l=k+1

αl+1

⎞

⎟
⎟
⎟
⎠

−
θkTfB

ln 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(6)

IV. EFFECTIVE CAPACITY IN A DOWNLINK

NOMA NETWORK

Aware of the difficulty of deriving the closed-form expres-

sion for the individual EC in (6) when all M users transmit

on the same channel, we start to investigate the situation when

there are multiple NOMA pairs in a M -user network. Specif-

ically, we consider that the M users are divided into M/2

6Although the above analysis is based on the constant arrival rate, the theory
of EC can also apply to any stationary arrival processes [25].
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Fig. 1. Two-user downlink NOMA network.

groups,7 so that within each group, NOMA will be imple-

mented for only two users, and the conventional OMA can be

used for inter-NOMA-pairs multiple access [8]. Furthermore,

we note that a two-user downlink version of NOMA, called

as the multiuser superposition transmission (MUST), has been

proposed for the Third Generation Partnership Project Long

Term Evolution Advanced (3GPP-LTE-A) networks [27].

Inspired by this, we first focus on the link-layer rate perfor-

mance of a two-user downlink NOMA network, which itself

is of great importance, and also paves the way for the perfor-

mance analysis of multiple NOMA pairs. Closed-form expres-

sions and insightful theoretical conclusions will be provided.

Finally, based on the proposed derivations and theoretical

insights, we derive and investigate the total EC for the multiple

NOMA pairs, in comparison with the total EC for M OMA

users.

A. Effective Capacity of a Two-User NOMA Network

Without loss of generality, the mth user and the nth user,

m < n, are assumed to be paired together as a two-user

NOMA network, as depicted in Fig. 1. By applying the SIC

strategy, the nth user, which has the relatively stronger channel

condition, will first decode the message of the user with

the weaker channel condition, i.e., the mth user, and then

decode its own message by removing the mth user’s message.

On the other hand, the mth user with the weaker channel

condition, will decode its own message by treating the nth

user’s information as noise. In order to make sure that SIC

can be correctly carried out at the nth user, it is required

that Rm→n ≥ Rm, i.e., log2

(

1 +
ραm|hn|2

ραn|hn|2 + 1

)

≥ Rm.

According to the analysis in Section II, we note that this

always holds since |hn|2 ≥ |hm|2, for n > m.

By applying the fixed power allocation, the power allocation

coefficients for the mth user and the nth user are denoted by

αm and αn, respectively, where αm ≥ αn, and αm +αn = 1,

according to the NOMA principle. By assuming that both users

experience the same strength of additive white Gaussian noise,

then the achievable data rates,8 in b/s/Hz, for the mth user and

the nth user in a two-user NOMA network, are respectively

formulated as

Rm = log2

(

1 +
ραm|hm|2

ραn|hm|2 + 1

)

, (7a)

Rn = log2

(
1 + ραn|hn|2

)
. (7b)

7To achieve this, we assume that M is an even positive number.
8We assume that the distance-based path-loss is uniform for each user.

On the other hand, if the mth user and the nth user each have

their message transmitted using OMA scheduling, e.g., time

division multiple access (TDMA), with total transmit SNR ρ,

the achievable data rate of each user can then be given by

R̄i =
1

2
log2

(
1 + ρ|hi|2

)
, i ∈ {m, n} (8)

where
1

2
denotes that each user has only half of the available

radio resources in OMA networks. Considering the duration

of one frame as one time slot, (8) implies that in TDMA

networks, each user can only occupy half of the time slot to

transmit, while in the other half time slot, it will stay silent.9

Assuming that the Gärtner-Ellis theorem [26] is satisfied,

the expressions of EC for the mth user and the nth user in a

block fading channel can be respectively given as [17]

Em
c = − 1

θmTfB
ln
(
E
[
e−θmTfBRm

])
(b/s/Hz) , (9a)

En
c = − 1

θnTfB
ln
(
E
[
e−θnTfBRn

])
(b/s/Hz) . (9b)

By inserting (7a) into (9a) and inserting (7b) into (9b), we then

get that

Em
c = − 1

θmTfB
ln

(

E

[(
ρ|hm|2 + 1

ραn|hm|2 + 1

)2βm

])

, (10a)

En
c = − 1

θnTfB
ln
(

E

[(
1 + ραn|hn|2

)2βn

])

, (10b)

where βm = −θmTfB

2 ln 2
, and βn = −θnTfB

2 ln 2
.

For an OMA scheme, such as TDMA, the EC expressions

for both users can be calculated by inserting (8) into (9a) and

(9b), which yield to

Ēm
c = − 1

θmTfB
ln
(

E

[(
1 + ρ|hm|2

)βm

])

, (11a)

Ēn
c = − 1

θnTfB
ln
(

E

[(
1 + ρ|hn|2

)βn

])

. (11b)

In the following subsection, we first derive the closed-form

expressions for the link-layer rates for both users, in NOMA

and OMA, i.e., Em
c , Ēm

c , En
c , and Ēn

c . Further, the impact

of the transmit SNR ρ and the per-user delay QoS exponent,

on the individual EC performance and the total link-layer rates,

in both NOMA and OMA scenarios, will be investigated and

analyzed for the two-user network.

1) The Closed-Form Expressions for the Individual EC in

a Two-User System: We suppose that h1, . . . , hM are M
unordered independent channel gains, modeled according to

the unit-variance Rayleigh fading distribution. Set γm =
ρ|hm|2 and γn = ρ|hn|2. When γm and γn are unordered,

the PDF of γm and γn is denoted by f(γm) and f(γn), respec-

tively. Correspondingly, the cumulative distribution func-

tion (CDF) of the unordered γm and γn can be denoted

by F (γm), and F (γn). Since the unordered channel gains

are assumed to be statistically independent and identically

distributed, hence, we can notice that f(γm) = f(γn), and

9We note that the way of equally allocating resource is a typical and special
case. However, the influence of different resource allocation strategies is
beyond the scope of this paper.



YU et al.: LINK-LAYER CAPACITY OF NOMA UNDER STATISTICAL DELAY QoS GUARANTEES 4911

Em
c = − 1

θmTfB
ln

⎛

⎜
⎝

α−2βm

n ψm

ρ

(
m−1∑

k=0

(
m − 1

k

)

(−1)k ρ

M−m+1+k
+

θm(αn − 1)

αn ln 2

m−1∑

k=0

(
m − 1

k

)

(−1)ke

M−m+1+k

ραn

×Ei

(

−M − m + 1 + k

ραn

)

+

∞∑

j=2

(
2βm

j

)(
αn−1

αn

)j m−1∑

k=0

(
m − 1

k

)

(−1)k

⎛

⎜
⎜
⎜
⎝

j−1∑

i=1

(i − 1)!

α−i
n

(

−M − m + 1 + k

ρ

)j−i−1

(j − 1)!

−

(

−M − m + 1 + k

ρ

)j−1

(j − 1)!
e

M − m + 1 + k

ραn Ei

(

−M − m + 1 + k

ραn

)

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠ , (13a)

Ēm
c = − 1

θmTfB
ln

(

ψm

ρ

m−1∑

k=0

(
m − 1

k

)

(−1)kU

(

1, 2 + βm,
M − m + 1 + k

ρ

))

, (13b)

En
c = − 1

θnTfB
ln

(

ψn

ραn

n−1∑

k=0

(
n − 1

k

)

(−1)kU

(

1, 2 + 2βn,
M − n + 1 + k

ραn

))

, (13c)

Ēn
c = − 1

θnTfB
ln

(

ψn

ρ

n−1∑

k=0

(
n − 1

k

)

(−1)kU

(

1, 2 + βn,
M − n + 1 + k

ρ

))

. (13d)

F (γm) = F (γn), ∀ m, n ∈ {1, . . . , M}. However, when we

assume that the users’ channels are sorted so that |h1|2 ≤
|h2|2 ≤ · · · ≤ |hM |2, the order statistics of different channel

power gains will not be the same. In NOMA networks,

the users are ordered first according to their channel condi-

tions, therefore the statistical features of the ordered channel

power gains fall into the scope of the order statistics [28]. The

PDF of the ordered γm and γn, where γm ≤ γn, are denoted

by f(m) (γm), and f(n) (γn), respectively. From order statistics

[28], f(m) (γm) and f(n) (γn) are given by

f(m) (γm) = ψmf(γm)F (γm)m−1 (1−F (γm))
M−m

, (12a)

f(n) (γn) = ψnf(γn)F (γn)n−1 (1 − F (γn))
M−n

, (12b)

where ψm =
1

B (m, M − m + 1)
, ψn =

1

B (n, M − n + 1)
,

in which B(a, b) denotes the beta function, according to

B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
and Γ(a) = a!, as a is a positive integer.

Theorem 1: For the mth user, the closed-form expression

for the EC in NOMA, Em
c , is given in (13a), as shown

at the top of this page, where Ei (·) is the exponential

integral. Meanwhile, the EC in OMA, Ēm
c , can be expressed in

closed-form, given in (13b), where U (a, b, z) is the confluent

hypergeometric function of the second kind [29].

Proof: The proof is provided in Appendix A.

Theorem 2: For the nth user, the closed-form expression for

the EC in NOMA, En
c , is given in (13c). Meanwhile, the EC

in OMA, Ēn
c , can be expressed in closed-form, given in (13d).

Proof: The proof is omitted here, but can be found by

following similar steps as in Appendix A.

The accuracy of the above closed-form expressions will

be confirmed by comparing with Monte Carlo simulations

in Section V. Then, we start to investigate the impact of

the transmit SNR ρ and the per-user delay QoS exponents

θm, θn, on the individual EC performance and the total

link-layer rate for a two-user network, in both NOMA and

OMA scenarios. Two cases are deliberately analyzed in the

following subsections, i.e., Case 1: consider delay-constrained

users10; Case 2: consider delay-unconstrained users. We note

that Case 2 is an extreme case of no delay, in which the

individual EC is proved to be equivalent to ergodic capacity.11

Interestingly, the theoretical and simulation results obtained

for this case are indeed novel and not found in the current

literature. Further, by including Case 1 and Case 2, the perfor-

mance of a two-user downlink NOMA network, either delay-

constrained or delay-unconstrained, can be comprehensively

analyzed and investigated.

2) Case 1 (Consider Delay-Constrained Users):

Lemma 1: Considering the individual EC in NOMA and

OMA, for both users, we prove that

(a) When ρ → 0, Em
c → 0, Ēm

c → 0, Em
c − Ēm

c → 0,

En
c → 0, Ēn

c → 0, and En
c − Ēn

c → 0.

(b) When ρ → ∞,12 lim
ρ→∞

Em
c = log2

(
1

αn

)

, lim
ρ→∞

Ēm
c →

∞, and lim
ρ→∞

(
Em

c − Ēm
c

)
→ −∞.

(c) When ρ → ∞, lim
ρ→∞

En
c → ∞, lim

ρ→∞
Ēn

c → ∞, and

lim
ρ→∞

(
En

c − Ēn
c

)
→ ∞.

Proof: The proof is provided in Appendix B.

From Lemma 1.(a), we note that, for both users, either in

NOMA or OMA, their individual rates start at the same initial

value of 0, at small values of ρ. Lemma 1.(b), on the other

10In this case, finite values of θm, θn are considered.
11The proof and further explanations can be found in Lemma 5.
12We note that ρ → ∞ is not practical, but this is only to provide

a guideline. From the simulation results in Section V, it shows that the
conclusions we proved for the case of ρ → ∞, are valid for values of ρ
as big as ρ = 30dB.
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hand, indicates that for the weaker user,13 when ρ → ∞, its

EC achieved by applying NOMA is limited by log2

(
1

αn

)

.

This means that in a two-user NOMA network, the weaker

user can only achieve a limited EC, no matter how large the

transmit SNR can be. On the contrary, for the stronger user,14

Lemma 1.(c) indicates that when ρ → ∞, its achievable EC

in NOMA approaches infinity. Furthermore, Lemma 1.(b) and

Lemma 1.(c) reveal that when ρ → ∞, the EC values achieved

by applying OMA approach infinity, for both of the two users.

Apparently, Lemma 1 only considers two extreme cases of

ρ for both users. Henceforth, from Lemma 1, one cannot know

how the individual EC will change with respect to ρ on general

terms. Will NOMA be always better than OMA for the nth

user, at any positive values of ρ? Will OMA be always better

than NOMA for the mth user, for any settings of ρ? To answer

these questions and to further analyze the impact of ρ on the

individual EC, in a two-user NOMA network and in a two-user

OMA network, we provide the following lemmas.

Lemma 2: Considering the mth user’s EC, in NOMA and

OMA, we prove that

(a) At any values of ρ,
∂Em

c

∂ρ
≥ 0, and

∂Ēm
c

∂ρ
≥ 0.

(b) When ρ→0, lim
ρ→0

∂
(
Em

c −Ēm
c

)

∂ρ
=

1

2
−αn

ln 2
E
[
|hm|2

]
≥0.

(c) When ρ is very large,
∂
(
Em

c − Ēm
c

)

∂ρ
≤ 0, and it

approaches 0 when ρ → ∞.

Proof: The proof is provided in Appendix C.

Lemma 2.(b) indicates that, for the weaker user, when

the transmit SNR is very small, the EC in NOMA has a

faster increasing speed than that in OMA. On the contrary,

Lemma 2.(c) shows that for the weaker user, when the transmit

SNR is very large, the EC in OMA increases faster than that

in NOMA. To further explain these conclusions, we focus on

analyzing the EC difference between NOMA and OMA, for

the weaker user in a two-user system. From Lemma 1 and

Lemma 2, one can conclude that, Em
c −Ēm

c starts at the initial

value of 0, first increases, and at the end decreases to −∞ with

a gradually diminishing speed. This means that, for the weaker

user, NOMA can achieve higher EC than OMA, at small values

of ρ. When the transmit SNR becomes extremely large, OMA

is more beneficial than NOMA, for the weaker user. Finally,

when ρ → ∞, the performance gain of OMA over NOMA

becomes stable.

Lemma 3: Considering the nth user’s EC, in NOMA and

OMA, we prove that

(a) At any values of ρ,
∂En

c

∂ρ
≥ 0, and

∂Ēn
c

∂ρ
≥ 0.

(b) When ρ→0, lim
ρ→0

∂
(
En

c − Ēn
c

)

∂ρ
=

αn−
1

2
ln 2

E
[
|hn|2

]
≤ 0.

13Hereafter, the user with the weaker channel condition is referred to as the
weaker user.

14Hereafter, the user with the stronger channel condition is referred to as
the stronger user.

(c) When ρ is very large,
∂
(
En

c − Ēn
c

)

∂ρ
≥ 0, and it

approaches 0 when ρ → ∞.

Proof: The proof is provided in Appendix D.

Lemma 3.(b) indicates that, for the stronger user, when the

transmit SNR is very small, the EC in OMA increases faster

than that in NOMA. On the contrary, Lemma 3.(c) shows that

when the transmit SNR becomes very large, the EC in NOMA

increases faster than the one in OMA, for the stronger user.

Then we start to analyze the range of ρ, in which NOMA is

more beneficial than OMA, for the stronger user in a two-user

system. From Lemma 1 and Lemma 3, one can conclude that,

En
c − Ēn

c starts at the initial value of 0, first decreases, and

finally increases to ∞ with a gradually reducing speed. This

means that, for the stronger user, OMA achieves higher EC

than NOMA, when the transmit SNR is small. At high values

of ρ, NOMA becomes more beneficial than OMA, for the

stronger user. Finally, when ρ → ∞, the performance gain of

NOMA over OMA becomes stable, for the stronger user.

In order to investigate the impact of the transmit SNR ρ
on the performance of the total link-layer achievable rate,

we define TN = Em
c + En

c , which indicates the total EC for

the two-user NOMA network. Meanwhile, we define TO =
Ēm

c + Ēn
c , which denotes the total achievable link-layer rate

for the two-user OMA system.

Lemma 4: Considering the total EC in NOMA, TN , for the

two-user system, we prove that

(a) At any values of ρ,
∂TN

∂ρ
≥ 0.

(b) When ρ → 0, TN → 0, lim
ρ→0

∂TN

∂ρ
=

1 − αn

ln 2
E
[
|hm|2

]
+

αn

ln 2
E
[
|hn|2

]
≥ 0.

(c) When ρ → ∞, TN → ∞, lim
ρ→∞

∂TN

∂ρ
= 0.

Considering the total EC in OMA, TO , for the two-user

system, we prove that

(d) At any values of ρ,
∂TO

∂ρ
≥ 0.

(e) When ρ → 0, TO → 0, lim
ρ→0

∂TO

∂ρ
=

1

2 ln 2
E
[
|hm|2

]
+

1

2 ln 2
E
[
|hn|2

]
≥ 0.

(f) When ρ → ∞, TO → ∞, lim
ρ→∞

∂TO

∂ρ
= 0.

Proof: The proof is provided in Appendix E.

Lemma 4.(b) indicates that when the NOMA scheme is

applied, the total EC has a constant slope at small values

of ρ, in which the constant depends on the average of the

channel power gains and the allocated power coefficients.

On the contrary, from Lemma 4.(e), we find that the total EC

obtained in OMA scheme also shows a constant increasing

speed at small values of ρ, in which the constant only

depends on the average of the channel power gains. Finally,

when ρ → ∞, Lemma 4.(c) and Lemma 4.(f) show that the

increasing speed of the total EC, either in NOMA or OMA,

gradually diminishes.

3) Case 2 (Consider Delay-Unconstrained Users): In this

subsection, we investigate the delay-unconstrained EC, in a

two-user NOMA network and a two-user OMA network,
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when θm → 0, θn → 0, i.e., lim
θm→0

Em
c , lim

θm→0
Ēm

c ,

lim
θn→0

En
c , lim

θn→0
Ēn

c , and also the EC difference between

NOMA and OMA, for both users, i.e., lim
θm→0

(
Em

c − Ēm
c

)
and

lim
θn→0

(
En

c − Ēn
c

)
. Further, the impact of ρ in this extreme case

is also analyzed and investigated.

Lemma 5: Considering the EC for the mth user with

θm → 0, in NOMA and OMA, we prove that

(a) When θm → 0, lim
θm→0

Em
c = E[Rm], lim

θm→0
Ēm

c = E
[
R̄m

]
,

lim
θm→0

(
Em

c −Ēm
c

)
=E [Rm]−E

[
R̄m

]
.

(b) When θm → 0, ρ → ∞, lim
θm→0
ρ→∞

Em
c = log2

(
1

αn

)

,

lim
θm→0
ρ→∞

Ēm
c →∞, lim

θm→0
ρ→∞

(
Em

c −Ēm
c

)
→−∞.

Considering the EC for the nth user with θn → 0, in NOMA

and OMA, we prove that

(c) When θn → 0, lim
θn→0

En
c = E [Rn], lim

θn→0
Ēn

c = E
[
R̄n

]
,

lim
θn→0

(
En

c − Ēn
c

)
= E [Rn] − E

[
R̄n

]
.

(d) When θn → 0, ρ → ∞, lim
θn→0
ρ→∞

En
c → ∞, lim

θn→0
ρ→∞

Ēn
c → ∞,

lim
θn→0
ρ→∞

(
En

c − Ēn
c

)
→ ∞.

Proof: The proof is provided in Appendix F.

From Lemma 5.(a) and Lemma 5.(c), we note that for

both users, no matter in NOMA or OMA, when there is no

delay requirement, i.e., θm → 0, and θn → 0, the individual

achievable link-layer rate is equivalent to the ergodic capacity.

Furthermore, from Lemma 1 and Lemma 5, we can find

that Case 2, as an extreme case of no delay, follows similar

conclusions with Case 1, regarding to the individual EC

performance at high SNRs. For example, from Lemma 1.(b)

and Lemma 5.(b), we note that, the weaker user in a two-user

NOMA system can only achieve a limited EC, no matter how

large the transmit SNR can be, or how strict or loose the

delay exponent is. Further, one can also conclude that, for the

weaker user, either with or without delay constraint, OMA

offers higher EC than NOMA, when ρ → ∞. On the contrary,

for the stronger user, either with or without delay constraint,

NOMA achieves higher EC than OMA at high SNRs. Note

that by following similar steps as in Appendix E, one can

show that Case 2 follows similar conclusions as in Case 1,

regarding to the total EC performance in NOMA and OMA.

However, these are omitted in this paper to avoid redundancy.

B. Effective Capacity of Multiple NOMA Pairs

After analyzing the two-user NOMA network and deriving

the closed-form expressions, we investigate the total achiev-

able link-layer rate for multiple NOMA pairs. By considering

that the M users are divided into
M

2
groups, we define

I =

{

1, 2, . . . ,
M

2

}

, which contains the group index. Then, all

NOMA pairs can be included in Φ, Φ = {φ1, φ2, . . . ,φM/2},

satisfying φi ∩ φj = ∅, i �= j, ∀i, j ∈ I, where

φi =
{
(mi, ni) | mi �= ni, |hmi

|2 ≤ |hni
|2, ∀i ∈ I

}
denotes

the ith NOMA pair with two users, i.e., mi and ni.

Assume that for the ith NOMA pair, ∀i ∈ I, NOMA will be

implemented for the two users, i.e., mi and ni. Meanwhile,

for the inter-group multiple access, we assume that TDMA

will be applied. Hence, for the two users in the ith NOMA

pair, the achievable data rates, in b/s/Hz, can be respectively

formulated as

Rmi
=

2

M
log2

(

1 +
ραmi

|hmi
|2

ραni
|hmi

|2 + 1

)

, (14a)

Rni
=

2

M
log2

(
1 + ραni

|hni
|2
)
. (14b)

On the other hand, if the users mi and ni each have their

message transmitted using TDMA, the achievable data rate

for each user can be given by

R̄j =
1

M
log2

(
1 + ρ|hj |2

)
, j ∈ {mi, ni}, (15)

where
1

M
denotes that each user has only

1

M
of the time slot

to transmit, while in the other fractions of the time slot, it will

stay silent.

Assuming that the Gärtner-Ellis theorem is satisfied, we can

get the EC formulations for the users mi and ni in the ith

NOMA pair, yielding

Emi

c = − 1

θmi
TfB

ln

(

E

[(
ρ|hmi

|2+1

ραni
|hmi

|2+1

) 4

M
βmi

])

, (16a)

Eni

c = − 1

θni
TfB

ln
(

E

[(
1 + ραni

|hni
|2
) 4

M
βni

])

, (16b)

where βmi
= −θmi

TfB

2 ln 2
, and βni

= −θni
TfB

2 ln 2
. On the

contrary, for the TDMA scheme, the EC expressions for both

users can also be obtained, which respectively yield to

Ēmi

c = − 1

θmi
TfB

ln
(

E

[(
1 + ρ|hmi

|2
) 2

M
βmi

])

, (17a)

Ēni

c = − 1

θni
TfB

ln
(

E

[(
1 + ρ|hni

|2
) 2

M
βni

])

. (17b)

Comparing (16a)-(17b) with (10a)-(11b), we can notice that

the EC formulations for the two users in the ith NOMA pair,

have similar expressions with those proposed for a two-user

NOMA network in Section IV-A. Hence, by following similar

steps in Appendix A, the closed-form expressions for Emi

c ,

Eni

c , Ēmi

c , and Ēni

c can be easily obtained, which are omitted

here for simplicity. Our focus lies on analyzing the total EC of

multiple NOMA pairs, denoted by MN , in comparison with the

total EC for the M OMA users, i.e., MO . Note that MN can be

defined as
M/2∑

i=1

(Emi

c + Eni

c ), and correspondingly, MO equals

to
M/2∑

i=1

(
Ēmi

c + Ēni

c

)
. To investigate the region of ρ, in which

NOMA can offer a higher value of the total link-layer rate for

multiple NOMA pairs, in comparison with the OMA scheme,

we provide the following lemma.

Lemma 6: Considering the difference of the total EC,

between multiple NOMA pairs and M OMA users, we prove

that
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(a) When ρ → 0, MN − MO → 0, lim
ρ→0

∂ (MN − MO)

∂ρ
=

M/2∑

i=1

1 − 2αni

M ln 2

(
E
[
|hmi

|2
]
− E

[
|hni

|2
])
≤0.

(b) When ρ → ∞, MN − MO approaches a constant, given

in (18), and lim
ρ→∞

∂ (MN − MO)

∂ρ
= 0.

lim
ρ→∞

(MN−MO)=

M/2
∑

i=1

− 1

θmi
TfB

ln

⎛

⎝
α
− 4

M
βmi

ni

E

[

(|hmi
|2)

2

M
βmi

]

⎞

⎠

− 1

θni
TfB

ln

⎛

⎝
αni

4

M
βniE

[(
|hni

|2
) 4

M
βni

]

E

[

(|hni
|2)

2

M
βni

]

⎞

⎠. (18)

Proof: The proof is provided in Appendix G.

From Lemma 6, one can conclude that MN − MO starts at

the initial value of 0, first decreases at small values of ρ, and

finally approaches a constant, given in (18), when ρ → ∞.

This indicates that OMA outperforms NOMA on the total

link-layer rate performance for a M -user network, at small

SNRs. Simulation results in the next section further show that

NOMA achieves higher total EC than OMA at high values

of SNR. Finally, Lemma 6.(b) indicates that the performance

gain of NOMA over OMA becomes stable when the transmit

SNR becomes extremely high.

Note that in Section IV-A.2 and Section IV-A.3, considering

delay-constrained and delay-unconstrained users, we have

comprehensively investigated the individual link-layer rate and

the total EC for a two-user NOMA system, in comparison

with the conventional OMA scheme. Then, in Section IV-B,

considering that M users are divided into multiple NOMA

pairs, we have characterized the regions of ρ, in which

NOMA offers higher total EC than the conventional OMA

scheme. These insightful conclusions, mathematically derived

and theoretically proved, can provide valuable guidelines for

the further research, such as the resource allocation design,

user pairing/clustering technique and delay analysis in NOMA.

Further, the above theoretical conclusions will be confirmed

using simulation results in Section V.

V. NUMERICAL RESULTS

In this section, we will numerically confirm all the theorems

and the lemmas proposed in Section IV. Further, the impact

of the per-user delay QoS exponent, and the transmit SNR ρ
on the individual EC performance and the total link-layer rate,

in NOMA and OMA scenarios, is numerically analyzed and

investigated in this section. Specifically, we start from showing

the simulation results for the two-user system, in NOMA and

OMA. To consider a two-user NOMA system, the total number

of users M = 10, and the users with the 2rd and the 8th weakest

channels are assumed to be paired together, i.e., m = 2,

n = 8. The corresponding power coefficients for the two users

are set as, αm = 0.8, αn = 0.2, unless otherwise indicated.

The fading-block duration Tf = 0.01 ms, and the bandwidth

B = 100kHz.

To confirm the accuracy of the proposed closed-form

expressions for EC in NOMA scheme for both users,

Fig. 2. Em
c and En

c , in NOMA, versus ρ for various values of the delay
QoS exponent vector θ.

Fig. 3. Em
c , in NOMA, and Ēm

c , in OMA, versus the transmit SNR ρ for
various values of θ.

we include Fig. 2 which plots the curves of Em
c and En

c

versus the transmit SNR ρ, for various values of the delay

QoS exponent vector θ, where θ = [θm, θn]. This figure shows

the results calculated in two ways, i.e., by using Monte Carlo

simulation method and the proposed closed-form expressions.

From Fig. 2, the accuracy of the closed-form expressions

for EC in NOMA scheme for both users can be confirmed.

For both users, Em
c and En

c gradually increase with the

transmit SNR ρ, which confirms the proposed Lemma 2.(a)

and Lemma 3.(a). Further, when the delay QoS exponent

vector becomes more stringent, i.e., changing from θ → [0, 0]
to θ = [5, 5], the individual link-layer rates in NOMA, for both

users, decrease. This phenomenon will be further investigated

in Fig. 11.

Fig. 3 includes the plots for Em
c and Ēm

c versus the transmit

SNR ρ, for various values of the delay QoS exponent vector θ.

This figure first shows that when ρ increases, the link-layer

rate for the mth user, either in NOMA or OMA, shows a

non-decreasing trend. This confirms the proved Lemma 2.(a).

For the Em
c in NOMA scheme, it first increases when ρ is

relatively small, then reaches a limit when ρ becomes very

large. This observation confirms Lemma 1.(b), since we proved
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Fig. 4. En
c , in NOMA, and Ēn

c , in OMA, versus the transmit SNR ρ for
various values of θ.

that when ρ → ∞, Em
c approaches a maximum limit which is

independent from the transmit SNR and the user’s delay QoS

requirement. Further, from Fig. 3, we note that Em
c saturates

as soon as ρ ≥ 30dB, although in Lemma 1.(b), the maximum

limit of Em
c achieves when ρ → ∞. Finally, Fig. 3 shows that

Em
c in NOMA prevails over Ēm

c in OMA, when ρ is small,

but with the increase of ρ, OMA outperforms NOMA on the

link-layer rate performance, for the mth user, which confirms

the analysis and explanations in Lemma 2 and Lemma 5.

Considering the nth user, Fig. 4 plots the curves of

En
c and Ēn

c versus the transmit SNR ρ, for various values of

the delay QoS exponent vector θ. From this figure, we note

that En
c and Ēn

c start at the same value of 0, then monoton-

ically increase with respect to the transmit SNR ρ. This

confirms Lemma 1.(a) and Lemma 3.(a). Furthermore, for a

fixed value of θ, when ρ is small, Ēn
c in OMA is larger

than En
c in NOMA, but with the increase of the transmit

SNR, NOMA becomes more beneficial, in terms of the link-

layer rate, which is analytically explained in Lemma 3 and

Lemma 5. In addition, when the delay QoS exponent vector

becomes more stringent, i.e., changing from θ → [0, 0] to

θ = [30, 30], the link-layer rate for the nth user, either in

NOMA or OMA, decreases, considering a fixed value of ρ.

In order to investigate the advantage of NOMA over OMA,

for the mth user and the nth user, we provide Fig. 5 and Fig. 6,

which include the plots for Em
c − Ēm

c and En
c − Ēn

c versus

the transmit SNR ρ, respectively, for various values of the

delay QoS exponent vector θ. Fig. 5 indicates that for the

mth user, Em
c − Ēm

c starts at the initial value of 0, increases

slightly at small values of ρ, and then decreases when the

transmit SNR ρ further increases. This confirms Lemma 2.(b)

and Lemma 2.(c). When the transmit SNR is high and fixed,

Fig. 5 further shows that a more stringent delay requirement

with θ = [5, 5], results in a larger value of Em
c − Ēm

c than

the delay-unconstrained situation with θ → [0, 0]. Specifically,

in comparison with the delay-unconstrained system, the delay-

constrained system with θ = [5, 5] allows a longer range of ρ,

in which NOMA prevails over OMA. For delay-constrained

system with θ = [5, 5], Em
c − Ēm

c becomes negative when

Fig. 5. Em
c − Ēm

c versus ρ for various values of the delay QoS exponent
vector θ.

Fig. 6. En
c − Ēn

c versus ρ for various values of the delay QoS exponent
vector θ.

ρ ≥ 30.3901dB. Meanwhile, for delay-unconstrained system,

Em
c −Ēm

c becomes negative when ρ ≥ 18.8338dB. This means

that, after this point, OMA performs better than NOMA, for

the mth user. On the other hand, for the nth user, Fig. 6 shows

that En
c − Ēn

c first starts at the initial value of 0, slightly

decreases when ρ is small, and with the further increase of

ρ, it increases. This confirms Lemma 3.(b) and Lemma 3.(c).

Furthermore, when the transmit SNR is high and fixed, a more

stringent delay requirement with θ = [20, 20] leads to a

smaller value of En
c − Ēn

c , than the delay-unconstrained

situation with θ → [0, 0].
Note that Fig. 5 shows two SNR transition points,

i.e., 30.3901dB when θ = [5, 5] and 18.8338dB when

θ → [0, 0], after which OMA becomes better than NOMA for

the mth user. By setting the transition point as ρt, we include

Fig. 7 to show the curves of ρt versus the delay QoS exponent

θm, for various values of m. For a fixed m, ρt first stays

stable at small values of θm, then gradually increases, and

finally becomes stable at high θm values, i.e., θm → 102. This

means that when the mth user’s delay requirement becomes

more stringent, NOMA performs better than OMA for a longer

range of SNR. Meanwhile, at extreme values of θm, i.e., when
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Fig. 7. SNR ρt versus θm for various values of m and power coefficient αm.

Fig. 8. TN and TO versus ρ for various values of the delay QoS exponent
vector θ.

θm → 10−1 or θm → 102, the values of ρt are stable,

which indicates that for very loose or very stringent delay

requirements, the range of SNR in which NOMA outperforms

OMA is fixed. Furthermore, from Fig. 7, one can also notice

that for a fixed θm, the value of ρt obtained with m = 4
is smaller than the one obtained with m = 2. This means

that when a user’s channel conditions become weaker, NOMA

outperforms OMA for a wider range of SNR.

To investigate the impact of ρ on the performance of the

total link-layer rate for the two-user system, we provide Fig. 8

which includes the plots for TN in NOMA and TO in OMA,

versus the transmit SNR ρ, for various values of θ. Fig. 8 first

indicates that the total EC for the two-user network, either

in NOMA or OMA, starts at the initial value of 0, and then

gradually increases with the transmit SNR ρ. This confirms

Lemma 4.(a) and Lemma 4.(d). Specifically, Fig. 8 shows that

when ρ is very small, the total rate for the two-user network in

OMA, TO , has a faster increasing speed than TN in NOMA.

Then, with the increase of ρ, TN in NOMA gradually becomes

higher than TO in OMA, for the delay-constrained situation

with θ = [1, 1] and the delay-unconstrained situation with

θ → [0, 0]. Furthermore, at high values of ρ, the gap of the

total EC between NOMA and OMA, for this two-user network,

becomes steady.

Fig. 9. TN − TO versus ρ for various values of the delay QoS exponent
vector θ.

Fig. 10. TN − TO versus ρ for various values of the delay QoS exponent
vector θ.

To further investigate and analyze the impact of the transmit

SNR ρ and the delay QoS exponent vector θ on the total EC

difference, between a two-user NOMA network and a two-user

OMA network, we provide Fig. 9 and Fig. 10 which include

the plots for TN − TO versus the transmit SNR ρ, for various

settings of the delay QoS exponent vector θ. Specifically, to

plot Fig. 9, the delay QoS exponent of the nth user is fixed

at θn = 0.01. Meanwhile, in Fig. 10, all curves are plotted

by fixing the value of θm at 0.01. From Fig. 9, we note that

for a fixed value of θ, TN − TO starts at the initial value

of 0, first decreases, then increases with the transmit SNR ρ,

finally reaches a maximum limit and stabilizes. Further, Fig. 9

indicates that when θn is fixed at 0.01, a larger θm leads to

a higher value of TN − TO at high SNRs. Correspondingly,

Fig. 10 shows that when θm is fixed at 0.01, a smaller θn

results in a higher level of TN − TO at high SNRs.

To investigate the impact of the delay QoS exponent θm on

the link-layer rate performance for the mth user, we plot the

results of Em
c in NOMA (in solid lines) and E[Rm] (in dash

lines) versus the delay QoS exponent θm, for various values

of ρ in Fig. 11. This figure first indicates that, when the mth

user has a loose delay requirement, i.e., θm ≤ 10−1, the link-

layer rate in NOMA, Em
c , is equivalent to the physical-layer
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Fig. 11. Em
c , in NOMA, versus θm for various values of the transmit SNR ρ.

Fig. 12. MN − MO , versus the transmit SNR ρ for various settings of user
pairing set Φ.

rate E[Rm], which confirms Lemma 5.(a). When the delay

requirement becomes more stringent, Em
c gradually decreases

to the minimum value of 0, for various values of ρ. On the

contrary, the curves of E[Rm] versus θm always stay high

and stable, but this is due to the reason that there is no

delay requirement guaranteed when the physical-layer rate

is considered. Furthermore, considering a fixed θm, when ρ
increases from 10 dB to 30 dB, Em

c becomes larger, which

indicates that a higher value of ρ will result in a larger value

of EC in NOMA, for the mth user.

Then, we focus on the comparison of NOMA and OMA,

in terms of the difference of the total link-layer rate, between

multiple NOMA pairs and M OMA users, i.e., MN − MO.

To investigate the impact of the transmit SNR ρ and the user

pairing set Φ on the MN − MO, we provide Fig. 12 which

includes the plots for MN−MO versus the transmit SNR ρ, for

various settings of the user pairing set Φ. Specifically, the total

number of users M = 6, the power coefficients allocated to

both users in a NOMA pair are given as αmi
= 0.8, αni

= 0.2,

∀i ∈ I, (mi, ni) ∈ Φ,15 and the delay QoS exponents of all

15We note that different settings of power coefficients can influence the
simulation results, but this is beyond the scope of this paper, and can be kept
as a future research topic.

users are assumed to be approaching 0. From Fig. 12, we note

that for a fixed setting of Φ, MN−MO starts at the initial value

of 0, first decreases, then increases until it reaches a maximum

value. This confirms the proposed Lemma 6 in Section IV-B,

which reveals that OMA achieves higher total EC than NOMA

at small values of ρ. Fig. 12 also indicates that NOMA is

more beneficial than OMA, on the total EC performance for a

M -user network, when the transmit SNR becomes extremely

high. Furthermore, from Fig. 12, we note that at high SNRs,

the user pairing setting of Φ = {(1, 6), (2, 5), (3, 4)} provides

the largest level of MN −MO , which means that among all the

simulated settings, this case is the best user pairing solution.

VI. CONCLUSIONS

The advantage of NOMA over OMA, on the total link-layer

rate performance for a downlink NOMA network with M
users, was investigated and analyzed in this paper. Specifically,

by assuming that the M users are divided into multiple NOMA

pairs, simulation results show that NOMA offers higher total

EC than OMA at high SNR values. Furthermore, we found

that the advantage of NOMA over OMA becomes stable

when the transmit SNR is extremely high. This indicates

that once above a high level, the increase of transmit SNR

cannot guarantee any more performance gain. Focusing on a

simple two-user network, we also proved that for the stronger

user, either delay-constrained or delay-unconstrained, NOMA

prevails over OMA, when the transmit SNR is large. On the

contrary, for the weaker user in a two-user network, we proved

that NOMA offers higher EC than OMA at small SNR

values. To confirm these theoretical conclusions, the closed-

form expressions for the individual EC in a two-user network

were derived and confirmed by using Monte Carlo simulation

results. Further, simulation results also reveal that the user

pairing settings and the allocated power coefficients can influ-

ence the throughput performance, which can be reserved as

potential research topics.

APPENDIX A

PROOF OF THEOREM 1

By applying the order statistics, the EC in NOMA for

the mth user, Em
c , can be expanded as

Em
c = − 1

θmTfB
ln

(
∫ ∞

0

(
γm + 1

αnγm + 1

)2βm

ψmf(γm)

× F (γm)m−1 (1 − F (γm))M−m dγm

)

. (19)

By inserting f(γm) =
1

ρ
e
−

γm

ρ , and F (γm) = 1−e
−

γm

ρ into

(19), we have

Em
c =− 1

θmTfB
ln

(

ψm

ρ

∫ ∞

0

(
γm + 1

αnγm + 1

)2βm

×e
−

(M−m+1)γm

ρ

⎛

⎝1−e
−

γm

ρ

⎞

⎠

m−1

dγm

⎞

⎟
⎠. (20)
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To obtain the closed-form expressions, we need to transform

and simplify

(
γm + 1

γmαn + 1

)2βm

and

⎛

⎝1 − e
−

γm

ρ

⎞

⎠

m−1

first.

According to the generalized binomial expansion, we first get

that
(

γm + 1

γmαn + 1

)2βm

=

(
1

αn

)2βm
(

1+
αn − 1

γmαn + 1

)2βm

, (21)

where

(

1 +
αn − 1

γmαn + 1

)2βm

can then be expanded as

∞∑

j=0

(
2βm

j

)
(

αn − 1

γmαn + 1

)j

, due to the fact that (1 + x)s =

∞∑

j=0

(
s
j

)
xj , for |x| < 1, where

(
s
j

)
is defined as follows [29]:

(
s

j

)

=
s(s − 1) . . . (s − j + 1)

j!
=

(s)j

j!
, if j ≥ 1, (22)

where (·)j is the Pochhammer symbol, and
(

s
0

)
= 1 [29].

Furthermore, we note that

⎛

⎝1 − e
−

γm

ρ

⎞

⎠

m−1

in (20) can

be replaced with the summation
m−1∑

k=0

(
m−1

k

)
(−1)ke

−
γm

ρ
k

,

by applying the binomial expansion [29]. Hence, by replacing
(

1+
αn−1

γmαn+1

)2βm

and

⎛

⎝1 − e
−

γm

ρ

⎞

⎠

m−1

, (20) can be

transformed into

Em
c = − 1

θmTfB
ln

(

(αn)
−2βm ψm

ρ

∫ ∞

0

⎛

⎝ 1
︸︷︷︸

when j=0

+ (2βm)
αn − 1

γmαn + 1
︸ ︷︷ ︸

when j =1

+
∞∑

j=2

(
2βm

j

)(
αn − 1

γmαn + 1

)j

︸ ︷︷ ︸

when j ≥ 2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

×

⎛

⎜
⎝

m−1∑

k=0

(
m − 1

k

)

(−1)ke
−

(M − m + 1 + k)γm

ρ

⎞

⎟
⎠ dγm

⎞

⎟
⎠.

Then we can use the following equations from [30], namely,

(3.353.2) and (3.352.4).

∫ ∞

0

e−µx

(x + β)n
dx =

1

(n − 1)!

n−1∑

k=1

(k − 1)!(−µ)n−k−1β−k

− (−µ)n−1

(n − 1)!
eβµEi(−βµ), [n ≥ 2, |arg β| < π, Re µ > 0] ,

(23a)
∫ ∞

0

e−µx

x + β
dx = −eβµEi(−βµ), [|arg β| < π, Re µ > 0] ,

(23b)

where Ei(·) is the exponential integral. Finally, by applying

(23a) and (23b), we can obtain the closed-form expression for

Em
c , given in (13a).

Now, let us consider the closed-form expression for the

EC in OMA scheme for the mth user. By applying the order

statistics, Ēm
c can be expanded as

Ēm
c = − 1

θmTfB
ln

⎛

⎜
⎝
ψm

ρ

∫ ∞

0

(1 + γm)
βme

−
(M−m+1)γm

ρ

×

⎛

⎝1 − e
−

γm

ρ

⎞

⎠

m−1

dγm

⎞

⎟
⎠. (24)

After applying the binomial expansion for

⎛

⎝1 − e
−

γm

ρ

⎞

⎠

m−1

,

we have

Ēm
c = − 1

θmTfB
ln

(

ψm

ρ

m−1∑

k=0

(
m − 1

k

)

(−1)k

×
∫ ∞

0

(1 + γm)βm e
−

(M − m + 1 + k)γm

ρ dγm

⎞

⎟
⎠. (25)

From (13.2.5) in [29], we note that

U(a, b, z) =
1

Γ(a)

∫ ∞

0

e−zt ta−1(1 + t)b−a−1dt,

for Re a, Re z > 0, (26)

where U(·) is the confluent hypergeometric function of

the second kind [29]. By applying (26) to (25), Ēm
c can be

finally expressed as

Ēm
c = − 1

θmTfB
ln

(

ψm

ρ

m−1∑

k=0

(
m − 1

k

)

(−1)k

×U

(

1, 2 + βm,
M − m + 1 + k

ρ

))

. (27)

APPENDIX B

PROOF OF LEMMA 1

By inserting ρ → 0 into (10a), (11a), (10b), and (11b),

we can prove that Em
c − Ēm

c → 0, and En
c − Ēn

c → 0. When

ρ → ∞, Em
c can be expressed as

lim
ρ→∞

− 1

θmTfB
ln

⎛

⎜
⎜
⎝

E

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

|hm|2+
1

ρ

αn|hm|2+
1

ρ

⎞

⎟
⎟
⎠

2βm
⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

=log2

(
1

αn

)

.

For finite value of θm, it can be proved that lim
ρ→∞

Ēm
c → ∞,

and lim
ρ→∞

(
Em

c − Ēm
c

)
→ −∞.

As for the nth user, lim
ρ→∞

En
c → ∞, and lim

ρ→∞
Ēn

c → ∞ can

be easily proved, which are omitted here. To analyze the EC

difference of the NOMA and OMA scheme for the nth user

when ρ → ∞, we have that

lim
ρ→∞

(
En

c −Ēn
c

)
= lim

ρ→∞
− 1

θnTfB
ln

⎛

⎝
ρβnE

[(
αn|hn|2

)2βn

]

E

[

(|hn|2)βn

]

⎞

⎠,
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which approaches infinity. This completes the proof that

lim
ρ→∞

(
En

c − Ēn
c

)
→ ∞.

APPENDIX C

PROOF OF LEMMA 2

To analyze the trends of Em
c and Ēm

c with respect to ρ,

we have

∂Em
c

∂ρ
=− 1

θmTfB

(

E

[(
ρ|hm|2 + 1

ραn|hm|2+1

)2βm

])′

E

[(
ρ|hm|2 + 1

ραn|hm|2+1

)2βm

]

=
1−αn

ln 2

E

[(
ρ|hm|2+1

ραn|hm|2+1

)2βm−1 |hm|2

(ραn|hm|2+1)
2

]

E

[(
ρ|hm|2+1

ραn|hm|2+1

)2βm

] ,

(28)

where ()′ is the first derivative with respect to ρ. Apparently,

(28) is non-negative. Similarly, for EC in OMA for the mth

user, we get

∂Ēm
c

∂ρ
=

1

2 ln 2

E

[(
1 + ρ|hm|2

)βm−1 |hm|2
]

E

[

(1 + ρ|hm|2)βm

] , (29)

which is non-negative too.

We then start to analyze the trend of Em
c −Ēm

c with respect

to ρ, as follows.

∂
(
Em

c − Ēm
c

)

∂ρ
=

∂Em
c

∂ρ
− ∂Ēm

c

∂ρ

=
1−αn

ln 2

E

[(
ρ|hm|2 + 1

ραn|hm|2 + 1

)2βm−1 |hm|2

(ραn|hm|2+1)
2

]

E

[(
ρ|hm|2 + 1

ραn|hm|2 + 1

)2βm

]

(30a)

− 1

2 ln 2

E

[(
1 + ρ|hm|2

)βm−1 |hm|2
]

E

[

(1 + ρ|hm|2)βm

] . (30b)

When ρ → 0, we prove that lim
ρ→0

∂
(
Em

c − Ēm
c

)

∂ρ
=

(
1 − 2αn

2 ln 2

)

E
[
|hm|2

]
≥ 0, due to the reason that

αn ∈
(

0,
1

2

]

and E
[
|hm|2

]
≥ 0.

When ρ is very large, we can prove that

∂
(
Em

c − Ēm
c

)

∂ρ
=

1 − αn

αn ln 2
E

[
1

|hm|2
]

− 1

2 ln 2
ρ

ρ2
. (31a)

Since E

[
1

|hm|2
]

is a finite value, unrelated to ρ, therefore

when ρ is very large, (31a) can be approximated by − 1

2ρ ln 2
,

which is smaller than 0 and gradually approaches 0 when

ρ → ∞. Furthermore, the critical point of the function

Em
c − Ēm

c , i.e., the value of ρ which makes
∂
(
Em

c − Ēm
c

)

∂ρ
=

0, can be obtained when (30b) equals to zero.

APPENDIX D: PROOF OF LEMMA 3

Here, we analyze the trends of En
c and Ēn

c versus ρ.

∂En
c

∂ρ
= − 1

θnTfB

(

E

[(
1 + ραn|hn|2

)2βn

])′

E

[

(1 + ραn|hn|2)2βn

]

=
αn

ln 2

E

[(
1 + ραn|hn|2

)2βn−1 |hn|2
]

E

[

(1 + ραn|hn|2)2βn

] , (32)

which is non-negative. As for the EC in OMA, we can also

prove that
∂Ēn

c

∂ρ
≥ 0, which is omitted here due to the page

limit. To analyze the trend of En
c − Ēn

c versus ρ, we have that

∂
(
En

c − Ēn
c

)

∂ρ
=

αn

ln 2

E

[(
1 + ραn|hn|2

)2βn−1 |hn|2
]

E

[

(1 + ραn|hn|2)2βn

]

− 1

2 ln 2

E

[(
1 + ρ|hn|2

)βn−1 |hn|2
]

E

[

(1 + ρ|hn|2)βn

] . (33)

When ρ → 0, we prove that lim
ρ→0

∂
(
En

c − Ēn
c

)

∂ρ
=

αn − 1

2
ln 2

E
[
|hn|2

]
≤ 0, due to the fact that αn ∈

(

0,
1

2

]

,

and E
[
|hn|2

]
≥ 0.

When ρ is very large, we can prove that

∂
(
En

c − Ēn
c

)

∂ρ
=

αn

ln 2

E

[(
ραn|hn|2

)2βn−1 |hn|2
]

E

[

(ραn|hn|2)2βn

]

− 1

2 ln 2

E

[(
ρ|hn|2

)βn−1 |hn|2
]

E

[

(ρ|hn|2)βn

] =
1

2ρ ln 2
, (34)

which is non-negative and approaches 0, when ρ → ∞.

APPENDIX E

PROOF OF LEMMA 4

From Lemma 1, we note that when ρ → 0, TN = Em
c +

En
c → 0, and lim

ρ→∞
TN → ∞. For the sum EC in OMA

scheme, TO, we can also get that TO → 0 when ρ → 0,

and lim
ρ→∞

TO → ∞. In addition, for the sum EC in NOMA

scheme, TN , we can prove that

∂TN

∂ρ
=

∂ (Em
c + En

c )

∂ρ

=
1−αn

ln 2

E

[(
ρ|hm|2+1

ραn|hm|2+1

)2βm−1 |hm|2

(ραn|hm|2 + 1)
2

]

E

[(
ρ|hm|2 + 1

ραn|hm|2 + 1

)2βm

]

(35a)



4920 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 10, OCTOBER 2018

+
αn

ln 2

E

[(
1+ραn|hn|2

)2βn−1 |hn|2
]

E

[

(1+ραn|hn|2)2βn

] , (35b)

which is non-negative because
∂Em

c

∂ρ
≥ 0, and

∂En
c

∂ρ
≥ 0.

When ρ → 0, we have that

lim
ρ→0

∂TN

∂ρ
=

1 − αn

ln 2
E
[
|hm|2

]
+

αn

ln 2
E
[
|hn|2

]
. (36)

When ρ → ∞, we can prove that

lim
ρ→∞

∂TN

∂ρ
= lim

ρ→∞

1 − αn

αn ln 2ρ2
E

[
1

|hm|2
]

+
1

ρ ln 2
, (37)

which equals to 0.

By following similar steps, we can also prove that

∂TO

∂ρ
≥ 0, lim

ρ→0

∂TO

∂ρ
=

1

2 ln 2
E
[
|hm|2

]
+

1

2 ln 2
E
[
|hn|2

]
,

and lim
ρ→∞

∂TO

∂ρ
= 0. This completes the proof for

Lemma 4.

APPENDIX F: PROOF OF LEMMA 5

Recall that the EC expression in NOMA scheme, for the

mth user, is given by

Em
c = − 1

θmTfB
ln

(

E

[(
ρ|hm|2 + 1

ραn|hm|2 + 1

)2βm

])

, (38)

which gives an indeterminate form
0

0
, when θm → 0.

By applying L’Hopital’s rule, lim
θm→0

Em
c becomes

lim
θm→0

−
E

[(
ρ|hm|2+1

ραn|hm|2+1

)2βm

ln

(
ρ|hm|2+1

ραn|hm|2+1

)(

− 1

ln 2

)]

E

[(
ρ|hm|2+1

ραn|hm|2+1

)2βm

]

= E

⎡

⎢
⎢
⎣
log2

⎛

⎜
⎜
⎝

1+
αm|hm|2

αn|hm|2+
1

ρ

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

, (39)

which equals to E [Rm]. In other words, when θm → 0, which

refers to a user with no delay constraint, the EC in NOMA

is equivalent to the ergodic capacity. Similarly, by using

L’Hopital’s rule, we can also conclude that lim
θm→0

Ēm
c =

1

2
E
[
log2

(
1 + ρ|hm|2

)]
, which equals to E

[
R̄m

]
. Hence,

when θm → 0, Em
c − Ēm

c = E [Rm]−E
[
R̄m

]
. By following

similar steps, we can get the same conclusion for the nth

user, i.e., lim
θn→0

En
c = E [Rn], lim

θn→0
Ēn

c = E
[
R̄n

]
, and

lim
θn→0

(
En

c − Ēn
c

)
= E [Rn] − E

[
R̄n

]
.

Consider the mth user with no delay constraint, i.e., θm → 0.

By inserting ρ → ∞ to (39), we can prove that lim
θm→0
ρ→∞

Em
c =

E

[

log2

(
1

αn

)]

. As for the EC in OMA for the mth user,

we can get that lim
θm→0
ρ→∞

Ēm
c → ∞, by inserting ρ → ∞

into
1

2
E
[
log2

(
1 + ρ|hm|2

)]
. Henceforth, we can prove that

lim
θm→0
ρ→∞

(
Em

c − Ēm
c

)
→ −∞.

Similarly, for the nth user with θn → 0, when the transmit

SNR ρ is very large, we can prove that lim
θn→0
ρ→∞

En
c → ∞, and

lim
θn→0
ρ→∞

Ēn
c → ∞. As for lim

θn→0
ρ→∞

(
En

c − Ēn
c

)
, we have that

lim
θn→0
ρ→∞

(
En

c − Ēn
c

)

= lim
ρ→∞

E
[
log2

(
1 + ραn|hn|2

)]
− 1

2
E
[
log2

(
1 + ρ|hn|2

)]

= lim
ρ→∞

E

⎡

⎢
⎢
⎣

log2

⎛

⎜
⎜
⎝

1√
ρ

+
√

ραn|hn|2
√

1

ρ
+ |hn|2

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

= lim
ρ→∞

E

[

log2

(√
ραn

√

|hn|2
)]

, (40a)

which approaches infinity. Here we complete the proof for

Lemma 5.

APPENDIX G

PROOF OF LEMMA 6

By inserting ρ → 0 into (16a), (17a), (16b), and (17b),

we can prove that Emi

c − Ēmi

c → 0, and Eni

c − Ēni

c → 0.

Therefore, one can easily get that when ρ → 0, MN −MO →

0, since MN −MO =
M/2∑

i=1

(
Emi

c − Ēmi

c + Eni

c − Ēni

c

)
. When

ρ → ∞, we can prove that

lim
ρ→∞

(MN − MO) = lim
ρ→∞

M/2
∑

i=1

(
Emi

c − Ēmi

c + Eni

c − Ēni

c

)

=

M/2
∑

i=1

lim
ρ→∞

− 1

θmi
TfB

ln

⎛

⎝
α
− 4

M
βmi

ni

E

[

(|hmi
|2)

2

M
βmi

]ρ−
2

M
βmi

⎞

⎠

− 1

θni
TfB

ln

⎛

⎝
α

4

M
βni

ni
E

[(
|hni

|2
) 4

M
βni

]

E

[

(|hni
|2)

2

M
βni

] ρ
2

M
βni

⎞

⎠ (41a)

=

M/2
∑

i=1

− 1

θmi
TfB

ln

⎛

⎝
α
− 4

M
βmi

ni

E

[

(|hmi
|2)

2

M
βmi

]

⎞

⎠

− 1

θni
TfB

ln

⎛

⎝
αni

4

M
βni E

[(
|hni

|2
) 4

M
βni

]

E

[

(|hni
|2)

2

M
βni

]

⎞

⎠ , (41b)

which is a constant with respect to ρ.

Then, we start to consider lim
ρ→0

∂ (MN − MO)

∂ρ
and

lim
ρ→∞

∂ (MN − MO)

∂ρ
, by analyzing

∂MN

∂ρ
and

∂MO

∂ρ
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separately.

∂MN

∂ρ
=

M/2
∑

i=1

∂Emi

c

∂ρ
+

∂Eni

c

∂ρ
=

M/2
∑

i=1

2(1−αni
)

M ln 2

×
E

[(
ρ|hmi

|2+1

ραni
|hmi

|2+1

) 4

M
βmi

−1 |hmi
|2

(ραni
|hmi

|2+1)
2

]

E

[(
ρ|hmi

|2+1

ραni
|hmi

|2+1

) 4

M
βmi

]

(42a)

+
2αni

M ln 2

E

[(
1+ραni

|hni
|2
) 4

M
βni

−1 |hni
|2
]

E

[

(1+ραni
|hni

|2)
4

M
βni

] . (42b)

By inserting ρ = 0 into (42b), we get that lim
ρ→0

∂MN

∂ρ
=

M/2∑

i=1

2 (1 − αni
)

M ln 2
E
[
|hmi

|2
]
+

2αni

M ln 2
E
[
|hni

|2
]
. On the other

hand, when ρ → ∞, we can prove that lim
ρ→∞

∂MN

∂ρ
becomes

lim
ρ→∞

M/2
∑

i=1

2 (1 − αni
)

αni
M ln 2ρ2

E

[
1

|hmi
|2
]

+
2

M ln 2ρ
, (43)

which equals to 0. Then we start to consider
∂MO

∂ρ
.

∂MO

∂ρ
=

M/2
∑

i=1

∂Ēmi

c

∂ρ
+

∂Ēni

c

∂ρ

=

M/2
∑

i=1

1

M ln 2

E

[(
1 + ρ|hmi

|2
) 2

M
βmi

−1 |hmi
|2
]

E

[

(1 + ρ|hmi
|2)

2

M
βmi

]

(44a)

+
1

M ln 2

E

[(
1 + ρ|hni

|2
) 2

M
βni

−1 |hni
|2
]

E

[

(1 + ρ|hni
|2)

2

M
βni

] . (44b)

By inserting ρ = 0 into (44b), we get that lim
ρ→0

∂MO

∂ρ
=

M/2∑

i=1

1

M ln 2
E
[
|hmi

|2
]

+
1

M ln 2
E
[
|hni

|2
]
. When ρ → ∞,

we can prove that

lim
ρ→∞

∂MO

∂ρ
= lim

ρ→∞

M/2
∑

i=1

1

M ln 2ρ
+

1

M ln 2ρ
, (45)

which equals to 0 apparently. Hence, we can conclude that

lim
ρ→0

∂ (MN − MO)

∂ρ
equals to

M/2
∑

i=1

1 − 2αni

M ln 2

(
E
[
|hmi

|2
]
− E

[
|hni

|2
])

, (46)

which is ≤ 0, because αni
− 1

2
≤ 0, and E

[
|hni

|2
]

≥
E
[
|hmi

|2
]
. This is due to the reason that in the ith NOMA

pair, the instantaneous channel power gain |hni
|2 is larger

than |hmi
|2. On the other hand, when ρ → ∞, we can get

that lim
ρ→∞

∂ (MN − MO)

∂ρ
= lim

ρ→∞

∂MN

∂ρ
− ∂MO

∂ρ
= 0.
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